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Abstract

In this article we propose a new approach to an analysis of DC op-

timization problems. This approach was largely inspired by codifferential

calculus and the method of codifferential descent, and is based on the

use of a so-called affine support set of a convex function instead of the

Frenchel conjugate function. With the use of affine support sets we define

a global codifferential mapping of a DC function and derive new necessary

and sufficient global optimality conditions for DC optimization problems.

We also provide new simple necessary and sufficient conditions for the

global exactness of the ℓ1 penalty function for DC optimization problems

with equality and inequality constraints and present a series of simple ex-

amples demonstrating a constructive nature of the new global optimality

conditions. These examples show that when the optimality conditions are

not satisfied, they can be easily utilised in order to find “global descent”

directions of both constrained and unconstrained problems. As an inter-

esting theoretical example, we apply our approach to the analysis of a

nonsmooth problem of Bolza.

1 Introduction

For about thirty years DC optimization has been one of the most active areas
of research in nonconvex optimization due the abundance of applications and
a possibility of the use of the well-developed apparatus of convex analysis and
convex optimization [33, 34, 42, 61–63]. Various local search [3, 25, 38, 39, 42, 45,
50, 53, 57] and global search [4–6, 24, 52, 56, 60, 64] methods for solving smooth
and nonsmooth DC optimization problems were proposed over the years. It
should be noted that global search methods are often based on global optimality
conditions, which have attracted a lot of attention of researchers [14, 22, 28–30,
37, 46, 49, 51, 54, 55, 58, 59, 64, 65].

The main goal of this article is to present new necessary and sufficient glob-
al optimality conditions for nonsmooth DC optimization problems, including
problems with DC equality and DC inequality constraints. These optimality
conditions were largely inspired by the codifferential calculus developed by pro-
fessor V.F. Demyanov [8–10,13] and are intimately connected to the method of
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codifferential descent [3, 12, 13, 19, 21, 57]. To obtain new global optimality con-
ditions, we introduce and study a so-called affine support set of a proper closed
convex function. It should be noted that this set has been somewhat implicitly
used in multiple monographs and papers on convex analysis and optimization
(see, e.g., [23, Sect. I.3], [32, Theorem 1.3.8], [48, Sect. 7.3.3], etc.). Howev-
er, to the best of author’s knowledge, its properties have not been thoroughly
investigated earlier.

Affine support sets of convex functions play the same role in the non-
positively homogeneous case, as subdifferentials play in Minkowski duality. Fur-
thermore, they are closely related to the abstract convexity theory [48] and
Fenchel conjugate functions. In particular, almost all results on affine support
sets have natural counterparts in terms of Fenchel conjugate functions. Howev-
er, the use of affine support sets provides one with a new perspective on convex
and DC functions, which allowed us to obtain a new result on convex functions
(part 4 of Proposition 2). This result is a key ingredient in our derivation of new
global optimality conditions for DC optimization problems.

With the use of affine support sets we define a global codifferential mapping
of a DC function, which can be viewed as a “globalization” of Demyanov’s def-
inition of codifferential [13]. We provide some simple calculus rules for global
codifferentials that are particularly useful in the piecewise affine case. Further-
more, we utilise global codifferentials and some results on affine support sets
in order to obtain new necessary and sufficient global optimality conditions for
nonsmooth DC optimization problems in terms of global codifferentials (differ-
ent global optimality conditions in terms of codifferentials in the piecewise affine
case were obtained by Polyakova [46]). It turns out that these condition are im-
plicitly incorporated into the method of codifferential descent (see Remark 6
below and [19, 21]) and have a somewhat constructive nature in the piecewise
affine case. Namely, we present a series of simple examples demonstrating that
the verification of the global optimality conditions at a non-optimal point allows
one to find “global descent” directions, which sometimes lead directly towards
a global minimizer. In order to apply new global optimality conditions to prob-
lems with DC equality and DC inequality constraints we obtain new simple
necessary and sufficient conditions for the global exactness of the ℓ1 penalty
function. Finally, as an interesting theoretical example, in the end of the paper
we apply some results on global codifferentials of DC functions to an analysis
of a nonsmooth problem of Bolza.

It should be noted that in many cases it is difficult to verify the global op-
timality conditions obtained in this paper, since it is often difficult to compute
a global codifferential of a DC function explicitly. However, a similar statement
is true for many other global optimality conditions for general DC optimization
problems. Nevertheless, it seems possible to design new numerical methods for
DC optimization problem utilising a certain approximation of global codiffer-
ential (cf. codifferential method in [3], aggregate codifferential method in [57],
and Example 9 below).

The paper is organised as follows. In Section 2 we introduce an affine sup-
port set of a convex function, study its properties, and point out its connection
with the Fenchel conjugate function. Section 3 is devoted to necessary and suffi-
cient global optimality conditions for nonsmooth DC optimization problems in
terms of global codifferentials. In this section, we also present a series of simple
examples demonstrating a somewhat constructive nature of the global optimal-
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ity conditions and obtain simple conditions for the global exactness of the ℓ1
penalty function for DC optimization problems with equality and inequality
constrains. Some connections of the global optimality conditions obtained in
this paper with KKT optimality conditions and global optimality conditions in
terms of ε-subdifferentials are discussed in Section 4. Finally, different global
optimality conditions in terms of global codifferentials and their application to
an analysis of a nonsmooth problem of Bolza are given in Section 5.

For the sake of simplicity, in this paper we study DC functions defined on
a real Hilbert space. However, it should be noted that most of the results of
Sections 2 and 5 (except for part 4 of Proposition 2 and Proposition 3) can be
easily extended to the case of locally convex spaces, while the rest of the results
of this paper (apart from Theorem 3) remain valid in strictly convex reflexive
Banach spaces.

2 Affine support sets of convex functions

In this section we introduce and study a so-called affine support set of a closed
convex function. The main ideas and results presented below, in a sense, can be
viewed as a natural extension of the Minkowski duality to the case of general, i.e.
non-positively homogeneous convex functions (cf. the abstract convexity theory
in [48]).

Let H be a real Hilbert space, R = R ∪ {±∞}, and f : H → R be a proper
closed convex function. As is well known (see, e.g. [23, Prp. I.3.1]), the function
f can be represented as the supremum of a family of affine functions. Taking, if
necessary, the closed convex hull of this set, and identifying an affine function
l(x) = a + 〈v, x〉 with the point (a, v) ∈ R × H, one gets that there exists a
closed convex set Sf ⊂ R×H such that

f(x) = sup
(a,v)∈Sf

(a+ 〈v, x〉) ∀x ∈ H,

where 〈·, ·〉 is the inner product in H. Any such set Sf is called an affine support
set of the function f . At first, let us demonstrate how affine support sets are
connected with the ε-subdifferential of the function f .

Proposition 1. For any affine support set Sf of f and for all ε ≥ 0 and
x ∈ dom f one has

∂εf(x) =
{

v ∈ H
∣

∣ ∃a ∈ R : (a, v) ∈ Sf , a+ 〈v, x〉 ≥ f(x)− ε
}

. (1)

Proof. Fix arbitrary ε ≥ 0 and x ∈ dom f , and denote by Dε(x) the set on the
right-hand side of (1). Observe that for any (a, v) ∈ Sf such that a + 〈v, x〉 ≥
f(x)− ε one has

f(y)− f(x) ≥ a+ 〈v, y〉 −
(

a+ 〈v, x〉
)

− ε = 〈v, y − x〉 − ε ∀y ∈ H,

which implies that v ∈ ∂εf(x). Thus, Dε(x) ⊆ ∂εf(x).
Arguing by reductio ad absurdum, suppose that ∂εf(x) 6= Dε(x). Then

there exists v0 ∈ ∂εf(x) such that v0 /∈ Dε(x). Hence (a, v0) /∈ Sf for any
a ≥ f(x)− 〈v0, x〉 − ε, since otherwise v0 ∈ Dε(x).

Denote Cf = {(b, v) ∈ R × H | ∃a ≥ b : (a, v) ∈ Sf}. It is clear that the
set Cf is convex, and (f(x) − 〈v0, x〉 − ε, v0) /∈ Cf . To apply the separation
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theorem, let us check that the set Cf is closed. To this end, introduce a function
g : H → R as follows: g(v) = sup{a | (a, v) ∈ Sf}. Observe that (g(v), v) ∈ Sf

for any v ∈ dom g due to the fact that the set Sf is closed. Moreover, it is easy
to see that Cf is the hypograph of the function g. Therefore, it is sufficient to
check that the function g is upper semicontinuous (u.s.c.).

At first, note that g is a proper concave function, since its hypograph is a
convex set, and if g(v) = +∞ for some v (i.e. (a, v) ∈ Sf for any sufficiently large
a), then f(·) ≡ +∞, which contradicts the assumption that the function f is
proper. Note also that g(·) 6≡ −∞, since otherwise Sf = ∅ and f(·) ≡ −∞, which
contradicts our assumption. Furthermore, g is bounded above on any bounded
set. Indeed, for any bounded set Q ⊂ H and v ∈ Q either (R × {v}) ∩ Sf = ∅
and g(v) = −∞ or (a, v) ∈ Sf for some a ∈ R, and

g(v) = sup{a | (a, v) ∈ Sf} = sup
a : (a,v)∈Sf

(

a+ 〈v, x〉 − 〈v, x〉
)

≤ sup
(a,v)∈Sf

(

a+ 〈v, x〉
)

− 〈v, x〉 ≤ f(x) + q‖x‖,

where q = supv∈Q ‖v‖ (recall that x ∈ dom f , i.e. f(x) < +∞).
Arguing by reductio ad absurdum suppose that g is not u.s.c. at a point

v ∈ H. Let v ∈ dom g. Then there exists θ > 0 such that for any n ∈ N one
can find vn ∈ dom g for which g(vn) > g(v) + θ and ‖vn − v‖ < 1/n. Taking
into account the fact that g is bounded above on bounded sets one gets that the
sequence {g(vn)} is bounded. Therefore, there exists a subsequence {vnk

} such
that the corresponding subsequence {g(vnk

)} converges to some g∗ ≥ g(v) + θ.
As was poited out above, (g(vnk

), vnk
) ∈ Sf for all k ∈ N. Hence passing to

the limit as k → ∞ and applying the closedness of the set Sf one obtains that
(g∗, v) ∈ Sf . Consequently, g(v) ≥ g∗ ≥ g(v) + θ, which is impossible.

Let now v /∈ dom g. Then there exist M ∈ R and a sequence {vn} ⊂ dom g
converging to v such that g(vn) ≥ M for all n ∈ N. Applying, as above, the
fact that the sequence {g(vn)} is bounded one can extract a subsequence {vnk

}
such that the sequence {g(vnk

)} converges to some g∗ ≥ M > −∞. Therefore
(g∗, v) ∈ Sf , and g(v) ≥ g∗ > −∞, which is impossible. Thus, g is u.s.c., and
the set Cf is closed.

Recall that (f(x) − 〈v0, x〉 − ε, v0) /∈ Cf , and Cf is a closed convex set.
Applying the separation theorem one obtains that there exist (b, y) ∈ R × H
and δ > 0 such that

b(f(x)− 〈v0, x〉 − ε) + 〈v0, y〉 ≥ ba+ 〈v, y〉+ δ ∀(a, v) ∈ Cf . (2)

By definition for any (a, v) ∈ Sf one has (−∞, a] × {v} ⊂ Cf , which implies
that b ≥ 0.

If b > 0, then dividing (2) by b and taking the supremum over all (a, v) ∈ Sf

one obtains

f(x) +

〈

v0,
1

b
y − x

〉

− ε ≥ f

(

1

b
y

)

+
δ

b
.

Recall that v0 ∈ ∂εf(x). Therefore

f

(

1

b
y

)

≥ f(x) +

〈

v0,
1

b
y − x

〉

− ε ≥ f

(

1

b
y

)

+
δ

b
,

which is impossible. Thus, ∂εf(x) = Dε(x).
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Suppose now that b = 0. Then (2) implies that

f(x+ αy)− f(x)

α
=

1

α

(

sup
(a,v)∈Sf

(

a+ 〈v, x+ αy〉
)

− f(x)
)

≤ 1

α

(

sup
(a,v)∈Sf

(a+ 〈v, x〉〉) + α〈v0, y〉 − αδ − f(x)
)

= 〈v0, y〉 − δ (3)

for any α > 0. On the other hand, by the definition of ε-subgradient for any
α > ε/δ one has

f(x+ αy)− f(x)

α
≥ 〈v0, y〉 −

ε

α
> 〈v0, y〉 − δ,

which contradicts (3). Thus, ∂εf(x) = Dε(x), and the proof is complete.

Remark 1. By the proposition above the supremum in the definition of affine
support set is attained for some x ∈ dom f iff f is subdifferentiable at x. In par-
ticular, if f is finite-valued, then the supremum in the definition of affine support
set is attained for any x ∈ H by [23, Proposition I.5.2 and Corollary I.2.5].

Let Sf be any affine support set of f . Our aim now is to show that several
important properties of the function f , such as boundedness below and the at-
tainment of minimum, can be described in terms of simple geometric properties
of the set Sf .

Observe that if f attains a global minimum at a point x∗, then 0 ∈ ∂f(x∗),
and (f(x∗), 0) ∈ Sf by Proposition 1. Thus, the sets R× {0} and Sf intersect.
In the general case, define af = sup(a,0)∈Sf

a. By definition af = −∞, if the
sets R × {0} and Sf do not intersect. Note also that if they do intersect, then
(af , 0) ∈ Sf due to the facts that (i) this intersection is obviously closed, and
(ii) if af = +∞, then f(·) ≡ +∞, which contradicts the assumption that the
function f is proper.

Denote by Nf = {(b, w) ∈ R × H | b(a − af ) + 〈w, v〉 ≤ 0 ∀(a, v) ∈ Sf}
the normal cone to the set Sf at the point (af , 0), if the sets R × {0} and Sf

intersect, and define Nf = ∅ otherwise. From this point onwards we suppose

that the space R×H is endowed with the norm ‖(a, v)‖ =
√

a2 + ‖v‖2.

Proposition 2. The following statements hold true:

1. f is bounded below iff Sf ∩ (R× {0}) 6= ∅;

2. if f is bounded below, then af = infx∈H f(x);

3. f attains a global minimum iff there exists (b, w) ∈ Nf such that b > 0;
furthermore, argminx∈H f(x) = {b−1w ∈ H | (b, w) ∈ Nf : b > 0};

4. if f(x) ≥ 0 for all x ∈ H, then either 0 ∈ Sf or a∗ > 0, where (a∗, v∗) is
a globally optimal solution of the problem

min
(a,v)∈R×H

‖(a, v)‖2 subject to (a, v) ∈ Sf ;

conversely, if f is bounded below and either 0 ∈ Sf or a∗ > 0, then
f(x) ≥ 0 for all x ∈ H. Moreover, in the case a∗ > 0 one has af > 0, i.e.
infx∈H f(x) > 0.
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Proof. 1. If Sf ∩ (R× {0}) 6= ∅, then there exists a0 ∈ R such that (a0, 0) ∈ Sf .
By the definition of Sf for all x ∈ H one has f(x) ≥ a0, i.e. f is bounded below.

Suppose, now, that f is bounded below. Denote f∗ = infx∈H f(x). Then for
any ε > 0 there exists xε ∈ H such that f(xε) ≤ f∗ + ε. Hence 0 ∈ ∂εf(xε),
which with the use of Proposition 1 implies that there exists a ≥ f(xε)− ε such
that (a, 0) ∈ Sf , i.e. Sf ∩ (R× {0}) 6= ∅.

2. As was just proved, for any ε > 0 there exists a ≥ f(xε)− ε ≥ f∗− ε such
that (a, 0) ∈ Sf . Therefore af ≥ f∗. On the other hand, for any (a, 0) ∈ Sf and
x ∈ H one obviously has f(x) ≥ a, which implies that af ≤ f∗. Thus, af = f∗.

3. Let f attain a global minimum at a point x∗ ∈ H. By definition f(x∗) =
sup(a,v)∈Sf

(a+ 〈v, x∗〉) = f∗ or, equivalently,

(a− f∗) + 〈v, x∗〉 ≤ 0 ∀(a, v) ∈ Sf ,

which implies that (1, x∗) ∈ Nf (note that (f∗, 0) ∈ Sf and af = f∗ by the
second part of the theorem).

Suppose, now, that Nf 6= ∅, and there exists (b, w) ∈ Nf with b > 0. By the
definition of Nf and the second part of the theorem one has

b(a− f∗) + 〈w, v〉 ≤ 0 ∀(a, v) ∈ Sf .

Dividing by b and taking the supremum over all (a, v) ∈ Sf one obtains

f

(

1

b
w

)

= sup
(a,v)∈Sf

(

a+

〈

v,
1

b
w

〉)

≤ f∗,

which implies that b−1w is a global minimizer of f . Thus, argminx∈H f(x) =
{b−1w ∈ H | (b, w) ∈ Nf : b > 0}.

4. Let f(x) ≥ 0 for all x ∈ H. Arguing by reductio ad absurdum, suppose
that 0 /∈ Sf and a∗ ≤ 0. From the definition of (a∗, v∗) and the necessary
condition for a minimum of a differentiable function on a convex set it follows
that

a∗(a− a∗) + 〈v∗, v − v∗〉 ≥ 0 ∀(a, v) ∈ Sf . (4)

If a∗ = 0, then one gets that 〈v,−v∗〉 ≤ −‖v∗‖2 < 0 for all (a, v) ∈ Sf (note
that v∗ 6= 0, since otherwise 0 ∈ Sf ). Therefore for any α > 0 and x ∈ dom f
one has

f(x− αv∗) = sup
(a,v)∈Sf

(a+ 〈v, x〉+ α〈v,−v∗〉) ≤ f(x)− α‖v∗‖2.

Consequently, f(x− αv∗) → −∞ as α → +∞, which is impossible.
If a∗ < 0, then dividing (4) by a∗ and taking the supremum over all (a, v) ∈

Sf one obtains that

f

(

1

a∗
v∗

)

= sup
(a,v)∈Sf

(

a+

〈

v,
1

a∗
v∗

〉)

≤ a∗ +
1

a∗
‖v∗‖2 < 0,

which contradicts the assumption that f is nonnegative.
Let us prove the converse statement. If 0 ∈ Sf , then, obviously, one has

f(x) ≥ 0 for all x ∈ H. Therefore, let 0 /∈ Sf and a∗ > 0. Arguing by reduc-
tio ad absurdum, suppose that f∗ = infx∈H f(x) < 0 (note that f∗ > −∞
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due to the assumption that f is bounded below). By the second part of
the theorem one has (f∗, 0) ∈ Sf . Consequently, for any α ∈ [0, 1] one has
α(a∗, v∗) + (1− α)(f∗, 0) ∈ Sf . Setting α = |f∗|/(|f∗|+ a∗) ∈ (0, 1) one obtains
that (0, αv∗) ∈ Sf , which is impossible due to the definition of (a∗, v∗) and the
obvious inequality ‖(0, αv∗)‖2 < ‖(a∗, v∗)‖2. Thus, the function f is nonnega-
tive. It remains to note that af > 0 in the case when a∗ > 0 by virtue of the
facts that af ≥ 0 due to the nonnegativity of the function f , and af 6= 0, since
otherwise 0 ∈ Sf and a∗ = 0.

Remark 2. (i) Let us note that the assumption on the boundedness below of
the function f cannot be dropped from the last part of the proposition above.
Indeed, if f(x) ≡ a+ 〈v, x〉 with a > 0 and v 6= 0, then defining Sf = (a, v) one
obtains that a∗ > 0, but the function f is not nonnegative.
(ii) From the proof of the last part of the proposition above it follows that if
0 /∈ Sf , but a∗ = 0, then f is not bounded below. Consequently, if f is bounded
below, then f is nonnegative iff a∗ ≥ 0. Furthermore, note that if a∗ < 0, then
f( 1

a∗

v∗) < 0.

Let us give a simple example illustrating the proposition above.

Example 1. Let H = R, and Sf = {(a, v) ∈ R
2 | (a+1)2+(v− 1)2 ≤ 1}. Then

according to Proposition 2 one has f∗ = infx∈R f(x) = −1. Furthermore, it is
easy to check that Nf = {(a, v) ∈ R

2 | a = 0, v ≤ 0}, which by Proposition 2
implies that the function f does not attain a global minimum. Let us verify this
directly. Indeed, for any x ∈ R one has

f(x) = max
(a,v)∈Sf

(a+vx) = max{(a−1)+(v+1)x | a2+v2 ≤ 1} =
√

1 + x2+x−1.

Thus, f∗ = −1, and f does not attain a global minimum.

Let us also obtain an extension of part 4 of Proposition 2 to the case when
the nonnegativity of the function f is checked on a set defined by an inequality
constraint.

Proposition 3. Let g : H → R be a proper closed convex function, and let Sg be
any affine support set of g. Suppose also that dom f ∩dom g 6= ∅. If f(x) ≥ 0 for
all x satisfying the inequality g(x) ≤ 0, then either 0 ∈ cl co{Sf , Sg} or a∗ > 0,
where (a∗, v∗) is a globally optimal solution of the problem

min
(a,v)∈R×H

‖(a, v)‖2 subject to (a, v) ∈ cl co{Sf , Sg}.

Conversely, if f is bounded below and continuous on the set {x | g(x) ≤ 0},
0 /∈ Sg, and either 0 ∈ cl co{Sf , Sg} or a∗ > 0, then f(x) ≥ 0 for all x satisfying
the inequality g(x) ≤ 0. Moreover, in the case a∗ > 0 there exists γ > 0 such
that f(x) ≥ γ for all x satisfying the inequality g(x) < γ.

Proof. Let f be nonnegative on the set {x | g(x) ≤ 0}. Arguing by reductio
ad absurdum, suppose that 0 /∈ cl co{Sf , Sg} and a∗ ≤ 0. By the necessary
condition for a minimum of a convex function on a convex set one obtains that

a∗(a− a∗) + 〈v∗, v − v∗〉 ≥ 0 ∀(a, v) ∈ cl co{Sf , Sg}. (5)
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If a∗ < 0, then dividing this inequality by a∗, and at first taking the supremum
over all (a, v) ∈ Sf , and at second taking the supremum over all (a, v) ∈ Sg one
obtains that

f

(

1

a∗
v∗

)

≤ a∗ +
1

a∗
‖v∗‖ < 0, g

(

1

a∗
v∗

)

≤ a∗ +
1

a∗
‖v∗‖ < 0,

which is impossible. On the other hand, if a∗ = 0, then from (5) it follows that
〈v,−v∗〉 ≤ −‖v∗‖2 < 0 for all (a, v) ∈ Sf ∪Sg (note that v∗ 6= 0, since otherwise
0 ∈ cl co{Sf , Sg}). Hence for any x ∈ dom f ∩ dom g and for all α > 0 one has

f(x− αv∗) ≤ f(x) − α‖v∗‖2, g(x− αv∗) ≤ g(x)− α‖v∗‖2.

Consequently, f(x − αv∗) < 0 and g(x − αv∗) < 0 for any sufficiently large
α > 0, which is impossible.

Let us prove the converse statement. Define h(·) = sup{f(·), g(·)}. It is easily
seen that cl co{Sf , Sg} is an affine support set of the function h. Our aim is to
verify that f(x) ≥ 0 on the set {x | g(x) ≤ 0} iff h(x) ≥ 0 for all x ∈ H,
provided 0 /∈ Sg. Then applying the last part of Proposition 2 to the function h
one obtains the desired result.

Clearly, if f(x) ≥ 0 for all x satisfying the inequality g(x) ≤ 0, then h(·) ≥ 0.
Let us prove the converse statement. If the set {x | g(x) ≤ 0} is empty, then the
statement holds vacuously. Therefore, suppose that this set is not empty. Note
that if infx∈H g(x) = 0, then 0 ∈ Sg by Proposition 2, which contradicts our
assumption. Thus, there exists x0 such that g(x0) < 0, i.e. Slater’s condition
holds true.

Suppose that the function h is nonnegative. Then f(x) ≥ 0 for any x sat-
isfying the strict inequality g(x) < 0. From the convexity of the function g it
follows that {x | g(x) ≤ 0} = cl{x | g(x) < 0}, since for any point x such that
g(x) = 0 one has g(αx+(1−α)x0) < 0 for all α ∈ [0, 1). Consequently, applying
the fact that f is continuous on {x | g(x) ≤ 0} one obtains that f(x) ≥ 0 for all
x satisfying the inequality g(x) ≤ 0, and the proof is complete.

Remark 3. The assumption that f is bounded below on {x | g(x) ≤ 0} is
necessary for the validity of the converse statement of the previous proposition.
Indeed, if f(x) = g(x) = a+ 〈v, x〉 for some a > 0 and v 6= 0, then a∗ = a > 0,
but f(x) < 0 for any x such that g(x) < 0. The assumption 0 /∈ Sg is also
necessary for the validity of the converse statement of the proposition, since if
0 ∈ Sg, then 0 ∈ cl co{Sf , Sg} regardless of the behaviour of the function f .
Furthermore, note that the assumption 0 /∈ Sg is, in fact, equivalent to Slater’s
condition, provided the set {x | g(x) ≤ 0} is not empty.

With the use of Proposition 2 we can point out a direct connection between
affine support sets of f and the Frenchel conjugate function f∗.

Proposition 4. Let Sf be any affine support set of f . Then

sup{a | (a, v) ∈ Sf} = −f∗(v) ∀v ∈ H. (6)

In particular, any affine support set of the function f is contained in the set
{(a, v) ∈ R×H | a ≤ −f∗(v)}. Furthermore, the set

Sf = cl co{(−f∗(v), v) ∈ R×H | v ∈ dom f∗}
= cl co{(f(y)− 〈v, y〉, v) ∈ R×H | y ∈ dom ∂f, v ∈ ∂f(y)} (7)
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is the smallest (by inclusion) affine support set of the function f .

Proof. Fix v ∈ H, and consider the function g(x) = f(x) − 〈v, x〉. Note that
this function is bounded below iff v ∈ dom f∗. On the other hand, from the fact
that the set Sf − (0, v) is an affine support set of this function and the first part
of Proposition 2 it follows that g is bounded below iff there exists a ∈ R such
that (a, v) ∈ Sf . Furthermore, if v ∈ dom f∗, then applying the second part of
Proposition 2 one obtains that

−f∗(v) = inf
x∈H

(f(x) − 〈v, x〉) = sup{a | (a, 0) ∈ Sf − (0, v)}

= sup{a | (a, v) ∈ Sf},

i.e. (6) holds true, and Sf ⊆ {(a, v) ∈ R × H | a ≤ −f∗(v)}. Hence and from
the fact that

f(x) = f∗∗(x) = sup
v∈dom f∗

(

〈v, x〉 − f∗(v)
)

∀x ∈ H (8)

it follows that set (7) is the smallest affine support set of the function f . It
remains to note that the second equality in (7) follows directly from the facts
that (i) one can take the supremum in (8) over all v ∈ dom ∂f∗ (since if v ∈
dom f∗ \ dom∂f∗, then for any x ∈ H by definition there exists w ∈ dom f∗

such that 〈w, x〉 − f∗(w) > 〈v, x〉 − f∗(v)), and (ii) v ∈ dom ∂f∗ iff v ∈ ∂f(y)
for some y ∈ dom ∂f iff f∗(v) = 〈v, y〉 − f(y) by [32, Corollary X.1.4.4].

Remark 4. The proposition above demonstrates that there is a direct connec-
tion between affine support sets and conjugate functions. Note, in particular,
that the function g(v) defined in the proof of Proposition 1 is, in fact, the
negative of the conjugate function f∗. Furthermore, Proposition 1 itself is a re-
formulation of the standard characterization of ε-subgradients via the conjugate
function (see, e.g. [32, Proposition XI.1.2.1]) in terms of affine support sets. In
the light of Proposition 4 we can also give a simple interpretation of Proposi-
tion 2. The first two statements of this proposition is nothing but the obvious
equality infx∈H f(x) = −f∗(0). The third one is a combination of the equality
argminx∈H f(x) = ∂f∗(0) and the well-known geometric interpretation of the
subdifferential in terms of the normal cone to the epigraph of a convex function
(see, e.g. [31, Proposition VI.1.3.1]). However, to the best of author’s knowl-
edge, the last statement of Proposition 2 is completely new. Furthermore, the
last statement of this propositon is a basis of new global optimality conditions
for DC optimization problems derived in the next section.

Let us present some simple calculus rules for affine support sets. Their proofs
are straightforward and therefore are omitted.

Proposition 5 (linear combination). Let fi : H → R, i ∈ I = {1, . . . , l} be
proper closed convex functions, and let Sfi be any affine support set of fi, i ∈ I.
Then for any λi ≥ 0, i ∈ I, the set Sf = cl(

∑

i∈I λiSfi) is an affine support set
of the function f =

∑

i∈I λifi.

Proposition 6 (affine transformation). Let g : H → R be a proper closed convex
function, and Sg be any affine support set of g. Suppose also that X is a Hilber
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space, T : X → H is a bounded linear operator, and f(x) = g(Tx+ b) for some
b ∈ H. Then the set

Sf = cl
{

(a+ 〈v, b〉, T ∗v) ∈ R×X
∣

∣ (a, v) ∈ Sg

}

(9)

is an affine support set of f . Moreover, the closure operator in (9) can be
dropped, if Sg is bounded or T is invertible.

Proposition 7 (supremum). Let Y be a nonempty set, and a function f : H×
Y → R be such that for any y ∈ Y the function f(·, y) is proper, closed, and
convex. Suppose also that S(y) is an affine support set of the function f(·, y),
and the function g(·) = supy∈Y f(·, y) is proper. Then Sg = cl co{S(y) | y ∈ Y }
is an affine support set of the function g.

In the end of this section, let us give several simple examples demonstrating
how one can compute affine support sets of convex functions with the use of
Proposition 4 and some other well-known results.

Example 2. If f is a proper closed positively homogeneous convex function,
then the set Sf = {0} × ∂f(0) is an affine support set of f (see, e.g. [31,
Theorem V.3.1.1]).

Example 3. If H = R
d, and f is a finite polyhedral convex function, then

f(x) = max1≤i≤n(ai + 〈vi, x〉) for some n ∈ N and (ai, vi) ∈ R
d+1 (see [47,

Sect. 19]). Consequently, the set Sf = co{(ai, vi) | i ∈ I} is an affine support
set of f . Therefore, a finite convex function f is polyhedral iff there exists an
affine support set of this function that is a convex polytope.

Example 4. If f is Gâteaux differentiable on its effective domain, then

Sf = cl co
{

(

f(x)− 〈∇f(x), x〉,∇f(x)
)

∈ R×H
∣

∣

∣
x ∈ dom f

}

is an affine support set of f . Here ∇f(x) is the gradient of f at x In particular,
if f(x) = 0.5〈x,Ax〉 + 〈b, x〉, where the linear operator A : H → H is positive
semidefinite, then Sf = cl co{(−0.5〈x,Ax〉, Ax+ b) | x ∈ H} is an affine support
set of f . Note that in this case it is easier to describe the affine support set with
the use of the gradient rather than the conjugate function (cf. (7)), since the
conjugate function is defined via the pseudoinverse operator of A.

3 Global codifferential calculus and optimality

conditions

In this section we apply the main results on affine support sets of convex func-
tions obtained above to DC optimization problems. In particular, with the use
of Proposition 2 we obtain new necessary and sufficient conditions for global
optimality in DC optimization. Hereinafter we consider only finite-valued DC
functions f : H → R defined on the entire space H.

Let f be a DC function, i.e. let f = g − h, where g, h : H → R are closed
convex functions. Suppose also that Sg and Sh are any affine support sets of the
functions g and h respectively. Introduce the set-valued mappings

df(x) =
{

(a− g(x) + 〈v, x〉, v) ∈ R×H|(a, v) ∈ Sg

}

,

df(x) =
{

(−b+ h(x)− 〈w, x〉,−w) ∈ R×H|(b, w) ∈ Sh

}

.
(10)
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Then for any x,∆x ∈ H the following equality holds true:

f(x+∆x)− f(x) = sup
(a,v)∈df(x)

(a+ 〈v,∆x〉) + inf
(b,w)∈df(x)

(b+ 〈w,∆x〉) (11)

(in actuality, the supremum and the infimum are attained by Remark 1). Indeed,
by definition one has

g(x+∆x) − g(x) = sup
(a,v)∈Sg

(a+ 〈v, x+∆x〉) − g(x)

= sup
(a,v)∈Sg

(a− g(x) + 〈v, x〉+ 〈v,∆x〉)

= sup
(a,v)∈df(x)

(a+ 〈v,∆x〉). (12)

Subtracting from this equality the same one for the function h(x) one obtains
that (11) is valid. Furthermore, for any x ∈ H one has

sup
(a,v)∈df(x)

a = sup
(a,v)∈Sg

(a+ 〈v, x〉) − g(x) = 0,

and, similarly, inf(b,w)∈df(x) b = 0. Finally, observe that the sets df(x) and df(x)

are convex and closed due to the fact that the map (a, v) 7→ (a−g(x)+ 〈v, x〉, v)
is a homeomorphism of R×H. Thus, the pair [df(x), df(x)] has similar proper-
ties to codifferential of f at x [8–10,13]. Therefore, it is natural to call the pair
Df = [df, df ] a global codifferential mapping (or simply a global codifferential)
of the function f associated with the DC decomposition f = g − h. The mul-
tifunction df is called a global hypodifferential of f , while the multifunction df
is called a global hyperdifferential of f . Note that global codifferential mappings
are obviously not unique, since there exist infinitely many DC decompositions
of a DC function.

Let us point out some simple calculus rules for global codifferentials. Their
proofs are straightforward, and we omit them for the sake of shortness (see [21,
Proposition 4.4] for some details).

Proposition 8. Let fi, i ∈ I = {1, . . . k}, be DC functions, and let Dfi be
the global codifferential mapping of fi associated with a DC decomposition fi =
gi − hi. The following statements hold true:

1. if f = f1 + c for some c ∈ R, then Df = Df1;

2. if f =
∑k

i=1 fi, then Df = [cl(
∑k

i=1 dfi), cl(
∑k

i=1 dfi)] is a global codif-
ferential mapping of the function f associated with the DC decomposition
f =

∑k
i=1 gi −

∑k
i=1 hi;

3. if f = λf1, then Df = [λdf1, λdf1] is a global codifferential mapping of f
associated with the DC decomposition f = λg1 − λh1 in the case λ ≥ 0,
and Df = [λdf1, λdf1] is a global codifferential mapping of f associated
with the DC decomposition f = |λ|h1 − |λ|g1 in the case λ < 0;

4. if f = maxi∈I fi, then

Df(·) =
[

cl co

{

(fi(·)−f(·), 0)+dfi(·)−
∑

j 6=i

dfj(·)
∣

∣

∣

∣

i ∈ I

}

, cl
(

k
∑

i=1

dfi(·)
)

]

11



is a global codifferential mapping of f associated with the DC decomposi-
tion f = maxi∈I{gi +

∑

j 6=i hj} −
∑k

i=1 hi;

5. if f = mini∈I fi, then

Df(·) =
[

cl
(

k
∑

i=1

dfi(·)
)

, cl co

{

(fi(·)−f(·), 0)+dfi(·)−
∑

j 6=i

dfj(·)
∣

∣

∣

∣

i ∈ I

}]

is a global codifferential mapping of f associated with the DC decomposi-
tion f =

∑k
i=1 gi −maxi∈I{hi +

∑

j 6=i gj}.

Remark 5. Let us explain the presence of the terms (fi(·) − f(·), 0) in the
expressions for global codifferentials of the functions f = maxi∈I fi and f =
mini∈I fi in the proposition above. The easiest way to see this is by computing
the increment of the function f . Namely, let k = 2 and f = max{f1, f2}. Then
for any x,∆x ∈ H one has

f(x+∆x)− f(x) = max{f1(x +∆x)− f(x), f2(x +∆x)− f(x)}
= max

{

f1(x) − f(x) + sup
(a,v)∈df1(x)

(a+ 〈v,∆x〉) + inf
(b,w)∈df1(x)

(b+ 〈w,∆x〉),

f2(x)− f(x) + sup
(a,v)∈df2(x)

(a+ 〈v,∆x〉) + inf
(b,w)∈df2(x)

(b + 〈w,∆x〉)
}

.

Adding and subtracting the terms corresponding to df1(x) and df2(x) one ob-
tains

f(x+∆x)− f(x)

= max
{

f1(x) − f(x) + sup
(a,v)∈df1(x)

(a+ 〈v,∆x〉) − inf
(b,w)∈df2(x)

(b+ 〈w,∆x〉),

f2(x)− f(x) + sup
(a,v)∈df2(x)

(a+ 〈v,∆x〉) − inf
(b,w)∈df1(x)

(b+ 〈w,∆x〉)
}

+ inf
(b,w)∈df1(x)

(b+ 〈w,∆x〉) + inf
(b,w)∈df2(x)

(b+ 〈w,∆x〉).

which implies the required result. The interested reader can also verify this fact
in a direct, but slightly more complicated way. Namely, define

g = max{g1 + h2, g2 + h1}, Sg = cl co{Sg1 + Sh2
, Sg2 + Sh1

},

and compute df(x) with the use of (10) (cf. [21, Proposition 4.4, part (5)]).

Now we can turn to the study of global optimality conditions for DC opti-
mization problems. At first, we obtain necessary and sufficient global optimality
conditions for the unconstrained problem

min
x∈H

f(x) (P0)

in terms of a global codifferential of the function f .

Theorem 1. Let f be a DC function, Df be any global codifferential of f , and
x∗ ∈ H be a given point. Suppose that f is bounded below, and a set C ⊆ df(x∗)
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is such that df(x∗) = cl coC (in particular, if f = g − h, then one can set
C = {(h∗(v) + h(x) − 〈v, x〉,−v) | v ∈ domh∗}). Then x∗ is a globally optimal
solution of the problem (P0) if and only if for any z ∈ C one has a(z) ≥ 0,
where (a(z), v(z)) is a globally optimal solution of the problem

min
(a,v)∈R×H

‖(a, v)‖2 subject to (a, v) ∈ df(x∗) + z.

Proof. From the definition of global codifferential mapping and the fact that
df(x∗) = cl coC it follows that

f(x)− f(x∗) = sup
(a,v)∈df(x∗)

(a+ 〈v, x − x∗〉) + inf
z∈C

(b+ 〈w, x − x∗〉).

Consequently, x∗ is a point of global minimum of f iff for any z ∈ C one has

sup
(a,v)∈df(x∗)+z

(a+ 〈v, x − x∗〉) ≥ 0 ∀x ∈ H.

Note that the function on the left hand side of this inequality is bounded below
by infx∈H f(x) − f(x∗) > −∞. Hence applying the last part of Proposition 2
one obtains the desired result (see also Remark 2).

Corollary 1. Let f be a DC function, Df be any global codifferential of f , and
x∗ ∈ H be a given point. Suppose that f is bounded above, and a set C ⊆ df(x∗)
is such that df(x∗) = cl coC. Then x∗ is a point of global maximum of the
function f if and only if for any z ∈ C one has b(z) ≤ 0, where (b(z), w(z)) is
a globally optimal solution of the problem

min
(b,w)∈R×H

‖(b, w)‖2 subject to (b, w) ∈ df(x∗) + z.

Remark 6. (i) From the proofs of Proposition 2 and Theorem 1 (see also Re-
mark 2) it follows that if x∗ is not a point of global minimum of the function
f , then there exists z ∈ C such that a(z) < 0, and for any such z ∈ C one has
f(x∗ + a(z)−1v(z)) < f(x∗). Thus, the necessary and sufficient global optimal-
ity conditions from the theorem above not only allow one to verify whether a
given point is a global minimizer, but also provide a way to compute “better”
points, if the optimality conditions are not satisfied. Thus, it is fair to say that
the global optimality conditions in terms of global codifferentials are somewhat
constructive. Furthermore, it seems possible to propose a numerical method for
general DC optimization problems based on the global optimality conditions
from Thereom 1 and utilising a certain approximation of global codifferential
(cf. [3, 57]).
(ii) It should be noted that the global optimality conditions from Theorem 1
(and part 4 of Proposition 2) were largely inspired by the codifferential calculus
and the method of codifferential descent proposed by Demyanov [12,13,19,21].
As was pointed out in [16], a nonsmooth function f is codifferentiable iff its in-
crement can be locally approximated by a DC function. In the light of Theorem 1
one can say that in every iteration of the method of codifferential descent one
verifies whether the global optimality conditions from Theorem 1 are satisfied,
and then utilises “global descent” directions v(z) of the DC approximation as
line search directions for the objective function (see [21] for more details). Note
that this observation partly explains the ability of the method of codifferential
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descent to “jump over” some points of local minimum of the objective function
(see [12, 21] for particular examples of this phenomenon).
(iii) It is obvious that in many particular cases the global optimality conditions
from Theorem 1 are of theoretical value only, since it is extremely difficult to
compute a global codifferential of a DC function. However, the same statement is
true for many other general global optimality conditions. In particular, it is true
for the well-known global optimality condition in terms of ε-subdifferentials [28–
30] due to the fact that ε-subdifferentials can be efficiently computed only in few
particular cases (see, e.g. [41]). Let us note that in the case when the function f is
piecewise affine, there always exists a global codifferential of the function f such
that both sets df(x) and df(x) are convex polytopes [27]. In this case, a global
codifferential of the function f can be computed with the aid of Proposition 8.
See [21] for applications of the optimality conditions from the theorem above to
design and analysis of numerical methods for global optimization of nonconvex
piecewise affine functions.

Let us give a simple example illustrating the use of the global optimality
conditions from Theorem 1.

Example 5. Let H = R, f(x) = min{2|x|, |x + 2| + 1}, and x0 = −2. Let us
check the optimality conditions at x0. Note that x0 is a point of strict local
minimum of the function f , while a global minimum is attained at the point
x∗ = 0.

Denote f1(x) = 2|x| and f2(x) = |x+ 2|+ 1. With the use of Proposition 8
one gets that

df1(x0) = co

{(

0
−2

)

,

(

−8
2

)}

, df1(x0) = {0},

df2(x0) = co

{(

0
1

)

,

(

0
−1

)}

, df2(x0) = {0}

(here the first coordinate is a, and the second one is v). Observe that unlike all
subdifferentials, a codifferential is a pair of two-dimensional convex sets even in
the one-dimensional case. Applying Proposition 8 again one obtains that

df(x0) = df1(x0) + df2(x0) = co

{(

0
−1

)

,

(

0
−3

)

,

(

−8
3

)

,

(

−8
1

)}

,

and

df(x0) = co

{(

3
0

)

− df2(x0),−df1(x0)

}

= co

{(

3
1

)

,

(

3
−1

)

,

(

0
2

)

,

(

8
−2

)}

.

Let C be the set of extreme points of df(x0), i.e.

C =

{(

3
1

)

,

(

3
−1

)

,

(

0
2

)

,

(

8
−2

)}

.

Then one can easily verify that

1. 0 ∈ df(x0) + z for z = (3, 1) ∈ C, z = (0, 2) ∈ C, and z = (8,−2) ∈ C;

2. (a(z), v(z)) = (−0.2,−0.4) for z = (3,−1) ∈ C.
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Thus, the global optimality conditions from Theorem 1 are not satisfied. Fur-
thermore, note that for z = (3,−1) one has x(z) = x0 + a(z)

−1
v(z) = 0, i.e.

x(z) is a point of global minimum of the function f .

Now we turn to constrained DC optimization problems. We start with the
case of inequality constrained problems, since the presence of equality con-
straints significantly complicates the derivation of optimality conditions. Below,
we largely follow Proposition 3, but do not apply it directly, since, as one can
verify, a direct application of this theorem leads to more restrictive regularity
assumptions on the constraints.

Consider the optimization problem of the form

min
x∈H

f0(x) subject to fi(x) ≤ 0, i ∈ I, (PI)

where fi, i ∈ 0 ∪ I, I = {1, . . . , l}, are DC functions. Denote by Ω the feasible
region of this problem. To obtain global optimality conditions for this problem
we need to impose a regularity assumption on the constraints. Namely, one
says that the interior point constraint qualification (IPCQ) holds at a point
x0 ∈ Ω, if x0 ∈ cl{x ∈ H | fi(x) < 0 i ∈ I} or, equivalently, if for any ε > 0
there exists y ∈ Ω such that ‖y − x‖ < ε, and fi(y) < 0 for all i ∈ I. It is
easy to see that in the case when the functions fi, i ∈ I, are convex, IPCQ is
equivalent to Slater’s condition. Note also that IPCQ holds at x0, in particular,
if a nonsmooth Mangasarian-Fromovitz constraint qualification (MFCQ) holds
true at this point, i.e. if there exists v ∈ H such that f ′

i(x0, v) < 0 for all i ∈ I
such that fi(x0) = 0, where f ′

i(x0, v) is the directional derivative of fi at x0 in
the direction v. Finally, it should be noted that IPCQ is a generalization of the
robustness condition from [34].

Theorem 2. Let there exist a globally optimal solution of the problem (PI) such
that IPCQ holds true at this solution, and let x∗ be a feasible point of (PI). Let
also the function f0 be bounded below on Ω, and Dfi be a global codifferential
of fi, i ∈ I ∪ {0}. Suppose, finally, that Ci ⊆ dfi(x∗) is a nonempty set such
that dfi(x∗) = cl coCi, i ∈ I ∪{0}. Then x∗ is a globally optimal solution of the
problem (PI) if and only if for any zi ∈ Ci, i ∈ I ∪{0}, one has a(z) ≥ 0, where
(a(z), v(z)) with z = (z0, z1, . . . , zl) is a globally optimal solution of the problem

min
(a,v)∈R×H

‖(a, v)‖2 subject to (a, v) ∈ L(z)

and
L(z) = cl co{df0(x∗) + z0, dfi(x∗) + zi + (fi(x∗), 0) | i ∈ I}. (13)

Proof. Let us utilise a global version of the standard trick (see, e.g. the classic
paper [35]) to transform the problem (PI) into an unconstrained optimization
problem. Introduce the function

F (x) = max{f0(x) − f0(x∗), f1(x), . . . , fl(x)}.

Note that F (x∗) = 0, since x∗ is a feasible point of (PI). Let us check that
x∗ is a globally optimal solution of the problem (PI) iff it is a point of global
minimum of the function F .

Indeed, suppose that x∗ is a globally optimal solution of the problem (PI).
Observe that if F (x) < 0 for some x ∈ H, then x ∈ Ω and f0(x) < f0(x∗), which
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is impossible. Thus, F (x) ≥ F (x∗) = 0 for any x ∈ H, i.e. x∗ is a point of global
minimum of the function F . Conversely, let x∗ be a point of global minimum of
F . By definition F (x) ≥ F (x∗) = 0 for all x ∈ H. Hence, in particular, for any
x such that fi(x) < 0 for all i ∈ I one has f0(x) ≥ f0(x∗). Thus, x∗ is a globally
optimal solution of the problem

min
x∈H

f0(x) subject to x ∈ {x∗} ∪ {y ∈ H | fi(y) < 0 ∀i ∈ I}.

Note that the function f0 is continuous as the difference of finite closed convex
functions that are continuous due to the fact that H is a Hilbert space (see,
e.g. [23, Corollary I.2.5]). Therefore, taking into account the fact that by our
assumption IPCQ holds true at some globally optimal solution y∗ of the problem
(PI) one obtains that f0(x∗) ≤ f0(y∗), which implies that x∗ is a globally
optimal solution of (PI) as well. Thus, x∗ is a globally optimal solution of the
problem (PI) iff x∗ is a point of global minimum of the function F .

From the definition of global codifferential it follows that

F (x) = max
i∈I

{

sup
(a,v)∈df0(x∗)

(a+ 〈v, x− x∗〉) + inf
(b,w)∈df0(x∗)

(b+ 〈w, x − x∗〉),

fi(x∗) + sup
(a,v)∈dfi(x∗)

(a+ 〈v, x− x∗〉) + inf
(b,w)∈dfi(x∗)

(b + 〈w, x − x∗〉)
}

.

Therefore, as is easy to see, x∗ is a point of global minimum of the function F
iff for any zi ∈ Ci, i ∈ I ∪ {0} the function

Fz(x) = max
i∈I

{

sup
(a,v)∈df0(x∗)+z0

(a+ 〈v, x− x∗〉),

fi(x∗) + sup
(a,v)∈dfi(x∗)+zi

(a+ 〈v, x− x∗〉)
}

is nonnegative. Note that Fz(x) ≥ F (x) ≥ f0(x) − f0(x∗) ≥ infx∈Ω f0(x) −
f0(x∗) > −∞ for any x ∈ Ω, and Fz(x) ≥ F (x) > 0 for any x /∈ Ω, i.e.
the function Fz is bounded below. Consequently, taking into account the fact
that the set (13) is an affine support set of Fz, and applying the last part of
Proposition 2 one obtains the desired result.

Remark 7. (i) As in the case of Theorem 1, the global optimality conditions
from the theorem above are somewhat constructive. Namely, one can easily
verify that if x∗ is not a globally optimal solution of the problem (PI), then
for any zi ∈ Ci, i ∈ I ∪ {0} such that a(z) < 0 (note that such zi exist by
Theorem 2) one has f0(x∗ + a(z)−1v(z)) < f0(x∗) and fi(x∗ + a(z)−1v(z)) < 0
for all i ∈ I. Thus, if x∗ is not a globally optimal solution of the problem (PI),
then with the use of the global optimality conditions from Theorem 2 one can
find a “better” point in the interior of the feasible region (see Example 6 below).
(ii) Note that if x∗ is a point of global minimum of the function F (x) defined
in the proof of the theorem above, but IPCQ does not hold true at any globally
optimal solution of the problem (PI), then x∗ need not be a globally optimal
solution of this problem. For example, if l = 2, f1(x) = ‖x‖−1, f2(x) = 1−‖x‖,
then IPCQ does not hold true at any feasible point of (PI), and any feasible
point x∗ is a global minimizer of F (x). Thus, the validity of IPCQ is, in essence,
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necessary for the validity of the global optimality conditions from the theorem
above. Furthermore, this example shows that Theorem 2 cannot be applied to
equality constrained problems, since IPCQ fails to hold true, if one rewrites
an equality constraint fi(x) = 0 as two inequality constraints fi(x) ≤ 0 and
−fi(x) ≤ 0.

Let us give a simple example illustrating Theorem 2.

Example 6. Let H = R, and the problem (PI) have the form

min
x∈R

f0(x) = |x− 4| subject to f1(x) = min{|x− 2|, |x+ 2|} − 1 ≤ 0. (14)

Let also x0 = −1. It is easily seen that Ω = [−3,−1]∪ [1, 3], IPCQ holds true at
the unique globally optimal solution x∗ = 3 of problem (14), and x0 is a locally
optimal solution of this problem. Let us check the global optimality conditions
at the point x0.

With the use of Proposition 8 one obtains that

df0(x0) = co

{(

−10
1

)

,

(

0
−1

)}

, df0(x0) = {0},

df1(x0) = co

{(

−6
2

)

,

(

−8
0

)

,

(

0
0

)

,

(

−2
−2

)}

,

df1(x0) = co

{(

2
−1

)

,

(

4
1

)

,

(

6
−1

)

,

(

0
1

)}

.

Let C0 = {0}, and C1 be the set of extreme points of df1(x0). Then applying
Theorem 2 one can check that

1. 0 ∈ L(z) for z = (z0, z1) with z0 = (0, 0) ∈ C0, z1 = (4, 1) ∈ C1, z1 =
(6,−1) ∈ C1, and z1 = (0, 1) ∈ C1;

2. (a(z), v(z)) = (−0.1,−0.3) for z = (z0, z1) with z0 = (0, 0) ∈ C0 and
z1 = (2,−1) ∈ C1.

Thus, the global optimality conditions from Theorem 2 are not satisfied. Fur-
thermore, note that in the case z1 = (2,−1) one has x1 = x0 + a(z)−1v(z) = 2,
f0(x1) = 2 < 5 = f0(x0) and f1(x1) = −1 < 0.

Now we turn to the general constrained optimization problem of the form

min
x∈H

f0(x) s.t. fi(x) ≤ 0, i ∈ I, fj(x) = 0, j ∈ J, (PIJ)

where fi, i ∈ 0 ∪ I ∪ J , I = {1, . . . , l}, J = {l + 1, . . . ,m} are DC functions.
Denote by Ω the feasible region of the problem (PIJ), and introduce the function

ϕ(x) =

l
∑

i=1

max{0, fi(x)} +
m
∑

j=l+1

|fj(x)|.

Observe that Ω = {x ∈ H | ϕ(x) = 0}.
Our aim is to provide simple sufficient conditions under which the merit

function Fλ(x) = f0(x) + λϕ(x) for the problem (PIJ) is globally exact in the
finite dimensional case (note that this function is DC, if the problem (PIJ ) is
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DC). Apart from its direct applications to the design of numerical methods for
solving the problem (PIJ ), this result can also be used for the derivation of
global optimality conditions for the problem (PIJ).

Recall that the function Fλ is said to be (globally) exact for the problem
(PIJ), if there exists λ∗ ≥ 0 such that for any λ ≥ λ∗ the set of globally optimal
solutions of the problem (PIJ ) coincides with the set of global minimizers of the
function Fλ, i.e. the problem (PIJ ) is equivalent (in terms of globally optimal
solutions) to the penalized problem

min
x∈H

Fλ(x) (Pλ)

for any λ ≥ λ∗. The greatest lower bound of all such λ∗ is called the least exact
penalty parameter of the function Fλ.

Theorem 3. Let H be finite dimensional. Suppose that ϕ has a local error bound
at every globally optimal solution of the problem (PIJ ), i.e. for any globally
optimal solution x∗ of this problem there exist τ > 0 and a neighbourhood U of
x∗ such that

ϕ(x) ≥ τ dist(x,Ω) ∀x ∈ U. (15)

Then the function Fλ is globally exact if and only if there exists λ ≥ 0 such
that the set {x ∈ H | Fλ(x) < f∗} is either bounded or empty, where f∗ is the
optimal value of the problem (PIJ ). In particular, Fλ is globally exact, provided
this function is bounded below for some λ ≥ 0, and the set

Cα = {x ∈ H | f0(x) < f∗ + α, fi(x) < α, i ∈ I, |fj(x)| < α, j ∈ J}

is bounded for some α > 0.

Proof. Let x∗ be a globally optimal solution of (PIJ). Note that the function
f0 is locally Lipschitz continuous, since it is a finite DC function. Consequently,
taking into account (15) and applying [17, Thrm 2.4 and Prp. 2.7] one obtains
that the function Fλ is locally exact at x∗, i.e. there exist λ∗(x∗) ≥ 0 and a
neighbourhood U of x∗ such that Fλ(x) ≥ Fλ(x∗) for all x ∈ U and λ ≥ λ∗(x∗).
Then applying the localization principle for linear penalty functions (see [17,
Thrm. 3.17] and [20, Thrm 4.1]) one gets that the function Fλ is globally exact
if and only if there exists λ ≥ 0 such that the set {x ∈ H | Fλ(x) < f∗} is either
bounded or empty.

Suppose that Fλ0
is bounded below for some λ0 ≥ 0, and the set Cα is

bounded for some α > 0. Let us check that in this case {x | Fλ(x) < f∗} ⊂ Cα

for any sufficiently large λ.
Indeed, if x /∈ Cα, then either f0(x) ≥ f∗ + α or ϕ(x) ≥ α. In the former

case one has Fλ(x) ≥ f0(x) > f∗ for any λ ≥ 0, while in the latter case one has

Fλ(x) = Fλ0
(x) + (λ− λ0)ϕ(x) ≥ c+ (λ− λ0)α > f∗

for all λ > λ0 + (f∗ − c)/α, where c = infx∈H Fλ0
(x). Thus, {x | Fλ(x) < f∗} ⊂

Cα for any λ > λ0 + (f∗ − c)/α.

Remark 8. (i) Our proof of the global exactness of the ℓ1 penalty function is
based on the assumption that the penalty term ϕ(x) has a local error bound.
This assumption can be verified with the use of general results on metric sub-
regularity and local error bounds [2, 26, 40]. In particular, in the case when the
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functions fi are continuously differentiable at a globally optimal solution x∗ of
(PIJ), the function ϕ(x) has a local error bound at this optimal solution, pro-
vided MFCQ holds at x∗ (see, e.g. [7, Corollary 2.2]). Let us note that in some
cases it is possible to prove the existence of a local error bound with the use
of the DC structure of the problem alone (i.e. without any constraint qualifi-
cations). See [43] for this kind of results on exact penalty functions and error
bounds for DC optimization problems with inequality constraints.
(ii) Note that Theorem 3 significantly improves [55, Proposition 1], since we
do not assume that the objective function f0 is globally Lipschitz continuous,
and utilise a local error bound instead of the global one in [55]. Furthermore,
we obtained necessary and sufficient conditions for the global exactness of the
function Fλ(x), while only sufficient conditions were considered in [55].

Applying the global optimality conditions from Theorem 1 to Fλ(x) one can
easily obtain new necessary and sufficient global optimality conditions for the
problem (PIJ ) that are valid under the assumptions of Theorem 3. Namely, the
following result holds true.

Theorem 4. Let H be finite dimensional. Suppose that ϕ has a local error bound
at every globally optimal solution of the problem (PIJ), and there exists λ ≥ 0
such that the set {x ∈ H | Fλ(x) < f∗} is either bounded or empty. Suppose also
that x∗ is a feasible point of the problem (PIJ ), Dfk is a global codifferential of
the function fk, Ck ⊆ dfk(x∗) is a nonempty set such that dfk(x∗) = cl coCk,
k ∈ I∪J∪{0}, and Dj ⊆ dfj(x∗) is a nonempty set such that dfj(x∗) = cl coDj,
j ∈ J . Then x∗ is a globally optimal solution of the problem (PIJ) if and only if
there exists λ ≥ 0 such that for any zk ∈ Ck, k ∈ I∪J ∪{0} and uj ∈ Dj, j ∈ J ,
one has a(z) ≥ 0, where (a(z), v(z)) with z = (z0, z1, . . . , zm, ul+1, . . . , um) is a
globally optimal solution of the problem

min
(a,v)∈R×H

‖(a, v)‖2 subject to (a, v) ∈ Qλ(z),

where

Qλ(z) = cl

{

df0(x∗) + λ
∑

i∈I

co
{

(fi(x∗), 0) + dfi(x∗),−dfi(x∗) | i ∈ I
}

+ λ
∑

j∈J

co
{

dfj(x∗) + dfj(x∗),−dfj(x∗)− dfj(x∗) | j ∈ J
}

}

+ z0 + λ
∑

i∈I

zi + λ
∑

j∈J

(zj − uj).

Proof. As was noted above, Fλ is a DC function. With the use of Proposition 8
one can verify that the pair DFλ = [dFλ, dFλ] with

dFλ(x) = cl

{

df0(x) + λ
∑

i∈I

co
{

(fi(x), 0) + dfi(x),−dfi(x) | i ∈ I
}

+λ
∑

j∈J

co
{

dfj(x) + dfj(x),−dfj(x)− dfj(x) | j ∈ J
}

}

,

dFλ(x) = cl

{

df0(x) + λ
∑

i∈I

dfi(x) + λ
∑

j∈J

(

dfj(x)− dfj(x)
)

}
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for any feasible point x is a global codifferential of Fλ. Observe also that

dFλ(x∗) = cl co
{

C0 + λ
∑

i∈I

Ci + λ
∑

j∈J

(

Cj −Dj

)

}

by the definitions of the sets Ck and Dj .
By Theorem 3 the function Fλ is globally exact. Therefore, if x∗ is a globally

optimal solution of the problem (PIJ), then it is a point of global minimum of
Fλ for any sufficiently large λ. Now, applying the global optimality conditions
from Theorem 1 to the function Fλ at x∗ with λ large enough one obtains that
the “only if” part of the theorem is valid.

Coversely, if there exists λ ≥ 0 such that a(z) ≥ 0 for any z from the
formulation of the theorem, then by Theorem 1 the point x∗ is a global minimizer
of Fλ. Hence taking into account the facts that x∗ is a feasible point of (PIJ)
and Fλ(x) = f0(x) for any feasible point x of this problem one gets that x∗

is a globally optimal solution of the problem (PIJ). Thus, the “if” part of the
theorem is valid as well.

Let us consider two simple examples illustrating Theorems 3 and 4. The first
example allows one to compare exact penalty approach with “interior point”
approach from Theorem 2, while in the second example we analyse an equality
constrained problem.

Example 7. Let us consider the same problem as in Example 6, i.e. the problem

min
x∈R

f0(x) = |x− 4| subject to f1(x) = min{|x− 2|, |x+ 2|} − 1 ≤ 0. (16)

In this case the merit function Fλ has the form

Fλ(x) = |x− 4|+ λmax
{

0,min{|x− 2|, |x+ 2|} − 1
}

.

It is easily seen that this function is globally exact, and its least exact penalty
parameter is equal to 1. We set λ = 2. Furthermore, one can check that for any
λ ≥ 1 the point x0 = −1 is a local minimizer of Fλ, i.e. Fλ is locally exact at x0.
Let us apply the global optimality conditions from Theorem 1 to the function
Fλ at the point x0, as it is done in Theorem 4.

Let, as above, ϕ(x) = max{0, f1(x0)}. Applying Proposition 8 one gets

Dϕ(x0) =
[

co
{

− df1(x0), df1(x0)
}

, df1(x0)
]

,

DF2(x0) =
[

df0(x0) + 2dϕ(x0), df0(x0) + 2dϕ(x0)
]

Recall that global codifferentials of the functions f0 and f1 at x0 were computed
in Example 6. Therefore, with the use of Example 6 one gets that

dF2(x0) = co

{

(

−22
5

)

,

(

−26
1

)

,

(

−10
1

)

,

(

−14
−3

)

,

(

−14
3

)

,

(

−18
−1

)

,

(

−22
3

)

,

(

−10
−1

)

,

(

−12
3

)

,

(

−16
−1

)

,

(

0
−1

)

,

(

−4
−5

)

,

(

−4
1

)

,

(

−8
−3

)

,

(

−12
1

)

,

(

0
−3

)

}

,
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and

dF2(x0) = co

{(

4
−2

)

,

(

8
2

)

,

(

12
−2

)

,

(

0
2

)}

.

Let C be the set of extreme points of dF2(0). Then one can check that

1. 0 ∈ dF0(x0) + z for z = (8, 2) ∈ C, z = (12,−2) ∈ C, and z = (0, 2) ∈ C;

2. (a(z), v(z)) = (−4/17,−16/17) for z = (4,−2) ∈ C.

Thus, by Theorem 1 the point x0 is not a point of global minimum of the
function F2(x) and, therefore, is not a globally optimal solution of problem
(16). However, note that for z = (4,−2) one has x1 = x0 + a(z)−1v(z) = −3,
i.e. x1 is a globally optimal solution of problem (16) (cf. Example 6).

Example 8. Let H = R
2. Consider the following optimization problem:

min
x∈R2

f0(x) = |x1 − 2|+ 2|x2| subject to f1(x) = |x1| − |x2| = 0. (17)

The merit function Fλ for this problem has the form

Fλ(x) = |x1 − 2|+ 2|x2|+ λ
∣

∣|x1| − |x2|
∣

∣.

It is easily seen that that the penalty term ϕ(x) = ||x1| − |x2|| has a local
error bound at the unique globally optimal solution x∗ = (0, 0) of problem (17).
Consequently, taking into account the fact that f0(x) → +∞ as ‖x‖ → +∞ one
obtains that the function Fλ is globally exact for problem (17). Let us estimate
the least exact penalty parameter of Fλ.

One can easily verify that the function f0 is globally Lipschitz continuous
with Lipschitz constant L =

√
5, and

ϕ↓(x) = lim inf
y→x

ϕ(y)− ϕ(x)

‖y − x‖ ≤ −1 ∀x /∈ Ω,

where ‖ · ‖ is the Euclidean norm. The quantity ϕ↓(x) is called the rate of
steepest descent of ϕ at x (see, e.g. [11, 18]). For any λ >

√
5 and x /∈ Ω one

has F ↓
λ (x) ≤ L+λϕ↓(x) < 0. Therefore, local/global minimizers of the function

Fλ do not belong to the set R
2 \ Ω for any λ >

√
5, since F ↓

λ (x) ≥ 0 is a
necessary optimality condition. Thus, one can conclude that the least exact
penalty parameter of Fλ does not exceed

√
5. That is why we set λ = 3.

Let us apply the global optimality conditions from Theorem 1 to the function
Fλ at the point x0 = (2, 0), which is infeasible for problem (17) and is a point
of unconstrained global minimum of the objective function f0. With the use of
Proposition 8 one obtains that

df0(x0) = co











0
1
2



 ,





0
1
−2



 ,





0
−1
2



 ,





0
−1
−2











, df0(x0) = {0},

df1(x0) = co











0
1
0



 ,





−4
−1
0











, df1(x0) = co











0
0
1



 ,





0
0
−1











.
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Furthermore, one has DF3(x0) = [df0(x0)+ 3dϕ(x0), df0(x0)+ 3dϕ(x0)], where

dϕ(x0) = co







df1(x0) + df1(x0),





−4
0
0



− df1(x0)− df1(x0)







,

and dϕ(x0) = df1(x0)− df1(x0). Utilising these expressions for global codiffer-
entials one can easily compute dF3(x0), which is the convex hull of 20 points
and we do not present it here for the sake of shortness, and check that

dF3(x0) = co











0
−3
3



 ,





12
3
3



 ,





0
−3
−3



 ,





12
3
−3











.

Let C be the set of extreme points of dF3(x0). Then solving the problem

min
(a,v)∈R×R2

‖(a, v)‖2 subject to (a, v) ∈ dF3(x0) + z

one can check that

1. (a(z), v(z)) = (−1, 1.5, 0.5) for z = (0,−3, 3) ∈ C;

2. (a(z), v(z)) = (−0.8, 1.6, 0) for z = (12, 3, 3) ∈ C and z = (12, 3,−3) ∈ C;

3. (a(z), v(z)) = (−1, 1.5,−0.5) for z = (0,−3,−3) ∈ C.

Thus, the global optimality conditions from Theorem 1 are not satisfeid at x0.
Moreover, observe that for z = (12, 3, 3) ∈ C and z = (12, 3,−3) ∈ C one has
x1 = x0 + a(z)−1v(z) = (0, 0), and x1 is a globally optimal solution of (17).

As was noted above, in many particular cases the global optimality condi-
tions from Theorems 1, 2, and 4 are of theoretical value only, since it is extremely
difficult (if at all possible) to compute a global codifferential of a general DC
function and verify the global optimality conditions. Apparently, our optimality
conditions can be readily checked only in the piecewise affine case, i.e. when the
global codifferential is a pair of convex polytopes (see Example 3). Neverthe-
less, it seems possible to design new numerical methods for DC optimization
problems based on the global optimality conditions obtained in this article and
utilising certain polyhedral approximations of global codifferentials (cf. codif-
ferential method in [3], aggregate codifferential method in [57], and a method
based on successive piecewise-affine approximations in [25]). A design and anal-
ysis of such numerical methods lie outside the scope of this article. Here we only
present a simple example of the usage of approximations of global codifferentials
without trying to outline the idea behind possible numerical methods.

Let f be a DC function, and Df be its global codifferential associated with
a DC decomposition f = g− h. From Proposition 4 and the definition of global
codifferential (10) it follows that for any x, y ∈ H, v ∈ ∂g(y), and w ∈ ∂h(y) one
has (g(y)−g(x)+〈v, x−y〉, v) ∈ df(x) and (h(x)−h(y)+〈w, y−x〉,−w) ∈ df(x).
Therefore, if a point x is fixed, one can choose sampling points x1, . . . , xm ∈ H,
compute vk ∈ ∂g(xk) and wk ∈ ∂h(xk), k ∈ {1, . . . ,m}, and consider the
following inner approximations of the global hypodifferential and the global
hyperdifferential at x respectively:

co
{

(g(xk)− g(x) + 〈vk, x− xk〉, vk)
∣

∣ k ∈ {1, . . . ,m}
}

⊂ df(x),

co
{

(h(x)− h(xk) + 〈w, xk − x〉,−wk)
∣

∣ k ∈ {1, . . . ,m}
}

⊂ df(x).
(18)
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The following example demonstrates that even if these inner approximations are
very crude, one can still utilise them along with the global optimality conditions
from Theorems 1, 2, and 4 to escape from a local minimum (or stationary point).

Example 9. Let H = R
2. Consider the following DC optimization problem:

min
x∈R2

f0(x) = x2
1 − x2

2 subject to − 1 ≤ x2 ≤ 2. (19)

We rewrite the constraints of this problem as follows: f1(x) = x2 − 2 ≤ 0
and f2(x) = −x2 − 1 ≤ 0. Let x0 = (0,−1). Clearly, x0 is a locally (but not
globally) optimal solution of problem (19). We would like to escape from this
local minimum.

The merit function Fλ(x) = f0(x) + λ(max{0, x2 − 2} + max{0,−x2 − 1})
for problem (19) is not bounded below for any λ ≥ 0. Therefore, we will use the
“interior point” approach of Theorem 2. With the use of Example 4 one obtains
that the global codifferential Df = [df, df ] of the function f0 associated with
the DC decomposition f0 = g0 − h0, where g0(x) = x2

1 and h0(x) = x2
2, has the

form:

df0(x) = co











−(x1 − y1)
2

2y1
0



 , y1 ∈ R







, df0(x) = co











(x2 − y2)
2

0
−2y2



 , y2 ∈ R







.

A direct usage of this global codifferential leads to rather cumbersome and
complicated computations. That is why we will use inner approximations (18)
instead. As sampling points we choose five points: x0 and x0 + ξij , i, j ∈ {1, 2},
where ξij = ((−1)i2, (−1)j2) are the extereme points of the ball of radius 2 in
the ℓ∞ norm. Applying (18) one gets the following inner approximations:

co











0
0
0



 ,





−4
−4
0



 ,





−4
4
0











⊂ df0(x0), co











0
0
2



 ,





4
0
−2



 ,





4
0
6











⊂ df0(x0).

Note also that Df1(x0) = [{(0, 0, 1)}, {0}] and Df2(x0) = [{(0, 0,−1)}, {0}].
Let us apply the global optimality conditions from Theorem 2. In our case

these conditions take the form: for any z ∈ df0(x0) one has a(z) ≥ 0, where
(a(z), v(z)) is a globally optimal solution of the problem

min
(a,v)∈R×R2

‖(a, v)‖2 s.t. (a, v) ∈ L(z) = cl co
{

df0(x0) + z, df1(x0), df2(x0)
}

.

Replacing df0(x0) with its inner approximation computed above one obtains
that (a(z), v(z)) ≈ (−0.1034, 0,−0.2414) for z = (4, 0,−2) ∈ df0(x0), i.e. the
optimality conditions are not satisfied for the approximation. Following Re-
mark 7 define x = x0 + (a(z))−1v(z) ≈ (0, 1.333). Note that x belongs to the
interior of the feasible region, and f(x) ≈ −1.777 < −1 = f(x0). Thus, the use
of inner approximations (18) helped us escape from the local minimum.

4 Some connections between optimality condi-

tions

Let us point out some connections between global optimality conditions obtained
in the previous section, well-known global optimality conditions in terms of ε-
subdifferentials, and KKT optimality conditions.
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We start with global optimality conditions in terms of ε-subdifferentials. Let
us consider the unconstrained DC optimization problem

min
x∈H

f(x) = g(x)− h(x), (P0)

where g and h are finite closed convex functions. Suppose that f is bounded
below. Recall that x∗ is a point of global minimum of the function f if and only
if

∂εh(x∗) ⊆ ∂εg(x∗) ∀ε ≥ 0

(see [28]). On the other hand, by Theorem 1 the point x∗ is a globally optimal
solution of the problem (P0) if and only if for any z ∈ df(x∗) one has a(z) ≥ 0,
where (a(z), v(z)) is a globally optimal solution of the problem

min
(a,v)∈R×H

‖(a, v)‖2 subject to (a, v) ∈ df(x∗) + z,

and Df is a global codifferential of f associated with the DC decomposition f =
g−h. Let us point out a direct connection between these optimality conditions.

Theorem 5. Let x∗ ∈ H and ε0 ≥ 0 be given. Then ∂εh(x∗) ⊆ ∂εg(x∗) for any
ε ≤ ε0 if and only if for any z = (b, w) ∈ df(x∗) with b ≤ ε0 one has a(z) ≥ 0.

Proof. Fix any z = (b, w) ∈ df(x∗) such that b ≤ ε for some ε ≥ 0. By the
last part of Proposition 2 and the definition of global codifferential (10) (see
also (12)) one obtains that a(z) ≥ 0 if and only if

g(x) − g(x∗) + b+ 〈w, x − x∗〉 ≥ 0 ∀x ∈ H. (20)

Hence with the use of the inequality b ≤ ε one gets that −w ∈ ∂εg(x∗). Observe
also that

∂εh(x∗) = {w ∈ H | ∃b ∈ [0, ε] : (b,−w) ∈ df(x∗)}
by Proposition 1 and the definition of global codifferential.

Suppose that a(z) ≥ 0 for any z = (b, w) ∈ df(x∗) with b ≤ ε0, and fix any
ε ≤ ε0 and w ∈ ∂εh(x∗). Then z = (b,−w) ∈ df(x∗) for some b ≤ ε, which
implies that a(z) ≥ 0 and w ∈ ∂εg(x∗). Thus, ∂εh(x∗) ⊆ ∂εg(x∗) for any ε ≤ ε0,

Conversely, suppose that ∂εh(x∗) ⊆ ∂εg(x∗) for any ε ≤ ε0. Choose any
z = (b, w) ∈ df(x∗) with b ≤ ε0. Then −w ∈ ∂bh(x∗), which implies that (20)
holds true. Hence a(z) ≥ 0 by Proposition 2, and the proof is complete.

Let us also consider the reverse convex minimization problem of the form:

min
x∈H

f0(x) subject to g(x) ≥ 0. (P1)

Here f0 and g are finite closed convex functions. We suppose that the feasible
region of this problem is nonempty, and there exists an infeasible point x0 such
that

f0(x0) < inf{f0(x) | x ∈ H : g(x) ≥ 0}, (21)

i.e. the optimal value of the problem (P1) is strictly grater than the infimum of
f0 over the entire space H. Note that if x∗ ∈ H is a globally optimal solution of
(P1) and g(x) > 0, then x∗ is obviously a point of unconstrained local minimum
of the function f0, which due to the convexity of f0 implies that x∗ is a global
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minimizer of f0 and 0 ∈ ∂f0(x∗). Therefore, below we suppose that all global
minimizers x∗ of (P1) satisfy the equality g(x∗) = 0.

Recall that a feasible point x∗ is a globally optimal solution of (P1) if and
only if ∂εg(x∗) ⊂ ⋃

α≥0 ∂ε(αf0)(x∗) for all ε ≥ 0 by [30, Theorem 3.5 and
Remark 3.7]. On the other hand, rewriting the constraint g(x) ≥ 0 as f1(x) ≤ 0
with f1(x) = −g(x) one can apply global optimality conditions from Theorem 2
to this problem. Let Df0 be a global codifferential of f0 associated with the DC
decomposition f0 = f0 − 0, while Df1 be a global codifferential of f1 associated
with the DC decomposition f1 = 0 − g. Clearly, df0(·) ≡ {0} and df1(·) ≡ {0}.
Consequently, under the assumptions of Theorem 2 a feasible point x∗ is a
globally optimal solution of (P1) if and only if for any z ∈ df1(x∗) one has
a(z) ≥ 0, where (a(z), v(z)) is a globally optimal solution of the problem

min
(a,v)∈R×H

‖(a, v)‖2 subject to (a, v) ∈ cl co{df0(x∗), z}.

Let us describe how these two optimality conditions are connected.

Theorem 6. Let a feasible point x∗ of (P1) and ε0 ≥ 0 be given. Then ∂εg(x∗) ⊂
⋃

α≥0 ∂ε(αf0)(x∗) for any ε ≤ ε0 if and only if for any z = (b, w) ∈ df1(x∗)
with b ≤ ε0 one has a(z) ≥ 0.

Proof. Fix any z = (b, w) ∈ df1(x∗). By the last part of Proposition 2 and the
definition of global codifferential (see (10) and (12)) one obtains that a(z) ≥ 0
if and only if

max
{

f0(x) − f0(x∗), b+ 〈w, x − x∗〉
}

≥ 0 ∀x ∈ H. (22)

Define C0 = {x ∈ H | f0(x) < f0(x∗)} and C = {x ∈ H | f0(x) ≤ f0(x∗)}. From
(21) it follows that C0 is nonempty, while by [31, Proposition VI.1.3.3] one
has C = clC0. Clearly, inequality (22) is satisfied iff b+ 〈w, x− x∗〉 ≥ 0 for any
x ∈ C0. In turn, this inequality is satisfied iff 〈w, x−x∗〉 ≥ −b for all x ∈ C due to
the fact that C = clC0. Thus, a(z) ≥ 0 for some z = (b, w) ∈ df1(x∗) iff 〈−w, x−
x∗〉 ≤ b for all x ∈ C or equivalently −w ∈ Nb(C, x∗), where Nb(C, x∗) is the
set of b-normal directions to the set C at x∗ (see, e.g. [32, Definition XI.1.1.3]).
Note also that by Proposition 1 and the definition of global codifferential (10)
for any ε ≥ 0 one has ∂εg(x∗) = {w ∈ H | ∃b ∈ [0, ε] : (b,−w) ∈ df1(x∗)}.

Suppose that for any z = (b, w) ∈ df1(x∗) with b ≤ ε0 one has a(z) ≥ 0, and
fix any ε ≤ ε0 and w ∈ ∂εg(x∗). Then z = (b,−w) ∈ df(x∗) for some b ≤ ε,
which implies that a(z) ≥ 0 and w ∈ Nb(C, x∗) ⊆ Nε(C, x∗). Applying [32,
Corollary XI.3.6.2] one gets that Nε(C, x∗) =

⋃

α≥0 ∂ε(αf0)(x∗). Thus, for any
ε ≤ ε0 one has ∂εg(x∗) ⊂

⋃

α≥0 ∂εf0(x∗).
Conversely, suppose that ∂εg(x∗) ⊂ ⋃

α≥0 ∂ε(αf0)(x∗) for any ε ≤ ε0.

Choose any z = (b, w) ∈ df1(x∗) with b ≤ ε0. Then −w ∈ ∂bg(x∗) ⊂
⋃

α≥0 ∂b(αf0)(x∗) = Nb(C, x∗), which, as we proved above, is equivalent to
the inequality a(z) ≥ 0.

The theorem above can be further extended to the case of convex maximiza-
tion problems of the form:

max
x∈H

f(x) subject to x ∈ C. (Pmax)
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Here C = {x ∈ H | fi(x) ≤ 0, i ∈ I = {1, . . . , l}}, and f and fi, i ∈ I, are finite
closed convex functions. We suppose that Slater’s condition holds true, and the
infimum of f over C is strictly smaller than the maximum.

Recall that a feasible point x∗ is a globally optimal solution of (Pmax) if and
only if ∂εf(x∗) ⊂ Nε(C, x∗) for all ε ≥ 0 by [28, Proposition 3.9]. Recasting the
problem (Pmax) as the problem of minimizing the function f0(x) = −f(x) over
C one can apply global optimality conditions from Theorem 2 to this problem.
Let Df0 be a global codifferential of f0 associated with the DC decomposition
f0 = 0 − f , while Dfi be a global codifferential of fi associated with the DC
decomposition fi = fi − 0, i ∈ I. Then df0(·) ≡ {0} and dfi(·) ≡ {0}, i ∈ I.
Therefore, by Theorem 2 a feasible point x∗ is a globally optimal solution of
(Pmax) if and only if for any z = (b, w) ∈ df0(x∗) one has a(z) ≥ 0, where
(a(z), v(z)) is a globally optimal solution of the problem

min
(a,v)∈R×H

‖(a, v)‖2 subject to (a, v) ∈ cl co
{

z, dfi(x∗) + (fi(x∗), 0) | i ∈ I
}

.

From Proposition 2 and the definition of global codifferential (10) it follows that
a(z) ≥ 0 iff

max
{

b+ 〈w, x − x∗〉, f1(x), . . . , fl(x)
}

≥ 0 ∀x ∈ H.

In turn, this inequality is satisfied iff −w ∈ Nb(C, x∗). Utilising this result and
arguing in the same way as in the proof of Theorem 6 one can easily check that
the following connection between the two global optimality conditions for the
problem (Pmax) exists.

Theorem 7. Let a feasible point x∗ of (Pmax) and ε0 ≥ 0 be given. Then
∂εf(x∗) ⊂ Nε(C, x∗) for any ε ≤ ε0 if and only if for any z = (b, w) ∈ df0(x∗)
with b ≤ ε0 one has a(z) ≥ 0.

Thus, one can say that there is an intimate relation between global optimality
conditions for DC optimization problems in terms of global codifferentials and
in terms of ε-subdifferentials.

Now we turn to KKT optimality conditions. For the sake of simplicity, let
us consider the inequality constrained problem

min
x∈H

f0(x) subject to fi(x) ≤ 0, i ∈ I = {1, . . . , l}, (PI)

where fi = gi − hi are DC functions such that the convex functions gi and hi

are differentiable, i ∈ I ∪{0}. Let Dfi be a global codifferential of fi associated
with the DC decomposition fi = gi − hi, i ∈ I ∪ {0}. Recall that under the
assumptions of Theorem 2 a feasible point x∗ is a globally optimal solution of
the problem (PI) if and only if for any zi ∈ dfi(x∗), i ∈ I∪{0}, one has a(z) ≥ 0,
where (a(z), v(z)) with z = (z0, z1, . . . , zl) is a globally optimal solution of the
problem

min
(a,v)∈R×H

‖(a, v)‖2 subject to (a, v) ∈ L(z)

with
L(z) = cl co{df0(x∗) + z0, dfi(x∗) + zi + (fi(x∗), 0) | i ∈ I}. (23)

(in the case a(z) = 0 one actually has 0 ∈ L(z); see Proposition 2 and Remark 2).
Let us show that in the case when zi = (bi, wi) ∈ dfi(x∗) are such that bi =
0, these optimality conditions are closely connected to the KKT optimality
conditions.
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Theorem 8. Let x∗ be a feasible point of the problem (PI), the function f0
be bounded below on the feasible region of this problem, and let MFCQ hold at
x∗, i.e. there exists y ∈ H for which 〈∇fi(x∗), y〉 < 0 for any i ∈ I such that
fi(x∗) = 0. Then KKT optimality conditions hold true at x∗ if and only if for
any zi = (bi, wi) ∈ dfi(x∗) with bi = 0, i ∈ I ∪ {0}, one has 0 ∈ L(z), where
z = (z0, z1, . . . , zl).

Proof. Observe that zi = (0, wi) ∈ dfi(x∗), i ∈ I ∪ {0}, if and only if
wi = −∇hi(x∗) by Proposition 1 and the definition of global codifferential
(10). Therefore, let z = (z0, z1, . . . , zl) with zi = (0,−∇hi(x∗)) ∈ dfi(x∗) for all
i ∈ I ∪ {0}.

From (23) and (12) it follows that the set L(z) is an affine support set of the
function

F (x) = max
i∈I

{

g0(x) − g0(x∗)− 〈∇h0(x∗), x− x∗〉,

gi(x)− gi(x∗) + fi(x∗)− 〈∇hi(x∗), x− x∗〉
}

.

Clearly, F (x∗) = 0. Moreover, from the convexity of the functions hi it follows
that hi(x) − hi(x∗) ≥ 〈∇hi(x∗), x − x∗〉, which implies that for all x ∈ H the
inequality F (x) ≥ maxi∈I{f0(x) − f0(x∗), fi(x)} holds true. Consequently, for
any feasible point x one has F (x) ≥ f0(x) − f0(x

∗), and F (x) > 0 otherwise,
i.e. the function F is bounded below, since f0 is bounded below on the feasible
region by our assumption. Therefore, by the last part of Proposition 2 one gets
that 0 ∈ L(z) if and only if F (x) ≥ 0 for all x ∈ H. Hence taking into account
the facts that F is a convex function and F (x∗) = 0 one obtains that 0 ∈ L(z)
iff 0 ∈ ∂F (x∗).

Bearing in mind the fact that x∗ is a feasible point of the problem (PI), and
applying the well-known formula for the subdifferential of the maximum of a
finite family of convex functions (see, e.g. [31, Corollary VI.4.3.2]) one obtains
that

∂F (x∗) = co
{

∇f0(x∗),∇fi(x∗)
∣

∣ i ∈ I : fi(x∗) = 0
}

.

Thus, 0 ∈ L(z) if and only if there exist αi ≥ 0, i ∈ I ∪ {0}, such that

l
∑

i=0

αi∇fi(x∗) = 0,

l
∑

i=0

αi = 1,

and αi = 0 whenever fi(x∗) < 0. Note that α0 6= 0 due to the fact that MFCQ

holds at x∗, since otherwise 0 =
∑l

i=1 αi〈∇fi(x∗), y〉 < 0, which is impossible.
Hence dividing by α0 and denoting λi = αi/α0 one obtains that 0 ∈ L(z) iff
there exist λi ≥ 0, i ∈ I, such that

∇f0(x∗) +

l
∑

i=1

λi∇fi(x∗) = 0, λifi(x∗) = 0, λi ≥ 0 ∀i ∈ I,

i.e. if and only if KKT optimality conditions are satisfied at x∗.

5 A problem of Bolza

In some applications it might be extremely difficult to solve the problem

min
(a,v)∈R×H

‖(a, v)‖2 subject to (a, v) ∈ df(x∗) + z (24)
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in order to find (a(z), v(z)), which renders the global optimality conditions pre-
sented above useless. The aim of this section is to demonstrate that in this case
one can utilise different global optimality condition in terms of global codifferen-
tials. Below we derive these conditions and apply them to a nonsmooth problem
of Bolza.

Theorem 9. Let f be a DC function, Df be any global codifferential of f , and
x∗ ∈ H be a given point. Suppose that C ⊆ df(x∗) is a nonempty set such that
df(x∗) = cl coC. Then x∗ is a point of global minimum of the function f if and
only if for any z ∈ C there exists ξ(z) ≥ 0 such that (ξ(z), 0) ∈ df(x∗) + z.

Proof. Clearly, x∗ is a point of global minimum of the function f iff for any
z ∈ C the function

Gz(x) = sup
(a,v)∈df(x∗)+z

(a+ 〈v, x〉)

is nonnegative (note that Gz(x) ≥ f(x∗ + x) − f(x∗)). Applying the second
part of Proposition 2 one obtains that if x∗ is a point of global minimum, then
for any z ∈ C one has (ξ(z), 0) ∈ df(x∗) + z, where ξ(z) = infx∈HGz(x) ≥ 0.
Conversely, if for any z ∈ C there exists ξ(z) ≥ 0 such that (ξ(z), 0) ∈ df(x∗)+z,
then infx∈HGz(x) ≥ ξ(z) ≥ 0, and x∗ is a point of global minimum.

With the use of the first part of Proposition 2 and the fact that by the
definition of global codifferential f(x)−f(x∗) = infz∈C Gz(x−x∗) for all x ∈ H
one can easily obtain the following result.

Theorem 10. Let f be a DC function, Df be any global codifferential of f ,
and x∗ ∈ H be a given point. Suppose that C ⊆ df(x∗) is a nonempty set such
that df(x∗) = cl coC. Then f is bounded below if and only if there exists ξ ∈ R

such that for any z ∈ C one has ([ξ,+∞)× {0}) ∩ (df(x∗) + z) 6= ∅.

Let us present an example in which global optimality conditions from Sec-
tion 3 become too complicated and unverifiable, while Theorems 9 and 10 can
be easily applied. This example also demonstrates how one can compute a glob-
al codifferential of a variational functional (cf. [15]). Namely, let us analyse the
following nonsmooth problem of Bolza:

min I(u) = u(0)− e−1u(1) +

∫ 1

0

max
{

|u′(x)| − |u(x)|, 0
}

dx. (25)

Here u is from the Sobolev space W 1,1(0, 1). As was demonstrated in [15, 36],
the function u∗(x) = θex with θ > 0 satisfies several necessary optimality con-
ditions for problem (25). Our main goal is to demonstrate that this solution
is not globally optimal. Furthermore, we will show that the functional I(·) is
unbounded below and thus does not attain a global minimum.

To convert the problem to the Hilbert space setting, below we suppose that
u ∈ H1(0, 1) = W 1,2(0, 1). Clearly, if u∗ is not a globally optimal solution
in H1(0, 1), then it is not a globally optimal solution in W 1,1(0, 1). Let us
compute a global codifferential mapping of the restriction of the functional I to
the Hilbert space H1(0, 1). To this end, for any x ∈ [0, 1] introduce the function

fx(u, ξ) = max
{

|θex+ ξ|− |θex +u|, 0
}

= max
{

|θex+ ξ|, |θex +u|
}

− |θex +u|.
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Applying Proposition 8 one obtains that the pair Dfx(0, 0) =
[dfx(0, 0), dfx(0, 0)] with

dfx(0, 0) = co











0
1
0



 ,





−2θex

−1
0



 ,





0
0
1



 ,





−2θex

0
−1











, (26)

dfx(0, 0) = co











0
−1
0



 ,





2θex

1
0











. (27)

is a global codifferential of fx at (0, 0). Then by the definition of global codif-
ferential and the fact that fx(0, 0) = 0 one gets that

I(u∗+u)−I(u∗) = u(0)−e−1u(1)+

∫ 1

0

(

max
(a,v)∈dxf(0,0)

(

a+v1u(x)+v2u
′(x)

)

+ min
(b,w)∈dxf(0,0)

(

b+ w1u(x) + w2u
′(x)

)

)

dx

for any u ∈ H1(0, 1). Clearly, the mapping x 7→ dfx(0, 0) is measurable. There-
fore, by the Filippov Theorem (see, e.g. [1, Thrm 8.2.10]) for any u ∈ H1(0, 1)
there exists a measurable selection (a(x), v1(x), v2(x)) of the map x 7→ dfx(0, 0)
such that

max
(a,v)∈dfx(0,0)

(a+ v1u(x) + v2u
′(x)〉) = a(x) + v1(x)u(x) + v2(x)u

′(x)

for a.e. x ∈ (0, 1). Hence for any u ∈ H1(0, 1) one has

I(u∗+u)−I(u∗) = u(0)−e−1u(1)+max
(

∫ 1

0

(

a(x)+v1(x)u(x)+v2(x)u
′(x)

)

dx
)

+min
(

∫ 1

0

(

b(x) + w1(x)u(x) + w2(x)u
′(x)

)

dx
)

, (28)

where the maximum is taken over all measurable selections of the map x 7→
dfx(0, 0), and the minimum is taken over all measurable selections of the map
x 7→ dfx(0, 0).

Recall that u ∈ H1(0, 1) iff u(x) = u(0) +
∫ x

0
η(s)ds for some η ∈ L2(0, 1)

(see, e.g. [44]). Therefore, instead of I(u) one can consider the functional J : R×
L2(0, 1) → R defined as J (u0, η) = I(u), where u(x) = u0 +

∫ x

0
η(s) ds. Denote

η∗(x) = θex. Applying (28) and integrating by parts one obtains that

J (θ + u0, η∗ + η)− J (θ, η∗) = max
(A,v0,v)∈dJ (θ,η∗)

(

A+ v0u0 + 〈v, η〉
)

+ min
(B,w0,w)∈dJ (θ,η∗)

(

B + w0u0 + 〈w, η〉
)

,

where 〈v, η〉 =
∫ 1

0
v(x)η(x) dx is the inner product in L2(0, 1),

dJ (θ, η∗) =
{

(A, v0, v) ∈ R× R× L2(0, 1)
∣

∣

∣ A =

∫ 1

0

a(x) dx,

v0 = 1− e−1 +

∫ 1

0

v1(x) dx, v(x) =

∫ 1

x

v1(s) ds+ v2(x)− e−1,

(a(·), v1(·), v2(·)) is a measurable selection of the map x 7→ dfx(0, 0)
}

,
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and

dJ (θ, η∗) =
{

(B,w0, w) ∈ R× R× L2(0, 1)
∣

∣

∣ B =

∫ 1

0

b(x) dx,

w0 =

∫ 1

0

w1(x) dx, w(x) =

∫ 1

x

w1(s) ds+ w2(x),

(b(·), w1(·), w2(·)) is a measurable selection of the map x 7→ dfx(0, 0)
}

.

The sets dJ (θ, η∗) and dJ (θ, η∗) are obviously convex. Let us verify that they
are closed. For the sake of shortness, we consider only the set dJ (θ, η∗).

Note that the set K of measurable selections of the map x 7→ dfx(0, 0) is
obviously convex, closed and bounded in L2(0, 1). Therefore it is weakly compact
in L2(0, 1). It is easily seen that dJ (θ, η∗) is the image of the set K under a
continuous map from the space L2(0, 1) endowed with the weak topology to
the space R× R× L2(0, 1) endowed with the weak topology as well. Hence the
set dJ (θ, η∗) is weakly compact, which implies that it is closed in the norm
topology due to the fact that this set is convex.

Thus, the pair DJ (θ, η∗) = [dJ (θ, η∗), dJ (θ, η∗)] is a global codifferential of
J at the point (θ, η∗). Let us verify that this point is not a global minimizer of
J with the use of Theorem 9.

Remark 9. It should be noted that a direct application of the global optimality
conditions from Theorem 1 to problem (25) is very difficult, since it is unclear
how to compute points (a(z), v(z)) defined in (24) for this problem.

The mapping (b(x), w1(x), w2(x)) = (2θex, 1, 0) is a measurable selection of
the map x 7→ dfx(0, 0) (see (27)). Therefore, the point z∗ = (2θ(e − 1), 1, w(·))
with w(x) ≡ 1− x belongs to dJ (θ, η∗). With the use of (26) and the Filippov
Theorem one can easily check that any measurable selection (a(·), v1(·), v2(·))
of the map x 7→ dfx(0, 0) has the form





a(x)
v1(x)
v2(x)



 =





−2θ(α2(x) + α4(x))e
x

α1(x) − α2(x)
α3(x) − α4(x)





for a.e. x ∈ [0, 1] and for some α = (α1, α2, α3, α4) ∈ S4, where the set S4 ⊂
(L2(0, 1))

4 consists of all those (α1, α2, α3, α4) for which all αi are nonnegative
and α1(x) + α2(x) + α3(x) + α4(x) = 1 for a.e. x ∈ (0, 1). Therefore [A, v0, v] ∈
dJ (θ, η∗) iff there exists α ∈ S4 such that

A = −2θ

∫ 1

0

ex(α2(x) + α4(x)) dx, v0 = 1− e−1 +

∫ 1

0

(α1(x)− α2(x)) dx,

v(x) = −e−1 +

∫ 1

x

(α1(s)− α2(s)) ds + α3(x)− α4(x)

for a.e. x ∈ [0, 1]. Consequently, the point (ξ, 0, 0) belongs to dJ (θ, η∗) + z∗ for
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some ξ ∈ R iff there exists α ∈ S4 such that

−2θ

∫ 1

0

ex(α2(x) + α4(x)) dx + 2θ(e− 1) = ξ,

∫ 1

0

(α1(x)− α2(x)) dx + 2− e−1 = 0,

∫ 1

x

(α1(s)− α2(s)) ds + α3(x)− α4(x)− e−1 + 1− x = 0

for a.e. x ∈ [0, 1]. However, note that

∫ 1

0

(α1(x) − α2(x)) dx ≥ −
∫ 1

0

α2(x) dx ≥ −1 > e−1 − 2

due to the fact that α1(x) ≥ 0 and α2(x) ≤ 1 for a.e. x ∈ [0, 1]. Thus, the sets R×
{0}×{0} and dJ (θ, η∗)+z∗ do not intersect, which by Theorems 9 and 10 implies
that the pair (θ, η∗(·)) with η∗(x) = θex is not a point of global minimum of J ,
and this functional is unbounded below. Consequently, the function u∗(x) = θex

is not a global minimizer of I, and this functional is unbounded below as well.

6 Conclusions

In this article we obtained new necessary and sufficient global optimality con-
ditions for DC optimization problems in terms of global codifferentials. These
optimality conditions are closely related to the method of codifferential descent
and are somewhat constructive, in the sense that they allow one to find “global
descent” directions at non-optimal points. On the other hand, a direct usage of
the global optimality conditions requires the knowledge of a global codifferential
of a DC function, and global codifferentials can be relatively easily computed
(and manipulated with) only in the piecewise affine case. Nevertheless, it seems
possible to propose new methods for general DC optimization problems utilising
an approximation of global codifferential (cf. codifferential method [3] and ag-
gregate codifferential method [57]). A development and analysis of such methods
are interesting topics of future research.
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