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Abstract

Partial set cover problem and set multi-cover problem are two generalizations of
set cover problem. In this paper, we consider the partial set multi-cover problem
which is a combination of them: given an element set E, a collection of sets S ⊆ 2E ,
a total covering ratio q which is a constant between 0 and 1, each set S ∈ S
is associated with a cost cS , each element e ∈ E is associated with a covering
requirement re, the goal is to find a minimum cost sub-collection S ′ ⊆ S to fully
cover at least q|E| elements, where element e is fully covered if it belongs to at least
re sets of S

′. Denote by rmax = max{re : e ∈ E} the maximum covering requirement.

We present an (O( rmax log2 n
ε

), 1− ε)-bicriteria approximation algorithm, that is, the

output of our algorithm has cost at most O( rmax log2 n
ε

) times of the optimal value
while the number of fully covered elements is at least (1− ε)q|E|.

Keywords: partial set multi-cover; minimum densest sub-collection; approxi-
mation algorithm; bicriteria algorithm.

1 Introduction

Set cover is an extensively studied problem in combinatorial optimization. In this
paper, we study a variant of the set cover problem, namely the partial set multi-cover

problem, which is defined as follows.

Definition 1.1 (Partial Set Multi-Cover (PSMC)). Suppose E is an element set, S ⊆ 2E

is a collection of subsets of E, each set S ∈ S has a cost cS, each element e ∈ E has
a positive covering requirement re. For a sub-collection S ′ ⊆ S, denote by S ′

e = {S ∈
S ′ : e ∈ S} those sets of S ′ containing element e. If |S ′

e| ≥ re, we say that e is fully covered
by S ′, denoted as e ∼ S ′. The cost of sub-collection S ′ is c(S ′) =

∑

S∈S′ c(S). Given
E,S, c, r with |E| = n and a real number q which is a constant between 0 and 1, the PSMC
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problem is to find a minimum cost sub-collection S ′ such that |{e ∈ E : e ∼ S ′}| ≥ qn.
An instance of PSMC is denoted as (E,S, c, r, q).

The PSMC problem includes two important variants of the set cover problem. When
re ≡ 1, it is the partial set cover problem (PSC). When q = 1, it is the set multi-cover

problem (SMC). One motivation of PSC comes from the phenomenon that in a real
world, “satisfying all requirements” will be too costly or even impossible, due to resource
limitation or political policy [4]. And SMC comes from the requirement of fault tolerance
in practice [28]. There are a lot of researches on PSC and SMC, achieving performance
ratios matching the lower bounds for the classic set cover problem, namely lnn and f ,
where n is the number of elements and f is the maximum number of sets containing
a common element. However, study on the combination of these two problems is very
rare. According to our recent paper [25], under the ETH assumption, the PSMC problem

cannot be approximated within factor O(n
1

2(log log n)c ) for some constant c.
The aim of this paper is to explore a greedy strategy on PSMC.

1.1 Related Work

The set cover problem (SC) was one of the first 21 problems proved to be NP-hard
in Karp’s seminal paper [16]. In fact, Feige [11] proved that it cannot be approximated
within factor (1 − o(1)) lnn unless NP ⊆ DTIME(nO(log logn)), where n is the number
of elements. Dinur and Steurer [9] proved the same lower bound under the assumption
that P 6= NP . Khot and Regev [18] showed that it cannot be approximated within
factor f − ε for any constant ε > 0 assuming that unique games conjecture is true, where
f is the maximum number of sets containing a common element. On the other hand,
greedy strategy achieves performance ratio H(∆) ≤ ln∆ + 1 [7, 15, 20], where ∆ is the
maximum cardinality of a set and H(∆) = 1+ 1

2
+ · · ·+ 1

∆
is the Harmonic number. And

f -approximation exists by either LP rounding method [13] or local ratio method [3].
In paper [10], Dobson first gave an H(K)-approximation algorithm for multi-set multi-

cover problem (MSMC), where K is the maximum size of a multi-set. Rajagopalan and
Vazirani [22] gave a greedy algorithm achieving the same performance ratio, using dual
fitting analysis, which implies that the integrality gap of the classic linear program of
MSMC is at most H(K).

For the partial set cover problem, Kearns [17] gave a greedy algorithm achieving
performance ratio 2H(n) + 3. By modifying the greedy algorithm a little, Slavik [27]
improved the performance ratio to H(min{⌈qn⌉,∆}), where q is the percentage that
elements are required to be covered. Gandhi et al. [12] proposed a primal-dual algorithm
achieving performance ratio f . Bar-Yuhuda [2] studied a generalized version in which each
element has a profit and the total profit of covered elements should exceed a threshold.
Using local ratio method, he also obtained performance ratio f . Konemann et al. [19]
presented a Lagrangian relaxation framework and obtained performance ratio (4

3
+ε)H(∆)

for the generalized partial set cover problem.
From the above related work, it can be seen that both PSC and SMC admit per-

formance ratios matching those best ratios for the classic set cover problem. However,
combining partial set cover with set multi-cover has enormously increased the difficulty
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of studies. Ran et al. [23] were the first to study approximation algorithms for PSMC,
using greedy strategy and dual-fitting analysis. However, their ratio is meaningful only
when the covering percentage q is very close to 1. In paper [24], the authors presented
a simple greedy algorithm achieving performance ratio ∆. They also presented a local
ratio algorithm, which reveals a what they called “shock wave” phenomenon: their per-
formance ratio is f for both PSC and SMC , however, when q is smaller than 1 by a very
small constant, the ratio jumps abruptly to O(n). In our recent paper [25], we proved
that PSMC cannot have a better than polynomial performance ratio by a reduction from
the well-known densest k-subgraph problem.

1.2 Our Contribution and Techniques

The contributions of this paper is summarized as follows.

• A new problem called minimum density sub-collection (MDSC) is defined, which is
to find a sub-collection S ′ ⊆ S to minimize the ratio c(S ′)/|C(S ′)|, where C(S ′) is
the set of elements fully covered by S ′. We prove that MDSC is also NP-hard.

• We show that if MDSC has an α-approximation algorithm, then PSMC has an
(O(α

ε
), 1−ε)-bicriteria approximation algorithm, that is, the output of our algorithm

has cost at most O(α
ε
) times that of an optimal solution, while the total number of

fully covered elements is at least q(1 − ε)n, where q is the covering ratio required
by the problem and n is the total number of elements.

• We design an O(rmax log
2 n)-approximation algorithm for MDSC, where rmax =

maxe∈E re is the maximum covering requirement of elements. Combining this result

with the above, PSMC has an (O( rmax log
2 n

ε
), 1− ε)-bicriteria algorithm.

Our algorithm uses a greedy strategy. However, there is a problem of which sets
should be chosen in each iteration. As indicated by previous studies in paper [23], a
natural generalization of the classic greedy algorithm cannot yield good results. One
reason might be that the number of elements fully covered by a sub-collection of sets is
not submodular. In this paper, our greedy algorithm iteratively picks an approximate
solution to the MDSC problem until the number of elements which are fully covered
reaches a certain degree. An obstacle to obtaining a good approximation factor lies in
the last iteration: the sub-collection chosen in the last iteration might cover much more
elements than required. Although its density is low, its cost might be too large to be
bounded by the optimal value. So, we stop the algorithm when at least q(1−ε)n elements
are fully covered, and thus leading to a bicriteria approximation algorithm.

A crucial stepping-stone to the above algorithm is the MDSC problem, which is also
NP-hard. An example can be constructed showing that a natural LP formulation has
integrality gap arbitrarily large. To overcome such a difficulty, we formulate the prob-
lem as a linear program using a language having a taste of “flow” and made use of an
approximation algorithm for the minimum node-weighted Steiner network problem as a
subroutine to yield a performance guaranteed approximation algorithm for MDSC.

The paper is organized as follows. In Section 2, we give the definition of MDSC and
prove its NP-hardness. In Section 3, we show how an α-approximation algorithm for
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MDSC leads to an (O(α
ε
), 1− ε)-bicriteria algorithm for PSMC. In Section 4, we propose

an O(rmax log
2 n)-approximation algorithm for MDSC. In Section 5, the paper is concluded

with some discussions on future work.
A preliminary version of this paper was presented in INFOCOM2017. There is a flaw

in that version. We explain in the appendix where is the flaw.

2 Preliminaries

For simplicity of statement, we shall use C(S ′) to denote the set of elements fully
covered by sub-collection S ′. Define the density of a sub-collection S ′ as

den(S ′) = c(S ′)/|C(S ′)|.

Definition 2.1 (Minimum Density Sub-Collection (MDSC)). Given E,S, c, r, the MDSC
problem is to find a sub-collection with the minimum density.

Unfortunately, MDSC is also NP-hard.

Theorem 2.2. The MDSC problem is NP-hard.

Proof. We reduce the perfect 3-dimensional matching problem (which is APX-hard [1])
to MDSC. Given an integer k, three sets X, Y, Z each having cardinality k, and a set
T ⊆ X × Y × Z, the perfect 3-dimensional matching problem asks whether there is a
subset T ′ ⊆ T with |T ′| = k such that for any elements (x, y, z), (x′, y′, z′) ∈ T ′, x 6= x′,
y 6= y′, and z 6= z′. Construct an instance of MDSC as follows. Let E = X ∪Y ∪Z ∪{u0}
and S = {{x, y, z, u0} : (x, y, z) ∈ T}. The covering requirement ru0 = k and ru = 1 for
u ∈ X ∪ Y ∪ Z. The cost cS = 1 for all S ∈ S.

Next, we show that there is a perfect 3-dimensional matching if and only if the optimal
value for the MDSC problem is k/(3k + 1). In fact, if T ′ is a perfect 3-dimensional
matching, then S ′ = {{x, y, z, u0} : (x, y, z) ∈ T ′} has |S ′| = |T ′| = k and |C(S ′)| =
3k + 1. Suppose the instance does not have a perfect 3-dimensional matching. Consider
an arbitrary sub-collection S ′′ and its corresponding subset T ′′ = {(x, y, z) : {x, y, z, u0} ∈
S ′′}. Then |T ′′| = |S ′′| = c(S ′′). If |T ′′| > k, then c(S ′)/|C(S ′)| > k/(3k + 1). If |T ′′| < k,
then u0 6∈ C(S

′′) and thus |C(S ′′)| ≤ 3|T ′′|. In this case, c(S ′′)/|C(S ′′)| ≥ |T ′′|/(3|T ′′|) >
k/(3k + 1). The claimed result is proved.

3 Bicriteria Algorithm for PSMC

In this section, we make use of an α-approximation algorithm for MDSC to design a
bicriteria algorithm for PSMC.

3.1 The Algorithm

The algorithm is presented in Algorithm 1. It follows the classic greedy strategy. A
main difference is that instead of choosing sets one by one, in each iteration, it implements
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an α-approximation algorithm for MDSC to greedily choose sub-collections. After each
iteration, the instance is updated with respect to the current sub-collection F to form a
reduced instance (E ′,S ′, c, r′, q′), where E ′ = E − C(F) is the set of elements not having
been fully covered, the total remaining covering ratio

q′ =
qn− |C(F)|

n
, (1)

the remaining covering requirement for element e is r′e = max{0, re − |Fe|}, and those
elements which have been fully covered by F have to be removed from each set. In
the following, when we mention a reduced instance or when we say that the instance
is updated, it is always understood that the above operations are executed. When the
algorithm terminates, we have q′ ≤ εq, and thus the number of fully covered elements is
at least (1− ε)qn by the expression of reduced covering ratio q′ defined in (1).

Algorithm 1 Algorithm For PSMC via MDSC

Input: A PSMC instance (E,S, c, r, q) and a real number 0 < ε < 1.
Output: A sub-collection F fully covering at least (1− ε)qn elements.

1: F ← ∅, q′ ← q.
2: while q′ > εq do

3: Use an α-approximation algorithm for MDSC on the reduced instance to find a
sub-collection R.

4: F ← F ∪R.
5: Update the instance.
6: end while

7: Output F .

3.2 Performance Ratio Analysis

Suppose Algorithm 1 is executed t times, selecting sub-collections R1, . . . ,Rt. We
estimate costs

∑t−1
i=1 c(Ri) and c(Rt) separately. In the following, OPT denotes an optimal

solution to PSMC, and opt = c(OPT ) is the optimal cost.

Lemma 3.1.
∑t−1

i=1 c(Ri) ≤ α ln
(

1
ε

)

· opt.

Proof. For i = 1, 2, . . . , t, denote by ni the number of elements remaining to be fully
covered after Ri is selected. Then |C(Ri)| = ni−1 − ni for i = 1, . . . , t− 1 where

n0 = qn and (2)

nt−1 = qn−
t−1
∑

i=1

|C(Ri)| > qn− (1− ε)qn = εqn. (3)

After the (i − 1)-th iteration, OPT is a sub-collection fulfilling the remaining covering
requirement ni−1. So the density of an optimal solution R∗

i to the MDSC problem in the
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i-th iteration is upper bounded by opt/ni−1. Since Ri approximates the density of R∗
i

within a factor of α, we have
c(Ri)

ni−1 − ni

≤ α
opt

ni−1
. (4)

Combining this with inequalities (2), (3) we have

t−1
∑

i=1

c(Ri) ≤ α · opt
t−1
∑

i=1

ni−1 − ni

ni−1

≤ α · opt
t−1
∑

i=1

∫ ni−1

ni

1

x
dx

=α · opt

∫ n0

nt−1

1

x
dx = α ln

(

n0

nt−1

)

opt ≤ α ln

(

1

ε

)

opt.

The lemma is proved.

Lemma 3.2. c(Rt) ≤ α
(

1 + 1−q

εq

)

opt.

Proof. For the last sub-collection Rt, notice that in a worst case, it may fully cover all the
remaining elements, the number of which is n− (qn−nt−1) = (1− q)n+nt−1. Compared
with the density of the optimal sub-collection and similar to the derivation of (4),

c(Rt)

(1− q)n+ nt−1
≤ α

opt

nt−1
.

Combining this with inequality (3),

c(Rt) ≤ α
(1− q)n+ nt−1

nt−1
opt < α

(

1 +
1− q

εq

)

opt.

The lemma is proved.

Since the output of Algorithm 1 is R1 ∪ · · · ∪Rt−1 ∪Rt, the performance ratio follows
from Lemma 3.1 and Lemma 3.2.

Theorem 3.3. Implementing an α-approximation algorithm for MDSC, the PSMC prob-

lem admits an
(

α
(

1 + ln(1
ε
) + 1−q

εq

)

, 1− ε
)

-bicriteria approximation.

For small ε, the performance ratio in the above theorem can be viewed as O(α
ε
) since

q is a constant.

4 Approximation Algorithm for MDSC

In this section, we present an approximation algorithm for MDSC. The algorithm is
based on an LP formulation and makes use of a node weighted Steiner network algorithm.
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4.1 LP-Formulation

The following is a natural formulation of integer program for MDSC.

min

∑

S∈S cSxS
∑

e∈E ye

s.t.
∑

S: e∈S

xS ≥ reye, for any e ∈ E (5)

xS ∈ {0, 1} for S ∈ S

ye ∈ {0, 1} for e ∈ E

Here xS indicates whether set S is selected and ye indicates whether element e is fully
covered. The first constrained says that if ye = 1 then at least re sets containing e must be
selected and thus e is fully covered. Relaxing (5) and by a scaling, we have the following
linear program:

min
∑

S∈S

cSxS

s.t.
∑

e∈E

ye = 1

∑

S: e∈S

xS ≥ reye, for any e ∈ E (6)

1 ≥ xS ≥ 0 for S ∈ S

1 ≥ ye ≥ 0 for e ∈ E

However, the following example shows that the integrality gap between (5) and (6) can
be arbitrarily large.

Example 4.1. Let E = {e1, e2}, S = {S1, S2, S3} with S1 = {e1}, S2 = {e2}, S3 =
{e1, e2}, c(S1) = c(S2) = 1, c(S3) = M where M is a large positive number, and r(e1) =
r(e2) = 2. Then xS1 = xS2 = 1, xS3 = 0, ye1 = ye2 = 1/2 form a feasible solution
to (6) with objective value 2. While among all integral feasible solutions to (5), which
are {S1, S3}, {S2, S3}, {S1, S2, S3}, whose densities are M + 1, M + 1, and (2 + M)/2,
respectively, the minimum density is (2 +M)/2.

Hence, to obtain a good approximation, we need to find another program. In the
following, we formulate the problem in an more involved flow-like language. For an element
e, an re-cover-set is a sub-collection S ′ with |S ′| = re which fully covers e. Denote by Ωe

the family of all re-cover-sets, and Ω =
⋃

e∈E Ωe. Consider the following example.

Example 4.2. E = {e1, e2, e3}. S = {S1, S2, S3} with S1 = {e1, e2, e3}, S2 = {e1}
and S3 = {e1, e3}, and r(e1) = 2 and r(e2) = r(e3) = 1. For this example, Ωe1 =
{{S1, S2}, {S1, S3}, {S2, S3}}, Ωe2 = {{S1}} and Ωe3 = {{S1}, {S3}}. It should be em-
phasized that a same cover-set belonging to different Ωe’s will be viewed as different
cover-sets. For example, {S1} belongs to both Ωe2 and Ωe3 . To distinguish them, we

shall use Q
(ei)
j to denote cover-sets in Ωei. For example, Ωe1 contains three re1-cover-sets
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Q
(e1)
1 = {S1, S2}, Q

(e1)
2 = {S1, S3} and Q

(e1)
3 = {S2, S3}, Ωe2 contains one re2-cove-set

Q
(e2)
1 = {S1}, Ωe3 contains two re3-cover-sets Q

(e3)
1 = {S1} and Q

(e3)
2 = {S3}.

The following is an integer program for constrained MDSC:

min

∑

S∈S cSxS
∑

e∈E ye
(7)

s.t.
∑

Q:Q∈Ωe

lQ ≥ ye for e ∈ E

xS ≥
∑

Q:S∈Q∈Ωe

lQ for e ∈ E, S ∈ S

xS ∈ {0, 1}, for S ∈ S

ye ∈ {0, 1}, for e ∈ E

lQ ∈ {0, 1}, for every Q ∈ Ωe for some e ∈ E

In fact, lQ indicates whether a cover-set Q is selected and xS indicates whether set S is
selected. The first constraint says that if ye = 1 then at least one re-cover-set is selected
and thus e is fully covered. The family of selected sets is the union of all those selected
cover-sets. So, if S belongs to some selected cover-set, then xS should be 1, namely,

xS ≥ max{lQ : S ∈ Q ∈ Ω}. (8)

Notice that to fully cover element e, it is sufficient to select exactly one re-cover-set from
Ωe. So, we may replace (8) by the second constraint of (7) for the purpose of linearization.
The object function is exactly the density of selected sets.

Consider Example 4.2 again. Setting l
Q

(e1)
2

= l
Q

(e3)
1

= 1 and all other l-values to be 0

implies that the selected sub-collection S ′ = Q
(e1)
2 ∪ Q

(e3)
1 = {S1, S3} and e1, e3 are fully

covered. By the second constraint, xS1 = xS3 = 1 and we may take xS2 = 0 (to minimize
the objective function, it is better to take xS to be 0 if the right hand side of the second
constraint is 0). By the first constraint, ye2 = 0 and we may take ye1 = ye2 = 1 (to
minimize the objective function, it is better to take ye to be 1 for all those elements e
which are fully covered). Notice that {S1} serves as both Q

(e2)
1 and Q

(e3)
1 , the l-value for

the former is 0 and the l-value for the latter is 1, they are set independently.
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The above integer program (7) can be relaxed to the following linear program LP1:

min
∑

S∈S

cSxS (9)

s.t.
∑

e∈E

ye = 1

∑

Q:Q∈Ωe

lQ ≥ ye for e ∈ E

xS ≥
∑

Q:S∈Q∈Ωe

lQ for e ∈ E, S ∈ S

xS ≥ 0 for S ∈ S

ye ≥ 0 for e ∈ E

lQ ≥ 0 for Q ∈ Ωe for some e ∈ E.

It should be noticed that although there is exponential number of variables, the linear
program can be solved in polynomial time, the detail of which is presented as follows.
Consider the dual program of (9):

max a

s.t. a− fe ≤ 0 for e ∈ E (10)

dSe
≤ cS, for e ∈ S ∈ S, e ∈ E

fe ≤
∑

S:e∈S∈Q

dSe
, for Q ∈ Ωe, e ∈ E

fe ≥ 0 for e ∈ E

dSe
≥ 0 for e ∈ E, S ∈ S.

By LP primal-dual theory [14], one may solve (9) through solving (10), and to solve (10)
in polynomial time, it suffices to construct a separation oracle for the third constraint. For
any e ∈ E and Q ∈ Ωe, define g(e, Q) =

∑

S:e∈S∈Q dSe
. For any element e ∈ E, a cover-set

Qmin(e) minimizing g(e, Q) can be found by choosing the re cheapest (measured by cost
d) sets containing e. By checking whether g(e, Qmin(e)) ≥ fe holds for every e ∈ E, we
can either claim the validity of the constraints or find out a violated constraint. Using
ellipsoid method, linear program (10) is polynomial-time solvable.

Lemma 4.3. The optimal value of linear program (9), denoted as optLP1, satisfies optLP1 ≤
optMDSC, where optMDSC is the optimal value for integer linear program (7).

Proof. Let (x∗, y∗, Q∗) be an optimal solution to (7). Suppose
∑

e∈E y∗e = P ∗. Then
(x∗/P ∗, y∗/P ∗, Q∗/P ∗) is a feasible solution to (9). Hence optLP1 ≤

∑

S∈S cS(x
∗
S/P

∗) =
∑

S∈S cSx
∗
S/

∑

e∈E y∗e .

4.2 The Algorithm

Inspired by the method of paper [6] for network design problems, we design an ap-
proximation algorithm for MDSC which makes use of an approximation algorithm for the
minimum node weighted Steiner network problem.
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Definition 4.4 (Node Weighted Steiner Network Problem (NWSN) [21]). Given a graph
G = (V,E) with a weight function c on V and a connectivity requirement rs,t for each pair
of nodes (s, t), the minimum node weighted Steiner network problem asks for a subgraph
H such that every pair of nodes (s, t) are connected by at least rs,t edge-disjoint paths in
H and the node weight of H is as small as possible.

Notice that H must include all those nodes s with rs,t 6= 0 for at least one node t.
Such a node s can be viewed as a terminal node. On the other hand, those nodes s with
rs,t = 0 for any t 6= s need not be included in H . Such nodes are Steiner nodes. The
NWSN problem is to select a set of Steiner nodes with the minimum weight to satisfy
those connectivity requirements between terminal nodes.

The algorithm is presented in Algorithm 2. It partitions elements into disjoint union
of sets Yi’s, according to an optimal fractional solution to linear program (9). Let Yi0 be
a set satisfying the condition specified by line 3 of the algorithm, whose existence will
be shown later. The NWSN instance used in line 4 of the algorithm is constructed in
the following way. Let H be the graph on node set Yi0 ∪ S ∪ {s} and edge set {eS : e ∈
Yi0 , S ∈ S, e ∈ S} ∪ {sS : S ∈ S}. Set the weight on every S ∈ S to be cS and the
weight on all other nodes to be zero. Set the connectivity requirement rs,e = re for every
e ∈ Yi0 and the connectivity requirement on all other node pairs to be zero. Denote the
constructed instance as (H, c, r). The output of the algorithm is the sub-collection of sets
corresponding to those Steiner nodes in the calculated Steiner network on (H, c, r).

Algorithm 2 Algorithm For constrained MDSC

Input: An MDSC instance (E,S, c, r)
Output: A sub-collection S ′.

1: Find an optimal (fractional) solution (xf , yf , lf) to linear program (9).
2: Let Yi = {e ∈ E : 2−(i+1) < yfe ≤ 2−i} for 0 ≤ i ≤ I − 1 and YI = {e ∈ E : yfe ≤ 2−I},

where I = 2⌊log n⌋ − 1.
3: Let i0 be an index such that |Yi0| ≥ 2i0/(I + 1).
4: Find an approximation solution H ′ to NWSN on auxiliary instance (H, c, r).
5: Output S ′ = V (H ′) \ {Yi0 ∪ s}.

The rationale behind the algorithm will be manifested through the analysis in the
following subsection.

4.3 Theoretical Analysis

Notice that any feasible solution to the NWSN problem on instance (H, c, r) induces
a feasible solution to the multi-cover problem on instance (Yi0, S, c, r). In fact, suppose
element e ∈ Yi0 is connected to node s by rs,e = re edge-disjoint paths which has the form
of {sSie}

re
i=1, then {Si}

re
i=1 fully covers element e. Taking the union of such sets will fully

cover all elements in Yi0 .
To analyze the correctness and the performance ratio, we first give an LP-relaxation

for the set multi-cover problem and an LP-relaxation for the NWSN problem.
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LP-relaxation for set multi-cover. Similar to the construction of integer program
(7), the multi-cover problem on instance (Yi0,S, c, r) can be formulated as an integer
linear program whose relaxation is as follows:

min
∑

S∈S

cSxS (11)

s.t.
∑

Q:Q∈Ωe

lQ ≥ 1 for e ∈ Yi0

xS ≥
∑

Q:S∈Q∈Ωe

lQ for e ∈ Yi0, S ∈ S

xS ≥ 0 for S ∈ S

lQ ≥ 0 for for Q ∈ Ωe for some e ∈ E

LP-relaxation for NWSN. Next, consider the node-weighted Steiner network prob-
lem. For each pair of nodes s and t, an rs,t-path-set is a set of rs,t edge-disjoint (s, t)-paths
in G. Denote by Ps,t the family of all rs,t-path-sets and let P be the union of all these
families. The following linear program LP3 is a relaxation for the NWSN problem which
was presented in [5]:

min
∑

v∈V

cvxv (12)

s.t.
∑

P :P∈Ps,t

lP ≥ 1 for s, t ∈ V

xv ≥
∑

P :v∈P∈Ps,t

lP for v and s, t ∈ V

xv ≥ 0 for v ∈ V

lP ≥ 0 for P ∈ P

In fact, for the corresponding integral formulation in which lP and xv can only take values
from {0, 1}, lP indicates whether path-set P is chosen and xv indicates whether node v is
chosen. The model in [5] uses equality instead of inequality in the first constraint, whose
meaning is that for each pair of nodes s and t, exactly one rs,t-path-set is chosen, and
thus the connectivity requirement between s and t is satisfied. The second constraint says
that if node v belongs to some chosen path-set, then v must be chosen. Hence the chosen
nodes are those nodes on the union of chosen path-sets, and the objective is to minimize
the weight of those chosen nodes. When relaxing variables by allowing fractional values,
any optimal solution automatically has lP ≤ 1, xv ≤ 1, and

∑

P :P∈Ps,t
lP = 1. Hence

it does not matter if we relax the first constraint to be inequality and do not explicitly
require xS and lP to be no greater than 1.

Now, we are ready to analyze the performance ratio of Algorithm 2.

Theorem 4.5. For n ≥ 32, Algorithm 2 has performance ratio at most O(rmax(logn)
2)

for constrained MDSC.
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Proof. We prove the theorem step by step by first establishing the following three claims.

Claim 1. An index i0 as in Line 3 of Algorithm 2 exists and i0 ≤ I − 1.
In fact, since E is decomposed into I + 1 parts Y0 ∪ Y1 ∪ · · · ∪ YI , by the constraint

∑

e∈E yfe = 1, there exists an index i0 such that
∑

e∈Yi0
yfe ≥ 1/(I + 1). Since yfe ≤ 2−i0

for every e ∈ Yi0, we have |Yi0| ≥ 2i0/(I + 1).
Since I = 2⌊log n⌋ − 1 and yfe ≤ 2−I for each e ∈ YI , it can be calculated that

∑

e∈YI
yfe ≤ n2−I < 1/(I + 1) for n ≥ 32. Hence the above i0 ≤ I − 1.

Claim 2. optLP2 ≤ 2i0+1optMDSC , where optLP2 is the optimal value of linear program
(11).

Let x̂S = 2i0+1xf
S for each set S and let l̂Q = 2i0+1lQ

f for each cover-set Q. For any
element e ∈ Yi0 and any set S ∈ S, we have

x̂S = 2i0+1xf
S ≥ 2i0+1

∑

Q:S∈Q∈Ωe

lQ
f =

∑

Q:S∈Q∈Ωe

l̂Q.

Since i0 ≤ I − 1, we have yfe ≥ 2−(i0+1) for every e ∈ Yi0. Hence

∑

Q:Q∈Ωe

l̂Q = 2(i0+1)
∑

Q:Q∈Ωe

lQ
f ≥ 2(i0+1)yfe ≥ 1

for every e ∈ Yi0.

This implies that {x̂S, l̂Q} is a feasible solution to (11). Hence

optLP2 ≤
∑

S∈S

cSx̂S = 2i0+1
∑

S∈S

cSx
f
S = 2i0+1optLP1 ≤ 2i0+1optMDSC,

where the last inequality comes from Lemma 4.3.

Claim 3. optLP3 ≤ optLP2 , where optLP3 is the optimal value of linear program (12).
Suppose (x, l) is a feasible solution to (11). For each re-cover-set Q, let P (Q) =

{sSe}S∈Q be the rs,e-path set corresponding to Q. Setting lP (Q) = lQ will induce a
feasible solution to (12). The claim is proved.

It was shown by Chekuri et.al in paper [5] that the integrality gap for linear pro-
gram (12) is O(rmax log n). Combining this with Claim 2 and Claim 3, the output S ′ of
Algorithm 2 has cost

c(S ′) = 2i0+1O(rmax logn)optMDSC .

Since S ′ fully covers all elements in Yi0 , using the definition of I, we have

c(S ′)

|C(S ′)|
≤

c(S ′)

|Yi0|
≤

2i0+1O(rmax logn)optMDSC

2i0/(I + 1)
= O(rmax(logn)

2)optMDSC.

The theorem is proved.

Combining Theorem 4.5 with Theorem 3.3, we have the following result.

Corollary 4.6. PSMC has an (O( rmax log2 n
ε

), 1− ε)-bicriteria algorithm.
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5 Conclusion and Discussion

In this paper, we studied the partial set multi-cover problem (PSMC). By proposing
a new NP-hard problem called minimum density sub-collection (MDSC) and designing

an O(rmax log
2 n)-approximation for MDSC, we obtained an (O(rmax log2 n

ε
), 1− ε)-bicritera

algorithm for PSMC.
Our studies show that PSMC is a very challenging problem. One reason is that it

possesses an “all-or-nothing” property. As an illustration, suppose the covering require-
ment for each element is 10. Covering an element 9 times has the same effect as not
covering it at all. So, although the algorithm has strived to pick a large amount of sets,
it is still possible that only very few elements have their covering requirements satisfied.
Since what matters is only the number of fully covered elements, a lot of efforts might
have been wasted on fruitless covering on those not fully covered elements. Thus, in order
to obtain a good approximation, one has to control the wasted. Such an all-or-nothing
phenomenon is interesting and appear frequently in the real world. New ideas are needed
and conquering such a problem will have a great theoretical value.

Our performance ratio depends on the maximum covering requirement rmax. New ideas
have to be further explored to design algorithms without dependence on rmax. Designing
approximation algorithms without violation is another challenging problem.
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Appendix: A Flaw in the Conference Version.

A preliminary version of this paper was presented in INFOCOM2017. Making using of
an α approximation algorithm for MDSC, it was claimed that one can obtain an αH⌈qn⌉-
approximation algorithm for PSMC. However, there is a flaw. The algorithm in that paper
greedily selects densest sub-collections until at least qn elements are fully covered. Then
it prunes the last sub-collection R by greedily selecting sub-collections of R consisting of
at most rmax sets until the covering requirement is satisfied. Suppose the sub-collections
obtained in the pruning step are R′

1, . . . ,R
′
l. The approximation analysis relies on the

following inequality:
c(R′

1)

|C(R′
1)|
≤

c(R′
2)

|C(R′
2)|
≤ · · · ≤

c(R′
l)

|C(R′
l)|

. (13)

However, this is not true. Consider the following example

Example 5.1. S = {S1, S2, S3} with S1 = {e1, e2}, S2 = {e1, e3}, S3 = {e2, e3}, r(e1) =
r(e2) = r(e3) = rmax = 2, c(S1) = c(S2) = c(S3) = 1, and q = 2/3.

For this example, the densest sub-collection of S is R = S. Then the pruning step
selects R′

1 = {S1, S2} and R
′
2 = {S3} sequentially. Notice that

c(R′
1)

|C(R′
1)|

= 2 >
1

2
=

c(R′
2)

|C(R′
2)|

.

The reason why inequality (13) does not hold is because |C(R′)| is not a submodular
function, and it is difficult to bypass this obstacle. Obtaining an approximation algorithm
achieving a guaranteed performance ratio in the classic sense is a very challenging problem.
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