
ar
X

iv
:1

50
7.

05
91

4v
4

 [
m

at
h.

O
C

]
 5

 M
ay

 2
01

7

A Frank-Wolfe Based Branch-and-Bound Algorithm

for Mean-Risk Optimization

C. Buchheim†, M. De Santis‡, F. Rinaldi∗, L. Trieu†

†Fakultät für Mathematik
TU Dortmund

Vogelpothsweg 87 - 44227 Dortmund - Germany

‡Institut für Mathematik
Alpen-Adria-Universität Klagenfurt

Universitätsstrasse 65-67, 9020 Klagenfurt - Austria

∗Dipartimento di Matematica
Università di Padova

Via Trieste, 63 - 35121 Padova - Italy

e-mail (Buchheim): christoph.buchheim@tu-dortmund.de
e-mail (De Santis): marianna.desantis@aau.at

e-mail (Rinaldi): rinaldi@math.unipd.it
e-mail (Trieu): long.trieu@math.tu-dortmund.de

Abstract

We present an exact algorithm for mean-risk optimization subject to a budget constraint, where decision
variables may be continuous or integer. The risk is measured by the covariance matrix and weighted by
an arbitrary monotone function, which allows to model risk-aversion in a very individual way. We address
this class of convex mixed-integer minimization problems by designing a branch-and-bound algorithm,
where at each node, the continuous relaxation is solved by a non-monotone Frank-Wolfe type algorithm
with away-steps. Experimental results on portfolio optimization problems show that our approach can
outperform the MISOCP solver of CPLEX 12.6 for instances where a linear risk-weighting function is
considered.

Keywords. mixed-integer programming, mean-risk optimization, global optimization

AMS subject classifications. 90C10, 90C57, 90C90

1 Introduction

We consider mixed-integer knapsack problems of the form

max c⊤y

s.t. a⊤y ≤ b
y ≥ 0
yi ∈ Z ∀i ∈ I,

1

http://arxiv.org/abs/1507.05914v4

where y ∈ R
n is the vector of non-negative decision variables, the index set I ⊆ {1, . . . , n}

specifies which variables have to take integer values. In many practical applications, the objective
function coefficients c ∈ R

n are uncertain, while a ∈ R
n
+ and b ∈ R+ are known precisely. E.g.,

in portfolio optimization problems, the current prices a and the budget b are given, but the
returns c are unknown at the time of investment. The robust optimization approach tries to
address such uncertainty by considering worst-case optimal solutions, where the worst-case is
taken over a specified set of probable scenarios called the uncertainty set U of the problem.
Formally, we thus obtain the problem

max min
c∈U

c⊤y

s.t. a⊤y ≤ b
y ≥ 0
yi ∈ Z ∀i ∈ I.

(1)

The coefficients ci may also be interpreted as random variables. Assuming a multivariate normal
distribution, a natural choice for the set U is an ellipsoid defined by the means r ∈ R

n and a
positive definite covariance matrix M ∈ R

n×n of c. In this case, Problem (1) turns out to be
equivalent (see, e.g., [3]) to the non-linear knapsack problem

max r⊤y − Ω
√

y⊤My

s.t. a⊤y ≤ b
y ≥ 0
yi ∈ Z ∀i ∈ I,

(2)

where the factor Ω ∈ R corresponds to the chosen confidence level. It can be used to balance
the mean and the risk in the objective function and hence to model the risk-aversion of the user.
Ellipsoidal uncertainty sets have been widely considered in robust optimization [1, 2, 3].

In fact, mean-risk models such as (2) have been studied intensively in portfolio optimization,
since Markowitz addressed them in his seminal paper dating back to 1952 [22]. Originally, the
risk term was often given as y⊤My instead of

√

y⊤My, which generally leads to a different
optimal balance between mean and risk. In our approach, we allow to describe the weight of
the risk by any convex, differentiable and non-decreasing function h : R+ → R. Typical choices
for the function h could be h(t) = Ωt, yielding (2), or h(t) = Ωt2, which gives a convex MIQP
problem. However, it may also be a reasonable choice to neglect small risks while trying to avoid
a large risk as far as possible, this could be modeled by an exponential function

h(t) =

{

0 t ≤ γ

exp(t− γ)− (t− γ + 1) t > γ .

In summary, our aim is to compute exact solutions for problems of the form

max r⊤y − h(
√

y⊤My)

s.t. a⊤y ≤ b
y ≥ 0
yi ∈ Z ∀i ∈ I.

(3)

2

1.1 Our contribution

The main contribution of this paper is an exact algorithm to solve Problem (3), i.e. a class
of convex nonlinear mixed-integer programming problems. We propose a branch-and-bound
method that suitably combines a Frank-Wolfe like algorithm [11] with a branching strategy
already succesfully used in the context of mixed-integer programming problems (see [4] and
references therein).

Our approach for solving the continuous relaxation in each subproblem (i.e. the problem
obtained by removing the integrality constraints) exploits the simple structure of the feasible set
of (3) as well as the specific structure of the objective function. It uses away-steps as proposed
by Guélat and Marcotte [17] as well as a non-monotone line search.

Our motivation to choose a Frank-Wolfe like method is twofold. On the one hand, the
algorithm, at each iteration, gives a valid dual bound for the original mixed-integer nonlinear
programming problem, thus enabling fast pruning of the nodes in the branch-and-bound tree.
On the other hand, the running time per iteration is very low, because the computation of the
descent direction and the update of the objective function can be performed in an efficient way, as
it will be further explained in the next sections. These two properties, along with the possibility
of using warmstarts, are the key to a fast enumeration of the nodes in the branch-and-bound
algorithm we have designed.

1.2 Organization of the paper

The remaining sections of the paper are organized as follows. In Section 2 we describe a modified
Frank-Wolfe method to efficiently compute the dual bounds for the node relaxations. The section
also includes an in-depth convergence analysis of the algorithm. In Section 3 we shortly explain
the main ideas of our branch-and-bound algorithm, including the branching strategy, upper
and lower bound computations and several effective warmstart strategies to accelerate the dual
bound computation. In Section 4 we test our algorithm on real-world instances. We show
computational results and compare the performances of our algorithm and of CPLEX 12.6 for
different risk-weighting functions h. Finally, in Section 5 we summarize the results and give
some conclusions.

2 A modified version of the Frank-Wolfe method for the fast

computation of valid dual bounds

A continuous convex relaxation of (the minimization version of) Problem (3), simply obtained
by removing the integrality constraints in the original formulation, is the following:

min h
(

√

y⊤My
)

− r⊤y

s.t. a⊤y ≤ b
y ≥ 0 .

(4)

3

By the transformation yi =
b
ai
xi, Problem (4) becomes

min f(x) = h
(

√

x⊤Qx
)

− µ⊤x

s.t. 1⊤x ≤ 1
x ≥ 0

(5)

where Qij =
b2

aiaj
Mij , µi =

b
ai
ri and 1 = (1, . . . , 1)⊤ is the n-dimensional vector with all entries

equal to one. For the following, let S = {x ∈ R
n : 1⊤x ≤ 1, x ≥ 0} denote the feasible set of (5).

In this section, we consider the Frank-Wolfe algorithm with away-steps proposed by Guélat
and Marcotte [17], and define a non-monotone version for solving Problem (5). We also ana-
lyze its convergence properties. This algorithm is then embedded into our branch-and-bound
framework.

The original method described in [17] uses an exact line search to determine, at a given
iteration, the stepsize along the descent direction that yields the new iterate. When the exact line
search is too expensive (i.e. too many objective function and gradient evaluations are required),
different rules can be used for the stepsize calculation; see e.g. [12]. In particular, inexact line
search methods can be applied to calculate the stepsize [10], such as the Armijo or Goldstein line
search rules. Typical line search algorithms try a sequence of candidate values for the stepsize,
stopping as soon as some well-defined conditions on the resulting reduction of the objective
function value are met. Since the evaluation of the objective function at the trial points can be
performed in constant time (see Section 2.3), line search methods are inexpensive in our context.
Furthermore, from our numerical experience, using a non-monotone Armijo line search turned
out to be the best choice in practice. With this choice, a stepsize that yields a (safeguarded)
growth of the objective function can be accepted (see e.g. [13, 14, 15, 16]).

The outline of our approach is given in Algorithm 1. At each iteration k, the algorithm
first computes a descent direction, choosing among a standard toward-step and an away-step
direction, as clarified in Section 2.2. Then, in case optimality conditions are not satisfied, it
calculates a stepsize along the given direction by means of a non-monotone line search, see
Section 2.3, updates the point, and starts a new iteration.

Algorithm 1 NM-MFW

1 Choose a suitable starting point x0 ∈ S
2 For k = 0, 1, . . .
3 Compute a descent direction dk

4 If ∇f(xk)⊤dk = 0 then STOP

5 Calculate a stepsize αk ∈ (0, 1] by means of a line search
6 Set xk+1 = xk + αkdk

7 End For

In Section 2.1, we will discuss how to decide whether the origin is an optimal solution of
Problem (5). If this is not the case, we always choose a starting point better than the origin. The
points xk produced at each iteration thus satisfy f(xk) ≤ f(x0) < f(0), so that xk ∈ L(x0) ∩ S
and 0 6∈ L(x0) ∩ S, where

L(x0) = {x ∈ R
n | f(x) ≤ f(x0)}.

4

This is done in order to avoid obtaining the origin in any of the following iterations, as the
objective function may not be differentiable in x = 0.

For the following, we summarize some important properties of Problem (5).

Lemma 1. Assume that x = 0 is not an optimal solution of Problem (5) and a point x0 ∈ S
exists such that f(x0) < f(0). Then,

(a) the set L(x0) ∩ S is compact;

(b) the function f is continuously differentiable in L(x0) ∩ S;

(c) the function h is Lipschitz continuous in S;

(d) the function f is Lipschitz continuous in S with Lipschitz constant L
√

λmax(Q) + ‖µ‖,
where L is the Lipschitz constant of the function h.

Proof. For (a), it suffices to note that L(x0)∩S is a closed subset of the compact set S, while (b)
holds since 0 6∈ L(x0) ∩ S. As h is differentiable on the compact set S, we obtain (c). Finally,
to prove (d), let Q1/2 denote the unique symmetric matrix satisfying Q = Q1/2Q1/2. Then

‖∇f(x)‖ =
∥

∥

∥
h′(‖Q1/2x‖) Qx

‖Q1/2x‖
− µ

∥

∥

∥

≤ |h′(‖Q1/2x‖)|
∥

∥

∥
Q1/2 Q1/2x

‖Q1/2x‖

∥

∥

∥
+ ‖µ‖

≤ |h′(‖Q1/2x‖)|‖Q1/2‖+ ‖µ‖

≤ L
√

λmax(Q) + ‖µ‖.

In particular, it follows from (d) that f is uniformly continuous in S.

2.1 Checking optimality in the origin

A first difficulty in dealing with Problem (5) arises from the fact that the objective function
may not be differentiable in the origin x = 0. We thus aim at checking, in a first phase of our
algorithm, whether the origin is an optimizer of Problem (5). If so, we are done. Otherwise, our
strategy is to avoid the origin as an iterate of our algorithm, as discussed in more detail in the
following sections.

Since Problem (5) is convex, the origin is a global optimal solution if and only if there exists
a subgradient d ∈ ∂f(0) such that d⊤x ≥ 0 for all x ∈ S. From standard results of convex

analysis (see e.g. Theorem 2.3.9 in Clarke [6]), we have that ∂‖Q 1

2x‖ = Q
1

2 and we derive that

∂f(0) = h′(0)Q
1

2B − µ,

where B = {w ∈ R
n : ‖w‖ ≤ 1} is the unit ball in R

n. Thus x⋆ = 0 is an optimal solution for
Problem (5) if and only if

∃ v ∈ B : ∀x ∈ S :
(

h′(0)Q
1

2 v − µ
)⊤

x ≥ 0. (6)

5

Since x ∈ S implies x ≥ 0 and ei ∈ S for all i = 1, . . . , n, Condition (6) is equivalent to

∃ v ∈ B : h′(0)Q
1

2 v − µ ≥ 0. (7)

Note that Condition (7) is never satisfied if h′(0) = 0, since µ ≥ 0 and µ 6= 0. Consequently, the
origin is not an optimal solution of Problem (5) in this case. In general, Condition (7) allows to
decide whether the origin is optimal by solving a convex quadratic optimization problem with
non-negativity constraints, namely

min || 1
h′(0)Q

− 1

2 (y + µ)||
s.t. y ≥ 0 .

2.2 Computation of a feasible descent direction

For the computation of a feasible descent direction we follow the away-step approach described
in [17]. At every iteration k, we either choose a toward-step or an away-step. We first solve the
following linearized problem (corresponding to the toward-step),

x̂kTS = arg min ∇f(xk)⊤(x− xk)
s.t. x ∈ S,

(8)

and define dkTS ∈ R
n as dkTS = x̂kTS − xk. The maximum stepsize that guarantees feasibility of

the point chosen along dkTS is αTS = 1. Once the toward-step direction is computed, we consider
the problem corresponding to the away-step,

x̂kAS = arg max ∇f(xk)⊤(x− xk)
s.t. x ∈ S,

xi = 0 if xki = 0,
(9)

and define dkAS ∈ R
n as dkAS = xk − x̂kAS. In this case, the maximum stepsize guaranteeing

feasibility is
αAS = max{α ≥ 0 | xk + αdkAS ∈ S}.

If x̂kAS = eı̂, the point xk + αdkAS may become infeasible in case the non-negativity constraint
on xı̂ is violated. On the other hand, if x̂kAS = 0, the point xk + αdkAS can only violate the
constraint 1⊤x ≤ 1. Therefore, αAS needs to be chosen as:

αAS :=

xk
ı̂

1−xk
ı̂

if x̂kAS = eı̂,

1−1
⊤xk

1⊤xk if x̂kAS = 0.

Note that, according to this rule, αAS = 1 may be an infeasible steplength. Note also that, in
case the equality constraints are not enforced in Problem (9), αAS could be trivially zero.

In order to choose between the two directions, we use a criterion similar to the one presented
in [17]: if

∇f(xk)⊤dkAS ≤ ∇f(xk)⊤dkTS and αAS > β, (10)

with 0 < β ≪ 1 a suitably chosen constant value, we choose the away-step direction, setting
x̂k = x̂kAS and dk = xk − x̂k = dkAS . Otherwise we select the toward-step direction, setting

6

x̂k = x̂kTS and dk = x̂k − xk = dkTS . The condition αAS > β is needed to ensure convergence, as
will become clear in Section 2.4 below.

In both Problems (8) and (9), we need to optimize a linear function over a simplex. This
reduces to computing the objective function value at each vertex of the simplex, i.e., for 0
and e1, . . . , en in (8) and for 0 and all ei with xki > 0 in (9). Consequently, after computing the
gradient ∇f(xk), both solutions can be obtained at a computational cost of O(n).

2.3 Computation of a suitable stepsize

When using exact line searches, the Frank-Wolfe method with away-steps converges linearly if
the objective function satisfies specific assumptions; see e.g. [17, 21]. When an exact line search
approach is too expensive, we combine the away-step approach with non-monotone inexact line
searches. Even if the Frank-Wolfe method is not guaranteed to converge linearly in the latter
case, it yields very good results in practice, as will be shown in the numerical experience section.

In the non-monotone line search used in our algorithm, a stepsize is accepted as soon as
it yields a point which allows a sufficient decrease with respect to a given reference value. A
classical choice for the reference value is the maximum among the last pnm objective function
values computed, where pnm is a positive integer constant. See Algorithm 2 for the details of
our line search method.

Algorithm 2 Non-monotone Armijo line search

0 Choose δ ∈ (0, 1), γ1 ∈ (0, 12), γ2 ≥ 0, pnm > 0.
1 Update

f̄k = max
0≤i≤min{pnm,k}

f(xk−i)

2 Choose initial stepsize α ∈ (0, αmax]
3 While f(xk + αdk) > f̄k + γ1 α∇f(xk)⊤dk − γ2 α

2 ‖dk‖2
4 Set α = δα
5 End While

The maximum stepsize αmax used in Line 2 of Algorithm 2 is set to αTS if the toward-step
direction is chosen; it is set to αAS , otherwise.

The following result states that Algorithm 2 terminates in a finite number of steps. It can
be proved using similar arguments as in the proof of Proposition 3 in [16].

Proposition 1. For each k, assume that ∇f(xk)⊤dk < 0. Then Algorithm 2 determines, in a
finite number of iterations of the while loop in Lines 3–5, a stepsize αk such that

f(xk + αkdk) ≤ f̄k + γ1 α
k ∇f(xk)⊤dk − γ2 (α

k)2 ‖dk‖2.

From a practical point of view, it is important that the computation of the objective function
values of the trial points xk + αdk can be accelerated by using incremental updates. Therefore,
during the entire algorithm for solving Problem (5), we keep the valuesQxk ∈ R

n, (xk)⊤Qxk ∈ R,
and µ⊤xk ∈ R up-to-date. In the line search, if a toward-step is applied and x̂k = eı̂, we exploit

7

the fact that all expressions

(xk + αdk)⊤Q(xk + αdk) = (1− α)2 (xk)⊤Qxk + 2α(1 − α) (Qxk)ı̂ + α2Qı̂̂ı

µ⊤(xk + αdk) = (1− α)µ⊤xk + αµı̂

can be computed in constant time. Similarly, for x̂k = 0, we obtain

(xk + αdk)⊤Q(xk + αdk) = (1− α)2 (xk)⊤Qxk

µ⊤(xk + αdk) = (1− α)µ⊤xk.

In particular, if h can be evaluated in constant time, the same is true for the computation of the
objective value f(xk +αdk). Moreover, when the line search is successful and the next iterate is
chosen, the same formula as above can be used to compute (xk+1)⊤Qxk+1 ∈ R and µ⊤xk+1 ∈ R

in constant time, while Qxk+1 ∈ R
n can be updated in linear time using

Q(xk + αdk) =

{

(1− α)Qxk + αQı̂· if x̂k = eı̂

(1− α)Qxk if x̂k = 0.

The case of an away-step can be handled analogously.
In summary, after computing Qx0 ∈ R

n, (x0)⊤Qx0 ∈ R, and µ⊤x0 ∈ R from scratch, the
computation of objective function values takes O(1) time per iteration of Algorithm 2 – assuming
that h can be evaluated in constant time – plus O(n) time per iteration of Algorithm 1 (needed
to keep the values of Qxk ∈ R

n, (xk)⊤Qxk ∈ R, and µ⊤xk ∈ R up-to-date).

2.4 Convergence analysis of the non-monotone Frank-Wolfe algorithm

We now analyze the convergence properties of the non-monotone Frank-Wolfe algorithm NM-MFW

with away-steps (Algorithm 1). All the proofs of the following theoretical results can be found
in the Appendix.

Lemma 2. Suppose that NM-MFW produces an infinite sequence {xk}k∈N. Then

(i) xk ∈ L(x0) ∩ S for all k;

(ii) the sequence {f̄k}k∈N is non-increasing and converges to a value f̄ .

Proof. For the proof, see Appendix.

Lemma 3. Suppose that NM-MFW produces an infinite sequence {xk}. Then

lim
k→∞

f(xk) = lim
k→∞

f̄k = f̄ .

Proof. For the proof, see Appendix.

Lemma 4. Suppose that NM-MFW produces an infinite sequence {xk}k∈N. Then

lim
k→∞

∇f(xk)⊤dk = 0.

8

Proof. For the proof, see Appendix.

Theorem 1. Let {xk} ⊆ L(x0)∩S be the sequence of points produced by NM-MFW. Then, either an
integer k ≥ 0 exists such that xk is an optimal solution for Problem (5), or the sequence {xk}k∈N
is infinite and every limit point x⋆ is an optimal solution for Problem (5).

Proof. For the proof, see Appendix.

We notice that, due to the use of the line search, there is no need to make any particular
assumption on the gradient of the objective function (such as Lipschitz continuity) for proving
the convergence of Algorithm NM-MFW.

2.5 Lower bound computation

When using Algorithm NM-MFW within a branch-and-bound framework as we will present in
Section 3, the availability of valid dual bounds during the execution of NM-MFW can help to
prune the current node before termination of the algorithm, and thus to decrease the total
running time of the branch-and-bound scheme.

Considering Problem (5), we can define the following dual function [7, 19] for all x ∈ S \{0}:

w(x) := min
z∈S

(

f(x) +∇f(x)⊤(z − x)
)

.

From the definition of w(x) and taking into account the convexity of f , we have the following
weak duality result:

w(x) ≤ f(x) +∇f(x)⊤(x⋆ − x) ≤ f(x⋆), (11)

where x⋆ again denotes an optimal solution of Problem (5). We thus obtain a dual bound in
each iteration for free, given by

f(xk) +∇f(xk)⊤dk ≤ w(xk) = f(xk) + min
z∈S

∇f(xk)⊤(z − xk) = f(xk) +∇f(xk)⊤dkTS .

Note that this equation follows from how our direction is chosen, according to (10) (see Sec-
tion 2.2 for further details). We can stop Algorithm NM-MFW as soon as f(xk) + ∇f(xk)⊤dk

exceeds the current best upper bound in the branch-and-bound scheme. Furthermore, strong
duality holds in (11) (in the sense that w(x⋆) = f(x⋆)); see e.g. [7] and the references therein.

3 Branch-and-Bound algorithm

In order to deal with integer variables in Problem (3), we embedded Algorithm 1 into a branch-
and-bound framework. Aiming at a fast enumeration of the branch-and-bound tree, we follow
the ideas that have been successfully applied in, e.g., [4]. In this section, we give a short overview
over the main features of the branch-and-bound scheme.

9

3.1 Branching and enumeration strategy

At every node in our branch-and-bound scheme, we branch by fixing a single integer variable
to one of its feasible values. The enumeration order of the children nodes is by increasing
distance to the value of this variables in the solution of the continuous relaxation x⋆, computed
by Algorithm 1. If the closest integer value to x⋆i is ⌊x⋆i ⌋, we thus consecutively fix xi to integer
values ⌊x⋆i ⌋, ⌈x⋆i ⌉, ⌊x⋆i ⌋−1, ⌈x⋆i ⌉+1, and so on. If the closest integer is ⌈x⋆i ⌉, we analogously start
with fixing xi to the integer value ⌈x⋆i ⌉. By optimality of x⋆ and by the fact that the problem
is convex, the resulting lower bounds are non-decreasing when fixing to either increasing values
greater than x⋆i or decreasing values less than x⋆i . In particular, when being able to prune a
node, all siblings beyond this node can be pruned as well.

Once we arrive at level |I|, all integer variables are fixed and the problem reduces to the
purely continuous problem (4). We refer to [4] and the references therein for further details on
the branching strategy.

3.2 Lower bounds after fixing

An advantage of branching by fixing variables as opposed to branching by splitting up variable
domains is that the subproblems in the enumeration process of the search tree essentially main-
tain the same structure. Fixing a variable in Problem (4) just corresponds to moving certain
coefficients from the matrix M to a linear or constant part under the square root, and from the
vector r to a constant part outside the square root. More precisely, assume that the variables
with indices in J ⊆ I have been fixed to values s = (si)i∈I . The problem then reduces to the
minimization of

fs : Z
|I|−|J | × R

n−|I| → R, x 7→ h
(

√

x⊤Msx+ c⊤s x+ ds

)

− r⊤s x− ts (12)

over the feasible region Fs = {x ∈ Z
|I|−|J | × R

n−|I| | a⊤s x ≤ bs, x ≥ 0}, where the matrix Ms

is obtained by deleting the rows and columns corresponding to J , the vector as is obtained by
deleting the columns corresponding to J , and the remaining terms are updated appropriately.

Note that the relaxation of Problem (12) has a slightly more general form than the original
Problem (4), since the data cs and ds may be non-zero as a result of fixing variables. However, the
algorithm for solving Problem (4) discussed in Section 2 can easily be applied to the relaxation
of Problem (12) as well, the only difference being in the computation of the gradient. In fact,
in case at least one variable has been fixed to a non-zero value, we obtain ds > 0 since M ≻ 0.
In particular, the objective function becomes globally differentiable in this case.

3.3 Upper bounds

As an initial upper bound in the branching tree, we use a simple heuristic, adapted from a greedy
heuristic by Julstrom [20] for the quadratic knapsack problem. Analogously to the notation used
in the theory of knapsack problems the profit ratio pi of an item i is defined as the sum of all
profits that one gains by putting item i into the knapsack, divided by its weight. Transferred to
our application, we have

pi :=

(

h
(√

mii + 2
∑

j 6=imij

)

− ri

)

/ai

10

for all i = 1, . . . , n. Julstrom proposed to sort all items in a non-decreasing order with respect
to pi and, starting from the first item, successively set xi = 1 until the capacity of the knapsack
is reached. The remaining variables are set to zero.

We adapt this algorithm by allowing multiple copies of each item, i.e. xi = ⌊ b̄
ai
⌋, where b̄ is

the current capacity of the knapsack.
During the branch-and-bound enumeration, we do not use any heuristics for improving the

primal bound, since the fast enumeration using a depth-first search usually leads to the early
identification of good feasible solutions and hence to fast updates of the bound. Once all integer
variables have been fixed, we compute the optimal solution of the subproblem in the reduced
continuous subspace.

3.4 Warmstarts

With the aim of speeding-up our branch-and-bound scheme, we use a warmstart procedure by
taking over information from the parent node. For this, let x⋆ ∈ R

d be the optimal solution in
the parent node and define x̃ ∈ R

d−1 by removing the entry of x⋆ corresponding to the variable
that has been fixed last. If x̃ is feasible for the current node relaxation, we always use it as a
starting point for NM-MFW, otherwise we choose one of the following feasible points according to
our chosen warmstarting rule:

• the first unit vector e1 = (1, 0, . . . , 0) ∈ R
d−1;

• the projection x̃p of x̃ onto the feasible region;

• or the unit vector eı̂ with ı̂ := argminih
(
√

mii +
∑

j 6=i 2mij

)

− ri.

The resulting warmstarting rules are denoted by (x̃ ∨ e1), (x̃ ∨ x̃p), and (x̃ ∨ eı̂), respectively.
This notation is meant to emphasize that we either use x̃ or, if not possible, one of the other
choices depending on the selected rule.

Note that the point x̃p can be computed by the algorithm originally proposed by Held
et al. [18] that was recently rediscovered by Duchi et al. [9]. For the latter version the overall
complexity has been proved to be O(n2). The unit vector eı̂ is chosen by again adapting ideas of
the greedy heuristic by Julstrom [20]. It represents the vertex of S where the potential increase
of the objective function due to the remaining items j 6= ı̂ is minimized, if setting xı̂ = 1.

4 Numerical experience

In order to investigate the potential of our algorithm FW-BB when applied to Problem (3), we
implemented it in C++ and Fortran 90 and performed an extensive computational evaluation.
As benchmark data set, we used historical real-data capital market indices from the Stan-
dard&Poor’s 500 index (S&P 500) that were used and made public by Cesarone et al. [5]. This
data set was used for solving a Limited Asset Markowitz (LAM) model. For each of the 500
stocks the authors obtained 265 weakly price data, adjusted for dividends, from Yahoo Finance
for the period from March 2003 to March 2008. Stocks with more than two consecutive missing

11

NM-FW-BB M-FW-BB

n # time it # time it

100 10 1.6 314.3 10 0.8 294.9
150 10 7.1 307.9 9 69.0 300.7
200 8 32.4 277.8 8 340.7 256.0

Table 1: Comparison between non-monotone and monotone version of FW-BB on instances with
h(t) = Ωt, ε = 0.95, b = b3.

values were disregarded. The missing values of the remaining stocks were interpolated, result-
ing in an overall of 476 stocks. Logarithmic weekly returns, expected returns and covariance
matrices were computed based on the period March 2003 to March 2007.

By choosing stocks at random from the 476 available ones, we built mixed-integer portfolio
optimization instances of different sizes. Namely, we built 10 problems with 100, 10 with 150
and 10 with 200 stocks, considering |I| = ⌊n/2⌋ (so half of the variables are constrained to be
integer). We considered three different values for b, representing the budget of the investor,
namely b1 := 1 ·

∑n
i=1 ai, b2 := 10 ·

∑n
i=1 ai, and b3 := 100 ·

∑n
i=1 ai, yielding a total of 90

instances.
All experiments were carried out on Intel Xeon processors running at 2.60 GHz. All running

times were measured in cpu seconds and the time-limit was set to one cpu hour. In the following,
we first present a numerical evaluation related to our algorithm FW-BB: we explore the benefits
obtained from using the non-monotone line search and using warmstart alternatives. Then, we
present a comparison of FW-BB with the MISOCP and the MIQP solver of CPLEX 12.6, for the
two cases h(t) = Ωt and h(t) = t2, respectively. Finally, to show the generality of our approach,
we report the results of numerical tests for a non-standard risk-weighting function h.

4.1 Benefits of the non-monotone line search and warmstarts

The NM-MFW-algorithm devised in Section 2 uses a non-monotone line search; in our implemen-
tation of FW-BB we set pnm = 1. In order to show the benefits of the non-monotone version of
FW-BB we report in Table 1 a comparison between the non-monotone version (NM-FW-BB) and
the monotone one (M-FW-BB), on instances with h(t) = Ωt and budget constraint a⊤x ≤ b3.
We considered (x̃ ∨ x̃p) as warmstart choice. In Table 1 we report, for each dimension, the
number of instances solved within the time limit (#), the average running times (time), and the
average numbers of iterations of NM-MFW in each node of the enumeration tree (it). All averages
are taken over the set of instances solved within the time limit. Using the non-monotone line
search, FW-BB is able to solve a greater number of instances within the time limit. Furthermore,
NM-FW-BB gives in general better performance in terms of running times, while the number of
iterations is very similar, showing the advantage of allowing stepsizes with a safeguarded growth
of the objective function.

In order to investigate the benefits of the warmstart choices (x̃∨e1), (x̃∨x̃p), (x̃∨eı̂), we again
ran the different versions of FW-BB on instances with h(t) = Ωt and budget constraint a⊤x ≤ b3.
We compare the three warmstart possibilities presented above with the following alternatives:

(e1) always choose e1;

12

e1 eı̂ x̃ ∨ e1 x̃ ∨ eı̂ x̃ ∨ x̃p
n # time # time # time # time # time

100 10 0.2 10 0.8 10 0.8 10 1.6 10 0.5
150 10 3.8 10 3.9 10 7.1 10 7.1 10 6.1
200 7 220.2 7 223.5 8 31.7 8 32.4 9 46.0

Table 2: Comparison on different warmstart strategies on instances with h(t) = Ωt, ε = 0.95,
b = b3.

(eı̂) always choose eı̂.

In Table 2 we show the results related to the five different starting point choices. We can observe
that the best choice among those considered, according to the number of instances solved within
the time limit, is (x̃∨ x̃p). We also observe that, when n = 200, choosing (x̃∨ e1) is better than
considering e1 or eı̂ as starting points, highlighting the benefits of using warmstarts.

4.2 Comparison with CPLEX 12.6

In this section, we present a numerical comparison on instances with h(t) = Ωt and h(t) = t2. We
compare FW-BB with the MISOCP and the MIQP solver of CPLEX 12.6, respectively. Concerning
FW-BB, we consider the two non-monotone versions, FW-BB-P and FW-BB-G, using (x̃ ∨ x̃p) and
(x̃ ∨ eı̂), respectively. We use an absolute optimality tolerance of 10−10 for all algorithms.

Comparison on instances with h(t) = Ωt. In order to compare FW-BB with CPLEX 12.6,
we modeled (3) as an equivalent mixed-integer second-order cone program (MISOCP):

−min
{

y − r⊤x : a⊤x ≤ b, Ω
√
x⊤Mx ≤ y, x ≥ 0, xi ∈ Z, i = 1, . . . , |I|, y ∈ R

}

.

We chose Ω =
√

(1− ε)/ε, where ε ∈ {0.91, 0.95, 0.99}. The value of ε controls the amount
of risk the investor is willing to take. In theory, ε can take any value in (0,1], where a small
value implies a big weight on the risk-term and ε = 1 means that the risk is not taken into
account. Numerical tests on single instances showed that any value of ε in (0,0.9] leads to the
trivial optimal solution zero, i.e. not investing anything is the optimal decision for the investor.
Therefore, we restricted our experiments to the three values of ε mentioned above.

In Table 3, we report for each algorithm the following data: numbers of instances solved
within the time limit (♯), average running times (time), average numbers of branch-and-bound
nodes (nodes). All averages are taken over the set of instances solved within the time limit.
We show the computational results for the three different values of ε and b. We can see that
FW-BB suffers from an increasing right hand side b, which however holds for CPLEX 12.6 as
well, even to a larger extent. The choice of ε does not significantly effect the performance
of FW-BB, while CPLEX 12.6 performs better on instances with large ε. Altogether, we can
observe that FW-BB-P is able to solve the largest number of instances within the time limit.
When the number of solved instances is the same, both version of FW-BB outperform the MISOCP
solver of CPLEX 12.6 in terms of cpu time. Note that the average number of branch-and-bound
nodes in FW-BB is much larger than that needed by CPLEX 12.6. This highlights how solving the

13

continuous relaxations by NM-FW-BB leads to a fast enumeration of the branch-and-bound nodes.
Besides Table 3, we visualize our running time results by performance profiles in Figure 1, as
proposed in [8]. They confirm that, in terms of cpu time, FW-BB-P outperforms the MISOCP
solver of CPLEX 12.6 significantly.

In our experiments, we noticed that in some cases FW-BB and CPLEX provide slightly differ-
ent minimizers, yielding slightly different optimal objective function values. While on certain
instances the optimal solution of FW-BB is slightly superior to CPLEX, on other instances it is the
other way round. We observed a relative difference from the best solution of the order of 10−3.

10 3 4*10 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 3 4*10 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 3 4*10 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε = 0.91 ε = 0.95 ε = 0.99

CPLEX 12.6

FW-BB-P

FW-BB-G

Figure 1: Comparison of FW-BB and CPLEX 12.6: performance profiles with respect to running
times for different values of ε.

Comparison on instances with h(t) = Ωt2. If we consider as risk-weighting function
h(t) = Ωt2, Problem (3) reduces to a convex quadratic mixed-integer problem, and the objective
function is differentiable everywhere in the feasible set. In Table 4 we report the comparison
among FW-BB-P, FW-BB-G and the MIQP solver of CPLEX 12.6. We considered Ω = 1. All algo-
rithms were able to solve all the instances very quickly. The MIQP solver of CPLEX 12.6 shows
the best cpu times, although both versions of FW-BB are also very fast, even if they enumerate
a higher number of nodes.

We would like to remark that our branch-and-bound algorithm does not exploit the (quadratic)
structure of the objective function, since it is designed to solve a more general class of problems
than MIQPs. Nevertheless, the algorithm gives competitive results also when dealing with those
problems.

14

inst FW-BB-P FW-BB-G CPLEX 12.6

n ε b # time nodes # time nodes # time nodes

100 0.91 b1 10 0.17 1.61e+03 10 0.33 1.63e+03 10 17.00 3.81e+03
100 0.91 b2 10 0.09 8.29e+02 10 0.22 8.33e+02 10 279.15 7.90e+03
100 0.91 b3 10 0.30 3.74e+02 10 0.42 4.28e+02 3 51.01 2.77e+03

100 0.95 b1 10 0.02 2.59e+02 10 0.04 2.65e+02 10 1.89 4.66e+02
100 0.95 b2 10 0.04 3.19e+02 10 0.09 3.14e+02 10 59.10 2.98e+03
100 0.95 b3 10 0.47 5.87e+02 10 1.57 2.08e+03 5 364.90 4.39e+03

100 0.99 b1 10 0.01 1.70e+02 10 0.01 1.78e+02 10 0.15 3.70e+01
100 0.99 b2 10 0.04 5.81e+02 10 0.04 6.64e+02 10 0.70 1.85e+02
100 0.99 b3 10 16.51 1.57e+04 10 260.60 3.71e+05 9 503.62 1.03e+04

150 0.91 b1 10 0.14 6.56e+02 10 4.45 1.06e+04 10 52.53 3.18e+03
150 0.91 b2 10 0.40 1.73e+03 10 46.4 4.83e+04 6 707.94 6.70e+03
150 0.91 b3 10 2.15 2.01e+03 9 1.77 1.41e+03 5 47.32 1.81e+03

150 0.95 b1 10 0.15 9.76e+02 10 0.24 1.05e+03 10 11.49 1.04e+03
150 0.95 b2 10 0.17 6.75e+02 10 5.70 8.89e+03 8 225.78 3.04e+03
150 0.95 b3 10 6.14 6.15e+03 10 7.11 6.16e+03 5 834.79 6.23e+03

150 0.99 b1 10 0.04 2.56e+02 10 0.06 2.66e+02 10 35.08 5.81e+02
150 0.99 b2 10 0.10 2.20e+02 10 0.23 5.08e+02 10 6.69 6.14e+02
150 0.99 b3 10 0.78 8.67e+02 10 0.82 8.80e+02 9 422.15 3.53e+03

200 0.91 b1 10 4.81 1.71e+04 10 5.80 1.35e+04 10 465.62 9.48e+03
200 0.91 b2 9 19.83 7.89e+04 9 116.78 1.89e+05 3 879.46 9.14e+03
200 0.91 b3 10 22.99 1.86e+04 10 32.44 2.20e+04 3 204.92 3.80e+03

200 0.95 b1 10 0.37 1.33e+03 10 0.54 1.29e+03 10 75.50 3.46e+03
200 0.95 b2 10 0.82 1.38e+03 10 1.40 1.48e+03 5 44.64 1.55e+03
200 0.95 b3 9 45.98 3.74e+04 8 32.39 2.05e+04 7 38.77 2.42e+03

200 0.99 b1 10 2.17 1.57e+04 10 2.00 1.57e+04 10 2.44 2.76e+03
200 0.99 b2 10 0.49 6.04e+02 10 0.95 9.12e+02 9 277.08 2.61e+03
200 0.99 b3 10 11.14 1.06e+04 9 67.57 5.90e+04 9 183.80 2.13e+03

Table 3: Comparison of FW-BB and CPLEX 12.6 on instances with h(t) = Ωt.

15

inst FW-BB-P FW-BB-G CPLEX 12.6

n b # time nodes # time nodes # time nodes

100 b1 10 0.06 4.10e+02 10 0.06 4.10e+02 10 0.04 1.12e+01
100 b2 10 0.07 6.38e+02 10 0.07 6.38e+02 10 0.03 1.58e+01
100 b3 10 0.23 9.86e+02 10 0.23 9.86e+02 10 0.03 2.59e+01

150 b1 10 0.12 7.66e+02 10 0.12 7.65e+02 10 0.06 1.92e+01
150 b2 10 0.19 9.76e+02 10 0.18 9.76e+02 10 0.06 2.06e+01
150 b3 10 0.19 8.80e+02 10 0.19 8.81e+02 10 0.06 9.90e+00

200 b1 10 0.61 3.28e+03 10 0.61 3.28e+03 10 0.11 2.07e+01
200 b2 10 0.94 5.24e+03 10 0.91 5.24e+03 10 0.11 1.91e+01
200 b3 10 0.41 1.46e+03 10 0.42 1.46e+03 10 0.12 2.40e+01

Table 4: Comparison of FW-BB and CPLEX 12.6 on instances with h(t) = t2.

4.3 Results with a non-standard risk-weighting function

As a further experiment, we tested our instances considering a different risk-weighting function
h : R+ → R, namely

hexp(t) =

{

0 t ≤ γ

exp(t− γ)− (t− γ + 1) t > γ,

such that the investor’s risk-aversion increases exponentially in the risk after exceeding a certain
threshold value γ. In Table 5, we report the results of FW-BB-P, considering three choices γ ∈
{0, 1, 10}. We observe that for both γ = 0 and γ = 1 our algorithm FW-BB-P is able to
solve all instances within the time limit, and that instances get more difficult for FW-BB-P with
increasing γ.

inst γ = 0 γ = 1 γ = 10
n b # time nodes # time nodes # time nodes

100 b1 10 0.09 4.8e+02 10 0.17 7.2e+02 10 0.09 5.4e+02
100 b2 10 0.07 4.1e+02 10 0.27 7.5e+02 10 243.87 3.3e+05
100 b3 10 0.30 8.6e+02 10 31.14 5.1e+04 5 401.57 6.2e+05

150 b1 10 0.17 9.0e+02 10 1.31 4.5e+03 10 0.19 3.2e+02
150 b2 10 0.33 1.5e+03 10 2.52 7.9e+03 10 193.40 2.0e+04
150 b3 10 0.56 2.2e+03 10 6.50 1.2e+04 4 565.76 7.1e+05

200 b1 10 1.41 6.6e+03 10 14.96 4.7e+04 10 7.40 7.7e+03
200 b2 10 1.09 3.2e+03 10 50.47 1.1e+05 7 929.46 7.9e+05
200 b3 10 0.82 2.5e+03 10 30.25 3.0e+04 5 138.07 1.5e+05

Table 5: Results with an exponential risk-weighting function.

In order to investigate the influence of the risk-weighting function on the optimal solution,
we compared different functions for an instance of dimension n = 100 under the constraint
a⊤x ≤ b1. The results are given in Table 6. We report, for each risk-weighting function h(t)
depending on a specific risk parameter (risk-par), the objective function value obtained (obj),

16

the value of the return term in the objective function evaluated at the optimal solution (r⊤x⋆),
the number of non-zero entries in the optimal solution (‖x⋆‖0), and the maximal entry in the
optimal solution (‖x⋆‖∞).

h(t) risk-par obj r⊤x⋆ ‖x⋆‖0 ‖x⋆‖∞
Ω t ǫ = 0.91 0.3684 2.2452 16 58

ǫ = 0.95 1.4454 6.0911 4 280
ǫ = 0.99 4.2161 6.4523 3 320

Ω t2 Ω = 1 0.0513 0.1021 16 2

hexp γ = 0 0.0905 0.1715 15 3.14
γ = 1 0.5258 0.5900 16 11.87
γ = 10 3.4991 3.5348 7 113

Table 6: Results on a mixed-integer instance with n = 100 for different risk-weighting functions.

Not surprisingly, the results show that a larger weight on the risk-term leads to a smaller
expected return in the optimal solution. At the same time, a large weight on the risk favors a
diversified portfolio, so that the number of non-zeros increases with the weight on the risk, at
the same and the maximal amount invested into a single investment decreases. However, the
precise dependencies are defined by the function h. In Figure 2, we show contour plots for the
different types of functions h(t) considered here.

h(t) = Ω t

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
h(t) = Ω t2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h
exp

(t)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x*

x*x*

Figure 2: Contour plots of f = h(
√
x⊤Mx)− r⊤x for different risk-weighting functions.

5 Conclusions

We presented a branch-and-bound algorithm for a large class of convex mixed-integer minimiza-
tion problems arising in portfolio optimization. Dual bounds are obtained by a modified version
of the Frank-Wolfe method. This is motivated mainly by two reasons. On the one hand, the
Frank-Wolfe algorithm, at each iteration, gives a valid dual bound for the original mixed-integer
problem, therefore it may allow an early pruning of the node. On the other hand, the cost per
iteration is very low, since the computation of the descent direction and the update of the ob-
jective function can be performed in a very efficient way. Furthermore, the devised Frank-Wolfe

17

method benefits from the use of a non-monotone Armijo line search. Within the branch-and-
bound scheme, we propose different warmstarting strategies. The branch-and-bound algorithm
has been tested on a set of real-world instances for the capital budgeting problem, considering
different classes of risk-weighting functions. Experimental results show that the proposed ap-
proach significantly outperforms the MISOCP solver of CPLEX 12.6 for instances where a linear
risk-weighting function is considered.

6 Appendix

Proof of Lemma 2:

Proof. First note that the definition of f̄k ensures f̄k ≤ f(x0) and hence f(xk) ≤ f(x0) for all k,
which proves (i). For (ii), we have that

f̄k+1 = max
0≤i≤min{pnm,k+1}

f(xk+1−i) ≤ max{f̄k, f(xk+1)}.

Since f(xk+1) < f̄k by the definition of the line search, we derive f̄k+1 ≤ f̄k, which proves that
the sequence {f̄k}k∈N is non-increasing. By (i), this sequence is bounded from below by the
minimum of f on L(x0) ∩ S, which exists by Lemma 1, and hence converges.

Proof of Lemma 3:

Proof. For each k ∈ N, choose tk ∈ {k − min(k, pnm), . . . , k} with f̄k = f(xt
k
). We prove by

induction that for any fixed integer i ≥ 0 we have

lim
k→∞

f(xt
k−i) = lim

k→∞
f(xt

k
) = lim

k→∞
f̄k = f̄ . (13)

Suppose at first i = 0. Then (13) follows from Lemma 2.
We now assume that (13) holds for i ≥ 0 and we prove that it holds for index i+1. We have

f(xt
k−i) ≤ f̄ tk−i−1 + γ1α

tk−i−1∇f(xt
k−i−1)⊤dt

k−i−1 − γ2(α
tk−i−1)2‖dtk−i−1‖2,

so that the same reasoning as before yields

f(xt
k−i)− f̄ tk−i−1 ≤ −γ2(α

tk−i−1)2‖dtk−i−1‖2. (14)

The left hand side of (14) converges to zero since (13) holds for i and the term f(xt
k−i) converges

to f̄ (by the inductive hypothesis), as well as f̄ tk−i−1 because of Lemma 2 (and the fact that
k − (tk − i− 1) is bounded by pnm + i+ 1). Then,

lim
k→∞

(αtk−i−1)2‖dtk−i−1‖2 = 0,

so that limk→∞ ‖xtk−i−xt
k−i−1‖ = 0. Again, uniform continuity of f(x) over L(x0)∩S yields (13)

for index i+ 1.

18

To conclude the proof, let T k = tk+pnm+1 and note that for any k we can write

f(xk) = f(xT
k
)−

T k−k−1
∑

i=0

(f(xT
k−i)− f(xT

k−i−1)).

Therefore, since the summation vanishes and f(xT
k
) = f̄k+pnm+1 converges to f̄ from Lemma 2,

taking the limit for k → ∞ and observing T k − k − 1 ≤ pnm we obtain the result.

Proof of Lemma 4:

Proof. First note that ∇f(xk)⊤dk < 0 for all k ∈ N. Let αk be the stepsize used by NM-MFW at
iteration k. Then,

f̄k − f(xk + αkdk) ≥ γ1 α
k |∇f(xk)⊤dk|+ γ2 (α

k)2 ‖dk‖2 ≥ γ1 α
k |∇f(xk)⊤dk| ≥ 0.

By Lemma 3, the left hand side converges to zero, hence

lim
k→∞

αk |∇f(xk)⊤dk| = 0. (15)

Since f is continuously differentiable on the compact set L(x0) ∩ S by Lemma 1 and dk is
bounded on S, the sequence ∇f(xk)⊤dk is bounded. It thus suffices to show that any convergent
subsequence of ∇f(xk)⊤dk converges to zero.

We assume by contradiction that a subsequence exists with

lim
i→∞

∇f(xki)⊤dki = −η < 0.

Since the sequences {xk}k∈N and {dk}k∈N are bounded, we can switch to an appropriate subse-
quence and assume that limk→∞ xk = x̄ and limk→∞ dk = d̄ exist. From (15) we obtain

lim
k→∞

αk = 0, (16)

and the continuity of the gradient in L(x0) ∩ S implies

∇f(x̄)⊤d̄ = lim
k→∞

∇f(xk)⊤dk = −η < 0.

Since αmax ≥ β > 0 and the sequence αk is converging to zero, a value k̄ ∈ N exists such that
αk < αmax, for k ≥ k̄. In other words, for k ≥ k̄ the stepsize αk cannot be set equal to the
maximum stepsize and, taking into account the non-monotone Armijo line search, we can write

f
(

xk +
αk

δ
dk
)

> f̄k + γ1
αk

δ
∇f(xk)⊤dk − γ2

(αk

δ

)2
‖dk‖2.

Hence, due to the fact that f̄k ≥ f(xk), we get

f
(

xk +
αk

δ
dk
)

− f(xk) > γ1
αk

δ
∇f(xk)⊤dk − γ2

(αk

δ

)2
‖dk‖2. (17)

19

Since f is continuously differentiable in L(x0) ∩ S, we can apply the Mean Value Theorem and
we have that sk ∈ [0, 1] exists such that

f
(

xk +
αk

δ
dk
)

= f(xk) +
αk

δ
∇f
(

xk + sk
αk

δ
dk
)⊤

dk. (18)

In particular, we have limk→∞ xk + sk
αk

δ dk = x̄, by (16) and since sk and dk are bounded. By
substituting (18) within (17) we have

∇f
(

xk + s
αk

δ
dk
)⊤

dk > γ1∇f(xk)⊤dk − γ2
αk

δ
‖dk‖2.

Considering the limit on both sides we get

−η = ∇f(x̄)⊤d̄ > γ1 ∇f(x̄)⊤d̄ = −γ1η

which is a contradiction since γ1 ∈ (0, 12) and −η < 0.

Proof of Theorem 1:

Proof. If NM-MFW does not stop in a finite number of iterations at an optimal solution, from
Lemma 4 we have that

lim
k→∞

∇f(xk)⊤dk = 0.

Let x⋆ be any limit point of {xk}k∈N. Since the sequence {dk}k∈N is bounded, we can switch to
an appropriate subsequence and assume that

lim
k→∞

xk = x⋆; lim
k→∞

dk = d⋆.

Therefore
∇f(x⋆)⊤d⋆ = lim

k→∞
∇f(xk)⊤dk = 0.

From the definition of dk (implied by (10) and the definition of dTS) we have

∇f(xk)⊤dk ≤ ∇f(xk)⊤(x− xk) ∀ x ∈ S.

Taking the limit for k → ∞ yields

0 = ∇f(x⋆)⊤d⋆ ≤ ∇f(x⋆)⊤(x− x⋆) ∀ x ∈ S,

showing that x⋆ is an optimal solution for Problem (5).

20

References

[1] A. Atamtürk and V. Narayanan. Polymatroids and mean-risk minimization in discrete
optimization. Operations Research Letters, 36(5):618–622, 2008.

[2] F. Baumann, C. Buchheim, and A. Ilyina. Lagrangean decomposition for mean-variance
combinatorial optimization. In International Symposium on Combinatorial Optimization –
ISCO 2014, volume 8596 of LNCS, pages 62–74, 2014.

[3] D. Bertsimas and M. Sim. Robust discrete optimization under ellipsoidal uncertainty sets.
Technical report, MIT, 2004.

[4] C. Buchheim, M. De Santis, S. Lucidi, F. Rinaldi, and L. Trieu. A feasible active set method
with reoptimization for convex quadratic mixed-integer programming. SIAM Journal on
Optimization, 26(3):1695–1714, 2016.

[5] F. Cesarone, A. Scozzari, and F. Tardella. A new method for mean-variance portfolio
optimization with cardinality constraints. Annals of Operations Research, 205(1):213–234,
2013.

[6] F. H. Clarke. Optimization and nonsmooth analysis, volume 5. Philadelphia: SIAM., 1990.

[7] K. L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm.
ACM Transactions on Algorithms, 6(4):63, 2010.

[8] E. Dolan and J. Moré. Benchmarking optimization software with performance profiles,
Mathematical Programming, 91:201–213, 2002.

[9] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the
l1-ball for learning in high dimensions. In Proceedings of the 25th International Conference
on Machine Learning, ICML - 08, pages 272–279, 2008.

[10] J. C. Dunn. Convergence rates for conditional gradient sequences generated by implicit
step length rules. SIAM Journal on Control and Optimization, 18(5):473–487, 1980.

[11] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval research logistics
quarterly, 3(1-2):95–110, 1956.

[12] R. M. Freund and P. Grigas. New analysis and results for the Frank-Wolfe method. Math-
ematical Programming, pages 1–32, 2014.

[13] Z. Gao, W. H. K. Lam, S. C. Wong and H. Yang. The Convergence of Equilibrium Algo-
rithms with Non-monotone Line Search Technique. Applied Mathematics and Computation,
148(1): 1–13, 2004

[14] L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique for newton’s
method. SIAM Journal on Numerical Analysis, 23(4):707–716, 1986.

[15] L. Grippo, F. Lampariello, and S. Lucidi. A truncated newton method with nonmonotone
line search for unconstrained optimization. Journal of Optimization Theory and Applica-
tions, 60(3):401–419, 1989.

21

[16] L. Grippo and M. Sciandrone. Nonmonotone globalization techniques for the Barzilai-
Borwein gradient method. Computational Optimization and Applications, 23(2):143–169,
2002.

[17] J. Guélat and P. Marcotte. Some comments on Wolfe’s “away step”. Mathematical Pro-
gramming, 35(1):110–119, 1986.

[18] M. Held, P. Wolfe, and H. Crowder. Validation of subgradient optimization. Mathematical
Programming, 6(1):62–88, 1974.

[19] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceed-
ings of the 30th International Conference on Machine Learning, ICML - 13, pages 427–435,
2013.

[20] B. A. Julstrom. Greedy, genetic, and greedy genetic algorithms for the quadratic knapsack
problem. In GECCO, pages 607–614, 2005.

[21] S. Lacoste-Julien and M. Jaggi. An affine invariant linear convergence analysis for Frank-
Wolfe algorithms. arXiv preprint arXiv:1312.7864, 2013.

[22] H. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

22

http://arxiv.org/abs/1312.7864

	1 Introduction
	1.1 Our contribution
	1.2 Organization of the paper

	2 A modified version of the Frank-Wolfe method for the fast computation of valid dual bounds
	2.1 Checking optimality in the origin
	2.2 Computation of a feasible descent direction
	2.3 Computation of a suitable stepsize
	2.4 Convergence analysis of the non-monotone Frank-Wolfe algorithm
	2.5 Lower bound computation

	3 Branch-and-Bound algorithm
	3.1 Branching and enumeration strategy
	3.2 Lower bounds after fixing
	3.3 Upper bounds
	3.4 Warmstarts

	4 Numerical experience
	4.1 Benefits of the non-monotone line search and warmstarts
	4.2 Comparison with CPLEX 12.6
	4.3 Results with a non-standard risk-weighting function

	5 Conclusions
	6 Appendix

