
ar
X

iv
:1

80
9.

04
53

0v
1 

 [
m

at
h.

O
C

] 
 9

 S
ep

 2
01

8

Steklov Regularization and Trajectory Methods for

Univariate Global Optimization

Orhan Arıkan∗ Regina S. Burachik† C. Yalçın Kaya‡
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Abstract

We introduce a new regularization technique, using what we refer to as the Steklov reg-
ularization function, and apply this technique to devise an algorithm that computes a global
minimizer of univariate coercive functions. First, we show that the Steklov regularization con-
vexifies a given univariate coercive function. Then, by using the regularization parameter as
the independent variable, a trajectory is constructed on the surface generated by the Steklov
function. For monic quartic polynomials, we prove that this trajectory does generate a global
minimizer. In the process, we derive some properties of quartic polynomials. Comparisons are
made with a previous approach which uses a quadratic regularization function. We carry out
numerical experiments to illustrate the working of the new method on polynomials of various
degree as well as a non-polynomial function.

Key words: Global optimization, mean filter, Steklov smoothing, Steklov regulariza-
tion, scale-shift invariance, trajectory methods.

1 Introduction

Mean filter is a digital filtering technique in signal processing, which is used to remove noise.
The technique can also be viewed as a smoothing procedure. In digital imaging, for example,
this filtering technique is performed by replacing each pixel value by the mean value of its
neighbours and itself in a “window” – see [16] and the references therein. The expected
outcome is the removal of noise in the image and the smoothening of the image. The mean
filter idea was originally proposed and has so far been used for the processing of discrete data.

In the present paper, we propose and analyse a similar idea in the setting of continuous
optimization, involving a coercive univariate function instead of discrete data. When the
averaging process described above is employed for a univariate function f(x) over an interval
(corresponding to a window) of variable size centred at x, i.e., [x− t, x+ t], with t > 0, one
obtains the well-known Steklov smoothing function [6–9], expressed in terms of the function
f and the size of the interval, denoted here by µ(x, t). The Steklov smoothing function is
typically used in getting an approximate solution to the problem of minimizing a nonsmooth
f : The smooth function µ(x, t) is minimized over an interval, or window, with small t, so
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that the solution of the smoothed problem is a close enough approximation to the solution
of the original problem.

Although the properties of µ have very well been explored in the literature for small t,
it has not yet been studied for large t. This is the point where our study steps in. In the
present paper, first we show that for large enough t and certain coercive f , µ(·, t) is strictly
convex – see Theorem 1. In this sense, µ regularizes the function f for large t by convexifying
(as well as smoothening) it, and that is the reason why we call it the Steklov regularization
function. We note that, if µ(·, t0) is strictly convex for some t0 > 0, then µ(·, t0) has a unique
minimizer. The main aim of the current paper is to propose a method, namely Algorithm 1,
based on constructing and following a trajectory between the unique minimizer of µ(·, t0)
and a global minimizer of f(x). The trajectory here is the solution of an ordinary differential
equation (ODE) obtained by using µ(x, t).

Univariate global optimization has long been an active area of research – see [10, 11, 13]
and the references therein. Most multidimensional iterative methods involve line searches
at a given search direction, and these uni-dimensional searches are equivalent to the global
minimization of a univariate function. Therefore, finding efficiently a global minimizer in
such a line search has importance on its own, and can be crucial for the success of such iter-
ative high-dimensional techniques. Thus the relevance of developing new, efficient univariate
techniques. Moreover, the result of such a line search can be useful as a starting guess for
the global minimizer of the original higher dimensional problem. Although the present paper
focuses on the univariate case, an extension of our approach to the multi-variable case is
under investigation.

Trajectory based methods are not new to optimization. The trajectories (to follow) in these
methods are typically solutions of ODEs incorporating the gradient of f(x). Convergence
analyses for these types of methods have so far been given only for local minima – see, for
example, [3, 5] and the references therein. Trajectory based methods have been proposed
also for global optimization, albeit without a convergence proof, to the best knowledge of the
authors – see, for example, [14].

We note one particular trajectory based technique for global optimization, the backward
differential flow method, which was proposed by Zhu et al. in [17], where the trajectories
are solutions of an ODE that emanates from the (classical) quadratic regularization function
rather than the Steklov regularization function. We have recently illustrated that the back-
ward differential flow method, given as Algorithm 3 in the current paper, may not yield a
global minimizer, even in the case when the function is a quartic polynomial – see [1].

We provide a convergence proof of our approach for the case of quartic polynomials (see
Algorithm 2 and Theorem 3). Our numerical experiments indicate that our method can be
viewed as a better alternative to that given by Zhu et al. [17]. Indeed, our method converges
to a global minimum in most of the (randomly generated) cases of even-higher-degree monic
polynomials. On the other hand, the method by Zhu et al. fails to converge in the great
majority of the cases – see Table 1.

In addition to the convexification and convergence results in Theorems 1 and 3, respectively,
we provide auxiliary results, which are interesting in their own right. For example, we prove in
Lemma 2 that, if Algorithm 1 can generate the global minimizer of a given function f(x), then
it can also generate the global minimizer of f(αx− a), where a ∈ R and α > 0 are fixed. We
refer to this property as the scale-shift invariance property. We note that, while Algorithm 1
(and thus Algorithm 2) is scale-shift invariant, Algorithm 3 is not. It is well-known that scale
changes and translations can be used to simplify the expression of a function. For example,
the third degree term of a quartic polynomial can be made to vanish after a simple horizontal
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shift, which transforms the polynomial into the so-called depressed form.

We uncover certain properties of quartic polynomials, which are independent of the method
we propose. Lemma 3 states that, if a quartic polynomial has two local minimizers, then
its curvature at the global minimizer is greater. Moreover, its global minimizer is farther
from the origin. Lemma 4, on the other hand, tells us at least how far from the origin the
global minimizer will be located and what its sign is going to be. Lemma 7 presents a simple
condition under which a monic depressed quartic polynomial is quasi-convex. Lemma 5
asserts the value t0 that convexifies µ(·, t0) and states the minimizer x0 of µ(·, t0), which are
conveniently used in Algorithm 2. Proposition 4 provides a condition on t for quasi-convexity
of µ(·, t0). Lemmas 8–11 provide some properties of the trajectories run in Algorithm 2 which
in turn facilitate the proof of Theorem 3.

The paper is organized as follows. In Section 2, we introduce the Steklov regularization and
prove certain properties, including convexification. In Section 3, we describe Algorithm 1 and
prove the scale-shift invariance property. In Section 4, we derive some properties of quartic
polynomials, provide Algorithm 2 and prove its convergence. In Section 5, we describe
Algorithm 3, which uses the quadratic regularization. In Section 6, we carry out extensive
numerical experiments using Algorithms 1 and 3 for polynomials of various degrees, including
a non-polynomial example, and make comparisons.

2 Steklov Regularization

In an analogous way to the original (discrete) mean filter technique [16], first choose a “win-
dow” with centre x. In the case when x is a scalar, this window is just a finite interval. Then
compute the mean value of a continuous function f : R → R over the window and assign this
value as the value of an associated function at x. Furthermore, pass/shift the window across
the whole domain of f , assigning values to the mean function at every x in the domain of f .

The window, or the interval, can typically be chosen to be centred at x, as [x − t, x + t],
where t is a fixed positive real number defining the window size. Therefore, we can regard
the associated function as a function of not only x but also t.

The function we have just motivated with mean filter turns out to be already in use in the
nonsmooth optimization literature, in obtaining smooth approximations of nondifferentiable
objective functions, via a convolution integral, for t small enough. A well-known class of
mollifiers in the convolution integral is referred to as the Steklov mollifiers [8]. A use of these
mollifiers in the convolution integral in turn gives rise to the so-called Steklov smoothing
function, definition and properties of which can be found in [6–9].

We note that the function we have motivated by means of mean filter is nothing but the
Steklov smoothing function. Since our concern will be to convexify a given function for large
enough t (rather than making it smooth for small t), we refer to the resulting function as the
Steklov regularization function, or simply the Steklov function.

Definition 1 The Steklov function associated with a continuous function f is denoted by
µ : R× (0,∞) → R and defined as

µ(x, t) :=
1

2t

∫ x+t

x−t
f(τ) dτ . (1)

We also refer to µ(·, ·) as the Steklov regularization of f . ✷
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Remark 1 Since the function f is continuous, µ : R × [0,∞) → R is well defined and
differentiable on R× (0,∞). ✷

We collect in the next lemma some useful properties of µ.

Lemma 1 Given a continuous function f : R → R, let µ : R× (0,∞) → R be as in (1). The
following equalities hold for µ.

(i)

µx(x, t) =
1

2t
(f(x+ t)− f(x− t)), (2)

where µx stands for ∂µ/∂x.

(ii)

µxx(x, t) =
1

2t
(f ′(x+ t)− f ′(x− t)) , (3)

where µxx stands for ∂2µ/∂x2.

(iii)

µtx(x, t) =
1

t

[
1

2
(f ′(x+ t) + f ′(x− t))− µx(x, t)

]
, (4)

where µtx stands for ∂2µ/∂t ∂x.

Proof. Part (i) follows directly from the Fundamental Theorem of Calculus, and the remaining
parts are obtained by differentiating µx with respect to x and t, respectively. ✷

The following theorem states general assumptions under which the Steklov function µ
convexifies a coercive function f , and hence we regard the effect of µ as a regularization.

Theorem 1 (Convexification) Suppose that f : R → R is a continuously differentiable
function such that there exist two real numbers a and b, with a < b, for which the following
conditions hold.

(a) f ′(x) < 0 for all x ≤ a and f ′(x) > 0 for all x ≥ b.

(b) f ′ is strictly increasing and unbounded below on (−∞, a].

(c) f ′ is strictly increasing and unbounded above on [b,∞).

Then there exists t0 > 0 such that µ(·, t) is strictly convex for all t ≥ t0.

Proof. From part (a) and the fact that f ′ is continuous on [a, b], there exist real numbers
α < 0 and β > 0 such that

α := min
x∈[a,b]

f ′(x) ≤ f ′(a) < 0 < f ′(b) ≤ max
x∈[a,b]

f ′(x) =: β .

By parts (b) and (c), there exist ã ≤ a and b̃ ≥ b such that f ′(x) < α for all x ≤ ã, and
f ′(x) > β for all x ≥ b̃. Let t0 ≥ b̃ − ã > 0. We will show that for every t ≥ t0 and every
x ∈ R, we have

f ′(x+ t)− f ′(x− t) > 0. (5)

By (3), this amounts to showing convexity of µ(·, t) all t ≥ t0. Only the following cases are
possible for the pair x− t0, x+ t0.
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(i) x− t0, x+ t0 ∈ (−∞, ã].

(ii) x− t0, x+ t0 ∈ [̃b,∞).

(iii) x− t0 ∈ (−∞, ã] and x+ t0 ∈ (ã, b̃).

(iv) x− t0 ∈ (ã, b̃) and x+ t0 ∈ [̃b,∞).

(v) x− t0 ∈ (−∞, ã] and x+ t0 ∈ [̃b,∞).

Note that the case x − t0, x + t0 ∈ (ã, b̃) is not possible by the choice of t0. Indeed, if
x− t0, x+ t0 ∈ (ã, b̃) we can write

t0 < x− ã and t0 < b̃− x ,

so t0 < (̃b− ã)/2 < b̃− ã, contradicting the choice of t0. We prove (5) by considering all the
possible cases (i)–(v).

(i) By part (b) and the fact that x+ t0 > x− t0, we have that f ′(x+ t0)− f ′(x− t0) > 0.
To complete the proof of (5), fix now t > t0. We have the following sub-cases:

(i1) x+ t ∈ (ã, a) , (i2) x+ t ∈ [a, b] , (i3) x+ t ∈ (b,+∞) .

In case (i1) we use part (b) and the fact that x − t0, x − t, x + t0, x + t ∈ (−∞, a] to
write

f ′(x+ t0) < f ′(x+ t) ,

f ′(x− t0) > f ′(x− t) ,

so 0 < f ′(x + t0) − f ′(x − t0) < f ′(x + t) − f ′(x − t), as desired. In case (i2), we use
the definition of α to write f ′(x + t) ≥ α. Since x + t0 ∈ (−∞, ã] we also have that
f ′(x+ t0) < α. Using part (b) and the fact that x− t < x− t0 ≤ ã, we have

0 < f ′(x+ t0)− f ′(x− t0) < α− f ′(x− t) ≤ f ′(x+ t)− f ′(x− t) ,

as desired. In sub-case (i3), we note that f ′(x+ t) > α. Indeed, since x+ t > b we use
part (c) to write α ≤ f ′(b) < f ′(x+ t). Altogether,

0 < f ′(x+ t0)− f ′(x− t0) < α− f ′(x− t0) < f ′(x+ t)− f ′(x− t) ,

where we also used (b) in the third inequality. This completes the proof for case (i).
Due to symmetry, the proof for case (ii) is done in exactly the same way as for case (i),
mutatis mutandis. We therefore omit the proof for case (ii).

(iii) As in (i), we consider three subcases:

(iii1) x+ t0 ∈ (ã, a) , (iii2) x+ t0 ∈ [a, b] , (iii3) x+ t0 ∈ (b,+∞) .

Case (iii1) implies that x− t0, x+ t0 ∈ (−∞, a] and by part (b)

f ′(x+ t0)− f ′(x− t0) > 0 . (6)

Case (iii2) gives x+ t0 ∈ [a, b] and x− t0 ∈ (−∞, ã]. So, again we have (6). Indeed,

f ′(x+ t0)− f ′(x− t0) > α− α = 0 .

In case (iii3) we have x+ t0 ∈ (b,∞) and x− t0 ∈ (−∞, ã]. So by parts (b) and (c) we
have that α ≤ f ′(b) < f ′(x+ t0) and f ′(x− t0) < α. As in case (iii2) we obtain (6).
To complete the proof for case (iii), fix t ≥ t0. As in case (i) we need to consider three
sub-cases:
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(iii4) x+ t ∈ (ã, a) , (iii5) x+ t ∈ [a, b] , (iii6) x+ t ∈ (b,+∞) .

All three sub-cases are resolved exactly as in cases (iii1), (iii2) and (iii3), respectively,
with t0 replaced by t. This completes the proof for case (iii).

(iv) Again, we consider three sub-cases:

(iv1) x− t0 ∈ (ã, a) , (iv2) x− t0 ∈ [a, b] , (iv3) x− t0 ∈ (b, b̃) .

In case (iv1) we have ã < x − t0 < a so by part (b) f ′(x − t0) < f ′(a) ≤ β. Also in
case (iv2) we have f ′(x− t0) ≤ β. In both cases, we can write

f ′(x+ t0)− f ′(x− t0) > β − β = 0 ,

where we also used the fact that f ′(x + t0) > β. In case (iv3), x − t0, x + t0 ∈ (b,∞)
and we use directly part (c) to conclude that f ′(x+ t0)− f ′(x− t0) > 0.
To complete the proof for case (iv), fix t ≥ t0. We always have that x + t ∈ [̃b,∞) so
f ′(x+ t) > β. We consider again the following sub-cases:

(iv4) x− t ∈ (ã, a) , (iv5) x− t ∈ [a, b] , (iv6) x− t0 ∈ (b, b̃) .

As in case (iii), all three sub-cases are resolved exactly as cases (iv1), (iv2) and (iv3),
respectively, with t0 replaced by t. This completes the proof for case (iv).

(v) Use parts (b) and (c) to write

0 < β − α < f ′(x+ t0)− f ′(x− t0) < f ′(x+ t)− f ′(x− t),

where we used the definition of ã and b̃ in the second inequality and parts (b) and (c)
in the third. This completes the proof for case (v).

The proof of the theorem is complete. ✷

Remark 2 It is easy to check that, in Theorem 1, we can take a := −R and b := R for
R := max{|a|, |b|}. Note that R > 0 because a < b.

Remark 3 Monic polynomials of even degree are an important special case of functions
which can be convexified by µ.

Graphical depictions of µ(x, t) for typical monic quartic polynomials and how convexifica-
tion happens in each example case can be observed in Figure 1 on page 21 .

We focus our attention on functions which are coercive, in the sense of [12, Definition 3.25].
In our framework, this concept is stated as follows.

Definition 2 Let f : R → R be a function which is bounded below on bounded sets. We
say that f is coercive if

lim inf
|x|→∞

f(x)

|x| = ∞ . (7)

✷

Coercive functions might be non-differentiable, and hence in general they may not verify
the assumptions of Theorem 1. The following result shows that a function verifying the
assumptions of Theorem 1 is coercive in the sense of Definition 2.
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Proposition 1 (Coercivity) Let f be as in Theorem 1. Then f is coercive in the sense of
Definition 2.

Proof. The statement on the boundedness of f is a direct consequence of the continuity of f .
By Remark 2, we can assume that Theorem 1 holds with a = −R and b = R for some R > 0.
To prove (7) we will show that for all M > 0 we have

lim inf
|x|→∞

f(x)

|x| ≥ M. (8)

If (8) is not true, there exists M0 > 0 and a sequence (xn) ⊂ R such that |xn| > n for all
n ∈ N and

f(xn)

|xn|
< M0. (9)

Without loss of generality we can assume that the sequence (xn) ⊂ [R,∞) and strictly
monotone increasing, or (xn) ⊂ (−∞,−R] and strictly monotone decreasing (otherwise we
take a subsequence of the original sequence). Moreover, we can further assume that (xn) ⊂
[R,∞) and strictly monotone increasing, because the proof for the latter case is identical to
the one for the case in which (xn) ⊂ (−∞,−R] and strictly monotone decreasing (mutatis
mutandis). So it is enough to assume that (xn) ⊂ [R,∞) and strictly monotone increasing.
Since xn ↑ +∞ and f ′ is strictly increasing and unbounded above in [R,∞) there exists n0

such that f ′(xn) > 2M0 for all n ≥ n0. Using the mean value theorem we can write for all
n > n0:

f(xn)− f(xn0
) =

n−1∑

j=n0

(f(xj+1)− f(xj)) =

n−1∑

j=n0

f ′(θj)(xj+1 − xj)

> f ′(xn0
)
n−1∑

j=n0

(xj+1 − xj) > 2M0(xn − xn0
),

where we used that R ≤ xn0
≤ xj < θj < xj+1 and the fact that f ′ is increasing in [R,∞)

in the first inequality, and the definition of n0 in the last one. Dividing the expression by
|xn| = xn and using (9) we obtain

M0 −
f(xn0

)

xn
>

f(xn)

xn
− f(xn0

)

xn
> 2M0

(
1− xn0

xn

)
.

Taking limits for n → ∞ and using the fact that xn → +∞ we obtain

M0 ≥ 2M0,

a contradiction. This completes the proof. ✷

The next proposition shows that µ(·, t) is a good approximation of f at x for small values
of t.

Proposition 2 (Limiting Functions) Fix x ∈ R and t0 > 0. Assume that f is twice
continuously differentiable at x.

lim
t→0

µ(x, t) = f(x) , lim
t→0

µx(x, t) = f ′(x) , lim
t→0

µxx(x, t) = f ′′(x) , lim
t→0

µtx(x, t) = 0 . (10)

Proof. The first limit is a consequence of l’Hôpital’s rule:

lim
t→0

µ(x, t) = lim
t→0

∫ x+t

x−t
f(τ) dτ

2 t
= lim

t→0

f(x+ t) + f(x− t)

2
= f(x) .
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The second and third limits are also a result of the application of l’Hôpital’s rule on the limit,
as t → 0, of (2) and (3), respectively. Proving the last equality is more involved: Since f is
C2 we can write

f(x+ t) = f(x) + tf ′(x) + o1(t
2) ,

f(x− t) = f(x)− tf ′(x) + o2(t
2) ,

where limt→0(oi(t
2)/t) = 0, for i = 1, 2. Using the two equalities above we derive

µx(x, t) =
1

2t
(f(x+ t)− f(x− t)) =

1

2t
(2tf ′(x) + o3(t

2))

= f ′(x) + o(t) , (11)

where limt→0(oi(t)/t) = 0. Using (11) we have

lim
t→0

µtx(x, t) = lim
t→0

1

2t

[
f ′(x+ t) + f ′(x− t)

]
− 1

t
µx(x, t)

= lim
t→0

1

2t

[
f ′(x+ t) + f ′(x− t)

]
− 1

2t
f ′(x)− 1

2t
f ′(x)− o(t)

t

= lim
t→0

1

t

[
f ′(x+ t)− f ′(x)

t
− [f ′(x− t)− f ′(x)]

(−t)

]
− o(t)

t

= f ′′(x)− f ′′(x) = 0.

✷

3 A Trajectory Method Using Steklov regularization

The trajectory approach we formulate is based on constructing a continuously differentiable
path through points where

µx(x, t) = 0 , ∀t ∈ (0, t0] . (12)

We interpret the variable x as a function dependent on t, i.e., x : [0, t0] → R, mapping
t 7→ x(t). By taking the total derivative of both sides of (12) with respect to the independent
variable t, we obtain

µxx(x(t), t)ẋ(t) + µtx(x(t), t) = 0 , for a.e. t ∈ (0, t0] , (13)

where ẋ stands for dx/dt. In particular, we note that, for (x0, t0) = (x(t0), t0), we have by
(12) that µx(x0, t0) = 0. After re-arranging (13), one obtains the initial value problem

ẋ(t) = −µtx(x(t), t)

µxx(x(t), t)
, for a.e. t ∈ (0, t0] , with x(t0) = x0 , (14)

provided that µxx(x(t), t) 6= 0 a.e. in (0, t0].

Remark 4 Suppose that x(·) is a solution of the ODE in (14). Then Proposition 2 implies
that, if limt→0+ f ′′(x(t)) 6= 0, then limt→0+ ẋ(t) = 0.
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3.1 An algorithm for global optimization

We motivate our first method as follows. Assume that f is as in Theorem 1. Let x0 ∈ R and
t0 > 0 be such that

f ′(x+ t0)− f ′(x− t0) > 0 , ∀x ∈ R , and f(x0 + t0)− f(x0 − t0) = 0 .

From (2) and (3), the last two expressions imply that µxx(x, t0) > 0 and µx(x0, t0) = 0,
respectively. Using (12) and (3)–(4) in the IVP (14), we obtain

ẋ(t) = −f ′(x(t) + t) + f ′(x(t)− t)

f ′(x(t) + t)− f ′(x(t)− t)
, for a.e. t ∈ (0, t0] , with x(t0) = x0 . (15)

Algorithm 1 below serves to find a global minimizer of f .

Algorithm 1

Step 1 Choose the parameter t0 > 0 large enough so that µ(·, t0) is convex. Find the (global)
minimizer x0 of µ(·, t0), i.e., solve f(x0 + t0)− f(x0 − t0) = 0 for x0.

Step 2 Solve the initial value problem in (15).

Step 3 Report limt→0+ x(t) =: x∗ as a global minimizer of f .

Algorithm 1 is said to be well-defined for the function f if there exist x0 and t0 > 0 such
that Steps 1–3 of the algorithm can be carried out. This entails, in particular, that the
solution of the IVP in Step 2 is obtained uniquely. Theorem 1 establishes assumptions on f
under which Step 1 can be carried out.

In the following lemma, we show that Algorithm 1 is scale-shift invariant; i.e., if Algo-
rithm 1 is well-defined for the function f , then it is also well-defined for any scale change and
horizontal translation, of f .

Lemma 2 (Scale-Shift Invariance) Fix α > 0 and a ∈ R. Assume that Algorithm 1 is
well-defined for f , and let x0 and t0 be as in Step 1 for f . Let x∗ be the global minimizer of
f generated by Step 3 of Algorithm 1 for f . Set g(x) := f(αx − a) and denote the Steklov
function associated with g by

µ̃(x, t) :=
1

2t

∫ x+t

x−t
g(τ) dτ . (16)

Then Algorithm 1, with µ replaced by µ̃ is well-defined for g and generates z∗ :=
x∗ + a

α
,

which is a global minimizer of g. In this case, Step 1 can be carried out with s0 := t0/α, and

z0 :=
x0 + a

α
.

Proof. Using the definition of g and (16) we can write

µ̃(x, t) =
1

2t

∫ x+t

x−t
f(α τ − a) dτ =

1

2t

∫ α(x+t)−a

α(x−t)−a
f(η) dη

=
α

2(α t)

∫ αx−a+(αt)

αx−a−(αt)
f(η) dη = αµ(αx− a, α t) ,

(17)
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through a change of the dummy integration variable, η = α τ − a, and the definition in (1).
Then, by taking partial derivatives of µ̃, where we employ the chain rule on the right-most
term of the second line in (17), we get

µ̃x(x, t) = α2µx(αx− a, α t), µ̃xx(x, t) = α3µxx(αx− a, α t)

µ̃tx(x, t) = α3µtx(αx− a, α t) .
(18)

Since Algorithm 1 is well-defined for f , Steps 1 and 2 of the algorithm can be executed,
generating a global minimizer x0 of µ(·, t0) in Step 1, a unique solution x(·) to the IVP
in (14) in Step 2, where µ(·, t0) is convex and

µx(x0, t0) = 0 . (19)

In Step 3, a global minimizer of f is obtained as limt→0+ x(t) = x∗. Take z0 := (x0 + a)/α
and s0 := t0/α. We show now that Step 1 is well defined for g, for s0 and z0 in place of
t0 and x0, respectively. Indeed, by Step 1 for f we know that µ(·, t0) is convex. Hence, the
composition of µ(·, t0) with the linear function L(x) = αx − a is also convex. Namely, the
function µ(α (·)− a, t0) is convex, and hence any positive multiple of it is convex. Therefore,
by (17) we deduce that µ̃(·, t0) is convex. The first equality in (18), combined with (19) and
the definitions of z0 and t0 give

0 = µx(x0, t0) = µx(αz0 − a, α s0) =
1

α2
µ̃x(z0, s0) ,

so that z0 is a global minimizer of µ̃(·, s0). This shows that Step 1 is well defined for g. We
proceed now to show that Step 2 is well defined for g. Take x(·) to be the unique solution of
the IVP in (14) obtained in Step 2 for f , and define z(t) := (x(α t) + a)/α, for all t ∈ (0, s0].
We claim that z(·) solves the following IVP:

ż(t) = − µ̃tx(z(t), t)

µ̃xx(z(t), t)
, for a.e. t ∈ (0, s0] , z(s0) = z0 , (20)

which is the IVP in (14) with µ replaced by µ̃ and x0 replaced by z0. Indeed, take t ∈ (0, s0] =
(0, t0/α]. Then α t ∈ (0, t0] and by (14) we can write

ż(t) = ẋ(α t) = − µtx(x(α t), α t)

µxx(x(α t), α t)
= − µtx(α z(t)− a, α t)

µxx(α z(t)− a, α t)
= − µ̃tx(z(t), t)

µ̃xx(z(t), t)
,

where we have used the definition of z in the first equality, the definition of x as solution
of (14) in the second equality. We have used the second and third equalities of (18) in the
third equality above. The fact that z(s0) = z0 follows directly from the definition of z and
the fact that x(t0) = x0. Therefore, z solves (20) and hence Step 2 is well defined for g. To
check that the same holds for Step 3, take x∗ = limt→0+ x(t) to be the global minimizer of f
generated in Step 3 for f . The solution of the IVP in (20) will now result in

lim
t→0+

z(t) = lim
t→0+

x(α t) + a

α
=

x∗ + a

α
.

Since x∗ is a global minimizer of f , we have

g

(
x∗ + a

α

)
= f(x∗) ≤ f(αx− a) = g(x), ,∀x ∈ R ,

so (x∗ + a)/α is a global minimizer of g. Hence, Step 3 is well defined for g and the proof is
complete. ✷
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4 Quartic Polynomials

In this section, we consider the special case of monic depressed quartic polynomials, namely,

f(x) = x4 + a2 x
2 + a1 x+ a0 , (21)

where a0, a1 and a2 are real constants such that a2 < 0 and a1 6= 0. Note that the depressed
form is general enough. Indeed, given an arbitrary quartic polynomial, g(y) = y4 + b3 y

3 +
b2 y

2 + b1 y + b0, the substitution y = x − (b3/4) reduces g to a depressed form. As for the
assumption a2 < 0, note that, if a2 ≥ 0 then f ′′(x) = 12x2+2 a2 ≥ 0 which yields that f(·) is
convex. In this case, there is no need to apply Algorithm 1 to find a global minimum of f(·).
Assumption a1 6= 0 is posed since if a1 = 0 then f(·) has two global minimizers simply given
by the set {−

√
−a2/2,

√
−a2/2}. Hence, the non-trivial case is when a2 < 0 and a1 6= 0.

4.1 Properties of monic quartic polynomials

A quartic polynomial can have at most two local minima. The following lemma helps distin-
guish which of these two is the global minimum.

Lemma 3 (Curvature) Let f be a monic quartic polynomial. Assume that f ′(x1) = f ′(x2) =
0 with x1 6= x2. The following properties hold.

(i) f(x1) < f(x2) if, and only if, f ′′(x1) > f ′′(x2), in particular, |x1| > |x2|.

(ii) f(x1) = f(x2) if, and only if, f ′′(x1) = f ′′(x2).

Proof. The proof of parts (i) and (ii) is done in two steps.
Step 1: In this step, we show that it is enough to prove the lemma for a depressed quartic
polynomial. We prove the claim for part (i). The claim for part (ii) is proved in an identical
way. Assume that part (i) of the lemma is true for depressed monic quartic polynomials and
that we have a quartic polynomial h(x) = x4 + c3x

3 + c2x
2 + c1x+ c0 with c3 6= 0. Assume

that h′(x1) = h′(x2) = 0 As noted above, the “shifted” polynomial f(x) := h(x − (c3/4)) is
(monic and) depressed. Using the chain rule we have

h′(x1) = f ′(x1 + (c3/4)) = h′(x2) = f ′(x2 + (c3/4)) = 0 .

Since part (i) of the lemma is true for f we have

h(x1) = f(x1 + (c3/4)) < f(x2 + (c3/4)) = h(x2)

if and only if
h′′(x1) = f ′′(x1 + (c3/4)) > f ′′(x2 + (c3/4)) = h′′(x2) ,

and hence part (i) of the lemma holds for h. As mentioned before, the proof of the fact that
part (ii) of the lemma holds for h follows identical steps. Therefore, it is enough to prove the
lemma for depressed quartic polynomials.
Step 2: In this step, we show that, if f is a depressed quartic polynomial such that f ′(x) =
f ′(y) = 0 , with x 6= y, then we have

12
[f(x)− f(y)]

(x− y)2
= (f ′′(y)− f ′′(x)). (22)
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Note that parts (i) and (ii) of the lemma follow directly from (22). This is straightforward for
part (ii). As for part (i), if (22) holds, the assumption on x1 and x2 implies that for x := x1
and y := x2 we have

sgn [f(x1)− f(x2)] = sgn
[
f ′′(x2)− f ′′(x1)

]
= − sgn

[
f ′′(x1)− f ′′(x2)

]
,

which is the statement of part (i) of the lemma, also observing that f ′′(x1) > f ′′(x2) if and
only if 12x21 + 2a2 > 12x22 + 2a2, i.e., |x1| > |x2|. Hence, we proceed to prove (22) when
f ′(x) = f ′(y) = 0 and f is a depressed quartic polynomial. The assumption on x and y and
the Taylor development of f gives

f(x)− f(y) = [f ′′(y)/2](x − y)2 + [f ′′′(y)/6](x − y)3 + (x− y)4 ,

f(y)− f(x) = [f ′′(x)/2](y − x)2 + [f ′′′(x)/6](y − x)3 + (y − x)4 ,

By subtracting side-by-side the second equality from the first one, and re-arranging the
resulting expression we obtain

2
[f(x)− f(y)]

(x− y)2
=

[f ′′(y)− f ′′(x)]

2
+

[f ′′′(y) + f ′′′(x)]

6
(x− y). (23)

By direct calculation, the rightmost term in (23) can be written as follows

[f ′′′(y) + f ′′′(x)]

6
(x− y) =

[24y + 24x]

6
(x− y) = 4(x2 − y2)

=
[
(12x2 + 2a2)− (12y2 + 2a2)

]
/3

= [f ′′(x)− f ′′(y)]/3

= −[f ′′(y)− f ′′(x)]/3 .

Using this in (23) yields

2
[f(x)− f(y)]

(x− y)2
=

[f ′′(y)− f ′′(x)]

2
− [f ′′(y)− f ′′(x)]

3
=

[f ′′(y)− f ′′(x)]

6
, (24)

which is (22). The proof is complete. ✷

Remark 5 The previous lemma is not valid for higher degree polynomials. The function

f(x) = x6−8

5
x5+

2

3
x3, with the local extrema x1 = 0 and x2 = 1, furnishes a counterexample.

Lemma 4 (Sign of a Minimizer) Consider a monic depressed quartic polynomial f , with
a1 6= 0 and a2 < 0. If x1 and x2 are the local minimizers of f , then sgn(x1) = − sgn(x2).
Suppose that x∗ is the global minimizer of f . Then |x∗| >

√
−a2/6 and, in particular,

sgn(x∗) = − sgn(a1).

Proof. Suppose that x1 and x2 are the local minimizers of f . Note that f ′′(x) = 12x2 +2 a2
is an even function, i.e., f ′′(−x) = f ′′(x). Since a2 < 0, we have f ′′(x) = 0 when x =√

−a2/6 =: x̃ and x = −x̃. Then, since f ′′(x) > 0 for x < −x̃ and x > x̃, one of the local
minima is placed to the left of −x̃ and the other to the right of x̃, i.e., x1 < −x̃ < 0 and
x2 > x̃ > 0. So sgn(x1) = − sgn(x2) and |x∗| >

√
−a2/6. Now, we can write

f ′(x1) = f ′(−x̃) +

∫ x1

−x̃
f ′′(y) dy

= f ′(−x̃)−
∫ −x1

x̃
f ′′(y) dy = 0 (25)
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where, in (25), a change of variables and the fact that f ′′ is even have been used. We can
also write

f ′(x2) = f ′(x̃) +

∫ x2

x̃
f ′′(y) dy = 0 . (26)

Adding Equations (25)-(26) side by side and using f ′(x̃) + f ′(−x̃) = 2 a1, one gets

2 a1 +

∫ x2

x̃
f ′′(y) dy −

∫ −x1

x̃
f ′′(y) dy = 0 . (27)

To complete the proof, we consider two cases: a1 < 0 and a1 > 0. If a1 < 0, from (27) we
have,

−2 a1 =

∫ x2

x̃
f ′′(y) dy −

∫ −x1

x̃
f ′′(y) dy > 0 ,

which implies that x2 > −x1 > 0, since f ′′(y) > 0 over both integration intervals. Since
f ′′′(x) = 24x > 0 for x > 0, f ′′ is increasing in (0,∞) so f ′′(x2) > f ′′(−x1) = f ′′(x1). Then,
by Lemma 3, f(x2) < f(x1) and hence x∗ = x2 > 0 is the global minimizer. Therefore,
sgn(x∗) = 1 = − sgn(a1).

Suppose now that a1 > 0. Through similar steps, we get −x1 > x2 > 0, or x1 < −x2 < 0.
Since f ′′′(x) = 24x < 0 for x < 0, f ′′ is decreasing in (−∞, 0) so f ′′(x1) > f ′′(−x2) = f ′′(x2).
Then, by Lemma 3, f(x1) < f(x2) and hence x∗ = x1 < 0 is the global minimizer. Therefore,
sgn(x∗) = −1 = − sgn(a1), completing the proof. ✷

4.2 An algorithm for global minimization of quartic polynomials

In this section we consider the specific case of applying Algorithm 1 to quartic polynomials.

Proposition 3 If f(x) is a univariate quartic monic polynomial, then µ(x, t), as in (1), can
be written as

µ(x, t) = f(x) +
t2

6
f ′′(x) +

t4

5
. (28)

Proof. Let f(x) := x4 + a3 x
3 + a2 x

2 + a1 x + a0, where a0, a1, a2 and a3 are real numbers.
Substitution of f into (1), followed by straightforward integration, expanding and rearranging,
yield (28). ✷

Using (28), µ(x, t) and its derivatives can now be re-written for monic depressed polyno-
mials as follows.

µ(x, t) = f(x) +
t2

6
f ′′(x) +

t4

5
= x4 + (a2 + 2 t2)x2 + a1 x+ a0 +

t2

3
+

t4

5
, (29)

µx(x, t) = f ′(x) +
t2

6
f ′′′(x) = 4x3 + 2 (a2 + 2 t2)x+ a1 , (30)

µxx(x, t) = f ′′(x) + 4 t2 = 12x2 + 2 (a2 + 2 t2) , (31)

µtx(x, t) =
t

3
f ′′′(x) = 8 t x . (32)

In Step 1 of Algorithm 1, we need to find (i) some t0 > 0 such that µ(·, t0) is convex, and
(ii) the point x0 which is the global minimizer of µ(·, t0). The next lemma finds these for the
particular case of quartic polynomials.
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Lemma 5 (Convexification of Quartic Polynomials) Given any monic depressed quar-
tic polynomial f(x) with a1 6= 0 and a2 < 0, µ(·, t0) is convex if

t0 :=
√

−a2/2 .

The unique (global) minimizer of µ(·, t0) is

x0 := − 3
√

a1/4 .

Proof.

For convexity of µ(·, t0), we need to have

µxx(x, t0) = 12x2 + 2 (a2 + 2 t20) ≥ 0 , ∀x ∈ R,

which immediately follows if t0 =
√

−a2/2. The (global) minimizer x0 of µ(·, t0) would then
be found by solving

µx(x0, t0) = 4x30 + 2 (a2 + 2 t20)x0 + a1 = 0 , (33)

or, with t0 =
√

−a2/2,
4x30 + a1 = 0 ,

for x0. Since a1 6= 0, we have x0 6= 0. This implies that µxx(x0, t0) > 0, and hence µ(·, t0)
is strictly convex around x0, which implies that x0 is the unique minimizer. This completes
the proof. ✷

For the special case of monic depressed quartic polynomials, Algorithm 1 reduces to the
following, using Lemma 5, (31) and (32).

Algorithm 2

Step 1 Given the quartic polynomial in (21), let t0 =
√

−a2/2 and x0 = − 3
√

a1/4 .

Step 2 Solve the initial value problem

ẋ(t) = − 4 t x(t)

6x2(t) + 2 t2 + a2
, for a.e. t ∈ [0, t0] , with x(t0) = x0 . (34)

Step 3 Report x(0) as the global minimizer of f(x).

By (12) and (14), IVP (34) can be derived under the assumption that µx(x(t), t) = 0 and
µxx(x(t), t) 6= 0 for a.e. t ∈ [0, t0]. Hence, it is worth investigating if, at all, the denominator of
the right-hand side of the ODE in (34) vanishes, i.e., µxx(x(t), t) = 0 for some t ∈ [0, t0]. Since
a solution x(t) of the ODE in (34) satisfies µx(x(t), t) = 0, the pathological situation happens
at points (x, t) which satisfy the equations µx(x, t) = 0 and µxx(x, t) = 0 simultaneously. We
investigate this situation in the following lemma.
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Lemma 6 (Flatness) Let f be a monic depressed quartic polynomial. Consider solutions
(x, t) ∈ R× [0,∞) of the system

µx(x, t) = 0 and µxx(x, t) = 0 . (35)

(a) If a2 > −3 a
2/3
1 /2 then the system in (35) has no solution.

(b) If a2 ≤ −3 a
2/3
1 /2 then the system in (35) has a unique solution (x̂, t̂) ∈ R× [0,∞) such

that

x̂ :=
1

2
3
√
a1 , (36)

t̂ :=
1

2

√
−
(
3 a

2/3
1 + 2 a2

)
. (37)

Proof. Start with

µx(x̂, t̂) = 4 x̂3 + 2 (a2 + 2 t̂2) x̂+ a1 = 0 , (38)

µxx(x̂, t̂) = 12 x̂2 + 2 (a2 + 2 t̂2) = 0 . (39)

Using (39) in (38) gives x̂ = 1
2

3
√
a1. Using this value of x̂ in (39) gives

0 = 6

(
1

2
3
√
a1

)2

+ (a2 + 2 t̂2) =
3

2
a
2/3
1 + a2 + 2 t̂2. (40)

To prove part (a), note that a2 > −3 a
2/3
1 /2 if and only if

0 =
3

2
a
2/3
1 + a2 + 2 t̂2 > 2 t̂2,

which entails a contradiction and therefore implies that the system has no solution. This

proves (a). On the other hand, a2 ≤ −3 a
2/3
1 /2 if and only if there is a unique nonnegative

solution of (40), given by (37). This proves part (b). ✷

We will consider in our analysis a notion which is weaker than convexity, called quasi-
convexity.

Definition 3 The function f : Rn → R is said to be quasi-convex when all its level sets are
convex, i.e., when for every α ∈ R we have that the set {x ∈ R

n : f(x) ≤ α} is convex.

Definition 4 Let I be a (possibly infinite) interval in R. Recall that f : R → R is non-
increasing in I if for all x, y ∈ I such that x < y we have f(x) ≥ f(y). Similarly, f is
non-decreasing in I if for all x, y ∈ I such that x < y we have f(x) ≤ f(y).

The following result is a trivial re-statement of Theorem 4.9.11 in [15].

Theorem 2 (Quasi-convexity) A function f : R → R is quasi-convex if and only if
there exists m ∈ [−∞,+∞] such that f is non-increasing in (−∞,m] and non-decreasing
in [m,+∞).

Remark 6 When m is infinite in Theorem 2, one of the intervals is empty and this covers
the case in which the function is everywhere non-increasing or everywhere non-decreasing.
Functions as in the statement of Theorem 2 are sometimes called unimodal.
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Lemma 7 (Quasi-convexity of a Quartic Polynomial) Let h be a monic depressed quar-
tic polynomial given by h(x) := x4+ b2x

2+ b1x+ b0. Consider ∆ := −16 [8 b32 +27 b21], i.e., ∆
is the discriminant of h′(x) = 4x3 +2 b2 x+ b1. Then h is quasi-convex if and only if ∆ ≤ 0.

In this situation, we have b2 ≥ −3 b
2/3
1 /2.

Proof. From algebra of cubic equations we have that

(I) ∆ > 0 =⇒ h′ has three distinct real roots,

(II) ∆ = 0 =⇒ h′ has a multiple root and all its roots are real,

(III) ∆ < 0 =⇒ h′ has one real root and two non-real complex conjugate roots,

Case (I) implies that h has a local maximum, and two local minima. This cannot hold for a
quasi-convex function in view of Theorem 2. Hence it is enough to show that the other two
cases imply that h satisfies the unimodality property described in Theorem 2. This is clear
in case (III), since by coercivity the unique real root of h′ must be a global minimum. So
in case (III) h is quasi-convex by Theorem 2. In Case (II), we have two possibilities: either
all three roots coincide (i.e., we have a triple root of h′) or one of the real roots is double.
The case in which we have a triple root of h′ implies that h′(x) = 4(x − x0)

3 and hence is
strictly increasing. So h is convex, and hence quasi-convex. We are left only with the case of
a double real root x0 and a simple real root x1. In this case, h′(x) = 4(x−x1)(x−x0)

2 and it
is clear that h′(x) ≤ 0 for x ≤ x1 and h′(x) ≥ 0 for x ≥ x1. This implies directly (using mean
value theorem) that h verifies the unimodality property given in Theorem 2 with m = x1,
and hence h is quasi-convex. We have shown that ∆ ≤ 0 implies h quasi-convex. Conversely,
assume that h is quasi-convex, and let m be as in Theorem 2. Since h is coercive, we must
have m ∈ R. Because h is a polynomial, h cannot be constant in any interval, so m must
be the only global minimum of h. This implies that h′ cannot have three different roots, so
we cannot be in Case (I) and hence we must have ∆ ≤ 0. The last statement of the lemma
follows directly from the expression of the discriminant. ✷

Proposition 4 Suppose that f is a monic depressed quartic polynomial. Then µ(·, t) is
quasi-convex if, and only if,

t ≥ 1

2

√
max

{
0,−

(
3 a

2/3
1 + 2 a2

)}
. (41)

Proof. By (29), µ(·, t) is a monic quartic depressed polynomial with µx(x, t) = 4x3 +2 (a2 +
2 t2)x + a1. By Lemma 7 applied to µ(·, t), we have that µ(·, t) is quasi-convex if, and only
if, the discriminant of µx(·, t) is non-positive, i.e.,

∆ = −16
[
8 (a2 + 2 t2)3 + 27 a21

]
≤ 0 ,

a re-arrangement of which yields (41). ✷

Remark 7 Lemmas 6 and 7 imply that the right-hand-side of the ODE in (34) cannot be
discontinuous in the interior of [0, t0] when f is a quasi-convex quartic polynomial. Indeed,
assume that the right-hand-side of the ODE in (34) is discontinuous in the interior of [0, t0]
and f is quasi-convex. By Lemma 6, this implies that the system (36)–(37) has a solution in

R × (0, t0). By part (b) of the lemma this yields (3 a
2/3
1 + 2 a2) ≤ 0. On the other hand, by

Lemma 7, f is quasi-convex if and only if (3 a
2/3
1 + 2 a2) ≥ 0. This yields (3 a

2/3
1 + 2 a2) = 0.

Using (37) gives t̂ = 0 as the unique solution of the system. Since the nonnegative solution
is unique, this implies that there is no solution for t in the interior of (0, t0), and hence the
denominator in the right-hand side of the ODE in (34) cannot vanish for t ∈ (0, t0).
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4.3 Well-definedness of Algorithm 2

Lemma 8 (Solutions of ODEs) Consider a monic depressed quartic polynomial f , with
a2 < 0 and a1 6= 0. Let t0 =

√
−a2/2 and x0 = − 3

√
a1/4 . The following hold.

(a) There exists r > 0 such that there is a unique solution x(·) of (34) in (t0 − r, t0 + r).

(b) There exists a maximal interval to the left of t0, say (m0, t0], such that there exists a
solution of (34) in (m0, t0].

(c) Either m0 = −∞, or m0 ∈ R and in this case we must have µxx(x(m0),m0) = 0.

Proof. Note that x20 > 0 because a1 6= 0. Part (a) follows from the classical Picard-Lindelöf
existence and uniqueness theorem (see [2]), since the denominator 6x2(t0)+2 t20+a2 = 6x20 >
0. By (31), this implies that µxx(x(t0), t0) > 0, and so the right-hand side of the ODE in
(34) is Lipschitz continuous in x and continuous in t in a neighbourhood of t0. Part (b) is the
classical result on maximal extension of solutions of ODEs. The option m0 = −∞ of part (c)
corresponds to the case in which the right-hand side remains Lipschitz continuous in x for
all t < t0. The remaining option happens when the denominator

q(t) := 6x2(t) + 2 t2 + a2 (42)

vanishes at t = m0, i.e., when µxx(x(m0),m0) = 0. This completes the proof. ✷

The following lemma re-formulates the initial value problem in (34).

Lemma 9 (Trajectory Along a Valley) Consider a monic depressed quartic polynomial,
with a2 < 0 and a1 6= 0. Let t0 =

√
−a2/2 and x0 = − 3

√
a1/4 . With the notation of

Lemma 8, let x(·) be the maximally extended solution of (34), and (m0, t0] the corresponding
maximal interval. Then, we have that

µx(x(t), t) = 0 , µxx(x(t), t) > 0 , ∀t ∈ [m0, t0] . (43)

Proof. We show first that µxx(x(t), t) > 0 , ∀t ∈ [m0, t0] . Indeed, the choices of x0 and
t0, together with (31) give µxx(x(t0), t0) > 0. The definition of m0 states that IVP (34) is
solvable over (m0, t0]. By Lemma 8(a), this implies that the right-hand side of the ODE is
continuous on (m0, t0]. In other words, the denominator of the right-hand side of the ODE
is not zero and so it does not change sign on (m0, t0]. This readily gives

µxx(x(t), t) > 0 , (44)

for all t ∈ (m0, t0], as wanted. To complete the proof, recall that the ODE in (34) is the ODE
in (14) written for a quartic polynomial. Then, for all t ∈ (m0, t0], the ODE in (14) is equal
to the expression in (13), which is

ẋ(t)µxx(x(t), t) + µtx(x(t), t) = 0 .

The above expression can in turn be expressed as

d

dt
µx(x(t), t) = 0 . (45)

From the first step of Algorithm 1,

µx(x(t0), t0) = 0 . (46)
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Equalities (45) and (46) imply that

µx(x(t), t) = 0 , (47)

for all t ∈ (m0, t0]. Equality (47) holds at t = m0 by continuity of µx and x(·). This completes
the proof of the lemma. ✷

Our next step is to show that the solution x(·) of the initial value problem (34) has the
same sign as that of x0 over its maximal domain of definition. For proving this, we need the
following auxiliary result.

Lemma 10 Fix a ∈ R ∪ {−∞} and let b > a. Assume that the function x(·) : (a, b] → R is
continuously differentiable and satisfies

sgn(ẋ(t)) = − sgn(x(t)), ∀ t ∈ (a, b]. (48)

Assume that x(b) 6= 0. Then, sgn(x(t)) = sgn(x(b)) for all t ∈ (a, b]. If a ∈ R, then
sgn(x(a)) = sgn(x(b)).

Proof. Without loss of generality, assume that x(b) < 0. The case x(b) > 0 is handled
similarly, mutatis mutandis. We show first that x(t) < 0 for all t ∈ (a, b]. Suppose that, on
the contrary, there exists t̃ ∈ (a, b] such that x(t̃ ) ≥ 0. This implies that the set

S := {t ∈ (a, b] : x(t) ≥ 0},

is not empty. Since S is bounded above by b, there exists t1 := sup(S). Since x(·) is
continuous, we have that t1 ∈ S, or, equivalently, x(t1) ≥ 0. In particular, t1 < b because
x(b) < 0 and x(t1) ≥ 0. The definition of t1 implies that x(t) < 0 for all t ∈ (t1, b]. Using the
continuity of x we deduce that x(t1) ≤ 0. Altogether, we must have x(t1) = 0. The Mean
Value Theorem gives, for some θ ∈ (t1, b):

0 = x(t1) = x(b) + ẋ(θ)(t1 − b) < x(b) < 0,

where we used (48) for t = θ in the first inequality, and the fact that x(θ) < 0. The above
expression entails a contradiction and hence we must have S empty. This completes the proof
of the first statement. Assume now that a ∈ R. The proof of the first statement implies that
x(t) < 0 for all t ∈ (a, b]. By continuity we deduce that x(a) ≤ 0. We need to prove that
x(a) < 0. Assume that, on the contrary, x(a) = 0. Using the Mean Value Theorem gives, for
some s ∈ (a, b):

0 > x(b) = x(b)− x(a) = ẋ(s)(b− a) > 0,

where we used (48) for t = s and the fact that x(s) < 0, so ẋ(s) > 0. The above expression
entails a contradiction and hence we must have x(a) < 0. ✷

Lemma 11 (Sign of a Trajectory) Consider a monic depressed quartic polynomial, with
a2 < 0 and a1 6= 0. Let t0 =

√
−a2/2 and x0 = − 3

√
a1/4 . Consider the initial value problem

(34). Let x(·) be the maximally extended solution of (34), and (m0, t0] the corresponding
maximal interval of definition of x(·). Then m0 = −∞ and sgn(x(t)) = − sgn(a1) for all
t ∈ (−∞, t0].

Proof. Suppose that a1 > 0, and hence x0 < 0. The definition of m0 indicates that the
right-hand side of the ODE in (34) is not zero and doesn’t change sign over [m0, t0]. The
choice of x0 and t0 imply that the denominator in the right-hand side of the ODE is positive
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at t = t0. Hence we must have that this denominator is positive over [m0, t0]. This fact
implies that property (48) holds for the ODE (34) in the interval (a, b] := (m0, t0]. Since
x(t0) = x0 < 0 we can apply Lemma 10 to conclude that x(t) < 0 for all t ∈ [m0, t0], where
m0 ∈ R ∪ {−∞}.

Next, we prove that the solution x(·) can be infinitely extended to the left, in other words,
m0 = −∞. Suppose that, on the contrary, m0 ∈ R. By Lemma 8(c), this can only happen if
the right hand side of the ODE in (34) becomes discontinuous at t = m0. This implies that

µxx(x(m0),m0) = 0 . (49)

By Lemma 9, we have
µx(x(t), t) = 0 ,

for all t ∈ [m0, t0]. Therefore,
µx(x(m0),m0) = 0 . (50)

By Lemma 6, Equations (49)–(50) have a unique solution with x(m0) = 3
√
a1/2 > 0. This

is in contradiction with the second statement in Lemma 10, which asserts that x(m0) < 0.
Hence we must have m0 = −∞. The proof for the case when a1 < 0 is obtained similarly.
Namely, in this case we use that x0 > 0 and Lemma 10 must be used for this case. ✷

Theorem 3 (Well-definedness Yielding Global Minimizer) For a monic depressed quar-
tic polynomial, with a1 6= 0 and a2 < 0, Algorithm 2 is well-defined and it yields the global
minimizer.

Proof. By Step 1 of Algorithm 2, t0 =
√

−a2/2 and x0 = − 3
√
a1/4 . Since a2 < 0 and

a1 6= 0, by Lemma 11, Step 2 results in sgn(x(t)) = − sgn(a1) for all t ∈ (−∞, t0]. Moreover,
by Lemma 9, we have that

µx(x(t), t) = 0 , µxx(x(t), t) > 0 , ∀t ∈ (−∞, t0] .

Therefore, x(0) is a local minimizer. Now, Lemma 4 and the fact that sgn(x(0)) = − sgn(a1)
imply that x(0) must be the global minimizer. ✷

Remark 8 By Lemma 7, if −3 a
2/3
1 /2 < a2 < 0, then the monic depressed quartic polynomial

is quasi-convex. If a2 > 0 then f is convex. In either case, Algorithm 2 is not necessary. ✷

Corollary 1 Algorithm 2 is well-defined and convergent for any monic quartic polynomial.

Proof. Any quartic polynomial can be obtained from a depressed quartic polynomial through
horizontal translation, or shift (and vice versa). Therefore, Lemma 2 on scale-shift invariance
of Algorithm 1, furnishes the proof. ✷

4.4 Three types of trajectories

Clearly, a monic quartic polynomial f(x) has at most three local extrema, given by the roots
of f ′(x). If the roots of f ′(x) are distinct, then they correspond to two local minimizers and
one local maximizer of f(x). Figure 1 considers three cases in which (a) f ′(x) has a single
real root, (b) f ′(x) has symmetric real roots and (c) f ′(x) has nonsymmetric real roots. The
trajectories run ”forward” from each of these roots are depicted in Figure 1, providing a full
characterization, on the surface defined by (29).
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The case when the root of f ′(x) is unique is exemplified in Figure 1(a): with f(x) =
x4− 0.09x2 − 0.03x− 1, the minimizer of f ′(x) is x ≈ 0.304668. In this case, a1 = −0.03 6= 0
and a2 = −0.09 < 0. It is easily checked that the conclusion of Lemma 11 is satisfied, in that
sgn(x(t)) = − sgn(a1) for all t ∈ [0, t0].

The case when f ′(x) has more than one (distinct) real root is exemplified in Figures 1(b)-
(c). In Figure 1(b), we have f(x) = x4 − 0.98x2 + 1, where a1 = 0, so f(x) has two global
minimizers, x = −0.7 and x = 0.7, and the local maximizer x = 0. This case (when a1 = 0)
is trivial, for which there is no need to implement Algorithm 2.

On the other hand, the case when f ′(x) has more than one (distinct) real root, and these
roots are nonsymmetric, is exemplified in Figure 1(c), with the polynomial f(x) = x4 −
4x3/15 − 0.82x2 + 0.168x + 1. The polynomial f(x) has its global minimum at x = −0.6
and a local minimum at x = 0.7. The local maximizer of f(x) is x = 0.1. One can easily
verify Lemma 11, in that sgn(x(t)) = − sgn(a1) for all t ∈ [0, t0]. In this case, the system
µx(x, t) = 0 and µxx(x, t) = 0 has a solution by Lemma 6, which is shown at the bottom
left in Figure 1 as the point where two of the trajectories emanating from the local maximum
and local minimum points merge on the surface.

5 Trajectory Methods with Quadratic Regularization

The regularization idea for polynomial optimization is not new. Such an approach, although
not explicitly stated as a regularization, is employed in [17], for finding a global minimizer
of a monic polynomial f of even degree. In [17], in an algorithm similar to Algorithm 1, the
function

ϕ(x, t) = f(x) +
t

2
x2 , (51)

is effectively used, instead of µ(x, t). We refer to ϕ as the quadratic regularization of f . A
direct computation from (51) yields the partial derivatives

ϕx(x, t) = f ′(x) + t x , ϕxx(x, t) = f ′′(x) + t , ϕtx(x, t) = x . (52)

The formula for ϕxx directly gives a well-known convexity result analogous to Theorem 1,
for the regularization ϕ(·, t).

Remark 9 Assume that f is twice differentiable, and that l0 := infx∈R f ′′(x) ∈ R. Then,
ϕ(·, t) is convex for t ≥ −l0.

This remark can be used in Steps 1–2 to give Algorithm 3, companion of Algorithm 1, for
the quadratic regularization.
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(a) A quasi-convex f : f(x) = x4 − 0.09x2 − 0.03x − 1.
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(b) A nonconvex f with symmetric roots: f(x) = x4 − 0.98x2 + 1.
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(c) A nonconvex f with nonsymmetric roots: f(x) = x4 − 4x3/15 − 0.82x2 + 0.168x + 1.

Figure 1: Examples for three types of polynomials and their associated trajectories.
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Algorithm 3

Step 1 Choose the parameter t0 > 0 large enough so that ϕ(·, t0) is convex. Find the (global)
minimizer x0 of ϕ(·, t0), i.e., solve ϕx(x0, t0) = 0 for x0.

Step 2 Solve the initial value problem

ẋ(t) = −ϕtx(x(t), t)

ϕxx(x(t), t)
= − x(t)

f ′′(x) + t
, for a.e. t ∈ (0, t0] , with x(t0) = x0 . (53)

Step 3 Report x(0) as a global minimizer of f(·).

The quadratic regularization defined in (51) is not scale-shift invariant, in the sense of
Lemma 2. This fact has been established in [1] by means of an example. Namely, if Algo-
rithm 3 is applied to a general quartic polynomial (not depressed) then it may not yield a
global minimizer. We further illustrate this fact by means of example polynomials, including
those of higher degrees, in the next section.

6 Numerical Experiments

In this section, via numerical experiments, we illustrate the working of our trajectory method
devised utilizing Steklov regularization, i.e., Algorithm 1 (which becomes Algorithm 2 for the
case in which f is a quartic polynomial), on example problems involving quartic and higher-
degree polynomials, as well as an example involving a non-polynomial function. We provide
comparisons with the trajectory method in [17], namely Algorithm 3, which, as pointed in
Section 5, can be derived using a quadratic regularization.

We illustrate the behaviour of the algorithms by means of graphs. In Figures 2–4 for the
polynomial examples presented in this paper, the graphs in parts (a) and (c) of the figures
provide the “contours of t,” i.e., the graph of the regularization function (quadratic or Steklov)
with a number of fixed values of t between 0 and a chosen value of t0. In parts (b) and (d) of
the figures, a surface plot of the regularizing function (quadratic or Steklov) is provided. In
the figure for the non-polynomial example considered in Subsection 6.5, similar graphs are
displayed.

In Subsection 6.4, we measure the performance of Algorithms 1 and 3 for randomly gener-
ated polynomials of certain degrees. Table 1 shows that Algorithm 1 is always convergent for
the quartic polynomials generated randomly, in line with Theorem 3, and convergent for the
great majority of the higher-degree polynomials generated randomly. It is further observed
that, although Algorithm 1 does not converge for all the tested polynomials of degree greater
than four, it clearly outperforms Algorithm 3.

In all graphs, the trajectory, or the solution curve of an ODE, constructed by an algorithm
is also depicted. A trajectory is generated by solving the pertaining initial value problem
(IVP) using the Matlab function ode15s, with RelTol = 1e-08. We have used ode15s,
which is a choice for stiff ODEs, since only then it was possible to get a solution of the IVP or
a message saying that it was not possible to get a solution, the latter being useful in obtaining
the success rates of the algorithms in Subsection 6.4.
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(a) Quadratic regularization – contours of t
with t0 = 100.

(c) Steklov regularization – contours of t
with t0 = 5.
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(d) Steklov regularization – surface
with t0 = 5.

Figure 2: Trajectory methods for the quartic polynomial, f(x) = x4 − 8x3 − 18x2 + 56x .

6.1 A quartic polynomial

Consider minimization of the polynomial

f(x) = x4 − 8x3 − 18x2 + 56x ,

which has local minima at x = −2 and x = 7 and a local maximum at x = 1. Note that
f(−2) = −104, f(7) = −833 and f(1) = 31. Therefore, x = 7 is the global minimizer of
f(x). This polynomial is provided in [1] as a counterexample to prove that the trajectory
approach in [17] using quadratic regularization, i.e., Algorithm 3 given in the present paper,
does not necessarily yield to a global minimizer, as opposed to the claim in [17]. Indeed,
as Figure 2(a)–(b) illustrates, the trajectory constructed by the quadratic regularization
converges to the local minimizer x = −2 rather than the global minimizer x = 7. As
discussed in [1], the quadratic regularization function ϕ(·, t0) convexifies the given quartic
polynomial with t0 > 84. For visual convenience in Figure 2(a)–(b), we have used t0 = 100
in Algorithm 3, as in [1]. Again, from [1], the corresponding x0 ≈ −0.6812.
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Algorithm 1 yields the global minimizer, as expected by Theorem 3, see Figure 2(c)–(d).
The polynomial f(x) can be rewritten in a depressed form using the transformation x = z+2
as

f(z) = z4 − 42 z2 − 80 z − 8 .

By using Lemma 5, we see that the Steklov regularization convexifies the given quartic
polynomial just for t0 =

√
21 ≈ 4.5826, for which x0 = 2 + 3

√
20 ≈ 4.7144. Again for visual

convenience we have used t0 = 5.

In fact, by the Flatness Lemma 6, the Steklov function µ(·, t) is quasi-convex at t̂ ≈ 2.6599.
We note that µx(x̂, t̂) = 0 = µx(x̂, t̂), with (x̂, t̂) ≈ (2.6599,−0.1544), which is also indicated
with a (pink) mark in Figure 2(d).

One could as well have used t0 = t̂ ≈ 2.66 for which µ(·, t0) is quasi-convex, and Algorithm 1
can be run with (x0, t0) and the associated initial condition µx(x0, t0) = 0, in Step 1.

As will be seen also with the higher-order polynomials, the Steklov function µ(·, t0) is
convex with a rather small t0. On the other hand, the quadratic regularization function
ϕ(·, t0) becomes convex with a much larger t0, which is almost 20 times the t0 needed for
the Steklov function. In the subsequent subsections, it will be observed that t0 grows greatly
with the degree of a polynomial. When solving an IVP, a big t0 makes the time span (or time
horizon) [0, t0] big and this causes ODE solvers to take a much longer time and run more
often into difficulties.

6.2 A degree-6 polynomial

Consider minimization of the degree-6 polynomial

f(x) = x6 − 66x5/5− 9x4/2 + 422x3 − 474x2 − 2160x ,

which has local minima at x = −4, 2 and 9 and local maxima at x = −1 and 5. A graph
of the polynomial can be seen in Figure 3. The global minimizer of f(x) is x = 9, with
f(9) = −27726.3 (exactly). One has the local minima f(−4) = −9491.2 and f(2) = −3270.4,
and the local maxima f(−1) = 1273.7 and f(5) = 1662.5, all exact.

We observe that t0 = 7 is enough to convexify the Steklov function µ(·, t0), while the
quadratic regularization function ϕ(·, t0) requires t0 ≈ 4000 to become convex. Moreover,
Algorithm 3 (using the quadratic regularization) yields the local minimizer x = 2, while
Algorithm 1 (using the Steklov regularization) yields the global minimizer x = 9.

This polynomial f(x) is just one degree-6 polynomial example to illustrate the working and
success of Algorithm 1, as well as the working and failure of Algorithm 3. Algorithm 1 can also
fail for some degree-6 polynomials, but not as often as Algorithm 3 does. As mentioned before,
detailed comparisons of success rates for each of the algorithms are shown in Subsection 6.4.



Steklov Regularization for Univariate Global Optimization by O. Arıkan, R. S. Burachik and C. Y. Kaya 25

(a) Quadratic regularization – contours of t
with t0 = 4000.

(c) Steklov regularization – contours of t
with t0 = 7.
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Figure 3: Trajectory methods for the degree-6 polynomial, f(x) = x6 − 66x5/5 − 9x4/2 +
422x3 − 474x2 − 2160x .
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(a) Steklov regularization – contours of t
with t0 = 7.

(c) Steklov regularization – contours of t
with t0 = 6.
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Figure 4: Algorithm 1 for some given degree-10 polynomial (parts (a) and (b)) and degree-20
polynomial (parts (c) and (d)).

6.3 Degree-10 and degree-20 polynomials

Consider minimization of the degree-10 monic polynomial f10(x) with the coefficients

[a9, · · · , a0] = [260/9, 1035/4,−120,−9415, 32172, 175765/2,−1369360/3,−148560, 1209600, 0] .

The global minimizer of f10(x) is x = 9, with f10(9) = −2077224.75 (exactly).

We also consider minimization of the degree-20 monic polynomial f20(x) with the coeffi-
cients

[a19, · · · , a0] = [680/19, 3935/9,−15755/17,−196105/8, 2230697/12, 20765145/112,

−1351162585/208, 10221013715/768, 6382409515/64,−12625444643/32,

−200463718805/288, 2498521767895/512, 465297612345/448,−2045419187205/64,

198942566751/16, 3627285358725/32,−56515087125,−201131555625, 0, 0] .

The global minimizer of f20(x) is x = −4.5, with f20(−4.5) = −742786593463.8248 (exactly).
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Algorithm 1

n t0 Failure rate

4 6 0%
6 7 1%
8 7 2%
10 7 4%
12 7 4%
14 7 4%
20 7 7%

Algorithm 3

n t0 Failure rate

4 103 26%
6 104 63%
8 105 77%
10 108 84%
12 108 88%
14 108 92%
20 1010 96%

Table 1: A comparison of failure rates of Algorithms 1 and 3 for degree-n polynomials (n as
listed).

Algorithm 1 successfully yields a global minimizer for both polynomials as can be seen in
Figure 4. Moderate sizes of t0 (7 and 6, respectively) suffice in each case for convexification.

Algorithm 3 fails to serve the purpose for either polynomial. For the degree-10 polynomial,
it only yields the local minimizer x = −1, with t0 = 2× 106, which, although quite large, is
just enough for convexification. For the degree-20 polynomial, one needs a far larger t0 ≈ 1012

for convexification; however, the ODE solver takes an indefinite amount of time and does not
provide any answer, conceivably because of the very large orders of magnitude involved in
the computations. The graphs that were generated suggest that the trajectory method would
yield x = 0, which this time is a local maximizer! For brevity, we do not provide the graphs
for the quadratic regularization.

6.4 Performance comparisons between Algorithms 1 and 3

In Sections 6.1–6.3, we have applied Algorithms 1 and 3 to four selected polynomials of de-
grees four, six, 10 and 20, and illustrated the workings of both algorithms. Algorithm 1 was
successful in finding a global minimum of each of the polynomials considered in Sections 6.1–
6.3, while Algorithm 3 consistently failed. In all fairness, neither Algorithm 1 is successful in
dealing with every single polynomial (computationally speaking) nor Algorithm 3 is unsuc-
cessful for every single polynomial. To better understand how these two methods compare,
we present failure rates of both algorithms for 1000 randomly generated polynomials of var-
ious degrees. We have generated the polynomials in such a way that their extremal values
were uniformly distributed over the interval [−5, 5].

Table 1 lists the failure rates for each algorithm as they are applied to polynomials of
various degrees, where the polynomials of each degree are randomly generated 1000 times.
We declare failure of the method for a given polynomial when either the algorithm did not
converge, or it converged to a local minimum. For polynomials of degree higher than four, it is
not trivial (if not impossible), to check convexity of µ(·, t0) or ϕ(·, t0) for a given t0. The choice
we made for the value of t0 required in each of the experiments is drastically different for each
method. We observe that Algorithm 1 requires t0 ∈ {6, 7} for all cases, while Algorithm 3
requires t0 ∈ [103, 1010], with values increasing with the degree of the polynomials. These
large values of t0 promote convexification of ϕ(·, t0), but, at the same time, they are likely
to cause numerical instabilities. In summary, perhaps not many but still some of the failures
of Algorithm 3 may be attributed to (i) t0 not being large enough for convexification, (ii) t0
being too large, or both. It is likely that values of t0 greater than the values of t0 already
listed in Table 1 (especially for high degree polynomials) will cause numerical instabilities.
This is another reason why Algorithm 1 looks favourable, when compared with Algorithm 3.
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Having made these remarks, especially for the high degree polynomials, one may consider
doing a rescaling in order to avoid high orders of magnitudes in computations; however, we
have not considered a rescaling of any of the polynomials in our computations. In the case
of Algorithm 1, there is certainly room for choosing t0 to be bigger in the experiments.

The failure rates for Algorithm 3 are very high, increasing sharply with degree, reaching
84–96% for polynomials of degree 10–20. Even for quartic polynomials, the failure rate of
Algorithm 3 is rather high, at 26%, while Algorithm 1 has no failures for this case, as expected
by Theorem 3. From the numerical experiments, we observe that Algorithm 1 can fail, even
for degree-6 and degree-8 polynomials; however, the failure rate is small, at 1–2%, in practical
terms. This rate is far smaller than that of Algorithm 3 for similar degree polynomials, as
shown in Table 1.

6.5 A non-polynomial function

In Sections 6.1–6.4, we have tested the performance of Algorithms 1 and 3 for polynomial
functions. In this section we consider the nonpolynomial coercive function

f(x) = 0.06x2 + sin 3x ,

which has many local minima. Even though this function does not satisfy the assumptions
of Theorem 1, it is straightforward to check that the conclusion of this theorem holds for this
function. To do this, we use (3) and some elementary algebra to derive

µxx(x, t) = 0.12 − 3 sin 3x
sin 3t

t
.

Since limt→∞(sin 3t)/t = 0, we have that for every x there exists a t0 > 0 (independent of
x), such that µxx(x, t) > 0 for all t > t0. Thus, for those values of t, µ(·, t) is strictly convex.
In our experiments, however, we use a t0 that makes µ(·, t0) quasi-convex. Namely, with
the parameter value of t0 = 7, the Steklov function becomes quasi-convex, and its minimizer
is x0 = −0.3896. This minimizer is in turn used to start solving the initial value problem.
Algorithm 1 then finds the global minimizer as x(0) = −0.5167. Figures 5(a) and 5(b)
illustrate the t-contour and surface plots, respectively, as well as the trajectory constructed
by Algorithm 1, in each of parts (a) and (b).
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Figure 5: Algorithm 1 for the nonpolynomial function, f(x) = 0.06x2 + sin 3x.
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7 Conclusion

We have proposed a trajectory-based algorithm, Algorithm 1, using the Steklov regularization
function µ(x, t), for finding a global minimizer of univariate coercive functions. The so-called
Steklov smoothing function has been previously studied in the literature, as a smoothing
tool for small values of t. Our study considers using this function as a regularization tool.
Namely, we have proved that, for large enough t, µ convexifies certain univariate coercive
functions. We proved convergence of Algorithm 1 for quartic polynomials. We tested it for
higher-degree polynomials, as well as a non-polynomial function for illustration.

We have made comparisons with an existing trajectory-based algorithm, reformulated here
as Algorithm 3, which uses a quadratic regularization instead. Using 1000 randomly generated
polynomials, we found that, for degree-6 polynomials, while the failure rate of Algorithm 1 is
only 1%, Algorithm 3 fails in 63% of the cases. For degree-20 polynomials, these percentages
are 7 and 96, respectively, pointing to the fact that Algorithm 1 provides a better option.

Throughout the paper, we obtained auxiliary results (apart from convergence) regarding
Algorithm 1, the Steklov function, and quartic polynomials, which are worthy in their on
right.

In Algorithm 1, we require t0 to be chosen so as to convexify µ; however, one may instead
require t0 to quasi-convexify µ, which would possibly result in an even smaller, i.e., a more
desirable, t0. One should note that most of the powerful numerical methods for minimization
of convex functions are also applicable to minimization of quasi-convex functions [4].

As with any other global optimization technique, Algorithm 1 cannot find a global optimizer
in every single situation. However, it provides a promising and viable option for searching
global minimizers of general univariate coercive functions. A future line of investigation
should concern extensions of Algorithm 1 to multi-variable coercive functions, which clearly
has a much wider scope for theory and applications.
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