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Abstract

Exhausters are families of convex compact sets that allow one to repre-

sent directional derivative of the studied function at the considered point

in the form of InfMax or SupMin of linear functions. Functions for which

such a representation is valid we call exhausterable. The class of these

functions is quite wide and contains many nonsmooth ones. The set which

is given by exhausterable function is also called exhausterable.

In the present paper we describe optimality conditions for an ex-

hausterable function on an exhausterable set. These conditions can be

used for solving of many nondifferentiable optimization problems. An

example that illustrate obtained results is provided.

Keywords: Exhausters, Nonsmooth analysis, Nondifferentiable opti-

mization, Constrained optimization, Optimality conditions

Introduction

Directionally differentiable functions form a wide and important class of nons-
mooth functions. It includes convex functions, maximum and minimum func-
tions and others.

Subdifferential notion [1] can be used effectively for working with directional
derivative and therefore for solution of convex nonsmoth optimization problems.
Researchers tried to develop approaches also for nonconvex problems. The most
known invented tools are subdifferentials of Clarke [2, 3], Mordukhovich [4],
Michel-Penot [5, 6] and others. The concept of exhausters holds a special place
in this series due to its constructiveness.

The idea of exhausters notion goes back to the works of Pshenichny, Rubinov
and Demyanov. Pshenichny in [7] introduced the definition of upper convex
approximation. Demyanov and Rubinov [8, 9] proposed to consider exhaustive
families of upper convex and lower concave approximations, and then introduced
exhauster notion [10, 11].

Exhausters are families of convex compact sets that allow one to represent
the directional derivative of the studied function in the form of InfMax or Sup-
Min of linear functions. Therefore they provide the same representation for the
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approximation of a studied function in the neighbourhood of a considered point.
Functions for which such an expansion is valid we call exhausterable.

Calculus of exhausters was described in [11]. Formulas of this calculus allows
one to build exhausters for a wide class of functions. Unconstrained optimality
conditions in terms of these families were derived in [11–14]. Constrained op-
timality conditions for an exhausterable function on an abstractive theoretical
cone were obtained in [15].

In the present work we study constrained optimality conditions for ex-
hausterable function on a set which is defined via another exhausterable func-
tion. We get new optimality conditions in terms of exhausters of these two
functions.

The paper is organized as follows. In Section 1 we discuss directional deriva-
tive and exhausters notions. In Section 2 we consider the statement of the
problem and conic approximations of a feasible set. Optimality conditions for
an exhausterable function on an exhausterable set are given in Section 3. An
illustrative example is provided in Section 4.

1 Dini and Hadamard directional derivatives.

Exhausters

Let a function f : Rn → R be given. The function f is called Dini-differentiable
at a point x ∈ R

n in a direction g ∈ R
n, if there exists the finite limit

f ′
D(x, g) = lim

α↓0

f(x+ αg)− f(x)

α
.

The function f is called Hadamard-differentiable at a point x ∈ R
n in a

direction g ∈ R
n, if there exists the finite limit

f ′
H(x, g) = lim

[α,g′]→[+0,g]

f(x+ αg′)− f(x)

α
.

The value f ′
D(x, g) is called the Dini derivative of the function f at the point

x ∈ R
n in the direction g ∈ R

n, and the value f ′
H(x, g) is called the Hadamard

derivative of the function f at the point x ∈ R
n in the direction g ∈ R

n. The
functions f ′

D(x, g) and f ′
H(x, g) are positively homogeneous (p.h.) as functions

of direction g ∈ R
n. It is clear that differentiability in the sense of Hadamard

implies differentiability in the sense of Dini. The converse is not true.
Let f : Rn → R be a directionally differentiable (in the sense of Dini or

Hadamard) function and h(g) = f ′(x, g) be the corresponding derivative of the
function f at a point x in a direction g. Fix x ∈ R

n. In case when h(g) is upper
semicontinuous as a function of g it can be written in the form (see [8])

h(g) = inf
C∈E∗

max
v∈C

〈v, g〉, (1)

where E∗ = E∗(x) is a family of convex, closed and bounded sets from R
n.

If h(g) = f ′(x, g) is lower semicontinuous as a function of g, then it can be
expressed as

h(g) = sup
C∈E∗

min
w∈C

〈w, g〉, (2)
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where E∗ = E∗(x) is a family of convex, closed and bounded sets from R
n.

The family of sets E∗ is called an upper exhauster of the function f at the
point x (respectively, in the sense of Dini or Hadamard), while the family E∗

is called a lower exhauster of the function f at the point x (respectively, in the
sense of Dini or Hadamard).

It is obvious that an exhauster of the function f at the point x is also the
exhauster of the function h(g) at the origin.

In case when h is continuous at g, then the both representations (1) and (2)
are true. In [16] it was shown that if h is Lipschitz then this function can be
written both in forms

h(g) = h1(g) = min
C∈E∗

max
v∈C

〈v, g〉 ∀g ∈ R
n, (3)

and
h(g) = h2(g) = max

C∈E∗

min
w∈C

〈w, g〉 ∀g ∈ R
n, (4)

where the families of sets E∗ and E∗ are totally bounded. Recall that a family
of sets E is totally bounded if there exists a ball B in R

n such that

C ⊂ B ∀C ∈ E.

The functions h1 and h2 give p.h. approximations of the increment of the
function f in a neighborhood of the point x. In what follows we will deal with
representations (3) and (4).

Exhausters were introduced in [10, 11]. This notion brought attention of
many researchers [19–24]. It turned out that unconstrained optimality condi-
tions for the minimum most organically can be expressed in terms of upper
exhausters (see [11,17,18]). Therefore an upper exhauster was called proper for
the minimization problem and adjoint for the maximization one.

Theorem 1. If a function f(x) attains a local minimum at a point x∗ and an
upper exhauster E∗ (in the sense of Dini or Hadamard) of the function f(x) at
the point x∗ is known, then

h(g) = f ′(x∗, g) = min
C∈E∗

max
v∈C

〈v, g〉 ≥ 0 ∀g ∈ R
n,

what is equivalent to the condition

0n ∈ C ∀ C ∈ E∗. (5)

Theorem 2. If a function f(x) attains a local maximum at a point x∗ and an
upper exhauster E∗ (in the sense of Dini or Hadamard) of the function f(x) at
the point x∗ is known, then

h(g) = f ′(x∗, g) = min
C∈E∗

max
v∈C

〈v, g〉 ≤ 0 ∀g ∈ R
n,

what is equivalent to the condition that for every g ∈ R
n there exists a set

C(g) ∈ E∗ such that
〈v, g〉 ≥ 0 ∀v ∈ C(g).

Symmetric is the situation with a lower exhauster. This family was called
proper for the maximization problem and adjoint for the minimization one.
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Theorem 3. If a function f(x) attains a local maximum at a point x∗ and a
lower exhauster E∗ (in the sense of Dini or Hadamard) of the function f(x) at
the point x∗ is known, then

h(g) = f ′(x∗, g) = max
C∈E∗

min
v∈C

〈v, g〉 ≤ 0 ∀g ∈ R
n,

is equivalent to the condition

0n ∈ C ∀ C ∈ E∗.

Theorem 4. If a function f(x) attains a local minimum at a point x∗ and a
lower exhauster E∗ (in the sense of Dini or Hadamard) of the function f(x) at
the point x∗ is known, then

h(g) = f ′(x∗, g) = max
C∈E∗

min
v∈C

〈v, g〉 ≥ 0 ∀g ∈ R
n,

what is equivalent to the condition that for every g ∈ R
n there exists a set

C(g) ∈ E∗ such that
〈v, g〉 ≥ 0 ∀v ∈ C(g). (6)

2 Problem statement. Conic approximations

Let functions f : Rn → R and u : Rn → R be directionally differentiable in the
sense of Hadamard. Consider the problem

{
f(x) → min

x ∈ Ω
(7)

where Ω = {x ∈ R
n | u(x) ≤ 0}. Since f and u are Hadamard-differentiable

both representations (3) and (4) are valid (see Theorems 5.1 and 3.2 in [8]) for
the derivatives f ′

H(x, g) and u′
H(x, g) at the studied point x.

We need conic approximation of the set Ω in the neighborhood of the studied
point x to derive optimality conditions for the problem (7). Remind some
definitions.

Kp(x) is called cone of possible directions with respect to the set Ω at point
x if for any y ∈ Kp(x) there exists θ > 0 such that x+ θy ∈ Ω for all θ ∈ [0, θ].

Kad(x) is called cone of admissible directions (or Bouligand cone) with re-
spect to the set Ω at the point x if for any y ∈ Kad(x) there exists [θk, yk] →
[+0, y], where θk ≥ 0, such that x+ θkyk ∈ Ω.

Also define cones

K<(x) = {y ∈ R
n | u′

H(x, g) < 0} , K≤(x) = {y ∈ R
n | u′

H(x, g) ≤ 0} .

Since the derivative u′
H(x, g) is continuous as a function of direction [8], the

cone K<(x) is open (if it is not empty) and the cone K≤(x) is closed.
It can be checked easily that

K<(x) ⊂ Kp(x) ⊂ Kad(x) ⊂ K≤(x).

We say that the regularity condition holds at the point x if

cl {K<(x)} = K≤(x).

where cl {K<(x)} is the closure of the cone K<(x). This condition provides con-
structive way for building the cone Kad(x) which is used in optimal conditions.

4



3 Optimality conditions

We will need the following results (see [8]).

Theorem 5. Let f be be directionally differentiable in the sense of Hadamard
at the point x∗ ∈ Ω. For the point x∗ to be a local minimizer of f on Ω, it is
necessary that

f ′
H(x∗, g) ≥ 0 ∀g ∈ Kad(x∗), (8)

where Kad(x∗) is the Bouligand cone to the set Ω at the point x∗.

Theorem 6. Let f be be directionally differentiable in the sense of Hadamard
at the point x∗ ∈ Ω. For the point x∗ to be a local maximizer of f on Ω, it is
necessary that

f ′
H(x∗, g) ≤ 0 ∀g ∈ Kad(x

∗), (9)

where Kad(x
∗) is the Bouligand cone to the set Ω at the point x∗.

Now we can formulate necessary optimality conditions for the problem (7).
We consider in detail only conditions for the minimum, since conditions for the
maximum can be derived similarly.

First state minimum conditions in terms of (proper) upper exhauster of the
function f .

Theorem 7. Let the regularity condition holds at the point x∗ ∈ Ω, families
of sets E∗(f) and E∗(u) be an upper and a lower exhausters in the sense of
Hadamard of the functions f and u at the point x∗ respectively. Then for the
point x∗ to be a local minimum of the function f on the set Ω it is necessary
that ⋂

C∈E∗(u)

cl
{
R

n \K+(C)
}
⊂

⋂

C∈E∗(f)

cl
{
R

n \
(
−K+(C)

)}
, (10)

where K(C) = cone{C} is the conic hull of set C, K+(C) is the conjugate cone
of K(C).

Proof. Due to Theorem 5 if point x∗ is a local minimum of the function f on
Ω, then

f ′
H(x∗, g) ≥ 0 ∀g ∈ Kad(x∗).

Whence considering regularity condition we get

f ′
H(x∗, g) ≥ 0 ∀g ∈ K≤(x∗). (11)

Using exhauster representation for the directional derivatives in (11) we obtain
that inequality

min
C∈E∗(f)

max
v∈C

〈v, g〉 ≥ 0

holds for any g such that

max
C∈E∗(u)

min
v∈C

〈v, g〉 ≤ 0.

This means that for any g ∈ R
n such that

min
v∈C

〈v, g〉 ≤ 0 ∀C ∈ E∗(u) (12)
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holds the condition
max
v∈C

〈v, g〉 ≥ 0 ∀C ∈ E∗(f). (13)

Inequality (12) is equivalent to the fact that for every C ∈ E∗(u) there exists
v(C) ∈ C such that 〈v(C), g〉 ≤ 0. Consequently g does not lie in the interior of
the set (cone{C})+ for all C ∈ E∗(u). Thus denoting K+(C) a conjugate cone

of cone{C} we have g ∈
⋂

C∈E∗(u)

cl
{
R

n \K+(C)
}
.

The same way we can show that any g satisfying inequality (13) belongs to

the set
⋂

C∈E∗(f)

cl
{
R

n \
(
−K+(C)

)}
and vice versa.

Therefore (12) and (13) implies (10).

Corollary 7.1. Condition (10) can be interpreted as follows: for any hyperplane
passing through the origin which nonpositive half-space contains an element from
C ∈ E∗(u) for all C ∈ E∗(u), there exists an element from C̃ which lies in the

nonnegative half-space of this hyperplane for all C̃ ∈ E∗(f).

Theorem 8. Let the regularity condition holds at the point x∗ ∈ Ω, families
of sets E∗(f) and E∗(u) be upper exhausters in the sense of Hadamard of the
functions f and u at the point x∗ respectively. Then for the point x∗ to be a
local minimum of the function f on the set Ω it is necessary that

⋃

C∈E∗(u)

[
−K+(C)

]
⊂

⋂

C∈E∗(f)

cl
{
R

n \
(
−K+(C)

)}
, (14)

where K(C) = cone{C} is the conic hull of the set C, K+(C) is the conjugate
cone of K(C).

Proof. As in the proof of the previous theorem it can be shown that if x∗ is a
local minimum of the function f on the set Ω, then

min
C∈E∗(f)

max
v∈C

〈v, g〉 ≥ 0

holds for any g such that

min
C∈E∗(u)

max
v∈C

〈v, g〉 ≤ 0.

Therefore for any g ∈ R
n such that

∃C̃ ∈ E∗(u) : max
v∈C̃

〈v, g〉 ≤ 0 (15)

holds the condition
max
v∈C

〈v, g〉 ≥ 0 ∀C ∈ E∗(f). (16)

Inequality (15) is equivalent to the fact that there exists C̃ ∈ E∗(u) such that

〈v, g〉 ≤ 0 for all v ∈ C̃. Consequently there exists C̃ ∈ E∗(u) such that g ∈

−K+(C̃), where K+(C̃) is a conjugate cone of cone{C̃}. Whence we conclude

that g ∈
⋃

C∈E∗(u)

[−K+(C)] is equivalent to condition (15). Therefore (15) and

(16) implies (14).
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Corollary 8.1. Condition (14) can be interpreted as follows: for any hyperplane
passing through the origin which nonpositive half-space contains at least one set
C ∈ E∗(u), there exists an element from C̃ which lies in the nonnegative half-

space of this hyperplane for all C̃ ∈ E∗(f).

Remark 3.1. If x∗ is an unconstrained local minimum of f then condition (5)
holds. Therefore ⋂

C∈E∗(f)

cl
{
R

n \
(
−K+(C)

)}
= R

n,

which implies that inclusions (10) and (14) are always satisfied.

Now proceed to the minimum conditions in terms of (adjoint) lower ex-
hauster of the function f .

Theorem 9. Let the regularity condition holds at the point x∗ ∈ Ω, families
of sets E∗(f) and E∗(u) be lower exhausters in the sense of Hadamard of the
functions f and u at the point x∗ respectively. Then for the point x∗ to be a
local minimum of the function f on the set Ω it is necessary that

⋂

C∈E∗(u)

cl
{
R

n \K+(C)
}
⊂

⋃

C∈E∗(f)

K+(C), (17)

where K(C) = cone{C} is the conic hull of the set C, K+(C) is the conjugate
cone of K(C).

Proof. As in the proof of Theorem 7 it can be shown that if x∗ is a local minimum
of the function f on the set Ω, then

max
C∈E∗(f)

min
v∈C

〈v, g〉 ≥ 0

holds for any g such that

max
C∈E∗(u)

min
v∈C

〈v, g〉 ≤ 0.

Therefore for any g ∈ R
n such that

min
v∈C

〈v, g〉 ≤ 0 ∀C ∈ E∗(u) (18)

holds the condition
∃Ĉ ∈ E∗(f) : min

v∈Ĉ

〈v, g〉 ≥ 0. (19)

Inequality (19) is equivalent to the fact that g ∈ K+(Ĉ), where K+(Ĉ) is a

conjugate cone of cone(Ĉ). Thus (18) and (19) implies (17).

Corollary 9.1. Condition (17) can be interpreted as follows: for any hyperplane
passing through the origin which nonpositive half-space contains an element from
C for all C ∈ E∗(u), there exists at least one set C ∈ E∗(f) which fully lies in
the nonnegative half-space of this hyperplane.

Similarly can be proved the following result.
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Theorem 10. Let the regularity condition holds at the point x∗ ∈ Ω, families
of sets E∗(f) and E∗(u) be a lower and an upper exhausters in the sense of
Hadamard of the functions f and u at the point x∗ respectively. Then for the
point x∗ to be a local minimum of the function f on the set Ω it is necessary
that ⋃

C∈E∗(u)

[
−K+(C)

]
⊂

⋃

C∈E∗(f)

K+(C), (20)

where K(C) = cone{C} is the conic hull of the set C, K+(C) is the conjugate
cone of K(C).

Corollary 10.1. Condition (20) can be interpreted as follows: for any hyper-
plane passing through the origin which nonpositive half-space contains at least
one set C ∈ E∗(u), there exists at least one set C ∈ E∗(f) which fully lies in
the nonnegative half-space of this hyperplane.

Remark 3.2. If x∗ is an unconstrained local minimum of f then condition (6)
holds. Therefore ⋃

C∈E∗(f)

K+(C) = R
n,

which implies that inclusions (17) and (20) are always satisfied.

Analogously via Theorem 6 we can state and prove conditions for the max-
imum.

Theorem 11. Let the regularity condition holds at the point x∗ ∈ Ω, families
of sets E∗(f) and E∗(u) be lower exhausters in the sense of Hadamard of the
functions f and u at the point x∗ respectively. Then for the point x∗ to be a
local maximum of the function f on the set Ω it is necessary that

⋂

C∈E∗(u)

cl
{
R

n \K+(C)
}
⊂

⋂

C∈E∗(f)

cl
{
R

n \K+(C)
}
, (21)

where K(C) = cone{C} is the conic hull of the set C, K+(C) is the conjugate
cone of K(C).

Theorem 12. Let the regularity condition holds at the point x∗ ∈ Ω, families
of sets E∗(f) and E∗(u) be a lower and an upper exhausters in the sense of
Hadamard of the functions f and u at the point x∗ respectively. Then for the
point x∗ to be a local maximum of the function f on the set Ω it is necessary
that ⋃

C∈E∗(u)

[
−K+(C)

]
⊂

⋂

C∈E∗(f)

cl
{
R

n \K+(C)
}
, (22)

where K(C) = cone{C} is the conic hull of the set C, K+(C) is the conjugate
cone of K(C).

Theorem 13. Let the regularity condition holds at the point x∗ ∈ Ω, families
of sets E∗(f) and E∗(u) be an upper and a lower exhausters in the sense of
Hadamard of the functions f and u at the point x∗ respectively. Then for the
point x∗ to be a local maximum of the function f on the set Ω it is necessary
that ⋂

C∈E∗(u)

cl
{
R

n \K+(C)
}
⊂

⋃

C∈E∗(f)

[
−K+(C)

]
, (23)
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where K(C) = cone{C} is the conic hull of the set C, K+(C) is the conjugate
cone of K(C).

Theorem 14. Let the regularity condition holds at the point x∗ ∈ Ω, families
of sets E∗(f) and E∗(u) be upper exhausters in the sense of Hadamard of the
functions f and u at the point x∗ respectively. Then for the point x∗ to be a
local maximum of the function f on the set Ω it is necessary that

⋃

C∈E∗(u)

[
−K+(C)

]
⊂

⋃

C∈E∗(f)

[
−K+(C)

]
, (24)

where K(C) = cone{C} is the conic hull of the set C, K+(C) is the conjugate
cone of K(C).

4 An illustrative example

Consider a function f(x) = |x1| − |x2| on a set Ω =
{
x ∈ R

2 | u(x) ≤ 0
}
at a

point x∗ = (0, 0), where

Figure 1: The set Ω (hatched area) and the cone Kad(x∗) (shaded area).

u(x) = min {max{h1(x), h2(x)},max{h3(x), h4(x)}} =

= max {min{h1(x), h3(x)},max{h2(x), h4(x)}} ,

h1(x) =
1

2

[
(x1 − 1)2 + (x2 − 1)2

]
− 1, h2(x) =

1

2

[
(x1 − 1)2 + (x2 + 1)2

]
− 1,

h3(x) =
1

2

[
(x1 + 1)2 + (x2 − 1)2

]
− 1, h4(x) =

1

2

[
(x1 + 1)2 + (x2 + 1)2

]
− 1.
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The functions f and u are Dini-directionally differentiable at the point x∗

and Lipschitz, therefore they are directionally differentiable in the sense of
Hadamard [8]. It is also obvious that regularity condition holds at the point x∗.

Denote

C1 = co{(1, 1); (−1, 1)}, C2 = co{(1,−1); (−1,−1)},

C3 = co{(1, 1); (1,−1)}, C4 = co{(−1, 1); (−1,−1)}.

Then the following families are exhausters of the functions f and u at the point
x∗:

E∗(f) = E∗(u) = {C1, C2} , E∗(f) = E∗(u) = {C3, C4} .

a b

Figure 2: Sets that form exhausters of the functions f and u at the point x0∗.

First check minimality conditions in terms of proper exhauster. Condition
(10) from Theorem 7 is satisfied since

⋂

C∈E∗(u)

cl
{
R

n \K+(C)
}
=

⋂

C∈E∗(f)

cl
{
R

n \
(
−K+(C)

)}
= K(C3)

⋃
K(C4).

Condition (14) from Theorem 8 also holds:
⋃

C∈E∗(u)

[
−K+(C)

]
=

⋂

C∈E∗(f)

cl
{
R

n \
(
−K+(C)

)}
= K(C3)

⋃
K(C4).

Now pass to the minimality conditions in terms of adjoint exhauster.
We have

⋂

C∈E∗(u)

cl
{
R

n \K+(C)
}
=

⋃

C∈E∗(f)

K+(C) = K(C3)
⋃

K(C4),

therefore condition (17) from Theorem 9 is fulfilled.
Condition (20) from Theorem 10 also holds:

⋃

C∈E∗(u)

[
−K+(C)

]
=

⋃

C∈E∗(f)

K+(C) = K(C3)
⋃

K(C4).
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Conclusion

We derived new optimality conditions for an exhausterable function on an ex-
hausterable set and showed how they can be applied to practical problems.

It should be noted that constrained optimality conditions for an exhauster-
able function on an abstractive theoretical cone were provided in [15]. But these
results were only the first step, as one of the most important problem of con-
structing such a cone in specific cases remained open. In the present paper we
considered the case when a feasible set is given via an exhausterable function,
described Bouligand cone in terms of exhausters of this function and therefore
got optimality conditions in terms of these exhausters. Obtained results can be
applied to a wide class of nondifferentiable optimization problems.
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