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Abstract We consider the problem of clustering a set of points so as to mini-
mize the maximum intra-cluster dissimilarity, which is strongly NP-hard. Ex-
act algorithms for this problem can handle datasets containing up to a few
thousand observations, largely insufficient for the nowadays needs. The most
popular heuristic for this problem, the complete-linkage hierarchical algorithm,
provides feasible solutions that are usually far from optimal. We introduce a
sampling-based exact algorithm aimed at solving large-sized datasets. The
algorithm alternates between the solution of an exact procedure on a small
sample of points, and a heuristic procedure to prove the optimality of the
current solution. Our computational experience shows that our algorithm is
capable of solving to optimality problems containing more than 500,000 ob-
servations within moderate time limits, this is two orders of magnitude larger
than the limits of previous exact methods.

Keywords clustering · diameter · large-scale optimization

1 Introduction

Clustering is one of the most essential tasks in data mining and machine
learning (Anderberg 1973; Kaufman and Rousseeuw 1990). It involves the
reading and treatment of unlabeled observations so as to identify hidden and
non-obvious patterns that could otherwise not be found by simple inspection
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Département de management et technologie
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of the data. It is often used at the first stages of mining procedures with
the objective of labeling the data for further mining using more sophisticated
models and algorithms.

In its simplest form, a clustering problem can be formally defined as follows.
We are given a positive integer K > 1 representing the number of sought
clusters. We are also given a set V of observations, and we denote by P(V ) the
set of K-partitions of V , this is partitions composed of exactly K subsets each.
Let f : P(V ) −→ R be a real-valued function. The objective is to find a K-
partition P ∗ = {P ∗

i }
K
i=1 ∈ P(V ) such that P ∗ ∈ argmin{f(P ) : P ∈ P(V )}.

The function f is usually described by means of a symmetric dissimilarity
matrix d : V × V −→ R+. The dissimilarity duv of two observations u, v ∈ V

indicates the degree of discrepancy between them. For a partition P = {Pi}
K
i=1,

the maximum diameter is defined as Dmax(P ) = max{max{duv : u, v ∈ Pk} :
1 ≤ k ≤ K}. The minimax diameter clustering problem (MMDCP) is the
problem of finding a partition P ∗ ∈ argmin{Dmax(P ) : P ∈ P(V )}.

The classic book of Garey and Johnson (1979) refers to the MMDCP as the
clustering problem, to prove that the associated decision problem is strongly
NP-complete. This highlights the historical importance of the MMDCP which
is perhaps the most intuitive among clustering criteria.

Existing exact algorithms for the MMDCP have little practical use as they
can only handle problems containing up to a few thousand observations. The
state-of-the-art algorithm for this problem based on constraint programming
is capable of solving problems containing up to 5,000 observations (Dao et al
2017).

In this article we present an exact method for the MMDCP that typically
runs in a time that is comparable to the time needed to compute the associ-
ated dissimilarity matrix and that, moreover, consumes only a limited amount
of memory resources. The algorithm iterates between the execution of an ex-
act clustering routine performed on a sampling of the objects, and that of a
heuristic routine used to enlarge that sampling if deemed necessary.

The remainder of this article is organized as follows. In Section 2 we pro-
vide a literature review on exact and heuristic algorithms for the MMDCP and
related problems, as well as on uses of sampling-based algorithms within exact
frameworks. In Section 3 we present our algorithmic framework and provide
guarantees on the quality of the solutions obtained by the method. In Section 4
we present in detail the algorithm used in the exact subroutine of the method.
In Section 5 we present the heuristic subroutine used to prove the optimality
of the current sample, or to enlarge it. In Section 6 we mention some acceler-
ation techniques used. In Section 7 we present some computational evidence
of the usefulness of our method. In Section 8 we briefly discuss the limitations
encountered during the testing phase of our method. Section 9 concludes our
paper and provides insights on potential avenues for future research.
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2 Literature review

The MMDCP is traditionally handled using an agglomerative hierarchical al-
gorithm, namely the complete-linkage algorithm. This algorithm begins with
every point in V belonging to a single cluster, and then iteratively merges
the two nodes u, v of minimum dissimilarity. Each time that a merge occurs,
the dissimilarity matrix is updated by removing one column and one row as-
sociated with one of the two nodes merged. The remaining row and column
corresponds to a merged node z = {u, v}. The dissimilarity between a point
w and the merged node z is set to dwz ← max{dwu, dwv}. A näıve implemen-
tation of this algorithm runs in O(n3) time and uses O(n2) space (Johnson
1967). A specialized implementation of the algorithm runs in O(n2) time and
uses O(n) space (Sibson 1973; Defays 1977). The complete-linkage algorithm
is a heuristic for the MMDCP and seldom finds optimal solutions as reported
by Alpert and Kahng (1997); Hansen and Delattre (1978).

The FPF (Furthest Point First) method introduced in Gonzalez (1985) for
the solutions of the MMDCP works with the idea of head objects for each
cluster of the partition to which each object is assigned. In the first iteration,
an object is chosen at random as the head of the first cluster and all objects
assigned to it. In the next iteration, the furthest object from the first head is
chosen as the head of the second cluster. Then, any object which is closer to
the second head than to the first one is assigned to the second cluster. The
algorithm continues for K iterations, choosing the object which is the furthest
to its head as the head of the new cluster. The FPF heuristic is guaranteed to
find a partition with diameter at most two times larger than the diameter of
the optimal partition.

Regarding exact methods for the MMDCP, Hansen and Delattre (1978)
explore the relationship between diameter minimization and graph-coloring to
devise a branch-and-bound method to solve problems of non-trivial size. Br-
usco and Stahl (2006) proposes a backtracking algorithm, denoted Repetitive
Branch-and-Bound Algorithm (RBBA), that branches by assigning each ob-
ject to one of the possible K clusters. Pruning is performed whenever: (i) the
number of unassigned objects is smaller than the number of empty clusters;
(ii) the assignment of an object to a particular cluster yields a partition with
a diameter larger than the diameter of the best current branch-and-bound so-
lution; and (iii) there is an unassigned object that cannot be assigned to any
of the clusters of the partial solution. Recently, Dao et al (2017) proposed a
constraint programming approach for the MMDCP whose computational per-
formance outranked the previous exact approaches found in the literature. In
particular, the method obtained the optimal partitions for many benchmark
instances, the largest of which with 5,000 objects grouped in three clusters.

Iterative sampling is a method that ignores parts of the problem and solves
a restricted master problem (RMP) of usually much smaller size. It then ex-
ecutes a subproblem (SP) that either proves the optimality of the solution
associated with the RMP, or enlarges it by adding the parts that were wrongly
ignored. Lozano and Smith (2017) used this idea to solve a shortest path inter-
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diction problem. The algorithm samples paths that are likely to be attacked
by an attacker. The paths that are not identified as such are ignored and thus
the associated restricted problem (a MIP) contains much fewer binary vari-
ables than the original problem. The optimality of the solution is validated by
solving a shortest path problem. The algorithm showed very good results as
it was capable to scale and solve problems several orders of magnitude larger
than earlier methods.

Our algorithm is inspired form the need of handling large datasets. We are
not the first to elaborate upon the need of developing a scalable algorithm
able to handle large datasets while avoiding as much as possible the scanning
of the whole data. Zhang et al (1997) use a tree structure to estimate and
store the distribution of the dissimilarities. Their algorithm then relies on
this estimator to proceed to cluster the data. In Bradley et al (1998), the
authors introduce an algorithm for the k-means clustering problem that uses
compression and discarding of data to reduce the number of observations.
Fraley et al (2005) introduce a sampling-based algorithm to solve problems
containing large amounts of data in a sequential fashion. At every iteration
of their algorithm, typically much smaller datasets are considered. Unlike our
method, all these algorithms are heuristic in nature.

3 Iterative sampling

The iterative sampling method uses an exact and a heuristic procedure inter-
changeably to find a small sample whose optimal solution is that of the original
problem, and to build an optimal solution from enlarging that sample. Let us
denote by (Q) the problem

ω∗ = min{Dmax(P ) : P ∈ P(V )}. (1)

For a given sample U ⊆ V , we let Q(U) the problem Q restricted to the
sample U , ω∗(U) be its optimal value and P ∗(U) its optimal solution.

For a given initial sample U0 (that might be empty, but is indeed initialized
to contain K + 1 nodes as explained in detail in Section 6), we set U ← U0

and t← 0. At iteration t, one solves problem Q(U) to optimality. A heuristic
procedure iteratively enlarges the partition P ∗(U) and tries to build a feasible
solution for problem Q of cost ω∗(U). If all nodes in V \ U can be inserted
into one cluster of P ∗(U) without entailing an increase of the objective, the
resulting partition is returned. Otherwise the set U is enlarged, we let t← t+1
and the same process is applied again on the enlarged sample. The following
pseudo-code illustrates the method:
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Algorithm 1 Iterative sampling

Require: V,K

Ensure: Optimal K-partition P ∗ = {P ∗
i : i = 1 . . .K} of V

U ← U0

ω∗(U), ω∗ ←∞
P ∗(U), P ∗ ← ∅
W ← ∅
repeat
U ← U ∪W

(ω∗(U), P ∗(U))← ExactClustering(U)
(ω∗, P ∗,W )← HeuristicClustering(P ∗(U), V \ U)

until W = ∅
return P ∗

In this algorithm, procedure ExactClustering(U) solves problem Q(U) to
optimality for a given sample U of V . It returns the optimal solution P ∗(U)
and its objective value ω∗(U). The function HeuristicClustering(P ∗(U),
V \U) completes the solution found by ExactClustering(U) and returns the
resulting partition P ∗ (not necessarily an optimal one), its value ω∗ and a
set W containing the nodes that could not be inserted into P ∗(U) without
increasing its maximum diameter (∅ if no such node exists). The next two
results support the exactness and finiteness of our approach:

Lemma 1 For any sample U ⊆ V , ω∗(U) ≤ ω∗.

Proof Let P ∗ = (P ∗
i )

K
i=1 be an optimal clustering of V . Then the clustering

R = (U∩P ∗
i )

K
i=1 is a clustering of U of smaller diameter or equivalent diameter

ω∗. It follows that ω∗(U) ≤ ω∗. ⊓⊔

Proposition 1 The iterative sampling method ends in a finite number of it-
erations and returns an optimal clustering of V .

Proof At every iteration, procedure HeuristicClustering(P ∗(U), V \ U)

either proves the optimality of the current subproblem (if it returns W = ∅),
or the set U is augmented. In the worst case, U will grow up to become equal
to V , in which case procedure ExactClustering(U) is guaranteed to return
an optimal solution of the problem. ⊓⊔

Remark 1 A simple worst-case time analysis of our method would suggest that
it is indeed theoretically slower than solving the complete problem at once.
In practice, one would expect the iterative sampling method to exploit the
high degeneracy of the MMDCP to prove optimality after a few iterations. In
this case, procedure ExactClustering(U) solves problems several orders of
magnitude smaller than the original one.
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4 Sub-routine ExactClustering(U): Branch-and-price

In this section we describe an exact algorithm for the MMDCP used as the
exact subroutine within the iterative sampling framework. The algorithm is
based on the solution of a set-covering formulation of the MMDCP by branch-
and-price. We first include a high-level description of our branch-and-price
algorithm. Second, we introduce the set-covering formulation of the problem.
In the following subsections we describe the different parts of the method,
namely the pricing and branching schemes.

4.1 High-level description of column generation

A branch-and-price algorithm is a LP-based branch-and-bound algorithm in
which lower bounds are computed by solving a LP by column generation (CG).
In CG, one solves iteratively a restricted master problem (RMP) and a pricing
subproblem (PS). Usually, the RMP is associated to an integer-linear program
(ILP) for which the integrality constraints are relaxed, and for which only a
subset of variables is considered. In our case, the ILP corresponds to a set-
covering problem SC(U,K) which, if solved explicitly for the whole set of
variables, would return an optimal K-clustering of the nodes in U . Let C
denote the set all possible covers of U , and let C′ ⊆ C denote a subset of those
covers. Let RMP (U,K, C′) denote the RMP associated to the covers defined
in C′. Let (x, µ) denote the fractional primal and dual solutions associated
with RMP (U,K, C′). Let PS(µ) denote the pricing subproblem constructed
from using the dual variables µ to build covers of negative reduced cost. Let
X denote the set of columns of negative reduced cost as found by PS(µ).
The following pseudo-code is a high-level description of a column generation
algorithm:

Algorithm 2 Column generation

Require: U,K

Ensure: Optimal solution x of RMP (U,K, C)
C′ ←− C0
X ←− ∅
repeat
C′ ← C′ ∪X

(x, µ)←− RMP (U, C′)
X ←− PS(µ)

until X = ∅
(x, µ)←− RMP (U, C′)
return x
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This CG is then embedded into a branch-and-bound algorithm, for which
is necessary to define proper branching rules. In our case, this part is explained
in detail in Section 4.5.

4.2 Set-covering formulation of the MMDCP

We are given a sample U of V . We denote by E the set of undirected edges
linking any two nodes in U . A cluster can either be equal to a singleton {u} or
to a pair (S, e) ∈ P(U)×E, where e represents one possible edge of maximum
diameter within the nodes in S. The set of all feasible clusters containing
two or more nodes is denoted by C. For a cluster t = (S, e) ∈ C we denote
St = S, et = e.

For every u ∈ U , we let su be a binary variable equal to 1 iff node u is
clustered alone, and we let du be its diameter (as we will explain in Section 4.5,
a node can have a strictly positive diameter following a branching decision).
For a given edge e = {u, v} ∈ E, de denotes the dissimilarity between nodes u
and v. For every t ∈ C we consider a binary variable zt that will take the value
1 iff the cluster t is retained. For every node u ∈ U we let aut be a binary
constant that takes the value 1 iff u ∈ St. Also, for every edge e ∈ E we let
bet be a binary constant that takes the value 1 iff e = et. We finally define
a continuous variable ω equal to the maximum diameter among the chosen
clusters. The MMDCP restricted to the sample U (or equivalently problem
Q(U), as defined in Section 3) can thus be formulated as follows:

min
s,ω,z

ω (2)

subject to

ω −
∑

t∈C

betdezt ≥ 0 e ∈ E (3)

ω − dusu ≥ 0 u ∈ U (4)
∑

t∈C

autzt + su = 1 u ∈ U (5)

∑

t∈C

zt +
∑

u∈U

su = K (6)

zt ≥ 0 t ∈ C (7)

zt is integer t ∈ C (8)

Constraints 3 state that the maximum diameter is greater or equal to
the edge of maximum diameter in cluster t. Constraints 4 ensure that the
maximum diameter is also larger than the diameter of node u if it is clustered
alone. The set of constraints 5 state that each node belongs to one cluster,
and the constraints 6 express that the optimal partition contains exactly K

clusters. Without loss of generality, they can be replaced by
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∑

t∈C

autzt + su ≥ 1 u ∈ U,

and
∑

t∈C

zt +
∑

u∈U

su ≤ K,

since a covering of the nodes which is not a partition cannot be optimal, and
any partition with less than K clusters has objective value greater or equal to
the optimal partition with K clusters. By replacing the equality constraint by
inequalities, the dual variables associated do never change sign, which results
on more stable optimization algorithms.

We solve this problem by means of branch-and-price. The linear relaxation
of problem (2)-(8) is solved by column generation, whereas the integrality
constraints are imposed through branching.

4.3 Pricing subproblem

Let us assume that the linear relaxation of problem (2)-(8) has been solved
restricted to a subset C′ ⊂ C of feasible clusters. We can extract dual variables
(σe)e∈E , (αu)u∈U , (λu)u∈U and γ for constraints (3), (4), (5) and (6), respec-
tively. The reduced cost of variables su, zt are denoted as cu, ct, respectively,
and are equal to

cu = duαu − λu − γ (9)

ct = detσet −
∑

u∈U

autλu − γ (10)

The pricing subproblem is performed in two steps. In the first step, we
search for single-node clusters of negative reduced cost. This can be done by
simple inspection by evaluating expression (9) for every possible u ∈ U .

If no such cluster exists, the second step of the pricing subproblem searches
for a feasible cluster t of minimum reduced cost, this is such that expression
(10) is minimized. We formulate this problem as an integer program, as follows.
For every u ∈ U , we let xu be a binary variable equal to 1 iff u ∈ St. For every
edge e ∈ E we let ye be a binary variable equal to 1 iff e = et. We consider
the following integer program:

min
x,y

φ =
∑

e∈E

σedeye −
∑

u∈U

λuxu (11)
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subject to
∑

f∈E

dfyf − de(xu + xv − 1) ≥ 0 e = {u, v} ∈ E (12)

2ye − xu − xv ≤ 0 e = {u, v} ∈ E (13)
∑

e∈E

ye = 1 (14)

xu ∈ {0, 1} u ∈ U (15)

ye ∈ {0, 1} e ∈ E (16)

Now, this pricing subproblem will select one edge e ∈ E (associated to a
variable ye = 1) and construct a node subset accordingly (associated to the set
{u ∈ U : xu = 1}). We would like to highlight that, if the edge et = {ut, vt}
is chosen in advance (meaning that yet = 1), one can a priori fix to zero all
variables xu such that max{duut

, duvt} > det and to one variables xut
, xvt . Let

us denote then U t = {u ∈ U \ {ut, vt} : max{duut
, duvt

} ≤ det}. The optimal
set of nodes for a fixed et can be found by solving the following integer program:

max
x

φ′(et) =
∑

u∈Ut

λuxu (17)

subject to

xu + xv ≤ 1 u, v ∈ U t, u < v, duv > det (18)

xu ∈ {0, 1} u ∈ U t (19)

The relationship between φ and φ′(ut, vt) is as follows:

φ = min{σede − (φ′(e) + λu + λv) : e = {u, v} ∈ E} (20)

4.4 Solution of the pricing subproblem

The solution of the pricing subproblem exploits the aforementioned property
to derive an efficient heuristic and exact method. It relies on the sorting of the
edges in E in increasing order with respect to the quantity σede−λu−λv, with
e = {u, v} ∈ E. The greedy heuristic is several orders of magnitude faster than
the exact procedure and is always executed first. The exact princing method
is thus only executed when the heuristic fails at finding columns of negative
reduced cost.

4.4.1 Greedy heuristic

Our greedy heuristic starts, for every edge e = {u, v} ∈ E, with a cluster
containing the nodes u and v, and expanding it while possible.

Set k ← 1, and let ek = {uk, vk} be the k-th element of E. We let C =
{uk, vk}, S ← Uk. Let us set j ← 1. At any iteration j ≥ 1, C represents the
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current cluster and S the set of nodes that can be inserted into C without
exceeding the diameter given by dek . At iteration j + 1, we will set v∗ ←
argmax{λv : v ∈ S}. We then update C and S as follows: the new cluster
becomes C ← C ∪ {v∗}; the new set S becomes S ← S \ {v ∈ S : dvv∗ > dek}.
If S is empty, we check if the reduced cost associated to cluster (C, ek) is
negative. If so, stop and return (C, ek). Otherwise, set k ← k + 1 and restart
unless k > |E|, in which case the algorithm is stopped and no column is
returned.

4.4.2 Exact algorithm

Let ω be the linear relaxation value associated with the current set of columns.
Let ω∗ be the current upper bound of the problem. We define the absolute
gap as the difference ω∗ − ω and denote it by gap.

Let k ← 1 and let ek = {uk, vk} be the next edge to inspect. Our exact
algorithm computes a maximum weighted clique on the graph Gk = (Uk, Ek),
with Ek = {e = {u, v} : e ∈ E, u, v ∈ Uk, de ≤ dek}. Each node u ∈ U has
a weight equal to λu. We compute φ′(ek) using CLIQUER (Österg̊ard 2002).
Let us denote ck ← σekdek − (φ′(ek) + λuk

+ λvk
)− γ. Depending in the value

of ck, three possible cases arise:

1. If ck < 0, then a column (a feasible cluster) of negative reduced cost has
been detected. Stop and return the associated cluster.

2. Else if 0 ≤ ck < gap, then do nothing.
3. Else (i.e. if ck ≥ gap), then no column t ∈ C such that et = ek can be part

of an optimal solution improving upon the incumbent. Therefore, edge ek
can be removed from the computation of φ in (20) without compromising
the exactness of the algorithm.

In cases 2 and 3, we set k ← k+1 and restart the procedure with the next
available edge. If none, we abort the algorithm and return nil.

4.5 Branch-and-bound

Let ((su)u∈U , (zt)t∈C) be the optimal solution at the end of the column gener-
ation process. Let us define, for every e ∈ E, ye =

∑

t∈C betzt. We also define,
for every edge e = {u, v} ∈ E, xe =

∑

t∈C autabtzt. In addition, we define, for
every node u ∈ U , ru =

∑

e={u,v}|v∈U\{u} ye. The solution might be declared
unfeasible if su, ye, xe or ru are fractional for some edge e or node u. Depend-
ing on the branching decision chosen, the two children problems are built as
follows:

1. If su ∈]0, 1[ is the chosen branch: We create two children nodes, namely
su = 0 and su ≥ 1. For su = 0 we remove the variable su from the child
master and from the computation of the reduced costs. For the branch
su ≥ 1, we simply add the inequality to the child node. As the variable
is already in the current node master, there is no need to remove it and
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therefore no need to consider its dual in the computation of the reduced
costs when using expression (9).

2. If ye ∈]0, 1[ is the chosen branch: We create two children nodes, namely
ye = 0 and ye ≥ 1. For ye = 0 we remove the edge e from the computation
of φ in (20) and also remove all clusters {(S, e) ∈ C′} from the master
problem. For the branch ye ≥ 1, we simply add the following inequality to
the child node:

∑

t∈C betzt ≥ 1. Its dual must be taken into account for the
computation of the reduced costs.

3. If xe ∈]0, 1[ is the chosen branch, with e = {u, v}: We create two children
nodes, namely xe = 0 and xe = 1. For xe = 0, we need to assure that
u and v will never be on the same cluster. Thus, we remove from the
master problem all clusters containing both nodes. In addition, we modify
their dissimilarity to be duv ← +∞. For the branch xe = 1, we need to
assure that every cluster containing u will also contain v. We proceed to
shrink these two nodes into a single node {uv}, and update its diameter
to d{uv} ← du + dv. Also, for every w ∈ V \ {u, v}, we let d{u,v}w ←
max{duw, dvw, d{uv}}. We also remove from the master problem all clusters
containing one of the nodes but not both.

4. If ru ∈]0, 1[ is the chosen branch: We create two children nodes, namely
ru = 0 and ru ≥ 1. For ru = 0, we remove from the master all clusters
(S, e) ∈ C′ such that one of the endpoints of e is equal to u. All edges
{e = {v, w} ∈ E : v = u or w = u} are removed from the computation of
φ in (20). For the branch ru ≥ 1, we simply add the following inequality
to the child node:

∑

t∈C

∑

{e={u,v}∈E:v∈S} betzt ≥ 1.

We have implemented a hybrid branching strategy that performs strong
branching for the first 1000 node separations, and pseudo-cost branching af-
terwards.

5 Sub-routine HeuristicClustering(P ∗(U), V \ U): Completion
heuristic

To prove the optimality of the solution associated to the current set U or
that another iteration of the algorithm is necessary, we have implemented the
following completion heuristic. For every subset S ⊆ V , we let diam(S) =
max{duv : u, v ∈ S} be the diameter of set S. We also let P ∗(U) = {P ∗

i (U) :
i = 1 . . .K}, ω∗(U) be the associated optimal clustering of those nodes and the
optimal solution value, respectively. For every node u ∈ V \ U and for every
cluster P ∗

i (U) ∈ P ∗(U), we let ν(u, i) = max{duv : v ∈ P ∗
i (U)}. For each

u ∈ V \ U , the clusters are sorted in non-decreasing order of ν(u, i), this is
ν(u, i1) ≤ ν(u, i2) ≤ · · · ≤ ν(u, iK). In case of a tie among two or more clusters,
we proceed to sort them in non-decreasing order of diameter. Following ties
are broken arbitrarily. For every 1 ≤ i ≤ K, we denote by P ∗

i (U, u) the i-th
cluster according to this ordering. Note that this means that for two different
observations u and v, P ∗

i (U, u) may represent a different cluster than P ∗
i (U, v)

(as the clusters are sorted, for each node in V \ U , differently).
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The next problem is to define an ordering of the nodes in V \ U . The
intuition behind our approach is to sort the nodes so as to favor the detection
of insertions that would necessarily entail an increase of the maximum diameter
in the early stages of the completion process. For every u ∈ V \U , we consider
the following quantities:

l1(u) = max{0, diam(P ∗
1 (U, u) ∪ {u})− ω∗(U)} (21)

l2(u) = diam(P ∗
1 (U, u) ∪ {u})− diam(P ∗

1 (U, u)) (22)

l3(u) = diam(P ∗
1 (U, u) ∪ {u}) (23)

l4(u) = diam(P ∗
1 (U, u)) (24)

The nodes are sorted in non-increasing order of l1. Ties are broken by
considering l2, l3 and l4, in that order. Following ties are broken by considering
the same reasoning with P ∗

2 (U, ·), P
∗
3 (U, ·), and so on.

Let us denote V \ U ← {u1, . . . , us} the nodes in V \ U sorted according
to the aforementioned ordering of nodes. Let j ← 1. Each cluster is inspected
according to the ordering defined by the quantities ν(uj , ·). Node uj is thus
inserted in the first cluster where it fits if its addition does not entail an
increase in the maximum diameter given by ω∗(U). If no such cluster exists, the
algorithm stops. We check whether the insertion of node uj was not possible
because of another previously inserted node ul, l < j. If no such ul exists,
we return W = {uj}, otherwise we return W = {ul, uj}. If the insertion is,
however, possible, we update the diameter of the cluster involved, let j ← j+1
and restart, unless j reaches s + 1 in which case the algorithm stops and the
global optimal clustering is returned.

6 Acceleration techniques

To accelerate the whole procedure, some remarks are in order.

First, a preprocessing of the nodes allows a reduction in the number of
items. Indeed, it is possible to discard duplicates (an item is said to be a du-
plicate of another if they share the exact same attributes). While for some
problems this procedure did not help to reduce the number of points, for oth-
ers the reduction reached a 70% of the nodes (KDD cup 10%, from 494,020
to only 145,583 nodes). In addition, we perform dimension reduction by re-
moving dimensions whose standard deviations are equal to 0. This happens
for a particular dimension only when the same value is given for all items in
the dataset. Therefore, removing that dimension does not change the optimal
solution value.

Second, the set U may be initialized to contain zero or more nodes from
the set V . Indeed, for the MMDCP, it is always preferable to begin with a set
U containing at least K+1 nodes. Any set smaller than that will always have
cost 0 (it suffices to cluster all nodes apart). In our implementation we have
performed the following procedure to initialize the set U .
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1. Compute the centroid u of the points in V . If the i-th dimension of the
problem is a numerical variable, we let ui be

1

|V |

∑

u∈V ui. On the contrary,

if it is a categorical variable, we let ui to be the mode of the values (ui)u∈V .
2. Let then T be the set containing the ρ = min{5000, |V |} farthest points in

V from u. For each p ∈ T , we let Tp be built iteratively as follows: in step
1, Tp = {p}. From step 2 to K + 1, we insert into Tp the node v ∈ V \ Tp

whose closest distance to a node in Tp is maximum.
3. The best possible K-clustering for Tp can be obtained by clustering to-

gether the two nodes u, v ∈ Tp whose dissimilarity is the smallest, and
then all the other K − 1 nodes apart. The dissimilarity duv is then the
value of the optimal clustering for Tp.

This algorithm if executed ρ times would turn to be excessively time con-
suming, even for a small number of clusters. Indeed, after each execution of
the heuristic, we retain the value ν of the largest clustering diameter found
so far. We abort the execution of this algorithm as soon as the constructive
heuristic has been executed 100 times without generating a solution of value
larger than ν.

Third, we always warm-start the branch-and-price procedure by comput-
ing lower and upper bounds for the problem, as follows: An upper bound can
be obtained by executing the constructive heuristic introduced in Section 5.
Moreover, we have implemented an iterated local search method to improve
this solution that uses the LS presented in Fioruci et al (2012), with a per-
turbation based on the random selection of diameter nodes (two nodes that
have maximum intra-cluster distance) and the reassignment of those nodes to
randomly selected clusters. The value achieved by the ILS is then used as a
cut-off value for the branch-and-price algorithm. Also, the optimal solution
from the previous iteration of the branch-and-price provides a lower bound
on the value of the optimal solution at the current iteration (thanks to the
monotonicity of the MMDCP). Let ω′ be that lower bound. We enforce it by
adding to the master problem the inequality

∑

t∈C

∑

e∈E′

betzt ≥ 1, (25)

where E′ = {e ∈ E : de ≥ ω′}. Certainly, one needs to consider its dual
variable in the computation of the reduced costs for the column generation
process.

7 Computational results

The proposed algorithm was programmed in C++ using the GNU g++ com-
piler v5.2. The general purpose linear programming solver used by CG was
CPLEX 12.6. Maximum weighted cliques necessary to the exact solution of
the auxiliary problem are computed using CLIQUER (Österg̊ard 2002). The
algorithm was compiled and executed in a single core on a machine powered
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by an Intel Xeon E5-2637 CPU 3.5 GHz x 16 with 128GB of RAM, running
the Oracle Linux OS.

In our experimental analysis, we consider some classical problems from
clustering, classification and regression tasks. The summary information of
these problems is reported in Table 1. In this table we report the name of
the problem (under column labeled Problem), the number of objects to be
clustered (under column labeled n), the number of sought clusters (under
column labeled K), the number of dimensions (under column labeled s), and
the reference (under column labeled Ref.). The only problems for which a
dimensionality reduction could be applied (as explained in Section 6) are:
Census (from 41 to 39), Image segm (from 19 to 18), Ionosphere (from 34 to
33), KDD cup 10% (from 41 to 39), and Segmentation (from 19 to 18).

It is important to compare clustering algorithms using classical or well
documented benchmark datasets since the hardness of a clustering problem
depends not only on the number of objects (n), but also on the number of
sought clusters (K) and on how the objects are spread in the space. For ex-
ample, if objects are embedded in an Euclidean space and located in very
separated clusters, any reasonable exact method should find the optimal so-
lution regardless of the number of objects, which would bias any conclusions
regarding the performance of the algorithm.

The selected problems contain mixed numerical and categorical data. The
dissimilarity between two objects u = (ui)

s
i=1, v = (vi)

s
i=1 is computed as:

duv =

√

√

√

√

s
∑

i=1

g(ui, vi), (26)

where g(x, y) is equal to (x− y)2 if x and y are two numerical values, equal to
1 if x and y are two categorical values whose string representations differ, and
equal to 0 if x and y are two categorical values whose string representations are
the same. The number of categorical dimensions are reported in parenthesis
(whenever > 0) under column s of Table 1.

Remark that storing the whole dissimilarity matrix for dataset Cover type
would require approximately 10 TB of memory. Our method does not require
such large amount of resources.

To assess the efficiency of our method, thereafter labeled IS, we have de-
signed three experiments. In the first experiment, summarized in Table 2, we
consider a sequential implementation of our algorithm and compare it against
the results of three algorithms: the CP algorithm of Dao et al (2017), the
RBBA of Brusco and Stahl (2006) and the BB of Delattre and Hansen (1980)
We restrict our analysis to the problems used in the experimental analysis
of Dao et al (2017) with no dimensionality reduction. The algorithms were
executed on a 3.4 GHz Intel Core i5 processor with 8G Ram running Ubuntu.
As one can see from this table, our algorithm takes less than two seconds to
solve all the problems, including problem Waveform (v2) that passed from
being solved in almost a minute, to only 1.9 seconds.
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Table 1 Problems details

Problem n K s Ref.

Iris 150 3 4 Lichman (2013)
Wine 178 3 13 Lichman (2013)
Glass 214 7 9 Lichman (2013)
Ionosphere 351 2 34 Lichman (2013)
User knowledge 403 4 5 Kahraman et al (2013)
Breast cancer 569 2 30 Lichman (2013)
Synthetic control 600 6 60 Alcock and Manolopoulos (1999)
Vehicle 946 4 18 Siebert (1987)
Yeast 1,484 10 8 Lichman (2013)
Mfeat (morph) 2,000 10 6 Dao et al (2017)
Multiple features 2,000 10 649 Lichman (2013)
Segmentation 2,000 7 19 Dao et al (2017)
Image segm 2,310 7 19 Lichman (2013)
Waveform (v1) 5,000 3 21 Lichman (2013)
Waveform (v2) 5,000 3 40 Lichman (2013)
Ailerons 13,750 10 41 Torgo (2009)
Magic 19,020 2 10 Lichman (2013)
Krkopt 28,056 17 6 (3) Lichman (2013)
Shuttle 58,000 7 9 Lichman (2013)
Connect-4 67,557 3 42 (42) Lichman (2013)
SensIt (acoustic) 96,080 3 50 Duarte and Hu (2004)
Twitter 140,707 2 77 Lichman (2013)
Census 142,521 3 41 (28) Lichman (2013)
HAR 165,633 5 18 Ugulino et al (2012)
IJCNN1 191,681 2 22 Prokhorov (2001)
Cod-Rna 488,565 2 8 Uzilov et al (2006)
KDD cup 10% 494,090 23 41 (7) Lichman (2013)
Cover type 581,012 7 54 Blackard (1998)

Our second experiment, summarized in Table 3, aims at analyzing the scal-
ability of our algorithm for large datasets. We restrict our analysis to problems
containing 5,000 objects or more. In this table, label it represents the num-
ber of main iterations of our algorithm, this is the number of times that the
completion heuristic needs to be executed. Label n′ represents the number of
objects in the last iteration of the algorithm right before the final comple-
tion heuristic takes place. The time (in minutes) spent in the last completion
heuristic execution is reported under column labeled lch(min). Under column
labeled p we report the percentage of objects that are successfully inserted
in their closest cluster according to the ordering described in Section 5. This
provides a measure of the efficiency of that ordering in the case that the last
completion heuristic were aborted prematurely in a heuristic setting. The to-
tal running time spent by our algorithm (in minutes) is shown under column
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Table 2 Running times (in seconds) on small datasets

Problem Opt RBBA BB CP IS

Iris 2.6 1.4 1.8 < 0.1 < 0.1
Wine 458.1 2.0 2.3 < 0.1 < 0.1
Glass 5.0 8.1 42.0 0.2 0.2
Ionosphere 8.6 0.6 0.3 0.2
User knowledge 1.2 3.7 0.2 1.1
Breast cancer 2,378.0 1.8 0.5 0.2
Synthetic control 109.4 1.6 0.4
Vehicle 264.8 0.9 0.2
Yeast 0.7 5.2 1.6
Mfeat (morph) 1,595.0 8.59 0.6
Segmentation 436.4 5.7 0.6
Waveform (v2) 15.6 50.1 1.9

Table 3 Detailed results of the iterative sampling method for the MMDCP

Problem opt it n′ lch(min) p t(min) σbalance

Waveform (v1) 13.74 10 21 < 0.1 99.7 < 0.1 35.02
Waveform (v2) 15.58 9 22 < 0.1 99.8 < 0.1 192.89
Ailerons 230.71 33 47 < 0.1 99.7 0.2 1368.06
Magic 692.44 3 12 0.4 100.0 0.4 12445.79
Krkopt 2.00 64 81 < 0.1 82.8 0.4 1438.73
Shuttle 6,157.44 5 14 3.0 99.9 3.2 21884.03
Connect-4 3.87 8 17 1.6 98.2 1.9 5110.38
SensIt (acoustic) 4.47 6 15 12.7 99.9 13.1 51191.90
Twitter 80,734 2 11 30.2 100.0 30.6 96446.54
Census 100,056 3 13 28.8 99.9 29.3 80207.60
HAR 1,078.73 8 18 21.8 99.9 22.3 57993.89
IJCNN1 3.97 5 14 14.5 99.9 14.9 48023.16
Cod-Rna 934.68 3 12 136.4 100.0 137.2 238954.72
KDD cup 10% 144,165 26 53 29.7 99.9 31.8 30290.33
Cover type 3,557.3 153 166 149.8 99.9 235.0 89122.85

labeled t(min). Finally, column σbalance reports the standard deviation on the
cardinality of the optimal clusters.

As shown in this table, our method is capable of solving all these problems
within reasonable time limits. Typically, only very small subsets of V need to
be handled by the ExactClustering(U) subroutine at every iteration of the
algorithm. In addition, if the last completion heuristic were aborted prema-
turely and the remaining objects added into their closest cluster —according
to the ordering defined in Section 5—, the resulting heuristic would effectively
find the right clustering for a 98.6% of the objects on average.

Yet, Figure 1 illustrates the correlation between the time spent by our
method and the balance among the different clusters in the optimal solutions.
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Fig. 1 Computimes times and balance deviations for different problems
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We restricted our analysis to problems solved by our method in more than
one minute. Indeed, the time spent by the completion heuristic is quadratic
on the size of the largest cluster, and consequently, balanced clusters are the
best case for proving optimality.

It is important to highlight that our algorithm’s running time for a given
dataset is comparable to the time needed to compute its dissimilarity matrix,
which is O(n2) time. Moreover, on some very large datasets, it proves even
faster as shown in Figure 2. This demonstrates that it is possible to devise
exact methods for the MMDCP that to not need to rely on a pre-computation
and storage of the dissimilarity matrix.

Besides establishing new paradigms for the performance of algorithms for
the MMDCP, our method also plays an important role on providing bench-
mark results for heuristics. In the following experiment, we compare the per-
formance of our algorithm against the complete-linkage heuristic (Johnson
1967; Sørensen 1948; Defays 1977). It is well-known that the method seldom
finds optimal solutions as reported by Alpert and Kahng (1997); Hansen and
Delattre (1978). But how far are its heuristic solutions from optimality? Our
third experiment, reported in Table 4, aims at answering this question by con-
trasting minimum diameter results obtained by complete-linkage (C-L) and IS
on small datasets —those that could be handled by the hclust() routine in
R given the available RAM memory. We can notice that minimum diameter
partitions provided by the complete-linkage algorithm can be up to ≈ 45% far
from optimality, being ≈ 17% worse in average. This is a clear indication of
the ineffectiveness of C-L on finding near-optimal solutions for the MMDCP.
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Fig. 2 Dissimilarity matrix computation (DMC) vs iterative sampling (IS)
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Table 4 C-L and IS on small datasets.

Problem C-L IS rel.diff.(%)
Iris 3.21 2.58 24.42
Wine 665.15 458.13 45.19
Glass 5.69 4.97 14.49
Ionosphere 9.27 8.6 7.79
User knowledge 1.31 1.17 11.97
Breast cancer 2455 2377.96 3.24
Synthetic control 119.82 109.36 9.56
Vehicle 332.28 264.83 25.47
Yeast 0.77 0.67 14.93
Mfeat (morph) 2124.04 1594.96 33.17
Segmentation 442.57 436.4 1.41
Waveform (v1) 15.30 13.74 11.35
Waveform (v2) 17.29 15.58 10.98
Ailerons 295.47 230.71 28.07
Magic 829.69 692.44 19.82
Average 17.46

8 Hard instances

We have encountered difficulties in using our method when trying to solve
the MMDCP on problems Pendigits, Letter, Birch1, Birch2 and Birch3 (all
of which can be downloaded freely from the UCI benchmark database). Our
algorithm stalled after a sufficiently large number of iterations that made the
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Table 5 Hard Problems details

Problem n K s Ref.

Pendigits 10,992 10 16 Lichman (2013)
Letter 20,000 26 16 Lichman (2013)
Birch1 100,000 100 2 Zhang et al (1997)
Birch2 100,000 100 2 Zhang et al (1997)
Birch3 100,000 100 2 Zhang et al (1997)

Table 6 Detailed results of the iterative sampling method for the hard instances

Problem gap it n′ lch(min) p t(min) σbalance

Pendigits 16.17 87 97 < 0.1 88.5 196.7 704.59
Letter 32.98 98 124 < 0.1 67.8 60.1 766.19
Birch1 77.25 150 250 0.4 30.1 52.9 193.07
Birch2 47.64 202 307 0.1 89.1 145.6 341.83
Birch3 74.97 167 267 0.4 37.7 74.8 1800.00

exact subroutine prohibitively too costly. Table 5 presents the main parameters
of these problems.

To be able to execute our algorithm on these datasets and report its re-
sults, we performed the following modification to the method (it does not
modify in any way the behavior of our algorithm for the already solved in-
stances). We added a limit of 1000 nodes in queue in the branching tree of the
branch-and-price method. This is not the number of nodes inspected so far,
but the number of nodes that remain in queue for separation. When this limit
is reached for the first time, the completion heuristic is performed fully on the
optimal solution obtained for the previous sampling. The optimal solution of
ExactClustering(U) on the previous sampling provides a valid lower bound
for the problem. The completion heuristic provides an upper bound.

Table 6 reports our results. It contains the same information provided in
Table 3, except for column opt which is replaced by column gap referring to
the relative difference (in %) between the upper and lower bounds obtained
by the algorithm.

All these problems have in common the existence of a large number of
alternate solutions for values of the maximum diameter that are close to the
optimal value. When this happens, a set W that might induce an increase in
the diameter for a given solution might be clustered perfectly fine for some
alternate one. In the next iteration, the optimal clustering subroutine will
necessarily find an optimal solution of the same value. Moreover, the existence
of many such solutions will also harm the resolution process because of the
symmetries involved, which is a known weakness of LP-based branch-and-
bound methods. We believe that, as a matter of future research, one may
implement an alternative algorithm for ExactClustering(U) as, for instance,
the CP of Dao et al (2017).
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9 Concluding remarks

We have presented an iterative sampling algorithm for the solution of the
minimax diameter clustering problem (MMDCP), which is strongly NP-hard.
Our implementation of the method outperforms the state-of-the-art algorithm
for this problem by solving datasets that are two orders of magnitude larger
than those handled by previous schemes. We can identify three potential av-
enues for future research: first, to find other uses for the sampling method,
either in classification or other areas where set-partitioning problems with
high degrees of degeneracy arise frequently; second, in what concerns specif-
ically the MMDCP, to work on the robustness of the method to allow the
solution of problems with noise; third, to build a heuristic implementation of
the method to allow the solution of arbitrarily large datasets, either applied
to the MMDCP or to another partitioning problem.
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