
ar
X

iv
:1

70
9.

10
22

7v
1 

 [
m

at
h.

O
C

] 
 2

9 
Se

p 
20

17

Noname manuscript No.
(will be inserted by the editor)

Generalized Polyhedral Convex Optimization Problems

Nguyen Ngoc Luan · Jen-Chih Yao

Received: date / Accepted: date

Abstract Generalized polyhedral convex optimization problems in locally convex

Hausdorff topological vector spaces are studied systematically in this paper. We es-

tablish solution existence theorems, necessary and sufficient optimality conditions,

weak and strong duality theorems. In particular, we show that the dual problem has

the same structure as the primal problem, and the strong duality relation holds under

three different sets of conditions.
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1 Introduction

A polyhedral convex set in a finite-dimensional Euclidean space is the intersection

of a finite number of closed half-spaces; see, e.g., [27, Section 19]. Functions with

polyhedral convex epigraphs, called polyhedral convex functions, were investigated

long time ago by Rockafellar [27]. Later, Rockafellar and Wets [28, p. 68] showed

that a polyhedral convex function can be characterized as the maximum of a finite

family of affine functions over a certain polyhedral convex set. A minimization prob-

lem is said to be a polyhedral convex optimization problem if the objective function

is polyhedral convex and the constraint set is also polyhedral convex. The concepts
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of polyhedral convex function and polyhedral convex optimization problem have at-

tracted much attention from researchers (see Rockafellar and Wets [28], Bertsekas,

Nedı́c, and Ozdaglar [9], Boyd and Vandenberghe [11], Bertsekas [7,8], and the ref-

erences therein).

The definition of generalized polyhedral convex set was proposed by Bonnans

and Shapiro [10, Definition 2.195]. A subset of a locally convex Hausdorff topo-

logical vector space is said to be a generalized polyhedral convex set (gpcs) if it is

the intersection of finitely many closed half-spaces and a closed affine subspace of

that topological vector space. When the affine subspace can be chosen as the whole

space, the generalized polyhedral convex set is called a polyhedral convex set (pcs),

or a convex polyhedron. Clearly, in a finite-dimensional space, a subset is general-

ized polyhedral convex if and only if it is polyhedral convex. We observe that in any

infinite-dimensional space, every nonempty polyhedral convex set is unbounded (see

[22, Lemma 2.12] for details). Hence, the notion of generalized polyhedral convex

set appears naturally in the case where the spaces under consideration are infinite-

dimensional. The theories of generalized linear programming and quadratic program-

ming in [10, Sections 2.5.7 and 3.4.3] are based on the concept of generalized poly-

hedral convex set. In a Banach space setting, various applications of gpcs can be

found in the papers by Ban, Mordukhovich and Song [4], Gfrerer [15,16], Ban and

Song [5].

In a locally convex Hausdorff topological vector space setting, by using a rep-

resentation formula for generalized polyhedral convex sets, Luan and Yen [23] have

obtained solution existence theorems for generalized linear programming problems,

a scalarization formula for the weakly efficient solution set of a generalized linear

vector optimization problem, and proved that the latter is the union of finitely many

generalized polyhedral convex sets. In [20], where the relative interior of the dual

cone of a polyhedral convex cone is described, it is proved that the corresponding

efficient solution set is the union of finitely many generalized polyhedral convex sets.

Moreover, it is shown that both solution sets of a generalized linear vector optimiza-

tion problem are connected by line segments. This result extends a classical theorem

due to Arrow, Barankin, and Blackwell (see, e.g., [1,24,25]).

The recent paper of Luan, Yao, and Yen [22] can be seen as a comprehensive

study on generalized polyhedral convex sets, generalized polyhedral convex functions

on locally convex Hausdorff topological vector spaces, and the related constructions

such as sum of sets, sum of functions, directional derivative, infimal convolution,

normal cone, conjugate function, subdifferential. Among other things, the authors

have showed that, under a mild condition, a generalized polyhedral convex set can be

characterized by the finiteness of the number of its faces.

It is well known that any infinite-dimensional normed space equipped with the

weak topology is not metrizable, but it is a locally convex Hausdorff topological

vector space. Similarly, the dual space of any infinite-dimensional normed space

equipped with the weak∗-topology is not metrizable, but it is a locally convex Haus-

dorff topological vector space. The just mentioned two fundamental models in func-
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tional analysis are the most typical examples of locally convex Hausdorff topological

vector space, whose topologies cannot be given by norms.

The aim of the present paper is to study the concept of generalized polyhedral

convex optimization problems in locally convex Hausdorff topological vector spaces.

Our investigation is based on the above-mentioned papers of Luan and Yen [23],

Luan, Yao, and Yen [22].

The remaining part of our paper has four sections. Section 2 collects some neces-

sary preliminaries. Section 3 is devoted to the solution existence of generalized poly-

hedral convex optimization problems. Optimality conditions for generalized polyhe-

dral convex optimization problem are studied in Section 4. A duality theory for this

class of problems is presented in the final section.

2 Preliminaries

In the sequel, we will need some results on generalized polyhedral convex sets and

generalized polyhedral convex set functions, which are recalled below.

From now on, if not otherwise stated, X is a locally convex Hausdorff topological

vector space (lcHtvs). Denote by X∗ the dual space of X and by 〈x∗,x〉 the value

of x∗ ∈ X∗ at x ∈ X . The annihilator [26, p. 117] of a subset C ⊂ X , denoted by C⊥,

is defined by C⊥ := {x∗ ∈ X∗ | 〈x∗,u〉 = 0, ∀u ∈ C}. For a subset Ω of X , by Ω we

denote the topological closure of Ω . This notation is also used for subsets of X∗.

Definition 2.1 (See [10, p. 133]) A subset D ⊂ X is said to be a generalized polyhe-

dral convex set, or a generalized convex polyhedron, if there exist x∗i ∈ X∗, αi ∈ R,

i = 1,2, . . . , p, and a closed affine subspace L ⊂ X , such that

D = {x ∈ X | x ∈ L, 〈x∗i ,x〉 ≤ αi, i = 1, . . . , p} . (2.1)

If D can be represented in the form (2.1) with L=X , then we say that it is a polyhedral

convex set, or a convex polyhedron.

If L ⊂ X is a closed affine subspace, then one can find a continuous surjective lin-

ear mapping A from X to a lcHtvs Y and a vector y∈Y such that L = {x ∈ X | Ax = y}
(see [10, Remark 2.196]). Therefore, we can rewrite (2.1) in the form

D = {x ∈ X | Ax = y, 〈x∗i ,x〉 ≤ αi, i = 1, . . . , p} . (2.2)

It is clear that, when X is finite-dimensional, a subset D ⊂ X is a gpcs if and only if it

is a pcs.

Later on, if not otherwise stated, D ⊂ X is a nonempty generalized polyhedral

convex set given by (2.2). Set I = {1, . . . , p} and I(x) = {i ∈ I | 〈x∗i ,x〉= αi} for x∈D.

If D is a pcs, then one can choose Y = {0}, A ≡ 0, and y = 0.

Let C ⊂ X be a nonempty convex set. As in [27, p. 61], the recession cone of C is

defined by

0+C := {v ∈ X | x+ tv ∈C, ∀x ∈ X , ∀t ≥ 0} .
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On account of [10, p. 33], if C is nonempty and closed, then 0+C is a closed convex

cone, and v∈ X belongs to 0+C if and only if there exists an x ∈C such that x+ tv∈C

for all t ≥ 0.

Remark 2.2 If a nonempty generalized polyhedral convex set D is given by (2.2),

then its recession cone can be computed by the formula

0+D = {v ∈ X | Av = 0, 〈x∗i ,v〉 ≤ 0, i = 1, . . . , p} .

It follows that 0+D is a generalized polyhedral convex cone.

Following [2, p. 122], we can define the Bouligand-Severi tangent cone TC(x)
to a closed subset C ⊂ X at x ∈ C as the set of all v ∈ X such that there exist se-

quences tk → 0+ and vk → v such that x+ tkvk ∈ C for every k. If C is a nonempty

convex set, then TC(x) = cone(C− x). By [22, Proposition 2.19], if C is a general-

ized polyhedral convex set (resp., a polyhedral convex set) then, for any x ∈ C, the

cone TC(x) is generalized polyhedral convex (resp., polyhedral convex) and one has

TC(x) = cone(C− x).

Let f be a function from X to R̄ := R∪ {±∞}. The effective domain and the

epigraph of f are defined respectively by setting dom f = {x ∈ X | f (x) < +∞}
and epi f = {(x,α) ∈ X ×R | x ∈ dom f , f (x) ≤ α} . If dom f is a nonempty set and

f (x)>−∞ for all x ∈ X , then f is said to be proper. One says that f is convex if epi f

is a convex set in X ×R.

Following [27, p. 66], we define the recession function f 0+ of a proper convex

function f : X → R̄ by the formula

f 0+(v) = inf
{

µ ∈ R | (v,µ) ∈ 0+(epi f )
}

(v ∈ X). (2.3)

Remark 2.3 If f is nonconvex, similar notions bearing the names of asymptotic func-

tion [3, p. 48] and horizon function [28, p. 86] have been defined. It is not difficult

to show that if f is proper convex and lower semicontinuous (i.e., epi f is a closed

convex set), these notions coincide with that of recession function.

Definition 2.4 (See [22, Definition 3.1]) One calls f : X → R̄ is a generalized poly-

hedral convex function (resp., a polyhedral convex function) if the epigraph epi f is a

generalized polyhedral convex set (resp., a polyhedral convex set) in X ×R. If − f is a

generalized polyhedral convex function (resp., a polyhedral convex function), then f

is said to be a generalized polyhedral concave function (resp., a polyhedral concave

function).

From Definition 2.4, we can assert that every generalized polyhedral convex func-

tion is a convex function. Of course, in the case where X is finite-dimensional, a

function f : X → R̄ is generalized polyhedral convex if and only if it is polyhedral

convex.

The following theorem shows that, any generalized polyhedral convex function

(resp., any polyhedral convex function) can be represented in the form of the maxi-

mum of a finite family of continuous affine functions over a certain generalized poly-

hedral convex set (resp., a polyhedral convex set).
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Theorem 2.5 (See [22, Theorem 3.2]) The following properties of a proper convex

function f : X → R̄ are equivalent:

(a) f is generalized polyhedral convex (resp., polyhedral convex);

(b) dom f is a generalized polyhedral convex set (resp., a polyhedral convex set)

in X and there exist v∗k ∈ X∗, βk ∈ R, for k = 1, . . . ,m, such that

f (x) = max{〈v∗k ,x〉+βk | k = 1, . . . ,m} (x ∈ dom f ). (2.4)

Consider a generalized polyhedral convex optimization problem

(P) min{ f (x) | x ∈ D}

where, as before, X is a locally convex Hausdorff topological vector space, D ⊂ X

a nonempty generalized polyhedral convex set, and f : X → R̄ a proper generalized

polyhedral convex function. We say that u ∈ D is a solution of (P) if f (u) is finite

and f (u)≤ f (x) for all x ∈ D. The solution set of (P) is denoted by Sol(P).

From now on, if not otherwise stated, the constraint set D is given by (2.2), and

the objective function f is defined by (2.4).

Since dom f is a gpcs, it admits the representation

dom f =
{

x ∈ X | Bx = z, 〈u∗j ,x〉 ≤ γ j, j = 1, . . . ,q
}
, (2.5)

where B is a continuous linear mapping from X to a lcHtvs Z, z ∈ Z, u∗j ∈ X∗, γ j ∈R,

j = 1, . . . ,q. Set J = {1, . . . ,q}. For each x ∈ dom f , let J(x) =
{

j ∈ J | 〈u∗j ,x〉= γ j

}

and

Θ(x) = {k ∈ {1, . . . ,m} | 〈v∗k ,x〉+βk = f (x)} .
If f is a polyhedral convex function, then dom f is polyhedral convex by Theorem 2.5;

hence, we can choose Z = {0}, B ≡ 0, and z = 0.

Let C ⊂ X be a nonempty convex set. The normal cone to C at x ∈C is the set

NC(x) := {x∗ ∈ X∗ | 〈x∗,u− x〉 ≤ 0, ∀u ∈C} .

Clearly, NC(x) is a closed convex cone in X∗, while C⊥ is a closed linear subspace

of X∗. If C is a linear subspace of X , then NC(x) =C⊥ for all x ∈C. We observe that

if D is given by (2.2) then, due to [22, Proposition 4.2],

ND(x) = cone{x∗i | i ∈ I(x)}+(kerA)⊥ (x ∈ D), (2.6)

with coneΩ denoting the convex cone generated by a subset Ω ⊂ X∗.

As in [17, p. 172], the conjugate function f ∗ : X∗ → R̄ of f : X → R̄ is given by

f ∗(x∗) = sup
x∈X

[〈x∗,x〉 − f (x)]. By [17, Proposition 3, p. 174], if f is proper convex

and lower semicontinuous, then f ∗ is a proper convex lower semicontinuous func-

tion. Obviously, f ∗(x∗) = sup
x∈dom f

[〈x∗,x〉− f (x)] for every x∗ ∈ X∗. According to [22,

Theorem 4.12], the conjugate function of a proper gpcf is a proper gpcf.
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The notion of subdifferential is the basis for optimality conditions and other issues

in convex programming. The subdifferential [17, p. 46] of a proper convex function

f at x ∈ dom f is the set

∂ f (x) := {x∗ ∈ X∗ | 〈x∗,u− x〉 ≤ f (u)− f (x), ∀u ∈ X}.
By [17, Propostion 1, p. 197], an element x∗ ∈ X∗ belongs to ∂ f (x) if and only if

f (x)+ f ∗(x∗) = 〈x∗,x〉. If f is a proper generalized polyhedral convex function, then

∂ f (x) is a gpcs for every x ∈ dom f ; see [22, Proposition 4.15]. For a nonempty

convex subset C ⊂ X , we have ∂δ (x,C) = NC(x) for any x ∈ C, where δ (·,C) is the

indicator function of C.

Remark 2.6 On account of [22, Theorem 4.14], if f is defined by (2.4) with dom f

being given by (2.5) then, for any x ∈ dom f , we have

∂ f (x) = conv {v∗k | k ∈Θ(x)}+ cone
{

u∗j | j ∈ J(x)
}
+(kerB)⊥ (2.7)

where convΩ denotes the convex hull of a subset Ω ⊂ X∗.

The specific structure of generalized polyhedral convex functions allows one to

have a subdifferential sum rule without any assumption on continuity.

Lemma 2.7 (See [22, Theorems 4.16 and 4.17]) Suppose that f1 is a proper polyhe-

dral convex function.

(a) If f2 is a proper generalized polyhedral convex function, then

∂ ( f1 + f2)(x) = ∂ f1(x)+ ∂ f2(x), (x ∈ (dom f1)∩ (dom f2)).

(b) If f2 is a proper polyhedral convex function, then

∂ ( f1 + f2)(x) = ∂ f1(x)+ ∂ f2(x), (x ∈ (dom f1)∩ (dom f2)).

3 Solution Existence Theorems

Several solution existence theorems for generalized polyhedral convex optimization

problems will be obtained in this section.

Theorem 3.1 (A Frank–Wolfe-type existence theorem) If D ∩ dom f is nonempty

then, (P) has a solution if and only if there is a real value γ such that f (x) ≥ γ
for every x ∈ D.

Proof The necessity is obvious. To prove the sufficiency, suppose that there exists a

constant γ ∈R such that f (x)≥ γ for all x ∈ D. Clearly, Φ : X ×R→ R, (x,α) 7→ α
for all (x,α) ∈ X ×R, is a linear mapping. Since epi f ∩ (D×R) is a nonempty gpcs

in X ×R, by [20, Proposition 2.1] we can assert that T := Φ (epi f ∩ (D×R)) is a

nonempty pcs in R. Hence, T is convex and closed. For every t ∈ T , there exists an

x ∈ D satisfying (x, t) ∈ epi f , i.e., t ≥ f (x); hence t ≥ f (x)≥ γ . In addition, for every

t ′ ≥ t, since (x, t ′)∈ epi f ∩(D×R), one has t ′ ∈ T . So, we must have T = [γ̄,+∞) for

some γ̄ ≥ γ . On one hand, for every x ∈ D, the inclusion (x, f (x)) ∈ epi f ∩ (D×R)
yields f (x) ∈ T ; hence f (x) ≥ γ̄ . On the other hand, since γ̄ ∈ T , we can find x̄ ∈ D

such that (x̄, γ̄) ∈ epi f ∩ (D×R). Then we have γ̄ ≥ f (x̄) and f (x) ≥ γ̄ ≥ f (x̄) for

every x ∈ D. Thus, x̄ is a solution of (P). ✷
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Remark 3.2 Due to the similarity of the formulations of Theorem 3.1 and the so-

lution existence theorem in quadratic programming in [14, p. 158] (see also [19,

Theorem 2.1]), we call the above result a Frank–Wolfe-type existence theorem in

generalized polyhedral convex optimization. If the function f is linear, Theorem 3.1

expresses a recent result in [23, Theorem 3.3]. For the case X = R
n and D = X , the

result in Theorem 3.1 is a known one (see [9, p. 215]).

Theorem 3.3 (An Eaves-type existence theorem) Suppose that D∩ dom f is non-

empty. Then (P) has a solution if and only if f 0+(v)≥ 0 for every v ∈ 0+D.

For proving this theorem, we need a lemma.

Lemma 3.4 If f is a proper generalized polyhedral convex function given by (2.4),

then

f 0+(v) =

{
max

{
〈v∗k ,v〉 | k = 1, . . . ,m

}
if v ∈ 0+(dom f )

+∞ if v /∈ 0+(dom f ).
(3.1)

In particular, f 0+ is a proper generalized polyhedral convex function.

Proof Suppose that dom f is of the form (2.5). Then one gets

epi f =
{
(x, t) ∈ X ×R | Bx = z, 〈u∗j ,x〉 ≤ γ j, j = 1, . . . ,q,

〈v∗k ,x〉+βk ≤ t, k = 1, . . . ,m
}

=
{
(x, t) ∈ X ×R | Bx+ 0t = z, 〈u∗j ,x〉+ 0t ≤ γ j, j = 1, . . . ,q,

〈v∗k ,x〉− t ≤−βk, k = 1, . . . ,m
}
.

Hence, applying Remark 2.2 to epi f gives

0+(epi f ) =
{
(v,µ) ∈ X ×R | Bv = 0, 〈u∗j ,v〉 ≤ 0, j = 1, . . . ,q,

〈v∗k ,v〉− µ ≤ 0, k = 1, . . . ,m
}

=
{
(v,µ) ∈ X ×R | v ∈ 0+(dom f ), 〈v∗k ,v〉 ≤ µ , k = 1, . . . ,m

}
.

From this and (2.3) we obtain (3.1). ✷

Proof of Theorem 3.3 First, suppose that (P) has a solution x0. Let v ∈ 0+D be given

arbitrarily. If v /∈ 0+(dom f ), then f 0+(v) = +∞ by Lemma 3.4. If v ∈ 0+(dom f ),
then f 0+(v) = max

{
〈v∗k ,v〉 | k = 1, . . . ,m

}
by Lemma 3.4. Select any t > 0. Since

x0 + tv ∈ D∩dom f , one has

f (x0)≤ f (x0 + tv) = max{〈v∗k ,x0〉+βk + t〈v∗k,v〉 | k = 1, . . . ,m}
≤ max{〈v∗k ,x0〉+βk | k = 1, . . . ,m}+max{t〈v∗k,v〉 | k = 1, . . . ,m}
= f (x0)+ t f 0+(v).

It follows that f 0+(v)≥ 0.

Conversely, suppose that f 0+(v) ≥ 0 for every v ∈ 0+D. Since D∩ dom f is a

nonempty generalized polyhedral convex set, by the representation theorem for gpcs
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[23, Theorem 2.7], one can find u1, . . . ,ud in D∩dom f , v1, . . . ,vℓ in X , and a closed

linear subspace X0 ⊂ X such that

D∩dom f = conv{u1, . . . ,ud}+ cone{v1, . . . ,vℓ}+X0. (3.2)

Then, 0+(D∩dom f ) = cone{v1, . . . ,vℓ}+X0. Put

γ = min{〈v∗k ,ui〉+βk | k = 1, . . . ,m, i = 1, . . . ,d} .

One has f (x)≥ γ for every x∈ D. Indeed, if x /∈ dom f , then the inequality is obvious,

because f (x) =+∞. Now, suppose that x ∈ D∩dom f . According to (3.2), there exist

λ1 ≥ 0, . . . ,λd ≥ 0, and v ∈ 0+(D∩dom f ) satisfying
d

∑
i=1

λi = 1 and x =
d

∑
i=1

λiui + v.

For each k = 1, . . . ,m, one has

〈v∗k ,x〉+βk =
d

∑
i=1

λi〈v∗k ,ui〉+ 〈v∗k,v〉+βk =
d

∑
i=1

λi

(
〈v∗k ,ui〉+βk

)
+ 〈v∗k,v〉

≥
d

∑
i=1

λiγ + 〈v∗k,v〉= γ + 〈v∗k,v〉.

Consequently,

max{〈v∗k ,x〉+βk | k = 1, . . . ,m} ≥ max{γ + 〈v∗k,v〉 | k = 1, . . . ,m}.

Combing this with (2.4), we obtain

f (x)≥ max{γ + 〈v∗k,v〉 | k = 1, . . . ,m} = γ +max{〈v∗k ,v〉 | k = 1, . . . ,m}.

Since v ∈ 0+(D∩dom f ), one has v ∈ 0+(dom f ). So, by Lemma 3.4,

max{〈v∗k ,v〉 | k = 1, . . . ,m}= f 0+(v).

Then, for every x ∈ D∩ dom f we have f (x) ≥ γ + f 0+(v) ≥ γ , where the last in-

equality holds because v ∈ 0+(D). Thus, by Theorem 3.1, (P) has a solution. ✷

Remark 3.5 If f 0+(v)≥ 0 for every v∈ 0+D, then one says that the functional f 0+ is

copositive on the recession cone 0+D. We call Theorem 3.3 an Eaves-type existence

theorem in generalized polyhedral convex optimization to trace back Eaves’ idea [13,

p. 702] (see also [19, Theorem 2.2]) in using recession cones for a solution existence

theorem in quadratic programming. In the special case where f is linear on X , the

result in Theorem 3.3 has been obtained in [23, Theorem 3.1].

We now give an explicit criterion for (P) to have a solution.

Theorem 3.6 Let D be given by (2.2), the function f be defined by (2.4) with dom f

be given by (2.5). Suppose that D∩ dom f is nonempty. Then (P) has a solution if

and only if

0 ∈ conv{v∗k | k = 1, . . . ,m} + cone{u∗j | j = 1, . . . ,q}
+ cone{x∗i | i = 1, . . . , p}+(kerA∩kerB)⊥.

(3.3)
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Proof First, suppose that (3.3) is fulfilled. Then, there exist nonnegative numbers

λ1, . . . ,λm, µ1,1, . . . ,µ1,p, µ2,1, . . . ,µ2,q, and an element u∗ ∈ (kerA∩ kerB)⊥ such

that
m

∑
k=1

λk = 1 and

m

∑
k=1

λkv∗k +
p

∑
i=1

µ1,ix
∗
i +

q

∑
j=1

µ2, ju
∗
j + u∗ = 0.

Select any x0 from D∩dom f . For every x ∈ D∩dom f , one has

f (x) = max{〈v∗ℓ ,x〉+βℓ | ℓ= 1, . . . ,m}

=

(
m

∑
k=1

λk

)
max{〈v∗ℓ ,x〉+βℓ | ℓ= 1, . . . ,m}

=
m

∑
k=1

(
λk max{〈v∗ℓ ,x〉+βℓ | ℓ= 1, . . . ,m}

)

≥
m

∑
k=1

λk[〈v∗k ,x〉+βk] =

〈
m

∑
k=1

λkv∗k ,x

〉
+

m

∑
k=1

λkβk

=

〈
−
(

p

∑
i=1

µ1,ix
∗
i +

q

∑
j=1

µ2, ju
∗
j + u∗

)
,x

〉
+

m

∑
k=1

λkβk

=−
p

∑
i=1

µ1,i〈x∗i ,x〉−
q

∑
j=1

µ2, j〈u∗j ,x〉− 〈u∗,x0〉+ 〈u∗,x0 − x〉+
m

∑
k=1

λkβk

≥−
p

∑
i=1

µ1,iαi −
q

∑
j=1

µ2, jγ j −〈u∗,x0〉+ 0+
m

∑
k=1

λkβk.

Hence, f is bounded from below on D. Invoking Theorem 3.1, we conclude that (P)
has a solution. Thus, (3.3) implies the solution existence of (P).

To complete the proof, it suffices to show that if (3.3) does not hold, then (P)
has no solutions. Suppose that 0 /∈ Q, where Q denotes the set on the right-hand side

of (3.3). By [23, Theorem 2.7], the nonempty set Q is generalized polyhedral convex.

Hence, Q is convex and weakly∗-closed. Since {0}∩Q = /0, by the strong separation

theorem [29, Theorem 3.4(b)] one can find v ∈ X and γ ∈ R such that

sup{〈x∗,v〉 | x∗ ∈ Q}< γ < 〈0,v〉. (3.4)

On one hand, (3.4) assures that the linear functional 〈·,v〉 is bounded from above

on Q. Hence, according to [23, Theorem 3.3], the generalized linear programming

problem max{〈x∗,v〉 | x∗ ∈ Q} has a solution. Therefore, by [23, Proposition 3.5],

one has 〈v∗,v〉 ≤ 0 for every vector v∗ from the recession cone 0+Q of Q. As (3.3)

yields

0+Q = cone{u∗j | j = 1, . . . ,q}+ cone{x∗i | i = 1, . . . , p}+(kerA∩kerB)⊥,
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one gets 〈x∗i ,v〉 ≤ 0 for all i ∈ {1, . . . , p}, 〈u∗j ,v〉 ≤ 0 for every j ∈ {1, . . . ,q}, and

v ∈ ((kerA∩ kerB)⊥)⊥. Since the linear subspace kerA∩ kerB is closed, by using

[10, Proposition 2.40] one has

((kerA∩kerB)⊥)⊥ = kerA∩kerB.

Hence, applying Remark 2.2 simultaneously to D and dom f , we obtain v ∈ 0+D and

v ∈ 0+(dom f ). So, by the second inclusion and by Lemma 3.4,

f 0+(v) = max{〈v∗k ,v〉 | k = 1, . . . ,m} . (3.5)

On the other hand, for each k = 1, . . . ,m, since v∗k ∈ Q, the inequalities in (3.4)

yield 〈v∗k ,v〉 < γ < 0. So, from (3.5) it follows that f 0+(v) < 0. Hence Sol(P) = /0

by Theorem 3.3.

The proof is complete. ✷

Corollary 3.7 In the notations of Theorem 3.6, suppose that dom f ⊂ D. Then, (P)
has a solution if and only if

0 ∈ conv{v∗k | k = 1, . . . ,m}+ cone{u∗j | j = 1, . . . ,q}+(kerB)⊥.

Proof As dom f ⊂D, (P) is equivalent to the problem min{ f (x) | x ∈ dom f}. Hence,

applying Theorem 3.6 the latter, we obtain the assertion. ✷

Corollary 3.8 Suppose that D = X and f is given by (2.4) with dom f = X. Then

(P) has a solution if and only if 0 ∈ conv{v∗k | k = 1, . . . ,m}.

Proof Since dom f = X , we can choose Z = {0}, B ≡ 0, z = 0 and q = 0. Therefore,

by using Corollary 3.7 we obtain the assertion. ✷

Next, we will describe the solution set of (P).

Proposition 3.9 Sol(P) is a generalized polyhedral convex set. If D and dom f are

polyhedral convex, so is Sol(P).

Proof If Sol(P) is empty, then the claim is trivial. If Sol(P) is nonempty, select a

point x̄ ∈ Sol(P) and put γ̄ = f (x̄). Then, f (x) ≥ γ̄ for every x ∈ D. With f being

given by (2.4), one has

Sol(P) = {x ∈ D | f (x) = γ̄}= {x ∈ D | f (x) ≤ γ̄}
= {x ∈ D∩dom f | f (x)≤ γ̄}
= {x ∈ D∩dom f | 〈v∗k ,x〉+βk ≤ γ̄, k = 1, . . . ,m}.

(3.6)

Since dom f is a generalized polyhedral convex set (see Theorem 2.5), this implies

that Sol(P) is a generalized polyhedral convex set. In the case where D and dom f

are polyhedral convex, (3.6) shows that Sol(P) is a pcs. ✷

The following example is an illustration for our results in this section.
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Example 3.10 (Cf. [21, Example 1] and [23, Example 2.8]) Let X = C[−1,1] be

the Banach space of continuous real-valued functions defined on [−1,1] with the

norm ||x|| = max
t∈[−1,1]

|x(t)|. By the Riesz representation theorem (see, e.g., [18, Theo-

rem 6, p. 374] and [26, Theorem 1, p. 113]), the dual space of X is X∗ = NBV [−1,1],
the space of functions of bounded variation on [−1,1], i.e., functions y : [−1,1]→R

of bounded variation, y(−1) = 0, and y(·) is continuous from the left at every point

of (−1,1). To construct a generalized polyhedral convex optimization problem on X ,

we first define the elements x∗1, x∗2 ∈ X∗ by setting

〈x∗i ,x〉=
1∫

−1

t ix(t)dt (i = 1,2), (3.7)

where the integrals are Riemannian. For each index i ∈ {1,2}, the corresponding

integral in (3.7) is equal to the Riemann-Stieltjes integral
1∫

−1

x(t)dyi(t), which is given

by the C1-smooth functions yi(t) =
t∫

−1

τ idτ (see, e.g., [18, p. 367]). Consider X with

the weak topology. Then X is a locally convex Hausdorff topological vector space

whose topology is much weaker than the norm topology. Clearly, X0 := kerx∗1∩kerx∗2
is a closed linear subspace of X . Let

e1(t) =

{
0 if t ∈ [−1,0]

−60t2 + 48t if t ∈ [0,1],

and

e2(t) =

{
0 if t ∈ [−1,0]

80t2 − 60t if t ∈ [0,1].

We have e1,e2 ∈ X , 〈x∗1,e1〉= 〈x∗2,e2〉= 1, and 〈x∗1,e2〉= 〈x∗2,e1〉= 0. For any x ∈ X ,

put ti = 〈x∗i ,x〉 for i = 1,2, and observe that the vector x0 := x− t1e1 − t2e2 belongs

to X0. Conversely, if x = x0 + t1e1 + t2e2, with x0 ∈ X0 and t1, t2 ∈ R, then

〈x∗i ,x〉= 〈x∗i ,x0〉+ t1〈x∗i ,e1〉+ t2〈x∗i ,e2〉= ti (i = 1,2).

Therefore, for any x ∈ X , there exists a unique tube (x0, t1, t2) ∈ X0 ×R×R such that

x = x0+ t1e1+ t2e2. Given any e0 ∈ X0 and put L = {x ∈ X | x(t) = e0(t), t ∈ [−1,0]}.

Clearly, L is a closed affine subspace of X . Consider (P) with the constraint set

D := {x ∈ L | 〈x∗1,x〉 ≤ 1, 〈x∗2,x〉 ≤ 2} .

Observe that D is a gpcs, e0 + e2 ∈ D, and D is not a polyhedral convex set in X . To

define the objective function, choose v∗1 = x∗1 − x∗2, v∗2 =−x∗1 − x∗2, and put

f (x) = max{〈v∗1,x〉+ 1,〈v∗2,x〉} (x ∈ X).
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For any x ∈ D, we have

f (x) ≥ 1

2
[〈v∗1,x〉+ 1]+

1

2
〈v∗2,x〉

=
1

2
〈v∗1 + v∗2,x〉+

1

2
= 〈−x∗2,x〉+

1

2
≥−3

2
.

Thus, by Theorem 3.1, (P) has a solution.

4 Optimality Conditions

We now obtain some optimality conditions for (P).

Theorem 4.1 (Optimality condition I) A vector x ∈ D∩ dom f is a solution of (P)
if and only if

0 ∈ ∂ f (x)+ND(x). (4.1)

Proof Clearly, Sol(P) coincides with the solution set of a problem

(P ′) min{ f (x)+ δ (x,D) | x ∈ X}.

Since the functions f , δ (·,D) are proper generalized polyhedral convex and since

D∩dom f 6= /0, the function f̃ := f +δ (·,D) is proper generalized polyhedral convex

by [22, Theorem 3.7]. On one hand, by Lemma 2.7 we have

∂ f̃ (x) = ∂ f (x)+ND(x) (x ∈ D∩dom f ).

On the other hand, since f̃ is proper convex, a vector x ∈ X belongs to Sol(P ′) if and

only if 0 ∈ ∂ f̃ (x); see [17, Proposition 1, p. 81]. Therefore, vector x ∈ D∩dom f is a

solution of (P) if and only if 0 ∈ ∂ f̃ (x) = ∂ f (x)+ND(x).
The proof is complete. ✷

One may ask: The closure sign in (4.1) can be omitted, or not? If X is finite-

dimensional, then f and δ (·,D) are polyhedral convex functions. So, by Lemma 2.7,

∂ ( f + δ (·,D))(x) = ∂ f (x)+ND(x) (x ∈ D∩dom f ).

So, the closure sign in (4.1) is superfluous. However, as shown in next example, if X

is infinite-dimensional, then the closure sign in (4.1) is essential.

Example 4.2 According to [6, Example 3.34], one can find an infinite-dimensional

Hilbert space X and two suitable closed linear subspaces X1,X2 of X with X1 +X2 =X

and X1 +X2 6= X . Let Di be the orthogonal complement of Xi, i.e.,

Di = {x ∈ X | 〈x,u〉= 0, ∀u ∈ Xi}, (i = 1,2).

It is clear that D1,D2 are generalized polyhedral convex sets in X and D1∩D2 = {0}.

Since X1 +X2 6= X , there exists v∗ ∈ X \ (X1 +X2). Hence, −v∗ /∈ X1 +X2 because
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X1 +X2 is a linear subspace. Consider a generalized polyhedral convex optimization

problem (P) with

f (x) =

{
〈v∗,x〉 if x ∈ D1

+∞ if x /∈ D1,

and D = D2. Obviously, Sol(P) = {0}. Note that

∂ f (0) = v∗+ND1
(0) = v∗+X1.

Combining this with the equality ND(0) = X2, one has ∂ f (0)+ND(0) = v∗+X1+X2.

The inclusion −v∗ /∈ X1+X2 yields 0 /∈ v∗+X1+X2. It follows that x = 0 is a solution

of (P), but 0 /∈ ∂ f (0)+ND(0).

Note that, if f is a polyhedral convex function or D is a polyhedral convex set,

then ∂ ( f + δ (·,D))(x) = ∂ f (x)+ND(x) for all x ∈ D∩dom f by Lemma 2.7. Thus,

the following statement holds.

Theorem 4.3 (Optimality condition II) Assume that either f is a proper polyhedral

convex function or D is polyhedral convex set. Then, x ∈ D ∩ dom f is a solution

of (P) if and only if 0 ∈ ∂ f (x)+ND(x).

The forthcoming example is designed as an illustration for Theorem 4.3.

Example 4.4 Let (P) be the problem described in Example 3.10. To solve it, we

first compute the set ∂ f (x)+ND(x) for every x ∈ D. Clearly, f is a polyhedral convex

function with dom f = X . Hence, dom f can be given by (2.5), where Z = {0},B ≡
0,z = 0 and q = 0. Therefore, by (2.7) one gets

∂ f (x) = conv{v∗k | k ∈Θ(x)} (x ∈ X).

Since L is a closed affine subspace of X , by [10, Remark 2.196], one can find a

continuous surjective linear mapping A from X to a lcHtvs Y and a vector y ∈ Y

satisfying L = {x ∈ X | Ax = y}. It is easy to verify that kerA = L− e0. Combining

this with (2.6), we obtain ND(x) = cone{x∗i | i ∈ I(x)}+(L− e0)
⊥ for every x ∈ D.

Hence,

∂ f (x)+ND(x) = conv{v∗k | k ∈Θ(x)}+ cone{x∗i | i ∈ I(x)}+(L− e0)
⊥ (4.2)

for every x ∈ D. Now, suppose that x is a solution of (P). The “only if” part of

Theorem 4.3 tells us that 0 ∈ ∂ f (x)+ND(x). Then, due to (4.2), we have

0 = λ1v∗1 +λ2v∗2 + µ1x∗1 + µ2x∗2 + x∗0,

where λ1 ≥ 0,λ2 ≥ 0, λ1 + λ2 = 1, µ1 ≥ 0, µ2 ≥ 0, x∗0 ∈ (L− e0)
⊥, with λk = 0 if

k /∈Θ(x), and µi = 0 if i /∈ I(x). Since v∗1 = x∗1 − x∗2 and v∗2 =−x∗1 − x∗2, one has

(λ1 −λ2 + µ1)x
∗
1 +(µ2 − 1)x∗2 + x∗0 = 0.

Therefore, (λ1 − λ2 + µ1)〈x∗1,ei〉+ (µ2 − 1)〈x∗2,ei〉+ 〈x∗0,ei〉 = 0 with i = 1,2. For

each index i ∈ {1,2}, since e0 + ei ∈ L, we must have 〈x∗0,ei〉 = 0. Consequently,

λ1 −λ2 + µ1 = 0 and µ2 − 1 = 0. The latter fact yields 2 ∈ I(x), i.e., 〈x∗2,x〉 = 2. We
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observe that 1 /∈ I(x). Indeed, on the contrary, suppose that 1 ∈ I(x), i.e., 〈x∗1,x〉= 1.

Then, 〈v∗1,x〉+ 1 = 0 and 〈v∗2,x〉 = −3; so f (x) = 0 and Θ(x) = {1}. Thus λ2 = 0,

λ1 = 1 and µ1 = −1 < 0, a contradiction. Since 1 /∈ I(x), we must have µ1 = 0 and

λ1 = λ2 =
1
2
; hence Θ(x) = {1,2}. This means that f (x) = 〈v∗1,x〉+ 1 = 〈v∗2,x〉. Of

course, 〈x∗1,x〉=− 1
2
. We have thus proved that if x ∈ Sol(P), then 〈x∗1,x〉=− 1

2
and

〈x∗2,x〉 = 2. Conversely, if u ∈ D satisfies 〈x∗1,u〉 = − 1
2

and 〈x∗2,u〉 = 2, then one has

Θ(u) = {1,2} and I(u) = {2}. By (4.2),

0 =
1

2
v∗1 +

1

2
v∗2 + x∗2 + 0 ∈ ∂ f (u)+ND(u).

Therefore, the “if” part in Theorem 4.3 shows that u is a solution of (P). Thus,

Sol(P) =

{
u ∈ L | 〈x∗1,u〉=−1

2
, 〈x∗2,u〉= 2

}
.

Using this formula, one can verify that e0 − 1
2
e1 + 2e2 ∈ Sol(P). Thus, thanks to

Theorem 4.3, we have found the formula for the solution set of (P) and showed that

it is nonempty. The optimal value of (P) is − 3
2
.

Under the assumptions of Theorem 4.3, by [22, Proposition 2.11] we know that

D− dom f is a pcs in X . We want to have an analogue of Theorem 4.3 in a Banach

space setting for the case D− dom f is a gpcs. Next lemma is useful for the proof of

the desired result.

Lemma 4.5 Let L1,L2 be closed affine subspaces, P1,P2 polyhedral convex sets in X.

Suppose that D1 := L1 ∩P1 and D2 := L2 ∩P2 are nonempty. If D1 −D2 is a general-

ized polyhedral convex set in X, so is L1 −L2.

Proof For any i ∈ {1,2} and xi ∈ Di, observe that D′
i := Di − xi is a nonempty pcs in

the closed linear subspace Mi := Li−xi. By [22, Lemma 2.12], there exist ui,1, . . . ,ui,ki

in Mi, vi,1, . . . ,vi,ℓi
in Mi, and a closed linear subspace Mi,0 of finite codimension of Mi

such that

D′
i = conv

{
ui,1, . . . ,ui,ki

}
+ cone

{
vi,1, . . . ,vi,ℓi

}
+Mi,0.

Due to the finite codimension property of Mi,0 in Mi, one can find xi,1, . . . ,xi,mi
in Mi

such that Mi = Mi,0 + span{xi,1, . . . ,xi,mi
} . Hence,

Mi ⊃ D′
i + span{xi,1, . . . ,xi,mi

}
= conv

{
ui,1, . . . ,ui,ki

}
+ cone

{
vi,1, . . . ,vi,ℓi

}
+Mi,0 + span{xi,1, . . . ,xi,mi

}
= conv

{
ui,1, . . . ,ui,ki

}
+ cone

{
vi,1, . . . ,vi,ℓi

}
+Mi

= Mi.

This forces Mi = D′
i + span{xi,1, . . . ,xi,mi

}. Consequently,

Li = xi +Mi = xi +D′
i + span{xi,1, . . . ,xi,mi

}
= Di + span{xi,1, . . . ,xi,mi

} .
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It is clear that −L2 = (−D2)+ span{x2,1, . . . ,x2,m2
} . Therefore,

L1 −L2 = (D1 −D2)+ span{x1,1, . . . ,x1,m1
,x2,1, . . . ,x2,m2

} .

Since D1 −D2 is a gpcs by our assumption and span{x1,1, . . . ,x1,m1
,x2,1, . . . ,x2,m2

}
is a finite-dimensional subspace, L1 −L2 is a generalized polyhedral convex set; see

[22, Proposition 2.10]. ✷

Theorem 4.6 (Optimality condition III) Suppose that X is a Banach space and the

set D− dom f is generalized polyhedral convex. Then, x ∈ D∩dom f is a solution of

(P) if and only if 0 ∈ ∂ f (x)+ND(x).

Proof Let dom f be described by (2.5). Put

L1 = {x ∈ X | Ax = y}, L2 = {x ∈ X | Bx = z}

and

P1 = {x ∈ X | 〈x∗i ,x〉 ≤ αi, i = 1, . . . , p}, P2 = {x ∈ X | 〈u∗j ,x〉 ≤ γ j , j = 1, . . . ,q}.

Clearly, L1, L2 are closed affine subspaces, and P1, P2 are polyhedral convex sets. One

has D = L1 ∩P1 and dom f = L2 ∩P2. Since D− dom f is a generalized polyhedral

convex set, L1−L2 is a gpcs by Lemma 4.5. For every i∈ {1,2}, select a point xi ∈ Li.

Obviously,

kerA+ kerB = kerA− kerB

= (L1 − x1)− (L2 − x2) = (L1 −L2)− (x1 − x2).

Since L1−L2 is a gpcs, kerA+kerB is a gpcs by [22, Proposition 2.10]. In particular,

kerA+ kerB is closed. Hence, by [12, Theorem 2.16],

(kerA)⊥+(kerB)⊥ = (kerA∩kerB)⊥ . (4.3)

Therefore, for every x ∈ D∩dom f , from (2.6), (2.7), and (4.3) we obtain

∂ f (x)+ND(x) = conv{v∗k | k ∈Θ(x)}+ cone{u∗j | j ∈ J(x)}+(kerB)⊥

+ cone{x∗i | i ∈ I(x)}+(kerA)⊥

= conv{v∗k | k ∈Θ(x)}+ cone{x∗i | i ∈ I(x)}
+ cone{u∗j | j ∈ J(x)}+(kerA∩kerB)⊥ .

Then, by the representation theorem for gpcs [23, Theorem 2.7], we conclude that

∂ f (x)+ND(x) is a generalized polyhedral convex set. So, the latter is closed. Com-

bining this with Theorem 4.1, we obtain the assertion. ✷

Turning back to the optimality condition given by Theorem 4.1, we observe that

sometimes it is difficult to find the topological closure of the sum ∂ f (x)+ND(x). The

forthcoming theorem gives a new optimality condition for (P) in the general case,

where no topological closure sign is needed.
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Theorem 4.7 (Optimality condition IV) A vector x ∈ D∩dom f is a solution of (P)
if and only if

0 ∈ conv
{

v∗k | k ∈Θ(x)
}
+ cone{x∗i | i ∈ I(x)}
+ cone{u∗j | j ∈ J(x)}+(kerA∩kerB)⊥.

(4.4)

For proving this result, we will use the directional differentiability property of

convex functions and a lemma.

It is well known [17, Proposition 3, p. 194] (see also [30, Theorem 2.1.13]) that

the directional derivative f ′(x;h) := lim
t→0+

f (x+th)− f (x)
t

of a proper convex function

f : X → R̄ at x ∈ dom f w.r.t. a direction h ∈ X exists, and one has

f ′(x;h) = inf
t>0

f (x+ th)− f (x)

t
. (4.5)

(The situation f ′(x;h) = −∞ may occur. To have a simple example, one can choose

f (x) =−
√

2x− x2 for x ∈ [0,2], f (x) = +∞ otherwise, and note that f ′(0;1) =−∞.)

According [22, Theorem 3.9], if f is a proper gpcf (resp., a proper pcf), so is f ′(x; ·).
In addition, from (4.5) it follows that x̄ ∈ D is a solution of (P) if and only if

f ′(x̄;h)≥ 0 for every h ∈ TD(x̄).

Lemma 4.8 If x ∈ dom f , then

f ′(x;h) =

{
max{〈v∗k ,h〉 | k ∈Θ(x)} if h ∈ Tdom f (x)

+∞ if h /∈ Tdom f (x).
(4.6)

Proof Since dom f is a nonempty generalized polyhedral convex set, by [22, Propo-

sition 2.19] one has Tdom f (x) = cone [(dom f )− x].
If h /∈ Tdom f (x), then x+ th /∈ dom f for every t > 0. So, f ′(x;h) = +∞.

If h ∈ Tdom f (x), then there exists δ0 > 0 such that x+ th∈ dom f for all t ∈ [0,δ0].
Therefore, for every t ∈ [0,δ0], by (2.4) one has

f (x+ th) = max{〈v∗k,x〉+βk + t〈v∗k,h〉 | k = 1, . . . ,m} . (4.7)

Select an index k0 ∈ Θ(x). For any ℓ /∈ Θ(x), as f (x) = 〈v∗k0
,x〉+βk0

> 〈v∗ℓ ,x〉+βℓ,

there must exists δℓ > 0 satisfying

〈v∗k0
,x〉+βk0

+ t〈v∗k0
,h〉> 〈v∗ℓ ,x〉+βℓ+ t〈v∗ℓ ,h〉 (t ∈ [0,δℓ]). (4.8)

Choose δ > 0 such that δ ≤ δ0 and δ ≤ δℓ for all ℓ /∈Θ(x). Then, for every t ∈ [0,δ ],
from (4.7) and (4.8) it follows that

f (x+ th)≥ 〈v∗k0
,x〉+βk0

+ t〈v∗k0
,h〉

> max{〈v∗ℓ ,x〉+βℓ+ t〈v∗ℓ ,h〉 | ℓ /∈Θ(x)} .
(4.9)

Thus, combining (4.7) with (4.9), we have

f (x+ th) = max{〈v∗k ,x〉+βk + t〈v∗k,h〉 | k ∈Θ(x)}
= max{ f (x)+ t〈v∗k,h〉 | k ∈Θ(x)}
= f (x)+ t max{〈v∗k ,h〉 | k ∈Θ(x)}
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for all t ∈ [0,δ ]. It follows that f ′(x;h) = max
{
〈v∗k ,h〉 | k ∈Θ(x)

}
. We have thus

proved formula (4.6). ✷

Proof of Theorem 4.7 Let x ∈ D ∩ dom f . First, to prove the sufficiency, suppose

that (4.4) is fulfilled. Then there exist nonnegative numbers λk, µ1,i, µ2, j, for k ∈Θ(x),
i ∈ I(x), j ∈ J(x), and an element u∗ ∈ (kerA∩kerB)⊥ such that ∑

k∈Θ (x)
λk = 1 and

∑
k∈Θ (x)

λkv∗k + ∑
i∈I(x)

µ1,ix
∗
i + ∑

j∈J(x)

µ2, ju
∗
j + u∗ = 0. (4.10)

For any h ∈ TD(x), we have f ′(x;h)≥ 0. Indeed, if h /∈ Tdom f (x), then f ′(x;h) = +∞
by (4.6). If h ∈ Tdom f (x), then

h ∈ cone((D∩dom f )− x). (4.11)

To prove (4.11), we can argue as follows. Since D and dom f are gpcs, thanks to [22,

Proposition 2.19], we have TD(x) = cone(D− x) and Tdom f (x) = cone[(dom f )− x].
This implies that h ∈ cone(D− x)∩cone[(dom f )− x] = cone((D∩dom f )− x). So,

(4.11) is valid. To proceed furthermore, from

D∩dom f =
{

x ∈ X | Ax = y, Bx = z, 〈x∗i ,x〉 ≤ αi, i ∈ I, 〈u∗j ,x〉 ≤ γ j, j ∈ J
}
,

we deduce that

cone((D∩dom f )− x) =
{

u ∈ X | Au = 0, 〈x∗i ,u〉 ≤ 0, i ∈ I(x),

Bu = 0, 〈u∗j ,u〉 ≤ 0, j ∈ J(x)
}
.

(4.12)

Thus, by (4.11) one has 〈x∗i ,h〉 ≤ 0 for every i ∈ I(x), 〈u∗j ,h〉 ≤ 0 for all j ∈ J(x), and

h ∈ kerA∩kerB. Since h ∈ Tdom f (x), one has f ′(x;h) = max{〈v∗k ,h〉 | k ∈ Θ(x)} by

Lemma 4.8. Therefore, using the equality ∑
k∈Θ (x)

λk = 1 and (4.10), we have

f ′(x;h)≥ ∑
k∈Θ (x)

λk〈v∗k ,h〉

=

〈
−
(

∑
i∈I(x)

µ1,ix
∗
i + ∑

j∈J(x)

µ2, ju
∗
j + u∗

)
,h

〉

= ∑
i∈I(x)

µ1,i(−〈x∗i ,h〉)+ ∑
j∈J(x)

µ2, j(−
〈
u∗j ,h

〉
)+ 〈u∗,h〉 ≥ 0.

We have proved f ′(x;h)≥ 0 for every h ∈ TD(x). Hence, x is a solution of (P).
Now, to prove the necessity, denote the set on the right-hand side of (4.4) by Q

and suppose that 0 /∈ Q. We need to show that x /∈ Sol(P). Due to [23, Theorem 2.7],

Q is a nonempty gpcs. In particular, Q is convex and weakly∗-closed. Since 0 /∈ Q,

by the strong separation theorem [29, Theorem 3.4(b)] we can find v ∈ X and γ ∈ R

such that

sup
x∗∈Q

〈x∗,v〉< γ < 〈0,v〉. (4.13)
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On one hand, the first inequality in (4.13) implies that the linear functional 〈·,v〉
is bounded from above on Q. Hence, by [23, Theorem 3.3], the generalized linear

programming problem max{〈x∗,v〉 | x∗ ∈ Q} has a solution. Then we have 〈v∗,v〉 ≤ 0

for all v∗ ∈ 0+Q (see [23, Proposition 3.5]). On the other hand, (4.4) yields

0+Q = cone{x∗i | i ∈ I(x)}+ cone{u∗j | j ∈ J(x)}+(kerA∩kerB)⊥.

Therefore, 〈x∗i ,v〉 ≤ 0 for every i ∈ I(x), 〈u∗j ,v〉 ≤ 0 for all j ∈ J(x), and v belongs to

((kerA∩kerB)⊥)⊥. Since kerA∩kerB is a closed linear subspace of X , applying [10,

Proposition 2.40], one has ((kerA∩kerB)⊥)⊥ = kerA∩kerB. Consequently, formula

(4.12) allows us to have v ∈ cone((D∩dom f )−x), i.e., v ∈ TD(x)∩Tdom f (x). Hence,

by Lemma 4.8 one has f ′(x;v) = max{〈v∗k,v〉 | k ∈Θ(x)}.

For every k ∈Θ(x), since v∗k ∈ Q, the inequalities in (4.13) yield 〈v∗k ,v〉 < γ < 0.

Consequently, f ′(x;v) = max{〈v∗k ,v〉 | k ∈Θ(x)}< γ < 0. So, we have x /∈ Sol(P).
The proof is complete. ✷

5 Duality

In this final section, we will use the general conjugate duality scheme presented in

[10, pp. 107–108] to construct a dual problem for (P) and obtain several duality

theorems.

If we define F : X → R̄ and G : X → X , respectively, by F(·) = δ (·,D) and

G(x) = x, then problem (P) can be rewritten as

(P̃) min{ f (x)+F(G(x)) | x ∈ X} .

By the conjugate duality scheme in [10, formulas (2.298) and (2.296)], we obtain the

following dual problem of (P̃):

(D̃) max
{

inf
x∈X

L(x,x∗)−F∗(x∗) | x∗ ∈ X∗
}
,

where L(x,x∗) := f (x)+〈x∗,G(x)〉 is the standard Lagrangian of (P̃). On one hand,

it holds that F∗(x∗) = δ ∗(·,D)(x∗), where δ ∗(·,D)(x∗) = sup
x∈D

〈x∗,x〉 is the support

function of D. On the other hand,

inf
x∈X

L(x,x∗) = inf
x∈X

(
f (x)+ 〈x∗,G(x)〉

)
= inf

x∈X

(
f (x)+ 〈x∗,x〉

)

=−sup
x∈X

(
〈−x∗,x〉− f (x)

)
=− f ∗(−x∗).

Therefore, (D̃) is nothing than the following problem

(D) max{g(x∗) | x∗ ∈ X∗}

with g(x∗) := inf
x∈X

L(x,x∗)−F∗(x∗) = − f ∗(−x∗)− δ ∗(·,D)(x∗). Since f and δ (·,D)

are proper generalized polyhedral convex functions, by [22, Theorem 4.12] we can as-

sert that f ∗ and δ ∗(·,D) are proper generalized polyhedral convex functions. Hence,
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in particular, x∗ 7→ f ∗(−x∗) is a proper generalized polyhedral convex the function.

If (−dom f ∗)∩domδ ∗(·,D) 6= /0, then −g is a proper generalized polyhedral convex

function by [22, Theorem 3.7]. So, the objective function of the maximization prob-

lem (D) is generalized polyhedral concave. If (−dom f ∗)∩ domδ ∗(·,D) = /0, then

(−g)(x∗) = +∞ for all x∗ ∈ X∗. In this case, the objective function of (D) is also

generalized polyhedral concave.

A weak duality relationship between (P) and (D) can be described as follows.

Theorem 5.1 (Weak duality theorem) For every u ∈ D and u∗ ∈ X∗, the inequality

g(u∗)≤ f (u) holds. Hence, if f (u) = g(u∗), then u ∈ Sol(P) and u∗ ∈ Sol(D).

Proof Given any u ∈ D and u∗ ∈ X∗, it suffices to observe that

g(u∗) =− f ∗(−u∗)− δ ∗(·,D)(u∗)

= inf
x∈X

[
〈u∗,x〉+ f (x)

]
− sup

x∈D

〈u∗,x〉

≤ 〈u∗,u〉+ f (u)−〈u∗,u〉= f (u).

(5.1)

This justifies the assertions of the theorem. ✷

Since the existence of an element u∗ satisfying u∗ ∈ ND(u)∩ (−∂ f (u)) is equiv-

alent to the property 0 ∈ ∂ f (u)+ND(u), the next statement can be interpreted as a

sufficient optimality condition for (P) and (D).

Proposition 5.2 If u ∈ X and u∗ ∈ ND(u)∩ (−∂ f (u)), then one has u ∈ Sol(P) and

u∗ ∈ Sol(D). Moreover, the optimal values of (P) and (D) are equal.

Proof Suppose that u ∈ X and u∗ ∈ ND(u)∩ (−∂ f (u)). Then u ∈ D∩dom f . On one

hand, since −u∗ ∈ ∂ f (u), by [30, Theorem 2.4.2(iii)] we can assert that

f (u)+ f ∗(−u∗) = 〈−u∗,u〉.

So, − f ∗(−u∗) = f (u)+ 〈u∗,u〉. On the other hand, the inclusion u∗ ∈ ND(u) implies

that sup{〈u∗,x〉 | x ∈ D}= 〈u∗,u〉; hence δ ∗(·,D)(u∗) = 〈u∗,u〉. Consequently,

g(u∗) =− f ∗(−u∗)− δ ∗(·,D)(u∗) = f (u).

Thus, the desired conclusions follow from Theorem 5.1. ✷

If the optimal value of (D) equals to the optimal value of (P), then one says

that the strong duality relationship among the dual pair holds. We are going to show

that if either f is polyhedral convex or D is polyhedral convex, then this property is

available under a mild condition.

Theorem 5.3 (Strong duality theorem I) Assume that either f is a proper polyhedral

convex function and D is a nonempty generalized polyhedral convex set, or f is a

proper generalized polyhedral convex function and D is a nonempty polyhedral con-

vex set. If one of the two problems has a solution, then both of them have solutions

and the optimal values are equal.
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Proof Under the assumptions of the theorem, we suppose firstly that (P) has a solu-

tion u. Then, according to Theorem 4.3, it holds that 0 ∈ ∂ f (u)+ND(u). Hence there

exists u∗ ∈ ND(u)∩(−∂ f (u)). Applying Proposition 5.2 yields the solution existence

of (D) and the equality of the optimal values.

Secondly, suppose that (D) has a solution u∗. Since f is a proper gpcf, dom f is

a nonempty gpcs by [22, Theorem 3.2]. If f is a proper pcf then, also by [22, Theo-

rem 3.2], dom f is a nonempty pcs. Thus, by the assumptions of the theorem, dom f

and −D are gpcs, and one of them is polyhedral convex. Hence, in accordance with

Proposition 2.11 from [22], the set (dom f )−D is polyhedral convex. In particular,

(dom f )−D is a closed set. Let us show that D∩ dom f is nonempty. On the con-

trary, suppose that D∩ dom f = /0. Hence, 0 /∈ (dom f )−D. Since the nonempty set

(dom f )−D is closed, by the strong separation theorem [29, Theorem 3.4(b)] there

exist x∗ ∈ X∗ and real number ε such that 0 < ε < 〈x∗,x− u〉 for all x ∈ dom f and

u ∈ D. Consequently,

ε + sup
u∈D

〈x∗,u〉 ≤ inf
x∈dom f

〈x∗,x〉. (5.2)

On one hand, for any λ > 0, using the equalities in (5.1) and the inequality (5.2) we

have

g(u∗+λ x∗)

= inf
x∈X

[〈u∗+λ x∗,x〉+ f (x)]− sup
x∈D

〈u∗+λ x∗,x〉

= inf
x∈dom f

[〈u∗+λ x∗,x〉+ f (x)]− sup
u∈D

〈u∗+λ x∗,u〉

≥ inf
x∈dom f

[〈u∗,x〉+ f (x)]+λ inf
x∈dom f

〈x∗,x〉− sup
u∈D

〈u∗,u〉−λ sup
u∈D

〈x∗,u〉

=

(
inf

x∈dom f
[〈u∗,x〉+ f (x)]− sup

u∈D

〈u∗,u〉
)
+λ

[
inf

x∈dom f
〈x∗,x〉− sup

u∈D

〈x∗,u〉
]

≥ g(u∗)+λ ε.

On the other hand, since u∗ is a solution of (D), the estimate g(u∗) ≥ g(u∗+ λ x∗)
is valid. Hence, g(u∗) ≥ g(u∗)+ λ ε . This contradicts the fact that λ ,ε are positive

numbers. Thus, we have proved that (dom f )∩D 6= /0. Setting γ = g(u∗) and applying

Theorem 5.1, we obtain f (x)≥ γ for all x ∈ D. Therefore, on account of Theorem 3.1,

we can assert that (P) has a solution. Finally, to show that the optimal values of (P)
and (D) are equal, it suffices to use the result already obtained in the first part of this

proof. ✷

Example 5.4 Consider problem (P) in the setting and notations of Example 3.10.

To have a concrete form of the dual problem (D), we have to find the function g.

Suppose that x∗ ∈ X∗ and |g(x∗)|< ∞. Since f is proper, for α := inf
x∈X

[ f (x)+ 〈x∗,x〉],
we have α <+∞. In addition, as D is nonempty, the number β := sup

x∈D

〈x∗,x〉 is greater

than −∞. Thus, the equalities in (5.1) yield +∞ > α = g(x∗) + β > −∞. Hence,

both α and β are finite. In particular, the function x 7→ f (x)+ 〈x∗,x〉 is bounded from

below on X . Since f (x) = max{〈v∗1,x〉+ 1,〈v∗2,x〉}, one see that

f (·)+ 〈x∗, ·〉= max{〈v∗1 + x∗, ·〉+ 1,〈v∗2 + x∗, ·〉} (5.3)
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is a polyhedral convex function. So, according to Theorem 3.1, the generalized poly-

hedral convex optimization problem min{ f (x)+ 〈x∗,x〉 | x ∈ X} has a solution. There-

fore, by (5.3) and Corollary 3.8, we must have 0∈ conv{v∗1+x∗,v∗2+x∗}. Let λ1 ≥ 0,
λ2 ≥ 0 be such that λ1 +λ2 = 1 and λ1(v

∗
1 + x∗)+λ2(v

∗
2 + x∗) = 0. It is clear that

x∗ =−λ1v∗1 −λ2v∗2 =−λ1(x
∗
1 − x∗2)−λ2(−x∗1 − x∗2)

= (1− 2λ1)x
∗
1 + x∗2.

Writing λ = 1− 2λ1, we obtain x∗ = λ x∗1 + x∗2 with λ ∈ [−1,1]. It is a simple matter

to verify that e0 + t1e1 ∈ D for all t1 ≤ 1. Hence,

sup
x∈D

〈x∗,x〉 ≥ sup
t1≤1

〈x∗,e0 + t1e1〉= sup
t1≤1

λ t1.

If λ < 0, then sup
t1≤1

λ t1 =+∞. So, we get sup
x∈D

〈x∗,x〉=+∞, which contradicts the fact

that β ∈ R. Thus we have proved that if g(x∗) is finite, then there exists λ ∈ [0,1]
satisfying x∗ = λ x∗1 + x∗2. Let us compute the value g(x∗) when |g(x∗)|< ∞. Suppose

that x∗ = λ x∗1 + x∗2 with λ ∈ [0,1]. For every x ∈ D, since 〈x∗1,x〉 ≤ 1 and 〈x∗2,x〉 ≤ 2,

one has 〈x∗,x〉 = λ 〈x∗1,x〉+ 〈x∗2,x〉 ≤ λ + 2. In addition, as e0 + e1 + 2e2 ∈ D with

〈x∗,e0 + e1 +2e2〉= λ +2, we must have sup
x∈D

〈x∗,x〉= λ +2. From (5.3) we see that

f (x)+ 〈x∗,x〉= max{(λ + 1)〈x∗1,x〉+ 1,(λ − 1)〈x∗1,x〉} .

If 〈x∗1,x〉 ≥ − 1
2
, then

f (x)+ 〈x∗,x〉= (λ + 1)〈x∗1,x〉+ 1

≥ (λ + 1)

(
−1

2

)
+ 1 =

1

2
− λ

2
.

If 〈x∗1,x〉<− 1
2
, then

f (x)+ 〈x∗,x〉= (λ − 1)〈x∗1,x〉

≥ (λ − 1)

(
−1

2

)
=

1

2
− λ

2
.

Since 〈x∗1,− 1
2
e1〉 = − 1

2
, we have f (− 1

2
e1) + 〈x∗,− 1

2
e1〉 = 1

2
− λ

2
. Consequently,

inf
x∈X

[ f (x)+ 〈x∗,x〉] = 1
2
− λ

2
. Thus, the equalities in (5.1) imply that

g(x∗) =

{
− 3

2
− 3

2
λ if x∗ = λ x∗1 + x∗2 with 0 ≤ λ ≤ 1

−∞ otherwise.

Using this formula for g, it is easy to check that x∗2 is a unique solution of (D) with

g(x∗2) = − 3
2
. In Example 4.4, we have shown that (P) has a nonempty solution set

and the optimal value is − 3
2
. These facts justify the assertion of Theorem 5.3 for the

problems (P) and (D) which we are dealing with.
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The conclusion of Theorem 5.3 may not true in the general case, where one

just assumes that f is a proper generalized polyhedral convex function and D is a

nonempty generalized polyhedral convex set.

Example 5.5 Consider problem (P) in the setting and notations of Example 4.2. We

know that (P) has a unique solution x = 0. Recall that dom f =D1 and f (x) = 〈v∗,x〉
for all x ∈ D1. In addition, since D1 is the orthogonal complement of X1, we have

inf
x∈X

[ f (x)+ 〈x∗,x〉] = inf
x∈D1

〈v∗+ x∗,x〉=
{

0 if x∗ ∈ −v∗+X1

−∞ if x∗ /∈ −v∗+X1.
(5.4)

Similarly, since D is the orthogonal complement of X2,

sup
x∈D

〈x∗,x〉=
{

0 if x∗ ∈ X2

+∞ if x∗ /∈ X2.
(5.5)

Combining (5.4), (5.5) with the equalities in (5.1) yields

g(x∗) =

{
0 if x∗ ∈ (−v∗+X1)∩X2

−∞ otherwise.

Since (−v∗+X1)∩X2 = /0 (see Example 4.2), we can assert that g(x∗) = −∞ for all

x∗ ∈ X∗. Therefore, (D) has no solution. Thus, it happens that (P) has a solution,

while (D) has an empty solution set.

The assumption of Theorem 5.3 implies that D− dom f is a polyhedral convex

set in X . In particular, D− dom f is closed. Interestingly, in a Banach space setting,

the polyhedral convexity of D− dom f can be replaced by its closedness – a weaker

property.

Theorem 5.6 (Strong duality theorem II) Suppose that X is a Banach space and the

set D−dom f is closed. If one of the two problems (P) and (D) has a solution, then

both of them have solutions and the optimal values are equal.

Proof First, suppose that (P) has a solution u. Then, by the closedness of D−dom f

and Theorem 4.6, we have 0 ∈ ∂ f (u)+ND(u). Select any u∗ ∈ ND(u)∩ (−∂ f (u)).
By Proposition 5.2, u∗ is a solution of (D). Moreover, the optimal values of (P) and

(D) are equal.

Now, suppose that (D) has a solution u∗. Arguing similarly as in the proof of

Theorem 5.3 (the closedness of D− dom f allows us to apply the strong separation

theorem), we can prove that (P) has a solution and the optimal values of (P) and

(D) are equal. ✷

In optimization theory, a strong duality theorem can be formulated as a combined

statement about the solution existence of the primal and dual problems when they

have feasible points where the objective functions are finite, and the equality of the

optimal values. In that spirit, for generalized polyhedral convex optimization prob-

lems we have the next result.
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Theorem 5.7 (Strong duality theorem III) Suppose that the problems (P) and (D)
have feasible points, at which the values of the object functions are finite. Then both

problems have solutions. In addition, if either f or D is polyhedral convex, then there

is no duality gap between the problems.

Proof Let u ∈ D and u∗ ∈ X∗ be such that f (u) and g(u∗) are finite. By Theorem 5.1,

we have f (x) ≥ g(u∗) for every x ∈ D. Thus, f is bounded from below on D and

D∩ dom f 6= /0. Therefore, (P) has a solution by Theorem 3.1. To show that (D)
possesses a solution, we first observe by Theorem 5.1 that −g(x∗) ≥ − f (u) for all

x∗ ∈ X∗. Hence, the proper generalized polyhedral convex function (−g) is bounded

from below on X∗ by the finite value (− f (u)). Consequently, by Theorem 3.1, the

problem min{−g(x∗) | x∗ ∈ X∗} has a solution. Since (D) is equivalent to the latter,

the solution set of (D) is nonempty.

Now, if either f or D is polyhedral convex, then by using Theorem 5.3 we can

assert that the optimal values of (P) and (D) are equal. ✷

Concerning Theorem 5.7, the following question seems to be interesting: Whether

the conclusion “there is no duality gap between two problems” is still true, if one

drops the assumption “either f or D is polyhedral convex”? Our attempts in con-

structing a counterexample have not achieved the goal, so far.

Acknowledgements The authors would like to thank Professor Nguyen Dong Yen for valuable discus-

sions on the subject.
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