
GOSH: derivative-free global optimization using1

multi-dimensional space-filling curves2

Daniela Lera∗ and Yaroslav D. Sergeyev†

This version of the article has been accepted
for publication, after peer review

and is subject to Springer Nature’s AM terms of use,
but is not the Version of Record and does not

reflect post-acceptance improvements, or any corrections.
The Version of Record is available online at:
https://doi.org/10.1007/s10898-017-0589-7

3

Abstract4

Global optimization is a field of mathematical programming dealing with5

finding global (absolute) minima of multi-dimensional multiextremal func-6

tions. Problems of this kind where the objective function is non-differentiable,7

satisfies the Lipschitz condition with an unknown Lipschitz constant, and is8

given as a “black-box” are very often encountered in engineering optimization9

applications. Due to the presence of multiple local minima and the absence10

of differentiability, traditional optimization techniques using gradients and11

working with problems having only one minimum cannot be applied in this12

case. These real-life applied problems are attacked here by employing one of13

the mostly abstract mathematical objects – space-filling curves. A practical14

derivative-free deterministic method reducing the dimensionality of the prob-15

lem by using space-filling curves and working simultaneously with all possible16

estimates of Lipschitz and Hölder constants is proposed. A smart adaptive17

balancing of local and global information collected during the search is per-18

formed at each iteration. Conditions ensuring convergence of the new method19

to the global minima are established. Results of numerical experiments on20

1000 randomly generated test functions show a clear superiority of the new21

method w.r.t. the popular method DIRECT and other competitors.22

∗Dipartimento di Matematica e Informatica, Università di Cagliari, Cagliari, Italy
†Corresponding author; Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e

Sistemistica, Università della Calabria and the Institute of High Performance Computing and Net-
working of the National Research Council of Italy, Via Pietro Bucci 42C, 87036 Rende (CS), Italy;
and Department of Software and Supercomputing, Lobachevskiy University of Nizhni Novgorod,
Gagarin Av. 23, Nizhni Novgorod, Russia

1

Key Words. Global optimization, space-filling curves, derivative-free meth-23

ods, acceleration, Lipschitz functions.24

1 Introduction25

Many real-world optimization problems are stated as a global optimization problem26

since functions describing these applications are often multiextremal, non-differen-27

tiable, and hard to evaluate even at one point (see, for example [17, 21, 22, 31, 34,28

35, 47, 52]). In this paper, we focus our attention on continuous global optimization29

problems30

min{F (y) : y ∈ S = [a, b]}, (1.1)

where S is a hyperinterval in RN and the objective function F (y) can be multiex-31

tremal, non-differentiable, and given as a “black-box”, i.e., any information regard-32

ing its analytical representation or any other data describing its structure is not33

available. However, it is supposed that F (y) satisfies the Lipschitz condition34

|F (y′)− F (y′′)| ≤ L‖y′ − y′′‖, y′, y′′ ∈ S, (1.2)

with an unknown Lipschitz constant L, 0 < L < ∞, in the Euclidean norm. This35

statement can be very often encountered in practice and in the literature there exist36

numerous methods for dealing with the problem (1.1), (1.2) (see, e.g., [1, 3, 4, 5, 13,37

17, 21, 23, 32, 33, 34, 41, 47, 48, 51, 52]).38

In this paper, we consider the applied problem (1.1), (1.2) by using one of the39

mostly abstract mathematical objects – space-filling curves introduced by Peano in40

1890 and independently by Hilbert in 1891 (even though we use Hilbert’s version of41

the curves, the traditional terminology for this kind of objects is “Peano curves” due42

to the priority of Peano). The curves under consideration emerge as the limit objects43

generated by an iterative process and are fractals constructed using the principle of44

self-similarity. It is possible to prove that the curves fill in the hypercube S ⊂ RN ,45

i.e., they pass through every point of S (this fact gave rise to the term “space-46

filling curves”). It is known that it is possible to reduce the dimension of the global47

optimization problem (1.1), (1.2) and to move from a multivariate problem to a48

univariate one (see studies in this direction in [2, 38, 44, 45, 46, 47]).49

More precisely, it can be shown (see [2, 45, 47]) that, by using space-filling curves,50

the multi-dimensional global minimization problem (1.1), (1.2) can be turned into51

a one-dimensional problem and that finding the global minimum of the Lipschitz52

function F (y), y ∈ S ⊂ RN , is equivalent to determining the global minimum of the53

one-dimensional function f(x) over the interval [0, 1], i.e., it follows54

f(x) = F (p(x)), x ∈ [0, 1], (1.3)

where p(x) is the Peano curve. Moreover, the Hölder condition55

|f(x′)− f(x′′)| ≤ H|x′ − x′′|1/N , x′, x′′ ∈ [0, 1], (1.4)

2

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

−1

0

1

2

3

4

5

Figure 1: A two-dimensional function from [10] satisfying the Lipschitz condition
together with an approximation of level 5 to Peano curve (left) and the corresponding
univariate Hölderian function (right). Red dots show points on the curve where the
objective function has been evaluated.

holds (see [47]) for the function f(x) with the constant56

H = 2L
√
N + 3, (1.5)

where L is the Lipschitz constant of the original multi-dimensional function F (y)57

from (1.1), (1.2). In Fig. 1-right, the reduced function in one dimension correspond-58

ing to the test function in two dimensions from Fig. 1-left is shown. Clearly, a59

numerical approximation of the Peano curve is used in computations for the reduc-60

tion. Thus, one can try to attack the problem (1.1), (1.2) by proposing algorithms61

for minimizing Hölderian function (1.3), (1.4) in one dimension.62

It can be seen from the statement of the original problem (1.1), (1.2) that the only63

available information regarding the multi-dimensional function F (y) is that F (y)64

satisfies the Lipschitz condition (1.2) with an unknown constant L. As a result,65

the way the Lipschitz information is used by an optimization algorithm becomes66

crucial for its performance, convergence, and speed. In the literature there exist67

several methods to estimate L (see [4, 11, 12, 15, 16, 17, 18, 42, 43, 44, 47, 50]),68

and it is known that an overestimation of L may slow down the search while an69

underestimate of the constant can lead to loss of the global solution.70

First, there exist algorithms that for the whole domain S use the same a priori71

given estimate of L or its adaptive estimate recalculated during the search at each72

iteration (see, e.g., [4, 17, 18, 33, 34, 36, 43, 44, 47]. This approach does not take into73

account any local information about the behavior of the objective function over small74

subregions of the domain S. This drawback can slow down the search significantly.75

A more advanced approach proposed originally in [39, 40] suggests to adaptively76

approximate local Lipschitz constants L̃(Dj) in different subregions Dj ⊂ S of77

the search region S during the process of optimization. This procedure performs78

a local tuning on the behavior of the objective function balancing global and local79

3

information obtained during the search (see also interesting hybridization ideas in80

[49, 50]). It has been shown in [20, 24, 39, 44, 47] that the local tuning techniques can81

lead to a significant acceleration of the global search. Another interesting approach82

that has been introduced in [19] in the popular method called DIRECT uses at each83

iteration several estimates of the Lipschitz constant L simultaneously. This way84

to deal with Lipschitz information attracts a wide interest of researchers (see, e.g.,85

[6, 7, 8, 9, 19, 23, 29, 30, 31, 32, 33]) and is under scrutiny in this work, as well.86

In this paper, we propose to use Peano curves and instead of using the Lipschitz87

information in many dimensions to work with the Hölder information in one dimen-88

sion trying to obtain several estimates of the Hölder constant using the DIRECT89

methodology. It should be stressed that such a transposition of the approach is not90

trivial at all. In fact, in the literature (see [14, 24, 25, 27, 28, 44]) there exist several91

methods estimating global and local Hölder constants whereas the usage of the DI-92

RECT approach encounters a number of serious difficulties (see [26]) in the context93

of Hölder optimization. In Section 2, we describe a strategy that solves them and94

allows us to work with several estimates of the Hölder constant at each iteration.95

Then, a two-phases procedure intended to accelerate the search is presented in Sec-96

tion 3. A new algorithm using both discoveries for solving the problem (1.1), (1.2)97

and its convergence properties are described in Section 4. Section 5 presents results98

of numerical experiments that compare the new method with its competitors on99

1000 test functions randomly generated by the GKLS-generator from [10]. Finally,100

Section 6 contains a brief conclusion.101

2 Two ways to represent Hölderian minorants102

Due to the use of the Peano space-filling curves, the N -dimensional problem (1.1),103

(1.2) is turned into the one-dimensional problem (1.3), (1.4) with the one-dimensional104

objective function f(x) from (1.3) satisfying the Hölder condition (1.4) with a con-105

stant 0 < H <∞ over the interval [0, 1]. It follows from (1.4) that, for all x, z ∈ [0, 1]106

we have107

f(x) ≥ f(z)−H|x− z|1/N . (2.1)

This fact means that the function

G(x) = f(z)−H|x− z|1/N ,

with z ∈ [0, 1] fixed, is a minorant (or support function) for f(x) over [0, 1], i.e.108

f(x) ≥ G(x), x ∈ [0, 1].

Analogously, if we consider subintervals di = [ai, bi], 1 ≤ i ≤ k, belonging to [0, 1]109

we obtain that the following function110

Gk(x) = gi(x), x ∈ [ai, bi], 1 ≤ i ≤ k, (2.2)
111

gi(x) =

{
g−i (x) = f(mi)−H(mi − x)1/N , x ∈ [ai,mi],
g+i (x) = f(mi)−H(x−mi)

1/N , x ∈ [mi, bi],
(2.3)

4

a
i−1

b
i−1

=a
i

m
i

b
i
=a

i+1
b
i+1

f(m
i
)

g
i

−
(x) g

i

+
(x)

R
i

f(x)

Figure 2: Hölder support functions.

112

mi = (ai + bi)/2 (2.4)

is a discontinuous nonlinear minorant for f(x) (see Fig. 2) and the values Ri, 1 ≤113

i ≤ k, are lower bounds for the function f(x) over each interval di, 1 ≤ i ≤ k. These114

values are called characteristics of intervals and can be calculated as follows if an115

overestimate H1 ≥ H of the Hölder constant H is given116

Ri = Ri(H1) = min
x∈[ai,bi]

gi(x) = f(mi)−H1|(bi − ai)/2|1/N . (2.5)

As was mentioned in the introduction, the DIRECT algorithm (see [19]) uses at117

each iteration several estimates of the Lipschitz constant for selecting a suitable set118

of subintervals in the central points of which to evaluate the objective function. This119

selection can be easily done thanks to a smart representation of the intervals in a120

diagram in two dimensions. This representation is the core point of DIRECT and can121

be done since the Lipschitz information is used by this method producing so piece-122

wise linear minorants. In order to use the same methodology in the framework of123

the Hölderian optimization it is necessary to be able to find a suitable representation124

of intervals, as well.125

Let us try to do this following the idea of DIRECT and show that a simple126

transposition from Lipschitz to Hölder world does not work. We represent in a127

two-dimensional diagram each interval di = [ai, bi] by a point with coordinates128

(hi, f(mi)), where hi = 0.5(bi−ai) and mi is from (2.4) exactly as DIRECT does. In129

5

0 1 2 3 4 5 6 7 8

−30

−20

−10

0

10

20

A

B

C

D

E

f(m
i
)

h
i

R
A
(H

2
)

R
A
(H

1
)

0 0.5 1 1.5 2 2.5 3 3.5

−30

−20

−10

0

10

20

B

A

C

D

E

f(m
i
)

R
A
(H

2
)

R
A
(H

1
) p

i

Figure 3: Representation of intervals in the Euclidean metric (left) and in the
Hölderian metric (right).

Fig. 3-left, we have represented five different intervals dA, dB, dC , dD, and dE by the130

points A, B, C, D, and E, respectively. If we consider a fixed overestimate H1 of131

the Hölder constant, we can observe the corresponding nonlinear support functions132

(2.3) (shown in blue solid lines) related to these intervals. The characteristic RA(H1)133

of the interval represented by the dot A is obtained as the intersection of the curve134

(2.3) constructed at the point A with the vertical coordinate axis. It can be seen135

that the best (the lowest) characteristic is RD(H1) and the interval dD would be136

subdivided at the next iteration if H1 is chosen as the estimate for H. However,137

the choice of RD(H1) is not easy since, as it can be seen from Fig. 3-left, the curves138

constructed using the estimate H1 intersect one another in various ways.139

In addition, remind that we do not know the real value of H and wish to try all140

possible estimates of H from zero to infinity. The auxiliary functions corresponding141

to the second estimate H2 are shown in Fig. 3-left by red dashed lines. They produce142

again a lot of intersections among themselves and with the curves corresponding143

to H1. It becomes clear that the selection of the lowest characteristic for all possible144

estimates of H even with such a small number of intervals becomes complicated145

and it is unclear how to select intervals by varying estimates of the Hölder constant146

from 0 to infinity.147

In order to overcome this difficulty and to give a more transparent procedure148

for selection of the best characteristics, a different representation of the intervals149

is proposed. The idea consists of the usage of the metric of Hölder instead of the150

Euclidean one in the construction of the diagram. More precisely, a generic interval151

di = [ai, bi] belonging to a current partition {Dk} at the kth iteration is represented152

by a dot Pi with the coordinates (pi, wi) where153

pi = |(bi − ai)/2|1/N , wi = f(mi), (2.6)

and mi is from (2.4).154

In Fig. 3-right, the representation of the same five intervals considered in Fig. 3-155

left can be observed in the new metric. A great simplification can be clearly seen156

6

since there are no more nonlinear curves and intersections between them for each157

fixed estimate of H. The obtained diagram is very similar to that used by the158

DIRECT method, in the Lipschitzian case [19]. In Fig. 3-right, the characteristic159

RA(H1) of the interval represented by the point A is exactly the intersection of160

the line passing through A with slope H1 and the vertical coordinate axis. Notice161

that, as expected, the values in the vertical coordinate axis coincide with those of162

Fig. 3-left. The selection of intervals with the best characteristics corresponding to163

different estimates of H becomes so much easier and is discussed in the following164

two sections.165

3 Selection of intervals: Two-phase approach166

In this section, we describe in detail the intervals selection procedure that will be167

used in the method to be introduced in Section 4. As was already said above, at each168

iteration k the method should select in a suitable way a promising set of subintervals169

in which it intends to intensify the search and execute new trials (trial is evaluation170

of f(x) at a point x that is called trial point). In order to accelerate the search, a171

two-phase technique that balances the global and local information collected during172

the work of the method is introduced.173

In order to describe the selection procedure let us discuss Fig. 4 that shows174

a possible scenario at a generic iteration k of the algorithm. The interval [0, 1]175

(remind that since Peano curves are applied, the search is performed over the one-176

dimensional interval [0, 1] (see (1.3))) is subdivided into subintervals di = [ai, bi],177

i = 1, ..., I(k), belonging to the current partition Dk. Each interval is represented178

by a point in the two-dimensional diagram in Fig. 4, with coordinates given by (2.6),179

and is characterized, for each fixed value of H, by a lower bound given by Ri from180

(2.5). Points with the same abscissa represent intervals that have the same width.181

In Fig. 4, there are nine different groups of intervals corresponding to the points A,182

B, ..., I. At each iteration k ≥ 1 of the method each group of intervals receives a183

positive integer index l = l(k). The first group of large intervals (the column of the184

dot A in Fig. 4) gets the index l = 1, and the subsequent intervals are identified185

progressively by indices 2, 3, 4, ... etc. So, in Fig. 4 there are nine groups with186

indices 1, 2, ..., 9. The index 9 is referred to the group of intervals with minimal187

width (column of the point I).188

For any fixed value H of the Hölder constant, it is easy (see Fig. 3-right where189

lower bounds for H = H1 and H = H2 are shown) to identify the interval cor-190

responding to the minimal lower bound with respect to the other intervals in the191

current partition. By varying the value of H from 0 to infinity, the method should192

select a set of intervals corresponding to the smallest lower bound from (2.5) for193

some particular estimate of the Hölder constant H. These intervals should be par-194

titioned during the next iteration and are called nondominated intervals and it can195

be easily seen that they are located on the lower-convex hull of the set of dots repre-196

senting the intervals. In Fig. 4 the nondominated intervals are identified by points197

located at the bottom of each group with the same horizontal coordinate, that is198

7

9 8 7 6 5 4 3 2 1

A

B

C

D

G

E

H

F

I

Figure 4: The nondominated intervals dA, dB, dC, dE, dG and dI are represented by
dots A, B, C, E, G and I.

points A, B, C, E, G and I. In practice, to determine these intervals algorithms199

for identifying the convex hull of the dots can be used, for example, the algorithm200

called Jarvis march, or gift wrapping, see [37]. Notice that the points H, F , and D201

do not represent nondominated intervals even though they are the lowest in their202

groups. This happens because (see, e.g., the point F) the point G dominates F at203

smaller values of Hölder constant H and the point E dominates F at higher values204

of H.205

The two phases (that can interchange each other several times during the work206

of the method) are the following: investigation of large unexplored intervals in order207

to find attraction regions of local minimizers that are better than the current best208

found solution (global phase) and a local improvement of the current best found209

solution (local phase). In order to explain their functioning let us remind that all210

the intervals on the diagram (see Fig. 4) are ordered in the increasing order from211

smaller to larger intervals along the horizontal axis. Thus, well explored zones of the212

search region corresponding to attraction regions of already visited local minima are213

located on the left-hand part of the diagram (small intervals) whereas unexplored214

zones of the domain are represented on the right-hand part of the diagram (large215

8

intervals). If during the work of the global phase a better solution than the current216

one has been obtained, then the method switches to the local phase in order to217

improve the new best record. After several improving steps the method switches218

back to the global phase and the search of new promising minima continues until219

the satisfaction of a stopping rule.220

During the global phase the new algorithm explores mainly large intervals, thus221

it identifies the set of nondominated intervals not among all groups of intervals but222

only among some groups with indices lower than a calculated “middle index” r. This223

index represents a separator between the groups of large intervals and small ones.224

The global phase is performed until a function value improving the current minimal225

value on at least 1% is obtained. When this happens, the method switches to the226

local phase in the course of which the obtained new solution is improved locally. In227

the case when the algorithm is not switched to the local phase during more than a228

fixed number IglobMax of iterations (the improvement of the current minimum is229

still not found by exploring large intervals), it performs one “security” iteration in230

which determines nondominated intervals considering all groups of intervals present231

in the diagram.232

Thus, during each iteration in the global phase the algorithm identifies a set233

of nondominated intervals. The subdivision of each of these intervals is performed234

only if a significant improvement on the function values with respect to the cur-235

rent minimal value fmin(k) is expected, i.e., once an interval dt ∈ {Dk} becomes236

nondominated, it can be subdivided only if the following condition is satisfied237

Rt(H̃) ≤ fmin(k)− ξ, (3.1)

where the lower bound Rt = Rt(H̃) is from (2.5) and the parameter ξ prevents the238

algorithm from subdividing already well-explored small subintervals.239

During the local phase improving the just found new best solution the algorithm240

always explores three intervals: the interval containing the best current point (best241

interval) and the intervals located on the right and on the left of it. This phase242

finishes when the width of at least one of these intervals is less than a given accuracy.243

After the end of the local phase the algorithm switches back to the global phase and244

tries to find better solutions that can be located far away from the current best point.245

Notice that during the local phase a security iteration is carried out after performing246

a fixed number IlocMax of iterations without switching to the global phase. This247

is done in order to avoid a too long concentrating of efforts at local minima that248

are not global solutions. As before, at the security iteration nondominated intervals249

among all groups of intervals present in the diagram are taken into consideration.250

Once the selection phase (local or global) has been concluded, the chosen inter-251

vals are subdivided in order to produce new trial points by the following partition252

strategy. At a generic iteration k, let Sk be the set of the intervals to be partitioned253

and dt = [at, bt] be an element of Sk represented by the corresponding point in the254

diagram at Fig. 4. Each interval dt of the set Sk is subdivided into three equal parts255

[at, bt] = [at, ut] ∪ [ut, vt] ∪ [vt, bt], (3.2)

9

of the length (bt − at)/3, with256

ut = at + (bt − at)/3, vt = bt − (bt − at)/3. (3.3)

The three new generated intervals are added to the current partition {Dk} and257

to the diagram in Fig. 4 and the interval [at, bt] is deleted from both. Finally, two258

new trials, f(c1) and f(c2), are executed at the central points of the new intervals259

[at, ut] and [vt, bt], where260

c1 = (at + ut)/2, c2 = (vt + bt)/2. (3.4)

Notice that the midpoint of the third interval [ut, vt] is also the midpoint of the261

initial interval [at, bt] and, therefore, the function f(x) has already been calculated262

in it at previous iterations.263

We conclude this section by reminding that the objective function f(x) is ob-264

tained by applying Peano curve that theoretically is introduced as a limit object265

being a fractal constructed using principles of the self-similarity. In practice, com-266

putable approximations of the Peano curve are used. Let us denote them by267

pM(x), where M is the level of approximation of the curve (see approximations268

with M = 3, 4, and 5 in Figs. ??–1, respectively). The choice of the level M of269

the curve is essential to obtain a good performance of the method: in fact, a level270

that is too low can be insufficient to fill in the domain in an appropriate way cre-271

ating so a risk to lose the optimal solution. On the other hand, when the value272

of M increases, the function in one dimension becomes more oscillating, especially273

if the dimension N of the original problem (1.1) grows up (see [28] for a detailed274

discussion). With increasing the dimension N , the width of intervals selected for275

partitioning can become very small (remind that we are in [0, 1] and the metric of276

Hölder is used) and even get close to the computer precision. For these reasons it is277

required an additional check of the width of the interval before subdivision. Namely,278

the interval dt = [at, bt] is partitioned only if the following condition is satisfied279

bt − at > δ, (3.5)

where δ is a parameter of the method.280

4 The GOSH algorithm281

In this section, a new algorithm called GOSH (Global Optimization algorithm work-282

ing with a Set of estimates of the H ölder constant) is presented.283

To describe the algorithm formally, we need to specify some notations. Suppose284

that at an iteration k ≥ 1 a partition {Dk} of D = [0, 1] has been obtained. Suppose285

also that each interval di ∈ {Dk} is represented by a dot in the two-dimensional286

diagram from Fig. 4 and each group of intervals with the same width is numbered by287

the same integer index: this index is an integer positive number that varies between288

imax(k) (index that identifies the column of the larger intervals) and imin(k) (index289

of the column of the smaller intervals). The following notations are also adopted:290

10

fmin(k) is the best function value (the “record” value) at the iteration k, and291

xmin(k) is the corresponding coordinate.292

dmin(k) is the interval containing the point xmin(k).293

fprec(k) is the old best record. It serves to memorize the record fmin(k) at the start294

of the current phase (local or global).295

Lcount and Gcount are counters of iterations performed during the local and global296

phases, respectively.297

IlocMax and IglobMax are maximal allowed numbers of iterations that can be298

executed during the local and global phases, respectively, before making the299

general security iteration (in which the nondominated intervals are selected300

from the entire search domain).301

phase is a flag specifying the current phase. It is equal to “loc” and “glob” in the302

local and global phases, respectively.303

pM(x) is the M -approximation of the Peano curve.304

Sk is the set of intervals, Sk ⊂ Dk, that will be subdivided and the corresponding305

set Jk is the set of their indices.306

jloc is a flag that takes into account the fact that the set Sk can be empty. In this307

case jloc = 0, otherwise jloc = 1.308

We are ready now to describe the algorithm.309

Algorithm GOSH310

Step 0. (Initialization). Set the current iteration number k := 1.311

Split the initial interval D = [0, 1] in three equal parts and set x1 = 1/6, x2 =312

1/2, x3 = 5/6 and compute the values of the function zj = f(xj) = F (pM(xj)),313

j = 1, 2, 3.314

Set the current partition of the search intervalD1 = {[0, 1/3], [1/3, 2/3], [2/3, 1]}.315

Set the current number of intervals I = 3 and the current number of trials316

T = 3.317

Set fmin(1) = min{z1, z2, z3}, and xmin(1) = arg min{f(xi) : i = 1, 2, 3}.318

Set phase = loc, Lcount = Gcount = 0.319

After executing k iterations, the iteration k+ 1 consists of the following steps.320

Step 1. (Intervals selection) Identify the set Sk, Sk ⊂ Dk, and the corresponding321

set Jk as follows.322323

11

Step 1.1 (Global phase) if (phase == glob) then324

if (Gcount < IglobMax)325

Determine nondominated intervals that satisfy conditions (3.1)326

and (3.5) by considering only groups of intervals with indices327

going from imax(k) up to r(k) = b(p(k) + imax(k))/2c,328

where bxc denotes the integer part of x and p(k) is the index329

of the group the interval dmin(k) belongs to.330

Gcount = Gcount+ 1331

elseif (Gcount == IglobMax)332

Determine nondominated intervals that satisfy conditions (3.1)333

and (3.5) by considering all the groups of intervals with indices334

between imax(k) and p(k)335

Gcount = 0336

endif337

Step 1.2 (Local phase) if (phase == loc) then338

jloc = 1339

if (Lcount < IlocMax)340

Determine the interval dmin(k) and the two intervals, denoted by341

drmin(k) and dlmin(k) located on the right and on the left of it,342

respectively. They are selected only if the condition (3.5) is343

satisfied.344

Lcount = Lcount+ 1345

elseif (Lcount == IlocMax)346

Determine nondominated intervals that satisfy conditions (3.1)347

and (3.5) by considering all the groups of intervals with indices348

between imax(k) and p(k).349

Lcount = 0350

endif351

endif352

Include found intervals in the set Sk and their indices in the set Jk.353

If Sk = ∅ then jloc = 0 and go to Step 3.354

Step 2. (Subdivision of intervals) Set Dk+1 = Dk and perform Steps 2.1–2.3.355356

Step 2.1 (Interval selection). Select a new interval dt = [at, bt] from Sk such
that

t = arg max
j∈Jk
{bj − aj}.

Step 2.2 (Subdivision and sampling). Subdivide interval dt in three new357

equal subintervals, named dt1, dt2, dt3 of the length (bt − at)/3 following358

(3.2), (3.3) and produce two new trial points accordingly to (3.4).359

Eliminate the interval dt from Dk+1, i.e., set Dk+1 = Dk+1 \ {dt}, and update
Dk+1 with the insertion of the three new intervals, i.e.,

Dk+1 = Dk+1 ∪ {dt1} ∪ {dt2} ∪ {dt3}.

12

Increase both the current number of intervals I = I + 2, and the current360

number of trials T = T + 2.361

Update the current record fmin and the current record point xmin, if362

necessary.363

Set amp(j) = (bt − at)/3, j ∈ Jk.364

Step 2.3 (Next interval). Eliminate the interval dt from Sk, i.e., set365

Sk = Sk \ {dt} and Jk = Jk \ {t}.366

If Sk 6= ∅, then go to Step 2.1. Otherwise calculate amploc = minj∈Jk amp(j)367

and go to Step 3.368

Step 3. (Switch)369

if (fmin(k) ≤ fprec(k)− 0.01 · |fprec(k)|)370

fprec(k) = fmin(k)371

if (phase == glob) then Lcount = 0 endif372

phase = loc373

elseif (phase == loc .&. amploc ≥ δ′ .&. jloc == 1)374

phase = loc375

else376

if (phase == loc) then Gcount = 0 endif377

phase = glob378

endif379

Step 4. (End of the current iteration). Increase the iteration counter k = k + 1.380

Go to Step 1 and start the next iteration.381

Different stopping criteria can be used in the GOSH algorithm introduced above.382

One of them will be introduced in the next section presenting numerical experiments.383

Let us make some comments upon the introduced method. Step 1 is the phase384

of selection of the intervals that, as was said before, can be either global or local.385

Suppose that at a generic iteration k of the algorithm the situation is that shown386

in Fig. 4, with 9 different groups of intervals, and assume that the interval dmin(k)387

containing the current minimum point xmin(k), belongs to the group of intervals388

identified by the index 7 (so exactly the point G). If phase = loc then 3 intervals389

will be selected: dmin(k), that corresponds to the point G in the diagram Fig. 4390

and the intervals located to the right and to the left of it in [0, 1], respectively.391

Notice, that the latter two intervals, namely drmin(k) and dlmin(k), can belong to392

two different groups of intervals in the diagram and not necessarily to the group393

with the index 7. In contrast, if the situation where phase = glob takes place then394

the separator index r is calculated where r = b7+1
2
c = 4 and the nondominated395

intervals are searched only among the groups of intervals from index 1 to index 4.396

In this example, intervals represented by the points A, B, and C at the diagram in397

Fig. 4 will be selected and split in three parts. Dots A, B, and C will disappear398

from the diagram and there will be three new points in the column of B, three in399

the column of C, and three in that of D.400

13

If in the local phase it happens that Lcount = IlocMax (or, analogously, in the401

global phase Gcount = IglobMax) then nondominated intervals among all groups402

of intervals are retrieved. Thus, in the diagram at Fig. 4 intervals represented by403

points A, B, C, E, G, and I will be split. The three intervals obtained by the404

interval dI will be represented by three points in the newly created column with the405

index 10. Notice that only intervals that satisfy condition (3.5) are selected for the406

further subdivision. It should be also emphasized that in Step 3, at the situation407

phase = loc, the local exploration continues until the width of at least one of the 3408

selected intervals is smaller than a fixed δ′ ≥ δ, with δ from (3.5).409

Let us consider now convergence properties of the GOSH algorithm. The first410

result discusses a connection between the original multi-dimensional problem and411

the reduced univariate one. To obtain the letter problem and to go to the interval412

[0, 1] an approximation pM(x) of the Peano curve of a fixed level M is applied and413

in the course of the algorithm a lower bound U∗M of the multi-dimensional function414

F (y) is calculated along the curve. In order to return to the original problem (1.1),415

(1.2) in N dimensions, it is important to understand how a lower bound for F (y)416

over the entire domain [a, b] in RN can be obtained from U∗M . The following theorem417

gives the answer to this problem.418

Theorem 4.1 Let U∗M be a lower bound along the space-filling curve pM(x) for a
multi-dimensional function F (y), y ∈ [a, b] ⊂ RN , satisfying Lipschitz condition
with constant L, i.e.,

U∗M ≤ F (pM(x)), x ∈ [0, 1].

Then the value
U∗ = U∗M − 2−(M+1)L

√
N

is a lower bound for F (y) over the entire region [a, b].419

Proof. See [28] or the recent monograph [44] for the proof of this result. 2420

Theorem 4.1 is important because it links the multi-dimensional problem (1.1),421

(1.2) to the one-dimensional problem (1.3), (1.4), so we can concentrate our attention422

on the convergence properties in the one-dimensional interval [0, 1]. Let us suppose423

that the maximal number of generated trial points tends to infinity, and prove that424

the infinite sequence of trial points generated by the GOSH convergence to any425

point of the one-dimensional search domain. This kind of convergence is called426

everywhere dense convergence.427

Theorem 4.2 If δ = 0 in (3.5), then for any point x ∈ [0, 1] and any η > 0 there428

exists an iteration number k(η) ≥ 1 and a trial point xi(k), k > k(η), such that429

|x− xi(k)| < η.430

Proof. In the selection Step 2 of the algorithm the two phases, local and global,431

are alternated. In the local phase of GOSH an interval is subdivided only if its432

14

width is greater than a fixed δ′ > 0, δ′ from Step 3 of the scheme GOSH. When433

the width of the selected interval becomes less than δ′, the algorithm switches to the434

global phase. Since it is assumed that δ = 0 in (3.5), and since the one-dimensional435

search region has a finite length and δ′ is a positive finite number, then there exists436

a finite iteration number j = j(δ′) such that, for all iterations greater than j, only437

the global phase will be used during the work of the GOSH.438

In the global phase the algorithm GOSH always selects for partitioning at least439

one interval dt from the group of largest intervals (in Fig. 4 the group with index 1).440

Infact there always exists a sufficiently large estimate H∞ of the Hölder constant441

H, such that the interval dt is the nondominated interval with respect to H∞, and442

condition (3.5) is satisfied. Therefore, at each iteration, the intervals with the largest443

width will be partitioned into three subintervals of the length equal to a third of the444

length of the subdivided interval. Notice that each group of intervals contains only445

a finite number of intervals since the interval is finite and all its subintervals have a446

finite length. Thus, after a sufficiently large number of iterations k > k(η), all the447

intervals of the group with the maximal width will be partitioned. Such a procedure448

will be repeated with a new group of the largest intervals (the group with index 2449

in Fig. 4) and so on until the largest intervals of the current partition will have the450

length smaller than η. As a result, in the neighborhood of radius η of any point in451

[0, 1] there will exist at least one trial point generated by the GOSH. 2452

5 Numerical experiments453

In this section, results of some numerical experiments are presented. The new al-454

gorithm GOSH has been compared with the original DIRECT method [7] and its455

locally-biased modification LBDirect proposed in [8, 9]. In order to show the use-456

fulness of the two-phase approach, the GOSH has been compared with its simplified457

version (called CORE hereinafter) that does not apply the local phase at all and458

only the global phase is used.459

Ten different classes of functions generated by the GKLS-generator, a free soft-460

ware downloadable from http://wwwinfo.deis.unical.it /∼ yaro/GKLS.html and de-461

scribed in [10] have been used in the experiments. This generator constructs classes462

of multi-dimensional and multiextremal test functions with known global and lo-463

cal minima: each function is obtained by a paraboloid, systematically distorted by464

polynomials. Each class contains 100 test functions with the same number of local465

minima. In order to generate a specific class, only five parameters should be de-466

fined by the user (see Table 1), and it possible to generate harder or simpler test467

classes very easily. For example, a more difficult test class can be obtained either468

by decreasing the radius r∗ of the attraction region of the global minimizer or by469

increasing the distance d from the paraboloid vertex to the global minimizer. In470

Table 1 we can see a complete description of the 10 classes that we have used in the471

experiments, for a total of 1000 test functions, in dimensions N = 2, 3, 4, 5, and 6.472

For each dimension two different classes, a simple class and a hard one, have been473

generated. The number of local minima m was taken equal to 10 and the global474

15

Class Difficulty N f∗ m d r∗

1 Simple 2 -1.0 10 0.90 0.20
2 Hard 2 -1.0 10 0.90 0.10
3 Simple 3 -1.0 10 0.66 0.20
4 Hard 3 -1.0 10 0.90 0.20
5 Simple 4 -1.0 10 0.66 0.20
6 Hard 4 -1.0 10 0.90 0.20
7 Simple 5 -1.0 10 0.90 0.40
8 Hard 5 -1.0 10 0.90 0.30
9 Simple 6 -1.0 10 0.90 0.40
10 Hard 6 -1.0 10 0.90 0.30

Table 1: Description of 10 classes of test functions used in experiments

minimum f ∗ was fixed to −1 for all the classes. In Fig. 1-left, an example of the475

test function no. 4 belonging to the class 1 is shown.476

Let us describe the stopping rules used in the experiments. The tested algorithms477

stopped their work either when the maximal number of trials Tmax, equal to 106 was478

reached. Remind, that the GKLS generates problems with known minima. This479

gives the possibility to use the vicinity of trials to the global minimizer as a measure480

of success of the work of algorithms and to construct an appropriate stoping rule. Let481

us denote as y∗i the global minimizer of the i-th function of a test class, 1 ≤ i ≤ 100.482

Then, the following condition can be applied.483

Stopping criterion. A method stops its work on the i-th function of a class484

when it generates a trial point falling in a ball Bi having a radius ρ and the center485

at the global minimizer of the i-th function, i.e.,486

Bi = {y ∈ RN : ‖y − y∗i ‖ ≤ ρ}, 1 ≤ i ≤ 100. (5.1)

In the experiments, the radius ρ in (5.1) was fixed equal to 0.01
√
N for classes

1, 2, 3, 4, and 5, and 0.02
√
N for classes 6, 7, 8, 9, and 10. It should be added also

that the parameter ξ in (3.1) was fixed as follows

ξ = 10−4 · |fmin(k)|,

where fmin(k) is the current best function value. This choice has been considered by487

many authors (see [8, 9]), in particular, it has been used in the DIRECT method488

[7] with the most robust results. For this reason, in our experiments the same489

value was used, as well. Notice that for the DIRECT and LBDirect methods it490

is recommended (see, e.g., [7]) to verify stopping conditions after the end of each491

iteration and this rule has been used in our experiments since the usage of the rule492

(5.1) gives an insignificant improvement only.493

The value of the parameter δ in (3.5) was fixed equal to 10−4 for classes 1 and494

2, 10−7 for classes 3 and 4, 10−9 for the class 5, 10−10 for classes 6 and 7, 10−11 for495

classes 8, 10 and equal to 10−12 for the class 9. The parameter δ′ in Step 3 of the496

algorithm GOSH was chosen equal to δ.497

16

In the algorithms GOSH and CORE, an M -approximation of the Peano curve498

has been considered. In particular the level M of the curve must be chosen taking499

in mind the constraint NM < K, where N is the dimension of the problem and K500

is the number of digits in the mantissa depending on the computer that is used for501

the implementation (see [44] for more details). In our experiments we had K = 52,502

thus the value M = 10 has been used for classes 1–8 and M = 8 for classes 9 and503

10.504

In the GOSH algorithm we must fix the parameters IglobMax and IlocMax, in505

Step 1.1 and Step 1.2, that specify the maximal allowed number of iterations exe-506

cuted on the global and local phase, respectively, before making the general security507

iteration, in which the nondominated intervals in the entire domain are selected.508

Different choices of these parameters can affect the speed of the search towards the509

global solution. For this reason, a sensitivity analysis with 6 different values of the510

parameters IglobMax and IlocMax for each class has been executed. The obtained511

results are shown in Table 2. For each class the average and the maximal number512

of function evaluations calculated for all the 100 functions is reported. The best513

results are shown in bold.514

Table 3 shows results of experiments comparing the behavior of the GOSH515

method with the algorithms CORE, DIRECT , and LBDirect on the 10 classes of516

test functions. Taking into account the sensitivity analysis, the following values of517

the two parameters of GOSH have been chosen: IlocMax = 5 for classes 1, 5, 8,518

IlocMax = 10 for classes 4, 6, 7 and IlocMax = 15 for classes 2, 3, 9, 10. IglobMax519

was fixed equal to 5 for classes 1, 2, 3, 5, 8, 9, IglobMax = 15 for the class 10 and520

equal to 20 for classes 4, 6 and 7. The values of these two parameters corresponding521

to the best result in relation to the column “Max” of Tables 2 have been chosen.522

Table 3 illustrates results of experiments with all the 10 classes and the four523

methods. Notice that in the column “Average” the symbol “ > ” means that,524

after performing Tmax iterations, the global minimum has not been found for all525

functions of the class. The column “Max” reports the maximum number of function526

evaluations required to satisfy the stopping criterion for all the 100 functions of527

the class: the notation 1000000(i) means that after evaluating 1000000 trials, the528

method was not able to find the global solution for “i” functions of the considered529

class. The best results are shown in bold.530

Finally, in Fig. 5 the behavior of the four methods for the function no. 55 of531

the class 2 is shown. In the first row Figure 5 (a) shows 1541 trials generated by532

DIRECT to find the global minimum of the problem and (b) 2281 trials produced533

by the LBDirect. In the second row Figure 5 (c) shows 597 trial points calculated534

by the CORE and (d) 269 produced by the GOSH algorithm to solve the same535

problem. Trial points chosen by the “local-phase” strategy are shown in red.536

6 A brief conclusion537

The problem of global minimization of a multi-dimensional, non-differentiable, and538

multiextremal function satisfying the Lipschitz condition over a hyperinterval, with539

17

N IlocMax IglobMax Average Maximum
Simple class Hard class Simple class Hard class

5 5 180.70 560.00 521 1691
2 5 15 191.16 565.32 1009 3345

10 5 184.50 563.10 531 1683
15 5 184.50 563.10 531 1683
15 15 194.36 569.29 1017 3337
10 20 197.96 568.44 1199 3367
5 5 895.12 1733.94 3895 7335

3 5 15 930.55 1683.20 6389 6651
10 5 917.52 1745.14 3879 7337
15 5 920.44 1784.74 3839 7347
15 15 961.82 1698.24 6379 6655
10 20 977.94 1693.02 6769 6589
5 5 8904.92 18523.44 139409 207665

4 5 15 10074.92 17625.32 243635 197053
10 5 8892.94 18553.14 139469 207675
15 5 8904.48 18541.28 139465 207589
15 15 10084.68 17633.54 243417 197119
10 20 10956.02 17466.18 309549 194499
5 5 6437.50 18154.77 37829 107637

5 5 15 6441.84 18108.82 38319 121363
10 5 6063.46 18166.36 29319 107749
15 5 6434.54 18361.00 37837 107757
15 15 6437.98 18158.98 38277 122413
10 20 6130.40 18401.63 27113 157107
5 5 25271.45 99318.66 151651 565015

6 5 15 26968.77 104292.00 299723 538787
10 5 25348.27 99285.62 150357 565231
15 5 25265.09 99262.50 149281 565031
15 15 27007.13 104281.72 299541 538751
10 20 28276.60 109029.94 373875 616875

Table 2: Results of the sensitivity analysis. The best values are shown in bold.

an unknown Lipschitz constant has been considered in this paper. An approach540

based on the reduction of the dimension by using numerical approximations to541

space-filling curves in order to pass from the original Lipschitz multi-dimensional542

problem to a univariate one satisfying the Hölder condition has been used. It has543

been shown that it is possible to organize a simultaneous work with multiple es-544

timates of the Hölder constant. Such a kind of techniques has been proposed for545

Lipschitz optimization in 1994 in [19] and for a long time created difficulties in546

the framework of Hölder global optimization. A geometric technique working with a547

number of possible Hölder constants chosen from a set of values varying from zero to548

infinity has been proposed and an accelerating “two-phase” technique that performs549

a smart balancing of the local and global information has been introduced. Con-550

ditions ensuring convergence of the method GOSH to the global minimizers have551

been established. Extensive numerical experiments executed on 1000 test functions552

have shown a very promising performance of the proposed algorithm with respect553

18

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a)

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b)

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(c)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(d)

Figure 5: Function no.55, class 2. (a): 1541 trials generated by DIRECT and (b)
2281 by LBDirect. (c): 597 trials calculated by CORE and (d) 257 produced by the
GOSH. Trial points chosen by the “local-phase” strategy are shown in red by the
symbol “*”.

to its direct competitors, in particular for hard problems. Thus, one of the mostly554

abstract mathematical objects – space-filling curves – have been used to develop a555

practical derivative-free global optimization algorithm that can be successfully used556

in numerical computations.557

Acknowledgement. The research of Ya.D. Sergeyev was supported by the Russian558

Science Foundation, project No 15-11-30022 “Global optimization, supercomputing559

computations, and applications”.560

References561

[1] K. A. Barkalov and V. P. Gergel. Parallel global optimization on GPU. J.562

Global Optim., 66(1):3–20, 2016.563

[2] A. R. Butz. Space filling curves and mathematical programming. Information564

and Control, 12(4):313–330, 1968.565

19

Class Average number of trials Maximal number of trials
DIRECT LBDirect CORE GOSH DIRECT LBDirect CORE GOSH

1 208.54 304.28 174.24 180.70 1159 2665 565 521
2 1081.42 1291.70 622.60 563.10 3201 4245 1749 1683
3 1140.68 1893.02 1153.64 920.44 13369 20779 5267 3839
4 >42334.36 5245.72 2077.60 1693.02 1000000(4) 32603 9809 6589
5 >47768.28 21932.94 10628.86 8904.92 1000000(4) 179383 162183 139409
6 >95908.99 74193.53 25875.16 17466.18 1000000(7) 372633 319493 194499
7 >33878.09 31955.06 7306.04 6130.40 1000000(3) 146623 36819 27113
8 >149578.61 >93876.77 28391.70 18154.77 1000000(13) 1000000(1) 153323 107637
9 >244382.63 184266.74 33366.14 25265.09 1000000(23) 873617 161577 149281
10 >549165.37 >441282.91 132415.20 104281.72 1000000(49) 1000000(19) 707543 538751

Table 3: Results of experiments

[3] J. M. Calvin and A. Žilinskas. One-dimensional p-algorithm with convergence566

rate o(n−3+δ) for smooth functions. J. of Optimization Theory and Applications,567

106(2):297–307, 2000.568

[4] Yu. G. Evtushenko and M. Posypkin. A deterministic approach to global box-569

constrained optimization. Optimization Letters, 7(4):819–829, 2013.570

[5] D. Famularo, P. Pugliese, and Ya. D. Sergeyev. A global optimization technique571

for checking parametric robustness. Automatica, 35:1605–1611, 1999.572

[6] D. E. Finkel and C. T. Kelley. Additive scaling and the DIRECT algorithm.573

J. Global Optim., 36(4):597–608, 2006.574

[7] M. J. Gablonsky. DIRECT v2.04 fortran code with documentation. Technical575

report, http://www4.ncsu.edu/ ctk/SOFTWARE/DIRECTv204.tar.gz, 2001.576

[8] M. J. Gablonsky. Modifications of the DIRECT algorithm. Technical report,577

Ph.D thesis, North Carolina State University, Raleigh, NC, 2001.578

[9] M. J. Gablonsky and C. T. Kelley. A locally-biased form of the DIRECT579

algorithm. J. Global Optim., 21:27–37, 2001.580

[10] M. Gaviano, D. E. Kvasov, D. Lera, and Ya. D. Sergeyev. Algorithm 829:581

Software for generation of classes of test functions with known local and global582

minima for global optimization. ACM Trans. Math. Software, 29(4):469–480,583

2003.584

[11] V. P. Gergel, V. A., and A. V. Gergel. Adaptive nested optimization scheme585

for multidimensional global search. J. Global Optim., 66(1):35–51, 2016.586

[12] V. P. Gergel, V. A. Grishagin, and R. A. Israfilov. Local tuning in nested587

scheme of global optimization. Procedia Computer Science, 51:865–874, 2015.588

(International Conference on Computational Science ICCS 2015 – Computa-589

tional Science at the Gates of Nature).590

20

[13] J. W. Gillard and D. E. Kvasov. Lipschitz optimization methods for fitting a591

sum of damped sinusoids to a series of observations. Stat. and Its Interface,592

10(1):59–70, 2016.593

[14] E. Gourdin, B. Jaumard, and R. Ellaia. Global optimization of Hölder func-594

tions. J. Global Optim., 8:323–348, 1996.595

[15] V. A. Grishagin and R. A. Israfilov. Global search acceleration in the nested596

optimization scheme. In AIP Conf. Proc., volume 1738, pages 400010:1–4. 2016.597

[16] V. A. Grishagin, R. A. Israfilov, and Ya. D. Sergeyev. Convergence conditions598

and numerical comparison of global optimization methods based on dimension-599

ality reduction schemes. Appl. Math. Comput., 318:270–280, 2018.600

[17] R. Horst and P. M. Pardalos, editors. Handbook of Global Optimization, vol-601

ume 1. Kluwer Academic Publishers, Dordrecht, 1995.602

[18] R. Horst and H. Tuy. Global Optimization – Deterministic Approaches.603

Springer–Verlag, Berlin, 1996.604

[19] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization605

without the lipschitz constant. J. of Optimization Theory and Applications,606

79:157–181, 1993.607

[20] D. E. Kvasov, C. Pizzuti, and Ya. D. Sergeyev. Local tuning and partition608

strategies for diagonal GO methods. Numer. Math., 94(1):93–106, 2003.609

[21] D. E. Kvasov and Ya. D. Sergeyev. Lipschitz global optimization methods in610

control problems. Automation and Remote Control, 74(9):1435–1448, 2013.611

[22] D. E. Kvasov and Ya. D. Sergeyev. Deterministic approaches for solving practi-612

cal black-box global optimization problems. Advances in Engineering Software,613

80:58–66, 2015.614

[23] D. E. Kvasov and Ya. D. Sergeyev. A univariate global search working with a set615

of Lipschitz constants for the first derivative. Optimization Letters, 3(2):303–616

318, 2009.617

[24] D. Lera and Ya. D. Sergeyev. Global minimization algorithms for Hölder func-618

tions. BIT, 42(1):119–133, 2002.619

[25] D. Lera and Ya. D. Sergeyev. Acceleration of univariate global optimization al-620

gorithms working with Lipschitz functions and Lipschitz first derivatives. SIAM621

J. Optimization, 23(1):508–529, 2013.622

[26] D. Lera and Ya. D. Sergeyev. Deterministic global optimization using space-623

filling curves and multiple estimates of Lipschitz and Hölder constants. Com-624

munications in Nonlinear Science and Numerical Simulation, 23:328–342, 2015.625

21

[27] D. Lera and Ya. D. Sergeyev. An information global minimization algorithm626

using the local improvement technique. J. Global Optim., 48(1):99–112, 2010.627

[28] D. Lera and Ya. D. Sergeyev. Lipschitz and Hölder global optimization using628

space-filling curves. Appl. Numer. Maths., 60:115–129, 2010.629

[29] G. Liuzzi, S. Lucidi, and V. Piccialli. A direct-based approach exploiting lo-630

cal minimizations for the solution for large-scale global optimization problem.631

Computational Optimization and Applications, 45(2):353–375, 2010.632

[30] G. Liuzzi, S. Lucidi, and V. Piccialli. A partition-based global optimization633

algorithm. J. Global Optim., 48(1):113–128, 2010.634

[31] R. Paulavičius, L. Chiter, and J. Žilinskas. Global optimization based on bisec-635

tion of rectangles, function values at diagonals, and a set of Lipschitz constants.636

J. Global Optim., 2017. In press.637

[32] R. Paulavičius, Ya. D. Sergeyev, D. E. Kvasov, and J. Žilinskas. Globally-biased638

DISIMPL algorithm for expensive global optimization. J. Global Optim., 59(2-639

3):545–567, 2014.640

[33] R. Paulavičius and J. Žilinskas. Simplicial Global Optimization. SpringerBriefs641

in Optimization. Springer, New York, 2014.642

[34] J. D. Pintér. Global Optimization in Action (Continuous and Lipschitz Opti-643

mization: Algorithms, Implementations and Applications). Kluwer Academic644

Publishers, Dordrecht, 1996.645

[35] J. D. Pintér. Global optimization: software, test problems, and applications. In646

P. M. Pardalos and H. E. Romeijn, editors, Handbook of Global Optimization,647

volume 2, pages 515–569. Kluwer Academic Publishers, Dordrecht, 2002.648

[36] S. A. Piyavskij. An algorithm for finding the absolute extremum of a function.649

USSR Comput. Math. Math. Phys., 12(4):57–67, 1972. (In Russian: Zh. Vychisl.650

Mat. Mat. Fiz., 12(4) (1972), pp. 888–896).651

[37] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.652

Springer–Verlag, New York, 1993.653

[38] H. Sagan. Space-Filling Curves. Springer, New York, 1994.654

[39] Ya. D. Sergeyev. An information global optimization algorithm with local tun-655

ing. SIAM J. Optimization, 5(4):858–870, 1995.656

[40] Ya. D. Sergeyev. A one-dimensional deterministic global minimization algo-657

rithm. Comput. Math. Math. Phys., 35(5):705–717, 1995.658

22

[41] Ya. D. Sergeyev, P. Daponte, D. Grimaldi, and A. Molinaro. Two methods for659

solving optimization problems arising in electronic measurements and electrical660

engineering. SIAM J. Optim., 10(1):1–21, 1999.661

[42] Ya. D. Sergeyev and V. A. Grishagin. Sequential and parallel algorithms for662

global optimization. Optim. Methods Softw., 3:111–124, 1994.663

[43] Ya. D. Sergeyev and D. E. Kvasov. Diagonal Global Optimization Methods.664

Fizmatlit, Moscow, 2008. (In Russian).665

[44] Ya. D. Sergeyev, R. G. Strongin, and D. Lera. Introduction to Global Optimiza-666

tion Exploiting Space-Filling Curves. SpringerBriefs in Optimization. Springer,667

New York, 2013.668

[45] R. G. Strongin. Numerical Methods in Multiextremal Problems: Information–669

Statistical Algorithms. Nauka, Moscow, 1978. (In Russian).670

[46] R. G. Strongin and Ya. D. Sergeyev. Global optimization: fractal approach and671

non-redundant parallelism. J. Global Optim., 27:25–50, 2003.672

[47] R. G. Strongin and Ya. D. Sergeyev. Global Optimization with Non-Convex673

Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers,674

Dordrecht, 2000. (2nd ed., 2012; 3rd ed., 2014, Springer, New York).675

[48] A. Žilinskas. On similarities between two models of global optimization: Sta-676

tistical models and radial basis functions. J. Global Optim., 48(1):173–182,677

2010.678

[49] A. Žilinskas and J. Žilinskas. Parallel hybrid algorithm for global optimization679

of problems occurring in mds-based visualization. Comput. Math. Appl., 52(1-680

2):211–224, 2006.681

[50] A. Žilinskas and J. Žilinskas. A hybrid global optimization algorithm for non-682

linear least squares regression. J. Global Optim., 56(2):265–277, 2013.683

[51] A. A. Zhigljavsky. Theory of Global Random Search. Kluwer Academic Pub-684

lishers, Dordrecht, 1991.685

[52] A. A. Zhigljavsky and A. Žilinskas. Stochastic Global Optimization. Springer,686

New York, 2008.687

23

