
On branching-point selection for trilinear monomials
in spatial branch-and-bound: the hull relaxation?

Emily Speakman · Jon Lee

Abstract In Speakman and Lee (2017), we analytically developed the idea of
using volume as a measure for comparing relaxations in the context of spatial
branch-and-bound. Specifically, for trilinear monomials, we analytically compared
the three possible “double-McCormick relaxations” with the tight convex-hull re-
laxation. Here, again using volume as a measure, for the convex-hull relaxation of
trilinear monomials, we establish simple rules for determining the optimal branch-
ing variable and optimal branching point. Additionally, we compare our results
with current software practice.

1 Introduction

In this article, we consider the spatial branch-and-bound (sBB) family of algo-
rithms (see, for example, [2],[19],[22], building on [13]) which aim to find globally-
optimal solutions of factorable mathematical-optimization formulations via a divide-
and-conquer approach (building on the branch-and-bound approach for discrete
optimization, see [9] and [10]). Implementations of these sBB algorithms for fac-
torable formulations work by introducing auxiliary variables in such a way as to
decompose every function of the original formulation which we can then view as
a labeled directed graph (DAG). Leaves correspond to original model variables,
and we assume that the domain of each such model variable is a finite interval.
We have a library of basic functions, including ‘linear combination’ of an arbitrary
number variables, and other simple functions of a small number of variables. The
out-degree of each internal node, labeled by a library function f ∈ F that is not
‘linear combination’ is typically small (say df ≤ 3, for all f ∈ F). We assume
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that we have methods for convexifying each low-dimensional library function f
on an arbitrary box domain in Rdf . From these DAGs, relaxations are composed
and refined (see [4], for example). For a given function f , the associated DAG can
be constructed in more than one way, and therefore sBB has choices to make in
this regard. Such choices can have a strong impact on the quality of the convex
relaxation obtained from the formulation. Because sBB algorithms obtain bounds
from these convex relaxations, these choices can have a significant impact on the
performance of the algorithm.

There has been substantial research on how to obtain good-quality convex
relaxations of graphs of low-dimensional nonlinear functions on various domains
(see, for example, [8], [21], [15], [14], [18], [12]), and some consideration has been
given to constructing DAGs in a favorable way. In particular, in [24], we ob-
tained analytic results regarding the convexifications obtained from different ways
of treating trilinear monomials, f = x1x2x3, on non-negative box domains {x ∈
R3 : xi ∈ [ai, bi], i = 1, 2, 3}. We computed both the extreme point and in-
equality representations of the alternative relaxations (derived from iterating Mc-
Cormick inequalities) and calculated their 4-dimensional volumes (in the space of
{(f, xi, xj , xk) ∈ R4}) as a comparison measure. Using volume as a measure gives
a way to analytically compare formulations and corresponds to a uniform distri-
bution of the optimal solution across a relaxation; when concerned with non-linear
optimization, such a uniform distribution is quite natural. This is in contrast to
linear optimization, where an optimal solution can always be found at an extreme
point, and therefore, the distribution of the optimal solution (or optimal solutions)
is clearly not uniform across the feasible region. Experimental corroboration for
using volume as a measure of the quality of relaxations for trilinear monomials
appears in [25] (also see [5], concerning quadrilinear monomials).

Along with utilizing good convex relaxations, other important issues in the
effective implementation of sBB for factorable formulations are: (i) the choice of
branching variable, and (ii) the selection of the branching point. Software develop-
ers have tuned their choice of branching point using extensive problem test beds.
It is common practice for solvers to branch on the value of the variable at the
current solution, adjusted using some method to ensure that the branching point
is not too close to either of the interval endpoints. Often this is done by weighting
the interval midpoint and the variable at the optimal solution of the current re-
laxation, and/or restricting the branching choice to a central part of the interval.
For example, in [6] (also see [7]), they suggest branching at the current relaxation
point when it is in the middle 60% of the interval and failing that, branch at
the midpoint. The ooOPS software, see [3], uses the solution of an upper-bounding
problem as a reference solution, if such a solution is found; otherwise the solution
of the lower-bounding relaxation is used as a reference solution. ooOPS then iden-
tifies the non-convex term with the greatest separation distance with respect to
its convex relaxation. The branching variable is then chosen as the variable whose
value at the reference solution is nearest to the midpoint of its range. But it is not
clear how ooOPS then chooses the branching point.

[27] describe a typical way to avoid the interval endpoints by choosing the
branching point as

max

{
ai + β(ai − bi), min

{
bi − β(bi − ai), αx̂i + (1− α)(ai + bi)/2

}}
, (1)
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where x̂i is the value of the branching variable xi at the current solution. The
constants α ∈ [0, 1] and β ∈ [0, 1/2] are algorithm parameters. So, the branching
point is the closest point in the interval

[ai + β(ai − bi), bi − β(bi − ai)]

to the weighted combination αx̂i +(1−α)(ai + bi)/2 (of the x-value in the current
optimal solution and the interval midpoint), thus explicitly ruling out branching
in the bottom and top β fraction of the interval. Note that if β ≤ (1− α)/2, then
there is no such explicit restriction, because already the weighted combination
αx̂i + (1 − α)(ai + bi)/2 precludes branching in the bottom and top (1 − α)/2
fraction of the interval.

Current available software use a variety of values for the parameters α and β.
The method (mostly) employed by SCIP (see [1], [28] and the open-source code
itself) is to select the branching point as the closest point in the middle 60% of the
interval to the variable value x̂i. This is equivalent to setting α = 1 and β = 0.2
and gives an explicit restriction via the choice of β. The current default settings of
ANTIGONE1 ([16] and [17]), BARON2 ([20]) and COUENNE (see [4] and the open-source
code itself) all have β ≤ (1 − α)/2, and so the default branching point is simply
the weighted combination αx̂i + (1− α)(ai + bi)/2; see Table 1.

Solver α β
SCIP 1.00 0.20 6≤ (1− α)/2 = 0.000
ANTIGONE 0.75 0.10 ≤ (1− α)/2 = 0.125
BARON 0.70 0.01 ≤ (1− α)/2 = 0.150
COUENNE 0.25 0.20 ≤ (1− α)/2 = 0.375

Table 1: Default parameter settings

The different choices are based on combinations of intuition and substantial
empirical evidence gathered by the software developers. We note that there is con-
siderable variation in the settings of these parameters, across the various software
packages. Furthermore, there are other factors (especially in BARON) that sometimes
supersede selecting a branching point according to formula (1); in particular, func-
tional forms involved, the solution of the current relaxation, available incumbent
solutions, complementarity considerations, etc. Our work is based solely on ana-
lyzing a single trilinear monomial, after branching on a variable in that trilinear
monomial, with the goal of helping to guide, and in some cases mathematically
support, the choice of a branching point. Of course variables often appear in mul-
tiple functions. So, when deciding on a branching variable or a branching point, we
may obtain conflicting guidance. But this is an issue with most branching rules,
including those developed empirically, and it is always a challenge to find good
ways to combine local information to make algorithmic decisions (see [2]). We hope
that our results can help influence such decisions. For example, taking weighted
averages of scores based on our metric would be a reasonable way to proceed.

1 Private communication with Ruth Misener
2 Private communication with Nick Sahinidis



4 Emily Speakman, Jon Lee

2 Preliminaries

In this work, we focus on trilinear monomials; that is, functions of the form
f = x1x2x3. This is an important class of functions for sBB algorithms, because
such monomials may also involve auxiliary variables. This means that whenever a
formulation contains the product of three (or more) expressions (possibly compli-
cated themselves), our results apply.

Following [24], for the variables xi ∈ [ai, bi], i = 1, 2, 3, throughout this paper
we assume the following conditions hold:

0 ≤ ai < bi for i = 1, 2, 3, and

a1b2b3 + b1a2a3 ≤ b1a2b3 + a1b2a3 ≤ b1b2a3 + a1a2b3.

}
(Ω)

To see that the latter two inequalities are without loss of generality, let Oi :=
ai(bjbk) + bi(ajak), for i = 1, 2, 3. Then we can construct a labeling such that
O1 ≤ O2 ≤ O3. Note that because we are only considering non-negative bounds,
the latter part of this condition is equivalent to:

a1
b1
≤ a2
b2
≤ a3
b3
. (2)

This follows from Lemma 5 (in the Appendix), and that bi > 0, i = 1, 2, 3. Also, it
is very important to note that once we have labeled our variables to satisfy Ω, our
trilinear monomial cannot be treated as symmetric across variables. This condition
also arises in the complete characterization of the inequality description for the
(polyhedral) convex hull of the graph of the trilinear monomial f := x1x2x3 (in
R4) (see [15] and [14]).

We introduce the following notation for the convex hull of the graph of f :=
x1x2x3 on a box domain:

Ph := conv
({

(f, x1, x2, x3) ∈ R4 : f = x1x2x3, xi ∈ [ai, bi], i = 1, 2, 3
})

.

Instead of referring to convex lower envelopes and concave upper envelopes, we
take the view that any given monomial is likely to be composed in many different
ways in a complicated formulation, and so we are agnostic about focusing on only
one of convex lower envelopes and concave upper envelopes, and rather we look
at the convex hull of the graph of the function on the domain of interest (and it’s
total volume; not just the volume below or above the graph).

The extreme points of Ph are the eight points that correspond to the 23 = 8
choices of each x-variable at its upper or lower bound (see [18]). We label these
eight points (all of the form [x1x2x3, x1, x2, x3]T ) as follows:

v1 :=

 b1a2a3b1
a2
a3

 , v2 :=

 a1a2a3a1
a2
a3

 , v3 :=

 a1a2b3a1
a2
b3

 , v4 :=

 a1b2a3a1
b2
a3

 ,

v5 :=

 a1b2b3a1
b2
b3

 , v6 :=

 b1b2b3b1
b2
b3

 , v7 :=

 b1b2a3b1
b2
a3

 , v8 :=

 b1a2b3b1
a2
b3

 .
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The (complicated) inequality description of the convex hull (see [15] and [14])
is directly used by some global-optimization software (e.g., BARON and ANTIGONE).
However, other software packages (e.g., COUENNE and SCIP) instead use McCormick
inequalities iteratively to obtain a (simpler) convex relaxation for trilinear mono-
mials. These alternative approaches reflect the tradeoff between using a more com-
plicated but stronger convexification and a simpler but weaker one, especially in
the context of global optimization (see [11], for example).

From [24], we have a formula for the volume of the convex-hull relaxation
(additionally, for the various double-McCormick relaxations), parameterized in
terms of the upper and lower variable bounds.

Theorem 1 (see [24]) Under Ω, we have

vol(Ph) = (b1 − a1)(b2 − a2)(b3 − a3)×
(b1(5b2b3 − a2b3 − b2a3 − 3a2a3) + a1(5a2a3 − b2a3 − a2b3 − 3b2b3)) /24.

Note that due to the asymmetry introduced by Ω, the formula does not treat
all variables in the same manner. In particular, the role of x1 is quite different
than the roles of x2 and x3 (which can be interchanged). This observation is very
important in our analysis that follows.

In the context of branching within sBB, let ci ∈ [ai, bi] be the branching
point of variable xi. We obtain two children. By substituting ai = ci and bi = ci
(respectively) for a given variable xi into the appropriate formula (i.e., Theorem
1 after a possible relabeling of the variables), and summing the results, we obtain
the total resulting volume of the relaxations at the two child nodes, given that
we branch on variable xi at point ci. It is important to realize that the volume
formula only holds when the labeling Ω is respected. Given when we branch, the
bounds in our problem change, we must be careful to ensure that we always use
the formula correctly (i.e. if necessary, we relabel the variables to ensure that Ω
holds).

In §3, we present our results analyzing optimal branching-point selection for
x1. Then, in §4, we present the analysis for x2 and x3. Due to the special role
of x1, we will see that the analysis (and even the result) is significantly simpler
for x2 and x3 than for x1. In §5, we analyze branching-variable selection, and in
particular, we demonstrate that it is always best to branch on x1. In §6, we make
some concluding remarks. In the Appendix, we provide proofs of various technical
results that we utilize.

3 Branching on x1

First, we define the following quantities (note that because we assume bi > ai, i =
1, 2, 3, the denominators will not be zero for any valid parameter choice):

(3)q1 : =
3a1a2a3 + a1a2b3 − a1b2a3 − 3a1b2b3 + 4b1a2a3 − 4b1b2b3

2(3a2a3 + a2b3 − 4b2b3)
;

(4)q2 : =
a1 + b1

2
;
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(5)q3 : =
4a1a2a3 − 4a1b2b3 + 3b1a2a3 + b1a2b3 − b1b2a3 − 3b1b2b3

2(4a2a3 − b2a3 − 3b2b3)
.

Next, we refer to Procedure 1 which depicts a procedure for choosing a branching
point when branching on variable x1. Note that q1 is not used in the procedure,
but it is used in the analysis of the procedure.

Procedure 1: Output is the optimal branching point when branching on variable x1

First, consider what happens when we pick a branching variable xi, and branch
at a given point ci: we obtain two children, now with different bounds on the
branching variable. The upper bound of the branching variable in the left child
becomes the value of the branching point, as does the lower bound of the branching
variable in the right child. That is, the domain of xi for the left child is [ai, ci],
and the domain of xi for the right child is [ci, bi]. We reconvexify the two children
using our chosen method of convexification (i.e., the convex hull), and we can sum
the volumes from both children to obtain the total volume when branching at
that given point. We are interested in finding the branching point that leads to
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the least total volume. For an example of this principle in a lower dimension, see
the diagram of Figure 1 which illustrates reconvexifying after branching in sBB.
Here, because we have a one dimensional function, the graph of the function is a
set in R2. Therefore, in the context of this diagram, we wish to find the branching
point that minimizes the sum of the areas of the two diagonally striped (green)
regions. Clearly this depends on the choice of convexification method.

Fig. 1: Illustration of sBB for a 1-dimensional function

We can compute the volume of the relaxation for each of the children using
Theorem 1 (i.e., Theorem 4.1 from [24]). To ensure that we compute the appropri-
ate volumes, we need to check that as the bounds on the branching variable change,
we still respect the labeling Ω. To illustrate this, consider the left child obtained by
branching on variable x1 at some point c1 ∈ [a1, b1]. For this left child, the lower
bound on the branching variable remains the same and the new upper bound is c1.
We can see that if c1 is ‘close enough’ to b1, then Ω will remain satisfied, however
as c1 decreases, there comes a point where the labeling must change. By simple
algebra, we calculate that this critical point is when a1

c1
= a2

b2
⇔ c1 = a1b2

a2
(assum-

ing for now that a2 > 0). We can consider the right child in the same manner. On
the right, the upper bound on the branching variable remains the same, and the
new lower bound is c1. When c1 is close to a1, Ω will remain satisfied; however,
as c1 becomes larger, eventually the labeling must change. This critical point for
the right child is at c1

b1
= a2

b2
⇔ c1 = b1a2

b2
.

We note that because of the structure of the volume function of the convex hull,
(see Theorem 1), the second and third variables are interchangeable. This means
that we do not need to consider what happens when the bounds vary enough for
x1 to be relabeled as x3.
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Before stating Theorem 2, we need to clarify some definitions and state four
technical lemmas that will be needed in the proof. The proofs of these four lemmas
can be found in the Appendix.

We first define

V (l1, u1, l2, u2, l3, u3) : = (u1 − l1)(u2 − l2)(u3 − l3)

× (u1(5u2u3 − l2u3 − u2l3 − 3l2l3) + l1(5l2l3 − u2l3 − l2u3 − 3u2u3)) /24,

to be the volume of the convex hull with variable lower bounds li and upper
bounds, ui, for i = 1, 2, 3.

Then, we define the following parameterized function:

(6)TV (c1) : =


V1(c1), a1 ≤ c1 ≤ b1a2

b2
;

V2(c1), b1a2

b2
< c1 <

a1b2
a2

;

V3(c1), a1b2
a2
≤ c1 ≤ b1,

where:

V1(c1) := V (a2, b2, a1, c1, a3, b3) + V (c1, b1, a2, b2, a3, b3),

V2(c1) := V (a2, b2, a1, c1, a3, b3) + V (a2, b2, c1, b1, a3, b3),

V3(c1) := V (a1, c1, a2, b2, a3, b3) + V (a2, b2, c1, b1, a3, b3).

And finally the second parameterized function:

(7)T̂ V (c1) : =


V1(c1) a1 ≤ c1 ≤ b1a2

b2
;

V4(c1) b1a2

b2
< c1 <

a1b2
a2

;

V3(c1) a1b2
a2
≤ c1 ≤ b1,

where V1(c1) and V3(c1) are defined as before and:

V4(c1) := V (a1, c1, a2, b2, a3, b3) + V (c1, b1, a2, b2, a3, b3).

Both TV (c1) and T̂ V (c1) are piecewise-quadratic functions in c1. We can easily
observe this by noticing that V is the product of a pair of multilinear functions in
the parameters.

Lemma 1 Given that the upper- and lower-bound parameters respect the labeling
Ω, and b1a2

b2
≤ a1b2

a2
,

V1

(
b1a2
b2

)
= V2

(
b1a2
b2

)
≥ V2

(
a1b2
a2

)
= V3

(
a1b2
a2

)
.

Lemma 2 Given that the upper- and lower-bound parameters respect the labeling
Ω, and b1a2

b2
> a1b2

a2
,

V1

(
a1b2
a2

)
= V4

(
a1b2
a2

)
≥ V4

(
b1a2
b2

)
= V3

(
b1a2
b2

)
.

Lemma 3 Given that the parameters satisfy the conditions Ω, and furthermore,
b1a2

b2
≤ a1b2

a2
, we have

q1 ≥
b1a2
b2

.
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Lemma 4 Given that the parameters satisfy the conditions Ω, and furthermore,
b1a2

b2
≥ a1b2

a2
, we have

q1 ≥
a1b2
a2

.

We are now ready to state the theorem.

Theorem 2 Assume initial bounds a1, b1, a2, b2, a3, b3 that satisfy Ω and that we
branch on x1. Furthermore, assume that q2 and q3 are defined as in Equation 4
and Equation 5. Procedure 1 gives the optimal branching point with respect to min-
imizing the sum of the volumes of the two convex-hull relaxations of the children.

Proof Given our earlier discussion, it is natural to think about three cases. First,
when a2 = 0 (we refer to this as Case 0). Second (Case 1), when

a2 6= 0 and
b1a2
b2
≤ a1b2

a2
⇐⇒ a22

b22
≤ a1
b1

⇐⇒ b1a
2
2 ≤ a1b22 ,

and third (Case 2), when

a2 6= 0 and
b1a2
b2

>
a1b2
a2

⇐⇒ a22
b22

>
a1
b1

⇐⇒ b1a
2
2 > a1b

2
2 .

The case of equality, i.e., b1a2

b2
= a1b2

a2
, is arbitrarily included with Case 1. In

fact, when equality holds, the analysis that follows is simplified, and it could be
contained in either of the cases.

Depending on the case, the necessary relabeling to ensure Ω remains satisfied is
different, and the functions we defined as Vi(c1), i = 1 . . . 4 reflect these different
relabelings. For an illustration of when the variable labeling must change on the
left child, the right child, or on both children to ensure that Ω remains satisfied
(as the branching point varies), see Figure 2.

Case 0: a2 = 0. From the condition Ω, we know that a2 = 0 ⇒ a1 = 0. In this
special case, the labeling for the left child does not change no matter how small
the upper bound becomes. Conversely, the labeling for the right child changes as
soon as the lower bound becomes positive. We therefore have the picture shown in
Figure 2, and the function (i.e. V3(c1)) describing the sum of the volumes of the
two child relaxations over the entire domain, [a1, b1], does not need to be defined
in a piecewise manner. As we will see shortly, this function is a convex quadratic,
and therefore it is easy to check (by calculating where the derivative is zero) that
in this special case the minimizer of this function is q3 (defined above) and this is
the minimizer of the total volume of the two children. Furthermore, when a2 = 0
(and therefore a1 = 0), this minimizer simplifies to b1

2 = a1+b1
2 = q2, the midpoint

of the interval.
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(a) Case 0

(b) Case 1

(c) Case 2

Fig. 2: Variable labeling as the branching point varies for the three cases

Case 1: b1a2

b2
≤ a1b2

a2
. As illustrated in Figure 2, in Case 1, the function describing

the sum of the volumes of the child relaxations is TV (c1) (Equation 6). It is
straightforward to check that the function TV (c1) is continuous over its domain.
Furthermore, by observing that the leading coefficient of each piece (Vi(c1), i =
1, 2, 3) is positive for all parameter values satisfying Ω, we conclude that each piece
is strictly convex. We are able to claim strict convexity because we assume bi > ai
for all i. Using this fact, for each coefficient below we observe that each multiplicand
in the numerator is strictly positive and therefore each leading coefficient is strictly
positive.
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The coefficient of c21 in the quadratic function V1(c1) is:

(b3 − a3)(b2 − a2)(6(b2b3 − a2a3) + 2b3(b2 − a2))

24
> 0.

The coefficient of c21 in the quadratic function V2(c1) is:

(b3 − a3)(b2 − a2)(4(b2b3 − a2a3) + 2(b3 + a3)(b2 − a2))

24
> 0.

The coefficient of c21 in the quadratic function V3(c1) is:

(b3 − a3)(b2 − a2)(6(b2b3 − a2a3) + 2a3(b2 − a2))

24
> 0.

Figure 3 gives some idea of what this function could look like. The example
depicts a globally convex function and we are yet to prove that this will always be
the case. However, in later analysis (Theorem 3 in §3.3) we will demonstrate that
global convexity always holds.

Fig. 3: Illustration of a (globally convex) continuous piecewise-quadratic function

Now that we know that TV (c1) has this structure, to find the global minimizer
over the domain [a1, b1], we can simply find the local minimizer on each of the
three pieces and pick the point with the least function value. Because we have
convex functions, the local minimum of a given piece will either occur at the
global minimizer of Vi(c1) (if this occurs over the appropriate subdomain), or at
one of the end points of the subdomain. Therefore, to find the local minimizer for
a given segment, we first find the global minimizer of Vi(c1) over the entire real
line and check if it occurs in the interval; if so, it is the local minimizer, if not,
we examine the interval end points to locate the local minimizer. We can then
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compare the function value of the local minimizer of each of the three pieces to
find the global minimizer of TV (c1), i.e., the branching point that obtains the
least total volume.

Given that each Vi is a parameterised convex-quadratic function in c1, it is
easy to use a computer algebra system to calculate the following:
The minimum of V1(c1) occurs at:

c1 =
3a1a2a3 + a1a2b3 − a1b2a3 − 3a1b2b3 + 4b1a2a3 − 4b1b2b3

2(3a2a3 + a2b3 − 4b2b3)
= q1.

The minimum of V2(c1) occurs at:

c1 =
a1 + b1

2
= q2.

The minimum of V3(c1) occurs at:

c1 =
4a1a2a3 − 4a1b2b3 + 3b1a2a3 + b1a2b3 − b1b2a3 − 3b1b2b3

2(4a2a3 − b2a3 − 3b2b3)
= q3.

Therefore, the candidate points for the minimizer are a1, b1a2

b2
, a1b2

a2
, b1, q1,

q2 and q3. We can immediately discard a1 and b1 because these are both equiv-
alent to not branching. By branching and reconvexifying over the two children,
we can never do worse with regard to volume. Therefore, we have five points to
consider. For a given set of parameters, it is straightforward to evaluate and check
which of these five points is the minimizer. However, making use of the following
observations, we can further reduce the possibilities.

If q1 were to be the global minimizer, then it must fall in the appropriate
subdomain; i.e., it must be that q1 ≤ b1a2

b2
. However, by Lemma 3, in Case 1

we always have q1 ≥ b1a2

b2
. Therefore, we can discard q1 as a candidate point for

the minimizer because for it to be the minimizer, this quantity would have to be
exactly equal to b1a2

b2
, which is already on the list of candidate points.

Now, consider the quantities:

q1 − q2 =
(b3 − a3)(b1a2 − a1b2)

2(4b2b3 − a2b3 − 3a2a3)
≥ 0, (8)

and

q3 − q2 =
(a3 − b3)(b1a2 − a1b2)

2(3b2b3 + b2a3 − 4a2a3)
≤ 0. (9)

The inequalities follow from bi > ai, i = 1, 2, 3, and Lemma 5 in the Appendix.
We therefore have:

q1 ≥ q2 =
a1 + b1

2
≥ q3. (10)

From this, we can observe that if q3 ≥ a1b2
a2

, then q2 ≥ q3 ≥ a1b2
a2

, and therefore
q3 is the minimizer. This is because neither q1 nor q2 fall in their key intervals
(i.e. in the appropriate subdomain); furthermore, by the definition of q3 as the

minimizer of V3, we must have that V3(q3) ≤ V3
(

a1b2
a2

)
, and by Lemma 1, we have

that V3
(

a1b2
a2

)
≤ V2

(
b1a2

b2

)
.
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If this does not occur, i.e. q3 <
a1b2
a2

, then if b1a2

b2
≤ a1+b1

2 ≤ a1b2
a2

, the midpoint
q2 is the minimizer. This is because under these conditions, q2 is the only minimizer
that occurs in the ‘correct’ function piece, and by definition of q2 as the minimizer
of V2, the function value is not more than at either of the end points.

Otherwise, if none of the above occurs (i.e., none of the intervals contain their
function global minimizer), we have that a1b2

a2
is the minimizer by Lemma 1.

Case 2: b1a2

b2
> a1b2

a2
. In this second case, for a given problem with initial upper

and lower bounds (a1, b1, a2, b2, a3, b3), the sum of the volumes of the two child

relaxations after branching at point c1, is given by the function T̂ V (c1) (Equation
7 and illustrated in Figure 2). This is similar, but distinct, from the function in
Case 1.

Recall that this is a piecewise-quadratic function in c1, and, as before, it is
simple to check that the function is continuous over its domain. Furthermore, by
observing that the leading coefficient of each piece is positive for all parameter
values satisfying Ω, we know that each piece is strictly convex. Strict convexity
comes from the knowledge bi > ai, i = 1, 2, 3.

The coefficient of c21 in the quadratic function V4(c1) is:

8(b3 − a3)(b2 − a2)(b2b3 − a2a3)

24
> 0.

Therefore, we can take the same approach as before to find the global mini-
mizer: first find the local minimizer for each segment. We do this by finding the
global minimizer for the appropriate function (Vi(c1)), over the whole real line and
checking if it occurs in the segment. If it does, we have found the minimizer for
that segment, if not, we examine the interval end points. We then compare the
minimum in each of the three segments to find the branching point that obtains
the least total volume.

From our analysis of Case 1, we know that the minimums of V1(c1) and V3(c1)
occur at q1 and q3 respectively. We compute that the minimum of V4(c1) occurs
at the midpoint of the whole interval, i.e., at

c1 =
a1 + b1

2
= q2.

As before, the candidate points for the minimizer are b1a2

b2
, a1b2

a2
, q1, q2 and q3.

However, by making the following observations we can further reduce the points
we need to examine.

If q1 were to be the global minimizer, then it must fall in the appropriate
subdomain, i.e., it must be that q1 ≤ a1b2

a2
. However, by Lemma 4, in Case 2 we

always have q1 ≥ a1b2
a2

. Therefore, we can discard q1 as a candidate point for the
minimizer because for it to be the minimizer it would have to be exactly equal to
a1b2
a2

, which is already on the list of candidate points.

If q3 ≥ b1a2

b2
, then q2 ≥ q3 ≥ b1a2

b2
, and therefore q3 is the minimizer. This is

because neither q1 nor q2 fall in their key intervals; furthermore, by definition of

q3 as the minimizer of V3, we must have that V3(q3) ≤ V3
(

b1a2

b2

)
, and by Lemma

2 we know that V3
(

b1a2

b2

)
≤ V1

(
a1b2
a2

)
.
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If this does not occur, i.e. q3 <
b1a2

b2
, then if a1b2

a2
≤ a1+b1

2 ≤ b1a2

b2
, the midpoint

q2 is the minimizer. This is because under these conditions, q2 is the only minimizer
that occurs in the ‘correct’ function piece, and by definition of q2 as the minimizer
of V4, the function value is no more than at either of the end points.

Otherwise, we have that b1a2

b2
is the minimizer by Lemma 2. Therefore Proce-

dure 2 is correct. ut

3.1 Side note

For completeness, and as an interesting side point, we note that in Case 1, if it
were possible to have q1 ≤ b1a2

b2
, then q3 ≤ q2 ≤ q1 ≤ b1a2

b2
, and therefore q1

would be the minimizer. This is because neither q2 nor q3 would fall in their key
intervals; furthermore, by the definition of q1 as the minimizer of V1, we have

that V1(q1) ≤ V1
(

b1a2

b2

)
, and by Proposition 1(see the Appendix), we know that

V1(q1) ≤ V2
(

a1b2
a2

)
. However, by Lemma 3 we have already discarded this case.

As another interesting side point, we also note that in Case 2, if it were possible
to have q1 ≤ a1b2

a2
, then q3 ≤ q2 ≤ q1 ≤ a1b2

a2
, and q1 would be the minimizer. This

is because neither q2 nor q3 would fall in their key intervals. Furthermore, by

definition of q1 as the minimizer of V1, we must have that V1(q1) ≤ V1
(

a1b2
a2

)
, and

by Proposition 2 (see the Appendix), we know that V1(q1) ≤ V4
(

b1a2

b2

)
. However,

by Lemma 4 we have already discarded this case.

3.2 Some examples

We can illustrate these piecewise-quadratic functions for the possible outcomes
of Procedure 1. In this illustration, we focus on Case 1, and therefore Figure 4
shows the function TV (c1) over the domain [a1, b1]. The (orange) dashed curve
illustrates an example where the minimizer of V3(c1), (i.e. q3), falls in the relevant
interval, and therefore is the minimizer over our whole domain. The (purple) solid
curve illustrates an example where q3 does not fall in this interval, however the
midpoint, q2, falls in between the quantities b1a2

b2
and a1b2

a2
and is therefore the

required minimizer. The (green) dotted curve illustrates an example where neither
of the above happens, and therefore the breakpoint between the function V2(c1)
and the function V3(c1) is the minimizer. In this example we are in Case 1, and
therefore this point is a1b2

a2
.

It is important to note that each of the cases in Procedure 1 actually can occur.
It is easy to check the following:

– An example of a dashed curve (minimum occurs at q3) is (a1 = 1, b1 = 35,
a2 = 2, b2 = 12, a3 = 12, b3 = 35).

– An example of a solid curve (minimum occurs at q2) is (a1 = 1, b1 = 34,
a2 = 2, b2 = 36, a3 = 12, b3 = 35).

– An example of a dotted curve (minimum occurs at a1b2
a2

) is (a1 = 1, b1 = 8,
a2 = 5, b2 = 22, a3 = 1, b3 = 4).
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Unfortunately, the plots of the actual functions do not display the key details as
clearly as our illustration, so we do not include them here.

Furthermore, an example of Case 2, where the minimum occurs at the break-
point between the function V4 and the function V3, i.e. the point b1a2

b2
is (a1 = 1,

b1 = 13, a2 = 1, b2 = 2, a3 = 2, b3 = 4). Finally, a simple example of Case 0, is
the special case (a1 = 0, b1 = 1, a2 = 0, b2 = 1, a3 = 0, b3 = 1). In Figure 5 we
can see the plot of this function and the minimum, which falls at the midpoint. In
Case 0 we always have q1 = q2 = q3 = a1+b1

2 = b1
2 .

3.3 Global convexity of our piecewise-quadratic function over its domain

We have seen that each piece of TV (c1) and T̂ V (c1) is a convex quadratic func-
tion. However, this does not imply that the functions are convex over the whole
domain, [a1, b1]. Nevertheless, as we show in the following theorem, with a bit

more work, we are able to demonstrate that TV (c1) and T̂ V (c1) are convex over
the domain, [a1, b1]. It is very useful that these functions are globally convex; if a
variable appears in many trilinear terms, it is quite reasonable to combine volumes
in a reasonable manner (see [25]). For example, we can take a weighted average (of
the sum of the two volumes for each term) as a measure for deciding on a branch-
ing point. A weighted average (assuming positive weights) of convex functions is
convex, and therefore, the global-convexity property of these functions allows us to
find the optimal branching point (defined as the minimum of the weighted-average
function) by a simple bisection search. However, it is important to note that we
are not advocating a bisection search if there is only one term being considered.
In this case, Procedure (1) is more efficient.

Fig. 4: Picture to illustrate the possible outcomes of Procedure 1 in Case 1
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Fig. 5: Plot of the total volume function (when branching on x1), for parameter values:
(a1 = 0, b1 = 1, a2 = 0, b2 = 1, a3 = 0, b3 = 1)

Theorem 3 Given that the upper- and lower-bound parameters respect the labeling
Ω, the functions TV (c1) and T̂ V (c1) are globally-convex functions in the branching
point c1 over the domain [a1, b1].

Proof To demonstrate the global convexity of TV (c1), we will establish that it is
the pointwise maximum of the convex functions V1(c1), V2(c1) and V3(c1). Simi-

larly, to demonstrate the global convexity of T̂ V (c1), we will establish that it is
the pointwise maximum of the convex functions V1(c1), V4(c1) and V3(c1).

Global convexity of TV (c1): Consider the difference of V1(c1) and V2(c1):

V1(c1)− V2(c1) =
(b3 − a3)2(b1 − c1)(b2 − a2)(b1a2 − c1b2)

12
.

Note that for all parameter values such that Ω is satisfied and a1 < c1 < b1, we
have that V1(c1) > V2(c1) if and only if c1 <

b1a2

b2
and conversely V1(c1) > V2(c1)

if and only if c1 >
b1a2

b2
. They are equal when c1 = b1a2

b2
.

Now consider the difference of V3(c1) and V2(c1):

V3(c1)− V2(c1) =
(b3 − a3)2(c1 − a1)(b2 − a2)(c1a2 − a1b2)

12
.

Again, note that for all parameter values such that Ω is satisfied and a1 <
c1 < b1, we have that V3(c1) > V2(c1) if and only if c1 >

a1b2
a2

and conversely

V3(c1) < V2(c1) if and only if c1 <
a1b2
a2

. They are equal when c1 = a1b2
a2

. Also

recall that in the definition of TV (c1), we implicitly assume b1a2

b2
≥ a1b2

a2
. We can

make the following observations.
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On the interval c1 ∈
(
a1,

b1a2

b2

)
we have V1(c1) > V2(c1) > V3(c1), at c1 = b1a2

b2

we have V1(c1) = V2(c1) > V3(c1), on the interval c1 ∈
(

b1a2

b2
, a1b2

a2

)
we have

V2(c1) > V1(c1) and V2(c1) > V3(c1). At c1 = a1b2
a2

we have V3(c1) = V2(c1) >

V1(c1) and on the interval c1 ∈
(

a1b2
a2

, b1
)

we have V3(c1) > V2(c1) > V1(c1).

Furthermore, when c1 = a1, we have V1(c1) > V2(c1) = V3(c1) and when c1 = b1
we have V3(c1) > V2(c1) = V1(c1).

From these observations, it is clear that TV (c1), is the pointwise maximum of
the convex functions V1(c1), V2(c1) and V3(c1) over the domain [a1, b1] therefore
we observe that TV (c1) is globally convex over the domain [a1, b1].

Global convexity of T̂ V (c1): Consider the difference of V1(c1) and V4(c1):

V1(c1)− V4(c1) =
(b3 − a3)2(c1 − a1)(b2 − a2)(a1b2 − c1a2)

12
.

Note that for all parameter values such that Ω is satisfied and a1 < c1 < b1, we
have that V1(c1) > V4(c1) if and only if c1 <

a1b2
a2

and conversely V1(c1) > V2(c1)

if and only if c1 >
a1b2
a2

. They are equal when c1 = a1b2
a2

.
Now consider the difference of V3(c1) and V4(c1):

V3(c1)− V4(c1) =
(b3 − a3)2(b1 − c1)(b2 − a2)(c1b2 − b1a2)

12
.

Again, note that for all parameter values such that Ω is satisfied and a1 <
c1 < b1, we have that V3(c1) > V4(c1) if and only if c1 >

b1a2

b2
and conversely

V3(c1) < V2(c1) if and only if c1 <
b1a2

b2
. They are equal when c1 = b1a2

b2
.

Now recall that T̂ V (c1) is defined with the assumption b1a2

b2
< a1b2

a2
. We can

make almost identical observations to those above to see that T̂ V (c1) is the point-
wise maximum of the convex functions V1(c1), V4(c1) and V3(c1) and therefore is
also globally convex over the domain [a1, b1]. ut

3.4 Bounds on where the optimal branching point can occur

We have seen in §1 that software employ methods to avoid selecting a branching
point that falls too close to either endpoint of the interval. Therefore, a natural
issue to consider is whether our minimizer can fall close to either of the endpoints.
We want to know how likely it is that solvers are routinely precluding our optimal
branching point. The following theorems give some insight on this issue and show
that, in fact, software is unlikely to be cutting off our optimal branching point.

Theorem 4 The branching point for variable x1 that obtains the least total vol-
ume, never occurs at a point in the interval greater than the midpoint.

Proof If a2 = 0, then we are in Case 0, and the minimizer is at the midpoint,
which is clearly no greater than the midpoint.

If a1b2
a2
≥ b1a2

b2
, then we are in Case 1. If q3 ≥ a1b2

a2
, then q3 is the minimizer,

but we know that q3 ≤ a1+b1
2 (see Equation 9). If q2 = a1+b1

2 falls in the interval
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b1a2

b2
, a1b2

a2

]
, then the midpoint is the minimizer. If it does not, then (i) a1b2

a2
is the

minimizer, and (ii) it must be that either that a1+b1
2 > a1b2

a2
, in which case our

claim is valid, or a1+b1
2 < b1a2

b2
≤ a1b2

a2
. We will show by contradiction that this

cannot be the case.
Toward this end, assume that:

a1 + b1
2

<
b1a2
b2

and
a1 + b1

2
<
a1b2
a2

.

This implies:

2b1a2 − b1b2 − a1b2 = b1(a2 − b2) + (b1a2 − a1b2) > 0, and

2a1b2 − a1a2 − b1a2 = a1(b2 − a2) + (a1b2 − b1a2) > 0.

Now let X := b2 − a2 and Y := b1a2 − a1b2 (note that both X and Y are non-
negative: Lemma 5). Therefore we can write our assumption as:

b1(−X) + Y > 0 and a1(X) + (−Y ) > 0,

which implies
Y > b1X and Y < a1X,

a contradiction. Therefore, in Case 1 the minimizer must be no larger than the
midpoint.

We make a similar argument for Case 2. Here a1b2
a2

< b1a2

b2
. If q3 ≥ b1a2

b2
, then

q3 is the minimizer, but we know that q3 ≤ a1+b1
2 (see Equation 9). If q2 = a1+b1

2

falls in the interval
[
a1b2
a2

, b1a2

b2

]
, then the midpoint is the minimizer. If it does not,

then (i) b1a2

b2
is the minimizer, and (ii) it must be that either that a1+b1

2 > b1a2

b2
,

in which case our claim is valid, or a1+b1
2 < a1b2

a2
< b1a2

b2
. However, we have just

shown by contradiction that this cannot be the case. Therefore, in Case 2 the
minimizer must be no larger than the midpoint. ut

This theorem gives an upper bound on the fraction through the interval the
minimizer can fall (namely 1

2 ). Furthermore, this bound is sharp (i.e. it is obtained
and therefore cannot be strengthened) because we know examples when the min-
imizer is exactly at the midpoint. It would be nice to also obtain a sharp lower
bound on this fraction. By demonstrating that the minimizer cannot fall too close
to the end points of the interval, we are providing mathematical evidence to justify
the current choices of branching point in software, as discussed in §1. The following
theorem gives a lower bound on this fraction when a2 6= 0, (when a2 = 0, we know
that the minimizer will be exactly at the midpoint). We note that because of the
condition Ω, the problem is no longer symmetric and therefore knowledge about
the upper bound does not allow us to draw conclusions about the lower bound.

Theorem 5 Given upper- and lower-bound parameters (a1, b1, a2, b2, a3, b3)
satisfying Ω, and a2 6= 0. The branching point for variable x1 that obtains the least
total volume, never occurs at a point in the interval less than

min

{
max

{
a1(b2 − a2)

a2(b1 − a1)
,
b1a2 − a1b2
b1b2 − a1b2

}
,

1

2

}
of the way through the interval.
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Proof There are four candidate points where the minimizer can occur. Namely,
q2 = a1+b1

2 , q3, a1b2
a2

, and b1a2

b2
. Therefore

min

{
a1 + b1

2
, q3,

a1b2
a2

,
b1a2
b2

}
,

is a trivial lower bound on this minimizer.
We know that if q3 is the minimizer, then we must have q3 ≥ a1b2

a2
(Case 1), or

q3 ≥ b1a2

b2
(Case 2), so we can discard this point.

Additionally, we know that if a1b2
a2

is the minimizer, then we have a1b2
a2
≥ b1a2

b2

(Case 1), and if b1a2

b2
is the minimizer, then we have b1a2

b2
> a1b2

a2
(Case 2).

Therefore we have that a lower bound on the minimizer is:

min

{
max

{
a1b2
a2

,
b1a2
b2

}
,
a1 + b1

2

}
.

Moreover, a lower bound for the fraction of the interval where this point can fall
is:

min

{
max

{
a1b2
a2
− a1

b1 − a1
,

b1a2

b2
− a1

b1 − a1

}
,

a1+b1
2 − a1
b1 − a1

}

= min

{
max

{
a1(b2 − a2)

a2(b1 − a1)
,
b1a2 − a1b2
b1b2 − a1b2

}
,

1

2

}
.

ut

We note that this lower bound is unlikely to be sharp. Consider the case where
a1 = 0, a2 = ε > 0 and b2 = 1. This bound becomes ε, and is therefore not
particularly informative, given that we can make ε as close to zero as we wish.
However, we have computationally checked many examples, and we have yet to
find an example where the minimizer occurs less than ∼ 0.45 of the way through
the interval. It would be nice to sharpen this bound, and our computations indicate
that this should be possible.

4 Branching on x2 and x3

We noted in §3 that because of the structure of the volume function of the convex
hull, the second and third variables are interchangeable. Therefore, the branching-
point analyses for these variables will be equivalent. To see how the results in this
case are less complex than in the x1 case, recall the condition Ω, which due to our
non-negativity assumption can be written as

a1
b1
≤ a2
b2
≤ a3
b3
.

Now consider what happens to the quantity a2

b2
when we branch on x2. In the

left interval, a2 remains constant, and b2 becomes the branching point, c2 < b2.
Therefore, a2

b2
cannot decrease further. In the right interval b2 remains constant

and a2 becomes the branching point, c2 > a2. Therefore, again, a2

b2
cannot decrease

further. Because of this, the labeling for x1 and x2 will not have to be switched
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to ensure Ω remains satisfied. Furthermore, x2 and x3 are interchangeable in the
formula, so we do not need to consider what happens when the ratios change such
that a2

b2
> a3

b3
.

The case of x2 and x3 therefore both require the analysis of only one convex
quadratic function. This is formalized in the following theorem.

Theorem 6 Let ci ∈ [ai, bi] be the branching point for xi, i = 2, 3. With the
convex-hull relaxation, the least total volume after branching is obtained when ci =
(ai + bi)/2, i.e., branching at the midpoint is optimal.

Proof We first consider branching on x2. Consider the sum of the two resulting
volumes, given by the following function:

TV2(c2) = V (a1, b1, c2, b2, a3, b3) + V (a1, b1, a2, c2, a3, b3),

which is quadratic in c2. The leading coefficient (i.e. second derivative) is

TV2(c2) =
1

12
(b1 − a1)(b3 − a3)(3(b1b3 − a1a3) + (b1a3 − a1b3)),

which is greater than or equal to zero for all parameters satisfying Ω and hence
all c2 ∈ [a2, b2] (Lemma 5). Therefore this function is convex. Setting the first
derivative equal to zero and solving for c2, we obtain that the minimum occurs
at c2 = (a2 + b2)/2. Similar analysis can be completed for i = 3 to obtain the
result. ut

5 The optimal branching variable

Now that we have established the optimal branching point for each variable in
all cases, it is interesting to compare the total volumes obtained when branching
at the optimal point for each variable. In this section we establish the optimal
branching variable.

Theorem 7 Given that the upper- and lower-bound parameters respect the labeling
Ω, if we assume optimal branching-point selection, then branching on x1 obtains
the least total volume, and branching on x3 obtains the greatest total volume. Ad-
ditionally, even if we branch at the midpoint for x1 (which may not be optimal),
this is at least as good as doing optimal branching-point selection (i.e., midpoint
branching) on either x2 or x3.

Proof First, we establish that branching optimally (at the midpoint) on variable
x2 obtains a lower total volume than branching optimally (at the midpoint) on
variable x3.

The optimal total volume when branching on variable x3 is:

(b3 − a3)(b2 − a2)(b1 − a1)

48
×

(7a1a2a3 + a1a2b3 − 3a1a3b2 − 5a1b2b3 − 5a2a3b1 − 3a2b1b3 + a3b1b2 + 7b1b2b3).
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The optimal total volume when branching on variable x2 is:

(b3 − a3)(b2 − a2)(b1 − a1)

48
×

(7a1a2a3 − 3a1a2b3 + a1a3b2 − 5a1b2b3 − 5a2a3b1 + a2b1b3 − 3a3b1b2 + 7b1b2b3).

Therefore, the difference in total volume from branching on x3 compared with
x2 is:

(b3 − a3)(b2 − a2)(b1 − a1)2(b2a3 − a2b3)

12
,

which is greater than or equal to zero by Lemma 5. Therefore, if we assume optimal
branching, branching on x3 always results in a greater volume than branching on
x2.

Now let us consider the optimal total volume when branching on x1, this
quantity must always be less than or equal to the total volume when branching
at the midpoint of the interval (it will be equal exactly when the midpoint is the
optimal branching point). Therefore, if we can establish that branching on variable
x1 at the midpoint always obtains a lesser total volume than branching on variable
x2 at the midpoint, we will have shown our claim.

Recall Figure 2. We know from the proof of Theorem 4, that the midpoint

can never be less than: min
{

a1b2
a2

, b1a2

b2

}
. Therefore, in every case, the midpoint

must fall in a subdomain where: (i) the labeling for left interval stays the same,
and the labeling for the right changes; (ii) the labeling changes for both intervals;
or, (iii) the labeling remains the same for both intervals. This means that we are
interested in the function value (total volume) at the midpoint for the functions
V2(c1), V3(c1) and V4(c1).

The total volume of branching (on variable x1) at the midpoint if it occurs in
the subdomain corresponding to V2 is:

(b3 − a3)(b2 − a2)(b1 − a1)

48
×

(7a1a2a3 − 3a1a2b3 − 5a1a3b2 + a1b2b3 + a2a3b1 − 5a2b1b3 − 3a3b1b2 + 7b1b2b3).

Therefore, the difference in total volume from branching on x2 compared with this
quantity is:

(b3 − a3)2(b2 − a2)(b1 − a1)(b1a2 − a1b2)

8
,

which is greater than or equal to zero by Lemma 5.
The total volume of branching (on variable x1) at the midpoint if it occurs in

the subdomain corresponding to V3 is:

(b3 − a3)(b2 − a2)(b1 − a1)

48
×

(6a1a2a3 − 2a1a2b3 − 3a1a3b2 − a1b2b3 − 4a2b1b3 − 3a3b1b2 + 7b1b2b3).

Therefore, the difference in total volume from branching on x2 compared with this
quantity is:

(b3 − a3)2(b2 − a2)(b1 − a1)(4(b1a2 − a1b2) + a2(b1 − a1))

48
,
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which is greater than or equal to zero by Lemma 5.
The total volume of branching (on variable x1) at the midpoint if it occurs in

the subdomain corresponding to V4 is:

(b3 − a3)(b2 − a2)(b1 − a1)

24
×

(3a1a2a3 − a1a2b3 − a1a3b2 − a1b2b3 − a2a3b1 − a2b1b3 − a3b1b2 + 3b1b2b3).

Therefore, the difference in total volume from branching on x2 compared with this
quantity is:

(b3 − a3)2(b2 − a2)(b1 − a1)(b1b2 − a1a2 + 3(b1a2 − a1b2))

48
,

which is greater than or equal to zero by Lemma 5.
Therefore, for each one of these possible scenarios, optimally branching on x2

results in a greater volume than branching on x1 at the midpoint. And so we can
conclude that given optimal branching, branching on x1 obtains the least total
volume, and branching on x3 obtains the greatest total volume.

ut

6 Concluding remarks and future work

We have presented some analytic results on branching variable and branching-
point selection in the context of sBB applied to models having functions involving
the multiplication of three or more terms. In particular, for trilinear monomials
f = x1x2x3 on a box domain satisfying Ω, we have shown that when the convex-
hull relaxation is used, and the branching variable is x2 or x3, branching at the
commonly-used midpoint results in the least total volume.

We have presented a simple procedure for obtaining the optimal branching
point when using the convex-hull relaxation and branching on variable x1. We
have provided a sharp upper bound on where in the interval the minimizer can oc-
cur, and we have also obtained a lower bound for this fraction. By computationally
checking many examples, we have evidence to suggest that this lower bound can
be sharpened, thus providing analysis that backs up software’s current choice of
branching point. Furthermore, we have shown that the piecewise-quadratic func-
tions we have been considering are globally convex over their entire domain.

Given that we branch at an optimal branching point, we have also compared
the choice of branching variable. We demonstrate that branching on x1 gives the
least total volume.

We are in the process of carrying out a similar analysis to what we have done
here, but for the best of the double-McCormick convexifications rather than for
the convex-hull relaxation. However, due to the structure of the volume formula
for the best double-McCormick convexification (see [24]), our task is significantly
more complex.

Finally, we hope that our mathematical results can be used as some guidance
toward justifying, developing and refining practical branching rules. We believe
that our work is just a first step in this direction. In this regard, we hope to fur-
ther extend our mathematical analysis to directly deal with variables appearing
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in multiple non-linear terms.
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Appendix: technical propositions and lemmas

In this section, we provide the technical propositions and lemmas used for our analysis.

Proposition 1 Given that the upper- and lower-bound parameters respect the labeling Ω, and
b1a2
b2
≤ a1b2

a2
,

V1(q1) ≤ V2
(
a1b2

a2

)
= V3

(
a1b2

a2

)
.

Proof It is easy to check that V2
(

a1b2
a2

)
= V3

(
a1b2
a2

)
.

V2

(
a1b2

a2

)
− V1(q1) =

(b3 − a3)(b2 − a2)

48(4b2b3 − a2b3 − 3a2a3)a22
×
(
pa21 + qa1 + r

)
,

where

p =
(
− 3a2a3 − a2b3 + b2a3 + 3b2b3

)
×(

− 3a32a3 − a32b3 + 13a22b2a3 + 7a22b2b3 − 12a2b
2
2a3 − 20a2b

2
2b3 + 16b32b3

)
=
(

3(b2b3 − a2a3) + b2a3 − a2b3
)
×(

(−3a32 + 13a22b2 − 12a2b
2
2)a3 + (−a32 + 7a22b2 − 20a2b

2
2 + 16b32)b3

)
,

q = 4a2b1(2a22a3 − 3a2b2a3 − 3a2b2b3 + 4b22b3)

× (3a2a3 + a2b3 − b2a3 − 3b2b3),

r = 4a22b
2
1(a2a3 + a2b3 − 2b2b3)2.

To show that V2
(

a1b2
a2

)
− V1(q1) is non-negative for all parameters satisfying Ω, we will

show that pa21 + qa1 + r ≥ 0 for all parameters satisfying Ω.
We observe:(

(−a32 + 7a22b2 − 20a2b
2
2 + 16b32)b3 + (−3a32 + 13a22b2 − 12a2b

2
2)a3

)
=: b3Y + a3Z,
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where
Y + Z = 4(b2 − a2)(2b2 − a2)2 ≥ 0,

and

Y =

(
b2 − a2

)(
4b2(b2 − a2) + 12b22 + a22

)
+ 2a22b2 ≥ 0.

Therefore, by Lemma 6 we have that b3Y + a3Z is non-negative and so p is non-negative
(Lemma 5). From this we know that pa21 + qa1 + r is a convex function in a1 and we can find
the minimizer by setting the derivative to zero and solving for a1. The minimum occurs at

a1 =
2b1a2(2a22a3 − 3a2b2a3 − 3a2b2b3 + 4b22b3)

(−3a32a3 − a32b3 + 13a22b2a3 + 7a22b2b3 − 12a2b22a3 − 20a2b22b3 + 16b32b3)
.

Substituting this in to pa21 + qa1 + r, we obtain that the minimum value of this quadratic
is:

4a22b
2
1(b3 − a3)(b2 − a2)3(3a2a3 + a2b3 − 4b2b3)2

(−3a32a3 − a32b3 + 13a22b2a3 + 7a22b2b3 − 12a2b22a3 − 20a2b22b3 + 16b32b3)
.

In demonstrating the non-negativity of p, we have already shown that the denominator
is non-negative, and it is easy to see that the numerator is non-negative for all values of the

parameters satisfying Ω. Therefore pa21+qa1+r ≥ 0, and consequently, V2
(

a1b2
a2

)
−V1(q1) ≥ 0

as required.
ut

Lemma 1 Given that the upper- and lower-bound parameters respect the labeling Ω, and
b1a2
b2
≤ a1b2

a2
,

V1

(
b1a2

b2

)
= V2

(
b1a2

b2

)
≥ V2

(
a1b2

a2

)
= V3

(
a1b2

a2

)
Proof It is easy to check that V1

(
b1a2
b2

)
= V2

(
b1a2
b2

)
and V2

(
a1b2
a2

)
= V3

(
a1b2
a2

)
.

Furthermore,

V2

(
b1a2

b2

)
− V2

(
a1b2

a2

)
=

(b3 − a3)(b2 − a2)2(b1a2 − a1b2)(a1b22 − a22b1)(3(b2b3 − a2a3) + b2a3 − a2b3)

12a22b
2
2

≥ 0,

as required.
ut

Proposition 2 Given that the upper- and lower-bound parameters respect the labeling Ω, and
b1a2
b2

> a1b2
a2

,

V1(q1) ≤ V4
(
b1a2

b2

)
= V3

(
b1a2

b2

)
.

Proof It is easy to check that V4
(

b1a2
b2

)
= V3

(
b1a2
b2

)
.

V4

(
b1a2

b2

)
− V1(q1) =

(b3 − a3)(b2 − a2)

48(4b2b3 − a2b3 − 3a2a3)b22
×
(
pa21 + qa1 + r

)
,

where

p = b22(5b2b3 − b2a3 − a2b3 − 3a2a3)2,

q = 8b1b2(6a22a3 + 2a22b3 − 3a2b2a3 − 9a2b2b3 + b22a3 + 3b22b3)(b2b3 − a2a3),

r = 16b21(−3a32a3 − a32b3 + 3a22b2a3 + 5a22b2b3 − a2b22a3 − 4a2b
2
2b3 + b32b3)

× (b2b3 − a2a3).
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To show this is non-negative for all parameters satisfying Ω, we will show pa21 +qa1 +r ≥ 0
for all parameters satisfying Ω.

Firstly, we observe that

p = b22(5b2b3 − b2a3 − a2b3 − 3a2a3)2 ≥ 0.

From this we know that pa21 +qa1 +r is a convex function in a1, and we can find the minimizer
by setting the derivative to zero and solving for a1. The minimum occurs at

a1 =
4b1(6a22a3 + 2a22b3 − 3a2b2a3 − 9a2b2b3 + b22a3 + 3b22b3)(a2a3 − b2b3)

b2(3a2a3 + a2b3 + b2a3 − 5b2b3)2
.

Substituting this in to pa21 + qa1 + r, we obtain that the minimum value of this quadratic
is:

16b21(b3 − a3)(b2 − a2)3(b2b3 − a2a3)(3a2a3 + a2b3 − 4b2b3)2

(3a2a3 + a2b3 + b2a3 − 5b2b3)2
,

which is non-negative for all parameters satisfying Ω. Therefore pa21 + qa1 + r ≥ 0, and

consequently, V4
(

b1a2
b2

)
− V1(q1) ≥ 0, as required.

ut

Lemma 2 Given that the upper- and lower-bound parameters respect the labeling Ω, and
b1a2
b2

> a1b2
a2

,

V1

(
a1b2

a2

)
= V4

(
a1b2

a2

)
≥ V4

(
b1a2

b2

)
= V3

(
b1a2

b2

)
.

Proof It is easy to check that V1
(

a1b2
a2

)
= V4

(
a1b2
a2

)
and V4

(
b1a2
b2

)
= V3

(
b1a2
b2

)
.

Furthermore,

V4

(
a1b2

a2

)
− V4

(
b1a2

b2

)
=

(b3 − a3)(b2 − a2)2(b1a22 − a1b22)(b1a2 − a1b2)(b2b3 − a2a3)

3a22b
2
2

≥ 0,

as required.
ut

Lemma 3 Given that the parameters satisfy the conditions Ω, and furthermore, b1a2
b2
≤ a1b2

a2
,

we have

q1 ≥
b1a2

b2
.

Proof From the proof of Theorem 4, we know that the midpoint, q2, cannot be less than both
a1b2
b1

and b1a2
b2

. Therefore we have:

q2 ≥ min

{
a1b2

b1
,
b1a2

b2

}
,

and because we saw in 10 that q1 ≥ q2 we also have

q1 ≥ min

{
a1b2

b1
,
b1a2

b2

}
.

Therefore, under the conditions of the lemma, q1 ≥ b1a2
b2

as required.
ut

Lemma 4 Given that the parameters satisfy the conditions Ω, and furthermore, b1a2
b2
≥ a1b2

a2
,

we have

q1 ≥
a1b2

a2
.
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Proof We saw in the proof of Lemma 3 that

q1 ≥ min

{
a1b2

b1
,
b1a2

b2

}
.

Therefore, under the conditions of the lemma, q1 ≥ a1b2
a2

as required.
ut

For completeness, we state and give proofs of two very simple lemmas (from [24]) which
we used several times.

Lemma 5 (Lemma 10.1 in [24]) For all choices of parameters 0 ≤ ai < bi satisfying Ω,
we have: b1a2 − a1b2 ≥ 0, b1a3 − a1b3 ≥ 0 and b2a3 − a2b3 ≥ 0.

Proof (b3 − a3)(b1a2 − a1b2) = b1a2b3 + a1b2a3 − a1b2b3 − b1a2a3 ≥ 0 by Ω. This implies
b1a2 − a1b2 ≥ 0, because b3 − a3 > 0. b1a3 − a1b3 ≥ 0 and b2a3 − a2b3 ≥ 0 follow from Ω in a
similar way. ut

Lemma 6 (Lemma 10.4 in [24]) Let A,B,C,D ∈ R with A ≥ B ≥ 0, C +D ≥ 0, C ≥ 0.
Then AC +BD ≥ 0.

Proof AC +BD ≥ B(C +D) ≥ 0. ut
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