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Abstract Motivated by the expressive power of completely positive programming to encode hard opti-

mization problems, many approximation schemes for the completely positive cone have been proposed and

successfully used. Most schemes are based on outer approximations, with the only inner approximations

available being a linear programming based method proposed by Bundfuss and Dür [9] and also Yıldırım [25],

and a semidefinite programming based method proposed by Lasserre [17]. In this paper, we propose the use

of the cone of nonnegative scaled diagonally dominant matrices as a natural inner approximation to the

completely positive cone. Using projections of this cone we derive new graph-based second-order cone ap-

proximation schemes for completely positive programming, leading to both uniform and problem-dependent

hierarchies. This offers a compromise between the expressive power of semidefinite programming and the

speed of linear programming based approaches. Numerical results on random problems, standard quadratic

programs and the stable set problem are presented to illustrate the effectiveness of our approach.

1 Introduction

Copositive programming and its dual counterpart of completely positive programming are classes of convex

optimization problems that have in the past decades developed as a particularly expressive tool to encode

optimization problems, especially for many problems arising from combinatorial or quadratic optimization.

A classical example of that can be found in [10], which shows that general quadratic programs with a mix

of binary and continuous variables can be expressed as copositive programs. A large body of work has been

developed in the area and there is a series of survey papers that can be consulted for further information.

We refer the readers to [8, 11,13] and references therein for more details.
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In this paper we will focus on general completely positive programs which are linear optimization prob-

lems of the form (see Section 1.1 below for notation)

vp := min tr(CX)

s.t. tr(AiX) = bi, i = 1, . . . ,m,

X ∈ CPn,
(1.1)

where C and Ai, i = 1, . . . ,m are symmetric matrices, and CPn is the closed cone of n×n completely positive

matrices defined as

CPn := {X ∈ Sn : ∃B ≥ 0, X = BTB}. (1.2)

We also consider the dual problem of (1.1), which is the following copositive programming problem

vd := max bT y

s.t. C −
∑m
i=1 yiAi ∈ COP

n,
(1.3)

where COPn is the closed cone of n× n copositive matrices and is defined as

COPn := {X ∈ Sn : vTXv ≥ 0, ∀v ≥ 0}. (1.4)

It is well known that completely positive programming problems (1.1) are NP-hard in general. Several

approximation schemes have been proposed and successfully used in the literature, based on approximations

to CPn. The simplest one is to replace CPn by the cone of nonnegative positive semidefinite matrices, which

is strictly larger than CPn when n ≥ 5, hence leading to a lower bound to vp. Other popular lower bounds

are those relying on semidefinite programming sums of squares techniques as introduced in [19]. For upper

bounds based on inner approximations to CPn, the literature is somewhat sparser.

One way of constructing inner approximations to CPn is to make use of the fact that the extreme

rays of CPn are matrices of the form vvT with v ∈ IRn+\{0}; see [1]. Thus, one can pick uniformly spaced

v ∈ ∆n = {x ∈ IRn+ :
∑
xi = 1}, and approximate CPn by the cone the matrices vvT generate (see [9, 25]).

This leads to linear programming (LP) approximations to (1.1). Another inner approximation to CPn

is that proposed in [17], based on the theory of moments, leading to semidefinite programming (SDP)

approximations to (1.1). In both cases we have hierarchies that give upper bounds to (1.1), and dually

lower bounds to (1.3), and converge to the optimal value/solutions of (1.1). These inner approximations

are uniform (i.e., problem-independent) approximations, giving rise to either LP or SDP problems. See

also [26] for a more thorough treatment of inner approximations. An extra step taken as an adaptive

linear approximation algorithm was proposed in [9]. This uses information obtained from an upper bound

approximation to selectively refine the hierarchy, leading to problem-dependent LP approximations.

In this paper, we propose a new inner approximation scheme to CPn that is based on second-order

cone programming (SOCP) problems and can be either uniform or problem-dependent. Our approach is

motivated by the recent work in [3, 4] that uses the cone of scaled diagonally dominant matrices for inner-

approximating the cone of positive semidefinite matrices. Specifically, we use the cones of nonnegative

scaled diagonally dominant matrices and their projections as a natural inner approximation to CPn, and

derive a new SOCP-based approximation scheme for completely positive and copositive programming. Our

approximation scheme has a natural graphical interpretation. By exploiting this interpretation, we can

flexibly expand or trim the SOCP problems in our hierarchy, leading to both uniform and problem-dependent

approximation schemes. The use of SOCP offers a compromise between the expressive power of SDP, that

comes at a significant computational cost, and the speed of LP approaches, that have inherently lower

expressive power. Numerical experiments on solving random instances, standard quadratic programs and

the stable set problem demonstrate the effectiveness of our approximation schemes.



Inner approximating the completely positive cone via the cone of scaled diagonally dominant matrices 3

The rest of the paper is organized as follows. We present notation and state our blanket assumptions

concerning (1.1) and (1.3) in Section 1.1. Properties of the scaled diagonally dominant matrices are reviewed

in Section 2, and a graphical refinement scheme is discussed. We derive our uniform inner approximation

schemes in Section 3 with a convergence analysis, and discuss several problem-dependent inner approxima-

tion schemes in Section 4. Numerical experiments are reported in Section 5.

1.1 Notation and blanket assumptions

In this paper, we use Sn to denote the space of n × n symmetric matrices. Matrices are denoted by upper

case letters, and their entries are represented in the corresponding lower case letters, e.g., dij as the (i, j)th

entry of the matrix D; we also use lower case letters to denote vectors. For vectors u, v ∈ IRn, we write

u ≥ 0 if u is elementwise nonnegative, and use [u, v] to denote the line segment between u and v, i.e.,

[u, v] := {tu+ (1− t)v : t ∈ [0, 1]}.

For an X ∈ Sn, we write X � 0 if X is positive semidefinite, and write X ≥ 0 if X is elementwise nonnegative.

We also write the trace of X as tr(X). We use E and I to denote the square matrix of all ones and the

identity matrix, respectively, whose dimensions should be clear from the context. Finally, for a linear map

A : Sn → Sm, we use A∗ to denote its adjoint.

The cone of positive semidefinite n × n matrices is denoted by Sn+. We also use Nn to denote the cone

of n× n symmetric nonnegative matrices, i.e.,

Nn := {X ∈ Sn : X ≥ 0},

and an n × n real symmetric matrix is doubly nonnegative if it is positive semidefinite and entrywise

nonnegative. It is known that the cones in (1.2) and (1.4) are dual to each other, i.e., CPn = (COPn)∗ and

COPn = (CPn)∗; here,

C∗ := {Y ∈ Sn : tr(XY ) ≥ 0, ∀X ∈ C}

for a closed convex cone C ⊆ Sn. Moreover, it is also known that the cone of positive semidefinite matrices

and the cone of symmetric nonnegative matrices are self-dual, i.e., Sn+ = (Sn+)∗ and Nn = (Nn)∗.

Throughout this paper, we make the following blanket assumptions concerning (1.1) and (1.3):

A1. Problem (1.1) is feasible.

A2. The mapping X 7→ (tr(A1X), . . . , tr(AmX)) is surjective.

A3. Problem (1.3) is strictly feasible, i.e., there exists ȳ satisfying

C −
m∑
i=1

ȳiAi ∈ int COPn.

Under these assumptions, the dual Slater condition holds. Therefore we have vp = vd, with both values

being finite and the primal optimal value vp being attained.

2 The scaled diagonally dominant cone and beyond

In this section, we present the basis for our construction of inner approximations in Sections 3 and 4. Our

construction is motivated by the work in [3, 4], which studied inner approximations of the cone of positive

semidefinite matrices based on the cones of diagonally dominant and scaled diagonally dominant matrices.

While their work can be directly applied to the existing SOS hierarchies to yield outer approximations of

CPn (see [4, Section 4.2]) we show an alternative approach, based on the same cones but using them in a

fundamentally different way, in order to obtain an inner approximation to CPn. We first recall the following

definition of diagonally dominant and scaled diagonally dominant matrices from [4, Definition 3.3].
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Definition 1 A symmetric matrix A is diagonally dominant1 if aii ≥
∑
j 6=i |aij | for all i, and is said to be

scaled diagonally dominant (sdd) if there exists a diagonal matrix D with positive diagonal entries such

that DAD is diagonally dominant.

Let SDDn be the cone of n × n sdd matrices. It is clear that SDD1 is just the set of nonnegative real

numbers. One can deduce from [5, Theorem 9] a convenient characterization of sdd matrices for n ≥ 2. In

fact one can show that the cone SDDn is given by

SDDn :=
∑

1≤i<j≤n
ιij(S2+), (2.1)

where ιij : S2 → Sn is the map that sends an S ∈ S2 to the matrix D given by

drs :=



s11 if (r, s) = (i, i),

s12 if (r, s) = (i, j),

s21 if (r, s) = (j, i),

s22 if (r, s) = (j, j),

0 otherwise.

This cone is therefore given in terms of 2× 2 semidefinite constraints or, in other words, second-order cone

constraints, which makes it quite suitable to use in convex optimization. One can prove the following basic

properties of SDDn, and of the set SDDn
+ := SDDn ∩ Nn. Note that item (i) in Proposition 1 below can

be found in [3], and a more general version of it can be found in [21, Lemma 5]. We include it here for

completeness. In what follows ι∗ij denotes the adjoint of the map ιij , which in this case can be defined by

saying that ι∗ij(S) is the 2× 2 submatrix of S indexed by rows and columns i and j.

Proposition 1 For n ≥ 2, the following statements hold.

(i) (SDDn)∗ = {Q ∈ Sn : ι∗ij(Q) � 0, ∀1 ≤ i < j ≤ n}.
(ii) (SDDn

+)∗ = (SDDn)∗ +Nn.

(iii) SDDn
+ =

∑
1≤i<j≤n ιij(S

2
+ ∩N 2).

Proof We first prove (i). Recall from (2.1) that SDDn =
∑

1≤i<j≤n ιij(S
2
+). Thus, we have from [22, Corol-

lary 16.3.2] that

(SDDn)∗ =
⋂

1≤i<j≤n
(ιij(S2+))∗,

from which the desired equality follows immediately.

Next, we prove (ii). Note that ∑
1≤i<j≤n

ιij(E) ∈ SDDn ∩ intNn.

Thus, we conclude from [22, Corollary 16.3.2] that

(SDDn
+)∗ = (SDDn ∩Nn)∗ = (SDDn)∗ +Nn.

Finally, we prove (iii). It is clear that SDDn
+ ⊇

∑
1≤i<j≤n ιij(S

2
+ ∩ N 2). For the converse inclusion,

consider any Q ∈ SDDn
+. Then Q is nonnegative and can be written as

∑
1≤i<j≤n ιij(Sij) for some

Sij ∈ S2+, 1 ≤ i < j ≤ n. Observe that each Sij has nonnegative diagonal entries, and moreover, its

nondiagonal entry equals the (i, j)th entry of Q, which is also nonnegative. Thus, Sij ∈ S2+ ∩N 2 and hence

Q ∈
∑

1≤i<j≤n ιij(S
2
+ ∩N 2). This completes the proof.

1 Note that our definition is different from the classical definition of diagonal dominance (see [15, Definition 6.1.9]) in

that we require the diagonal entries of A to be nonnegative.
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Fig. 1 Comparison of S5+ ∩N 5 with SDD5
+

Since 2 × 2 nonnegative positive semidefinite matrices are completely positive, we see from Proposi-

tion 1(iii) that SDDn
+ is an inner approximation to CPn. In Figure 1 we show a random 2-dimensional slice

of the cone of doubly nonnegative 5× 5 matrices (i.e., S5+ ∩N 5) with the slice of SDD5
+ highlighted in red.

The cone CP5 is sandwiched between them.

This simple inner approximation can be used as a basis to construct more general inner second-order

cone approximations for CPn. To do that we consider a useful variant of SDDn
+ that will help us construct

inner approximations of CPn.

Definition 2 Let U ∈ IRt×n+ have row sum 1. Define

SDDn
+(U) := {UTY U : Y ∈ SDDt

+} = UT (SDDt
+)U. (2.2)

The above definition is similar to the development in [3, Section 3.1], which makes use of the so-called

DD(U). Here we assume that U has nonnegative entries so that SDDn
+(U) will be a subcone of CPn; see

Proposition 2 below. In addition, we assume that the rows of U have sum one: we can then always think

of the rows of U as points in the simplex ∆n. This is no less general than just considering U ∈ IRt×n+ with

nonzero rows, because scaling rows of U by positive scalars does not change SDDn
+(U). Note that SDDn

+(U)

is simply a linear image of SDDt
+ into Sn.

Some basic properties of this set are that SDDn
+(In) = SDDn

+, and that if U ∈ IRt×n+ is a submatrix of

Ũ ∈ IRs×n+ then SDDn
+(U) ⊆ SDDn

+(Ũ). We show in the next example that SDDn
+(U) can be strictly larger

than SDDn
+ in general.

Example 1 One can see that the matrix

M =

6 5 5

5 6 5

5 5 6


is in S3+ ∩N 3. However, M /∈ SDD3

+; indeed, if we define

W :=

 1 −1 −1

−1 1 −1

−1 −1 1

 ,
then tr(WM) < 0 but W ∈ (SDD3

+)∗ thanks to Proposition 1(ii), showing that M /∈ SDD3
+.

Now, suppose we set U to be the 4 × 3 matrix constructed from concatenating the identity I3 with an

all 1
3 row vector, i.e.,

U =


1 0 0

0 1 0

0 0 1
1
3

1
3

1
3

 ,
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and consider the set SDD3
+(U). Then we know SDD3

+ ⊆ SDD3
+(U) because I3 is a submatrix of U . Further-

more, we have

M = UT


1 0 0 3

0 1 0 3

0 0 1 3

3 3 3 27

U ∈ SDD3
+(U),

where the inclusion holds because
1 0 0 3

0 1 0 3

0 0 1 3

3 3 3 27

 =


1 0 0 3

0 0 0 0

0 0 0 0

3 0 0 9

+


0 0 0 0

0 1 0 3

0 0 0 0

0 3 0 9

+


0 0 0 0

0 0 0 0

0 0 1 3

0 0 3 9

 ∈ SDD4
+.

Consequently, SDD3
+(U) is a strictly larger set than SDD3

+.

We next give an important characterization of SDDn
+(U) that is crucial in our development of inner

approximation schemes in Sections 3 and 4. Recall from (1.2) that CPn can be seen as the convex hull of

all vvT with v ∈ IRn+. The next theorem shows that one can think of SDDn
+(U) similarly.

Theorem 1 Let U ∈ IRt×n+ have row sum 1. Then SDDn
+(U) is the conic hull of all vvT with v belonging to

some line segment [ui, uj ], where ui is the i-th row of U .

Proof For t = 1, the result follows immediately from the definition, so assume t ≥ 2. Note from Proposi-

tion 1(iii) and (2.2) that any matrix in SDDn
+(U) can be written as∑

1≤i<j≤t
UT ιij(Sij)U

for some Sij ∈ S2+ ∩ N 2. Moreover, any matrix S ∈ S2+ ∩ N 2 can be written as S = v1v
T
1 + v2v

T
2 for some

nonnegative vectors vi ∈ R2
+. Furthermore, we know that for any v ∈ R2, it holds that ιij(vv

T ) = wwT

where w ∈ Rt is the vector whose ith entry is v1, jth entry equals v2, and is zero otherwise. Hence, we

deduce that any matrix in SDDn
+(U) can be written as

N∑
k=1

UTwkw
T
k U,

where each wk ∈ Rt is nonnegative and has a support of cardinality at most 2. Conversely, it is easy to see

that any matrix that can be written as such a sum is in SDDn
+(U). But each UTw, with w 6= 0, is simply a

(nonzero) conic combination of two rows of U , ui and uj ; so, up to positive scaling, it is in [ui, uj ], proving

our claim.

We can now prove the following properties of SDDn
+(U).

Proposition 2 Let U ∈ IRt×n+ have row sum 1. Then the following statements hold.

(i) The cone SDDn
+(U) is a closed sub-cone of CPn.

(ii) (SDDn
+(U))∗ = {Y : UY UT ∈ (SDDt

+)∗} = {Y : UY UT ∈ (SDDt)∗ +N t}.

Proof From Theorem 1, it follows that SDDn
+(U) is a sub-cone of CPn. It remains to prove closedness. Since

U is nonnegative and has no zero rows, the origin is not in the convex hull of vvT , where v belongs to some

[ui, uj ], and ui is the i-th row of U . Hence SDDn
+(U) is the conic hull of a compact convex set not containing

the origin. Thus, it is closed.
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To prove (ii), recall that SDDn
+(U) = UT (SDDt

+)U . From this we see that Y ∈ (SDDn
+(U))∗ if and only

if

tr(Y (UTWU)) ≥ 0 ∀W ∈ SDDt
+,

which is the same as UY UT ∈ (SDDt
+)∗. This proves the first equality. The second equality in (ii) is trivial

when t = 1 and follows from Proposition 1(ii) when t ≥ 2. This completes the proof.

Note that the construction of SDDn
+(U) is fairly general. Anytime we have a cone C ⊆ CPt and a matrix

U ∈ IRt×n+ whose rows have sum one, one can define the cone

C(U) := {UTY U : Y ∈ C} = UT CU. (2.3)

This is easily seen to always verify C(U) ⊆ CPn, since C(U) ⊆ UT CPtU ⊆ CPn. It is helpful to state in this

language the usual LP inner approximations to CPn. Let Diagn+ be the set of nonnegative n × n diagonal

matrices. Clearly Diagn+ ⊆ CP
n, so we can define

Diagn+(U) := {UTY U : Y ∈ Diagt+}. (2.4)

This is nothing more than the conic hull of the matrices uiu
T
i , i = 1, . . . , t, where ui is the i-th row of U .

The use of (2.4) for inner approximation corresponds to the standard LP approximation strategy used, for

example, in [9], where strategies for efficient choices of U were explored.

Another possibility for obtaining an LP relaxation would be to use the cone of n × n symmetric non-

negative diagonally dominant matrices, denoted by DDn
+. We have Diagn+ ⊆ DDn

+ ⊆ SDDn
+. So, if we

define

DDn
+(U) := {UTY U : Y ∈ DDt

+}, (2.5)

we would get Diagn+(U) ⊆ DDn
+(U) ⊆ SDDn

+(U). However, since one can easily see that DDn
+ is the conic

hull of (ei + ej)(ei + ej)
T for 1 ≤ i ≤ j ≤ n, it is not hard to see that DDn

+(U) is simply the conic hull of

(ui + uj)(ui + uj)
T for 1 ≤ i ≤ j ≤ t, and hence can be expressed in terms of Diagn+(U ′) for some U ′ that

contains U as a submatrix.

Other choices would be to use not submatrices in S2+, as we did for SDDn
+, but matrices in S3+ or S4+. Note

that it is still true in these two cases that Si+ ∩ N i ⊆ CPi. These cones would give better approximations,

but we would get a much higher number of constraints that would not be second-order cone constraints but

fully semidefinite. While the semidefinite constraints would still be small, the process would become more

cumbersome and significantly less tractable.

2.1 A graphical refinement

We saw above that SDDn
+(U) is a natural inner approximation to CPn. Furthermore, Theorem 1 suggests

that the fundamental property of U that guides the approximation is the collection of segments [ui, uj ].

We might associate to the points ui vertices of a graph, and to the segments its edges, and think of the

collection of points and segments as a concrete realization of the graph in IRn. This insight can be used to

refine the approximation, making it more flexible. We start by generalizing the notion of SDD.

Given a graph G with vertex set {1, . . . , n} and edge set E, we define

SDDG :=
∑
{i,j}∈E

ιij(S2+),

and we set SDDG := {0} if E = ∅ by convention. The graph G simply encodes which principal 2 × 2

submatrices will be required to be semidefinite. In particular, if we consider G to be the complete graph

Kn, for n ≥ 2, this is simply SDDn. We can define SDDG
+ as the nonnegative matrices in SDDG, similarly

as before. Then we can naturally define a generalization of SDDn
+(U):
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Definition 3 For a graph G with t vertices and a matrix U ∈ IRt×n+ whose rows have sum one, we define

the cone SDDG
+(U) as

SDDG
+(U) := {UTY U : Y ∈ SDDG

+} = UT (SDDG
+)U.

It will be helpful to think of the rows of U as points in the standard simplex ∆n (i.e. with nonnegative

coordinates summing to one). These points correspond to vertices of the graph G, and the edge set of G

simply encodes which pairs of rows of U (vertices) are “connected”. In other words, the pair (G,U) is a

realization of the graph G inside ∆n with segments for edges. We will denote by seg(G,U) the set of points

in some of the segments, i.e,

seg(G,U) =
⋃

{i,j}∈E

[ui, uj ],

where ui is the i-th row of U . This set completely controls the geometry of the cone. Based on this notion

and the proof of Theorem 1, we can immediately obtain the following refinement of Theorem 1 for the

representation of SDDG
+(U).

Theorem 2 Let G be a graph with t vertices and U ∈ IRt×n+ be a matrix whose rows have sum one. Then

SDDG
+(U) is the conic hull of all vvT with v ∈ seg(G,U).

Theorem 2 gives a simple way of translating results from the graph language to results about cones. In

particular if we have seg(G,U) ⊆ seg(G′, U ′), we have SDDG
+(U) ⊆ SDDG′

+ (U ′), and furthermore SDDG
+(U) ⊆

SDDKt

+ (U) = SDDn
+(U) ⊆ CPn, for all graphs G with t vertices and matrices U ∈ IRt×n+ whose rows have sum

one. On the other hand, if every node of the graph G is covered by some edges, then SDDG
+(U) ⊇ Diagn+(U),

the usual LP inner approximation. Thus, the graphical notation allows us to construct intermediate approx-

imations somewhere in between the simple LP inner approximation and the full SDDn
+(U) version.

We end the section by noting that most of our other previous results concerning SDDn
+ and SDDn

+(U)

can be adapted with no effort to this new cone.

Theorem 3 Given a graph G with t vertices and edge set E, and a matrix U ∈ IRt×n+ whose rows have sum one,

we have the following properties.

(i) (SDDG)∗ = {Q ∈ Sn : ι∗ij(Q) � 0 ∀{i, j} ∈ E};
(ii) SDDG

+ =
∑
{i,j}∈E ιij(S

2
+ ∩N 2);

(iii) (SDDG
+(U))∗ = {Y : UY UT ∈ (SDDG

+)∗};
(iv) SDDG

+(U) is a closed sub-cone of CPn.

Proof Immediate from the proofs of Proposition 1 and Proposition 2.

3 Inner approximation schemes for the completely positive cone

The main idea of this section is to approximate the solution to (1.1) by using the cones SDDG
+(U) to replace

CPn. More concretely our scheme is based on the following family of optimization problems, which depends

on a graph G on t vertices and a U ∈ IRt×n+ whose rows have sum one:

vp(G,U) := min tr(CX)

s.t. tr(AiX) = bi, i = 1, . . . ,m,

X ∈ SDDG
+(U),

(3.1)

and its dual problem given by

vd(G,U) := max bT y

s.t. C −
∑m
i=1 yiAi ∈ (SDDG

+(U))∗.
(3.2)
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Note that the semidefinite constraints in (3.1) are imposed only on 2 × 2 matrices. Thus, these problems

are SOCP problems.

Recall from Theorem 3 that SDDG
+(U) and (SDDG

+(U))∗ are both closed convex cones. Also, notice that

(3.2) has a strictly feasible point due to Assumption A3 and the fact that COPn ⊆ (SDDG
+(U))∗ (which

follows from SDDG
+(U) ⊆ CPn). Consequently, if Problem (3.1) is feasible, then vp(G,U) = vd(G,U), both

values are finite and vp(G,U) is attained. Moreover, we conclude from SDDG
+(U) ⊆ CPn that vp(G,U) ≥

vp. Furthermore, we have already pointed out that augmenting the embedded graph (G,U) leads to an

enlargement in SDDG
+(U). In view of these observations, we will discuss strategies for constructing an

“enlarging” sequence of graphs {(Gk, Uk)} to possibly tighten the gap vp(G
k, Uk)− vp as k increases.

To simplify our terminology, we make the following definition.

Definition 4 A sequence of embedded graphs {(Gk, Uk)} is called a positively enlarging sequence if seg(Gk, Uk) ⊆
seg(Gk+1, Uk+1), each U is a nonnegative matrix having at least n rows, each row of U (the realizations of

vertices of G) sums to one, and each node of G is covered by at least one edge.

Positively enlarging sequences verify vp(G
k, Uk) ≥ vp(G

k+1, Uk+1) ≥ vp by construction. Furthermore,

once (3.1) is feasible for some k = k0, it will remain feasible whenever k ≥ k0, since the sequence of sets

{SDDGk
+ (Uk)} are monotonically increasing. Moreover, we have noted above that we might think of the

rows of U to be in the simplex ∆n so that we can think of this as an enlarging family of graphs embedded

in ∆n.

We next study convergence of our inner approximation schemes for (1.1) based on (3.1) when {(Gk, Uk)}
is a positively enlarging sequence. We first prove a convergence result concerning a similar approximation

scheme, which uses Diagn+(U) (as defined in (2.4)) in place of SDDG
+(U) in (3.1). This strategy was used in [9],

which studied the pairs (3.1) and (3.2) with Diagn+(U) in place of SDDG
+(U), and constructed an “enlarging”

sequence {Uk} by adding new rows to Uk from ∆n at each step. To determine what rows to add, they solve

another LP approximation scheme based on U , which they see as the set of vertices of a simplicial partition

of ∆n, and use its results to construct a sequence of {Uk} with an increasing number of rows. In studying

the convergence of that method they proved a version of the following result for copositive programming

problems in [9, Theorem 4.2]. The version presented below will be useful for studying convergence of our

inner approximation schemes for (1.1).

Theorem 4 Assume that (1.1) is strictly feasible. Let {Uk} be a sequence of matrices whose rows have sum one,

where for each k, Uk ∈ IRtk×n+ for some tk ≥ n. Suppose that

lim
k→∞

max
x∈∆n

min
i=1,...,tk

‖x− uki ‖ = 0, (3.3)

where uki is the i-th row of Uk. Consider for each k the following problem:

ṽp(U
k) := min tr(CX)

s.t. tr(AiX) = bi, i = 1, . . . ,m,

X ∈ Diagn+(Uk).

(3.4)

Then the following statements hold.

(i) ṽp(U
k) is finite for all sufficiently large k and limk→∞ ṽp(U

k) = vp.

(ii) The solution set of (3.4) is nonempty and uniformly bounded for all sufficiently large k.

(iii) Let Xk be a solution of (3.4) whenever the solution set is nonempty. Then any accumulation point of {Xk}
is a solution of (1.1).

Proof Note that the Diagn+(Uk) defined in (2.4) is the conic hull of uki u
k
i
T

, where uki are rows of Uk. Note also

that any element X in CPn can be written as the conic combination of n(n+1)
2 matrices vvT , with v ∈ ∆n.

Thus, in view of (3.3), X can then be written as the limit of a sequence {Xk}, where Xk ∈ Diagn+(Uk) for
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each k. This together with Diagn+(Uk) ⊆ CPn shows that the sequence of sets {Diagn+(Uk)} converges to

CPn in the sense of Painlevé-Kuratowski [23, Chapter 4B].

Since the mapping X 7→ A(X) := (tr(A1X), . . . , tr(AmX)) is surjective by Assumption A2 and (1.1) is

strictly feasible, the vector b and the set A(CPn) cannot be separated in the sense of [23, Theorem 2.39].

Thus, [23, Theorem 4.32] shows that the sequence of feasible sets of (3.4) converges to the feasible set of

(1.1) in the sense of Painlevé-Kuratowski.

It now follows from [23, Theorem 4.10(a)] and the nonemptiness of the feasible set of (1.1) that the

feasible sets of (3.4) are nonempty for all sufficiently large k. Hence ṽp(U
k) < ∞ for all sufficiently large

k. Note that for each k, the dual problem to (3.4) is dual strictly feasible because of Assumption A3 and

COPn ⊆ (Diagn+(Uk))∗. Thus, ṽp(U
k) is indeed finite for all sufficiently large k. Moreover, thanks to the

dual strict feasibility, the solution sets of (3.4) are nonempty whenever ṽp(U
k) is finite hence, in particular,

are nonempty for all sufficiently large k.

Next, note that by Assumption A3 the dual problems of (3.4) for each k actually have a common Slater

point, i.e., there exists a matrix

Ȳ := C −
m∑
i=1

ȳiAi ∈ int COPn ⊆ int (Diagn+(Uk))∗.

Therefore, there exists ε > 0 so that Ȳ + εB ⊆ int COPn, where B is the unit closed ball centered at the

origin (in Fröbenius norm). Consequently, for any X ∈ CPn, it holds that tr(Ȳ X) ≥ ε‖X‖F . We now argue

that the solution sets of (3.4) are uniformly bounded for all k. Indeed, fix any k so that the solution set

of (3.4) is nonempty, and let Xk be a solution. Then Xk is a Lagrange multiplier for the dual problem. In

particular,

ṽp(U
k) = max

y

{
bT y + tr

(
Xk

[
C −

m∑
i=1

yiAi

])}
≥ bT ȳ + tr(XkȲ ) ≥ bT ȳ + ε‖Xk‖F ,

where the last inequality holds because Xk ∈ Diagn+(Uk) ⊆ CPn. Since {ṽp(Uk)} is nonincreasing, we

conclude from the above inequality that {Xk} can be bounded above by a constant independent of k. Thus,

the solution sets of (3.4) are uniformly bounded for all k.

Finally, since the sequence of sets {Diagn+(Uk)} is monotonically increasing, we see from [23, Proposi-

tion 7.4(c)] that the objective function (with the constraint considered as the indicator function) of (3.4)

epi-converges to that of (1.1) in the sense of [23, Definition 7.1]. The desired conclusion concerning limits

of {ṽp(Uk)} and {Xk} now follows from [23, Theorem 7.31(b)].

Since Diagn+(U) ⊆ SDDG
+(U) if the edges of G cover all nodes, we get the convergence of the sequence of

problems (3.1) for a positively enlarging sequence {(Gk, Uk)} under the same assumptions on Uk. But we

can actually obtain the desired convergence result under a weaker condition.

Theorem 5 Assume that (1.1) is strictly feasible. Let {(Gk, Uk)} be a positively enlarging sequence such that

lim
k→∞

max
x∈∆n

min
y∈seg(Gk,Uk)

‖x− y‖ = 0. (3.5)

Then it holds that:

(i) vp(G
k, Uk) is finite for all sufficiently large k and limk→∞ vp(G

k, Uk) = vp.

(ii) The solution set of (3.1) with (G,U) = (Gk, Uk) is nonempty and uniformly bounded for all sufficiently

large k.

(iii) Let Xk be a solution of (3.1) with (G,U) = (Gk, Uk) whenever the solution set is nonempty. Then any

accumulation point of {Xk} is a solution of (1.1).
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Proof Note that from Theorem 2 and the description of Diagn+(U) as the conic hull of all matrices uiu
T
i

where ui is a row of U , if every node of G is covered by some edges and if we construct U ′ by adding rows

such that each new row lies in [ui, uj ] for some {i, j} ∈ E, we have Diagn+(U ′) ⊆ SDDG
+(U).

For each Uk, subdivide each segment [uki , u
k
j ] into segments no longer than 1/k, and add these new points

to Uk to form Ũk ∈ IRt̃k×n+ . Then for each x ∈ ∆n, we have

min
i=1,...,t̃k

‖x− ũki ‖ ≤ min
y∈seg(Gk,Uk)

‖x− y‖+
1

k
,

where ũki is the i-th row of Ũk. Thus, the sequence {Ũk} satisfies the conditions of Theorem 4. Consequently,

from the proof of Theorem 4, the sequence of sets {Diagn+(Ũk)} converges to CPn in the sense of Painlevé-

Kuratowski. In view of this and [23, Exercise 4.3(c)], {SDDn
+(Uk)} converges to CPn. The rest of the proof

follows exactly the same arguments as in the proof of Theorem 4.

An obvious way of guaranteeing the satisfaction of the condition (3.5) in Theorem 5 is to consider the

rows of Uk to be the set of points in x ∈ ∆n such that kx ∈ Zn, i.e. an equally spaced distribution of

points in the simplex, with a growing number of points. This is in fact the strategy explored in [25] with

the linear programming approach. As guaranteed by Theorem 5, this is sufficient to get convergence in

our case, independently of the edges considered, but we can get away with much less. Indeed, it is easy

to see, for example, that we do not need to map vertices to the interior of the simplex to get convergence

and, in fact, it is enough to uniformly sample the boundary of the simplex, and form a graph with all

possible edges between the chosen vertices. Finding embedded graphs that optimally cover ∆n in the sense

of minimizing the maximum distance to a point of the simplex seems to be a hard problem with no obvious

answer, but many different strategies can be attempted. For practical purposes, it might be helpful to use

the problem structure to design strategies for constructing {(Gk, Uk)}; these may not satisfy condition (3.5)

and hence the convergence behavior can be compromised, but their corresponding problem (3.1) may be

easier to solve. Indeed, as discussed in [18, Section 1.4], the amount of work per iteration for solving (3.2)

is O((m + t2k)2(4|E| + t2k)) when (G,U) = (Gk, Uk). Hence, we will explore some problem-dependent inner

approximation schemes in the next section.

Before ending this section, we would like to point out that the approach in [25] using Diagn+(U) for

(rows of) U equally distributed in the simplex is one of the few problem-independent inner approximations

to CPn presented in the literature. The only other approach is that of [17], which leads to SDP problems.

Although conceptually very interesting and with guaranteed convergence, this latter approach performs

poorly in practice, because the size of the constraints grows very fast and the small instances that can be

reasonably computed give weak approximations. In some sense, our SOCP based approximation schemes

may lend some of the power of semidefinite programming to the LP approximation without completely

sacrificing computability.

4 Problem-dependent inner approximation schemes

In this section, we propose some problem-dependent heuristic schemes for constructing {(Gk, Uk)}. They

typically lead to computationally more tractable problems than a positively enlarging sequence satisfying

(3.5). As we shall see later in our numerical experiments, these problem-dependent schemes in general

return solutions with reasonable quality, though their convergence behaviors are still unknown. A related

problem-dependent approach was developed in [2] for semidefinite programming. In there, they proposed

the use of the cone SDDn(U) and progressively enlarge the U to obtain efficient inner approximations to

Sn+. We propose in this section a related approach. The main difference is that in the semidefinite case

considered in [2], enlarging the U is relatively simple, as we can always separate the dual solution to the

inner approximation from Sn+, if it is not there. In the case of completely positive cone, however, there is
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no realistic way of even checking if the dual solution is copositive. Thus, a direct separation procedure, like

the one proposed in [2], is not viable.

4.1 Problem-dependent positively enlarging sequence

In this section, we describe a problem-dependent strategy for constructing a positively enlarging sequence

{(Gk, Uk)} that can potentially perform better on specific problem instances.

After solving (3.1) with a choice of (Gk, Uk), if the problem is feasible, one will obtain a solution

X ∈ SDDG
+(U). By Theorem 2, this X can be written as a conic combination of vvT for v ∈ seg(G,U). Our

plan here is to add these v as vertices to G and add some new edges from them, in order to increment the

graph. The decomposition is not unique, so one has to carefully define what is meant by it.

First, note that for an M ∈ S2+ ∩N 2, there exist a ≥ 0, b ≥ 0 and v ∈ IR2
+ so that

M = vvT +

[
a 0

0 b

]
. (4.1)

This is trivially true if any element in the diagonal of M is zero. For other matrices, the above decomposition

can be realized by taking for example v = (
√
m11,m12/

√
m11), implying a = 0 and b = m22 − m2

12/m11,

which is greater than or equal to zero since M � 0.

Now, for any U ∈ IRt×n+ , one can see that UT ιij(M)U = auiu
T
i + buju

T
j + (v1ui + v2uj)(v1ui + v2uj)

T ,

where ui is the ith row of U , 1 ≤ i < j ≤ t. So, besides the vertices ui and uj , we need at most one point

coming from each edge [ui, uj ] to describe UT ιij(M)U . Since elements of SDDG
+(U) are sums of matrices of

this type for {i, j} ∈ E by Theorem 2, we have the following Lemma refining Theorem 2.

Lemma 1 Any element X ∈ SDDG
+(U) can be written as

X =
t∑
i=1

λiuiu
T
i +

∑
{i,j}∈E

γijwijw
T
ij

where ui is the i-th row of U ∈ IRt×n+ , wij ∈ [ui, uj ] and λi, γij ≥ 0. Indeed, for the first sum, it suffices to sum

over the i’s that are covered by some edges.

A natural question to ask is which points we can pick in each segment. To answer this question, we assume

without loss of generality that m12 > 0 (and hence m11 > 0 and m22 > 0) in (4.1) and demonstrate how the

v there can be chosen. Note that UT vvTU is supposed to correspond to a γijwijw
T
ij in the decomposition in

Lemma 1.

Since m12 > 0, we must have v1 > 0 and v2 > 0. Then we just need to see what the ratio r = v1/v2 can

be. What we saw above right after (4.1) was the largest case, where we get r = m11/m12. The smallest it

can get is attained by setting v = (m12/
√
m22,

√
m22), which gives us r = m12/m22. These two values for r

can be seen by noting that any extremal ratio v1/v2 for the v in (4.1) must correspond to a = 0 or b = 0. A

balanced option, defined in a way that the ratio between diagonal entries of vvT preserves the ratio between

the diagonal entries of M , is to take

v =
√
m12

[(
m11
m22

) 1
4(

m22
m11

) 1
4

]
, (4.2)

which corresponds to r =
√
m11/m22, the geometric mean of the largest and smallest possible ratios.

Based on these observations, we can now describe a general strategy for an iterative procedure to obtain

upper bounds for (1.1).
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Scheme 1: Successive upper bound scheme for (1.1)

Step 0. Start with a complete graph G0 and its embedding (G0, I) in ∆n. Set k = 0 and U0 = I.

Step 1. For an optimal solution Xk of (3.1) with (G,U) = (Gk, Uk), apply Lemma 1 to obtain

points wij for some {i, j} ∈ E ′ ⊆ E such that X = Xk is a conic combination of wijw
T
ij for

{i, j} ∈ E ′ and uiu
T
i for the vertex i of G.

Step 2. Define a new graph embedding (Gk+1, Uk+1) by adding new vertices at the points wij (or

at least some subset of them) and some new edges connecting those vertices to some of the

previously defined ones, and possibly remove redundant edges and go to Step 1.

The general idea is therefore to, augment the graph at each step by adding some vertices in the edges

that were active in the optimal solution and some edges incident with them. All the steps have, however,

some subtleties that need to be addressed.

The initial embedding (G0, U0) is currently taken to be simply the embedding of Kn into the vertices of

∆n, so that SDDG0

+ (U0) = SDDn
+. If that is infeasible, however, the strategy does not work. Nevertheless,

assuming strict feasibility of (1.1), we know from Theorem 4 that there is some small enough uniform

simplicial partition of ∆n that will make the problem feasible.

The decomposition obtained in Step 1 is not unique. There are two sources of variations. First, as

discussed above, given a 2× 2 semidefinite matrix M such that ιij(M) appears in the decomposition of X,

we have some leeway on which point to pick in the edge [ui, uj ]. Second, notice that even these matrices M

are not uniquely defined. Since the matrices M will be a side result of the solution to (3.1), the choice of

algorithm and the way the problem is encoded will have some impact in the decomposition. As for defining

the v given the matrix M , we will use the balanced approach described above in (4.2) as it seems to perform

well in practice.

The augmenting step (Step 2) is the most delicate of all. Different augmenting techniques will give rise

to very different procedures. Here and in our numerical experiments, we consider two different approaches.

We will present more implementation details in Section 5.

The maximalist approach: In this approach, we add some new vertices and then connect all vertices to form

a complete graph. This is memory consuming and induces some redundancies: every node we add is in the

middle of an already existing edge. Adding edges to those does not enlarge the cone SDDG
+(U) and might

lead to numerical inaccuracies, as we create multiple ways of writing points in a segment. Some pruning

techniques could be applied.

The adaptive simplicial partition approach: This is mimicking the technique introduced in [9], which main-

tains the set of edges as that of a simplicial partition. At every step we would pick edges to subdivide and

subdivide all the simplices containing that edge. The choice of nodes and edges to add to Gk in our approach

is based on the solution we obtain from solving (3.1) for (G,U) = (Gk−1, Uk−1). This is different from [9],

which relies solely on an outer approximation to guide the subdivision process.

Note that we do not have any guarantee of convergence for Scheme 1. However, geometrically one can

see what must happen in order for the method to get stuck, i.e., for SDDGk

+ (Uk) = SDDGk+1

+ (Uk+1). As

an immediate consequence of Theorem 2, this happens if and only if all the newly added edges in the

embedding are contained in previously existing edges. This is because rank one nonnegative matrices are

on the extreme rays of CPn(see [1]). Thus, we see from Theorem 2 that SDDGk

+ (Uk) = SDDGk+1

+ (Uk+1) if

and only if seg(Gk, Uk) = seg(Gk+1, Uk+1). This is an extremely strong condition, that implies essentially

(depending on the scheme chosen to enlarge the graph) that the scheme gets stuck if for some iteration the

optimal solution can be attained as a combination of only the nodes, and no elements from the edges. Or, in

other words, the problem (3.1) has the same solution if we replace SDDGk

+ (Uk) by Diagn+(Uk). On passing,

we would like to point out that, in occasions where convergence is a serious concern, one can modify Step 2
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of Scheme 1 by adding a random vertex in ∆n in addition to those wij : this resulting scheme is guaranteed

to converge in view of Theorem 5 if (1.1) is also strictly feasible.

4.2 A forgetfulness scheme

The use of a positively enlarging sequence {(Gk, Uk)} can lead to large-scale SOCP problems when k is

huge. As a heuristic to alleviate the computational complexity, we propose a simple forgetfulness scheme.

In this approach, we maintain the complete graph throughout. However, we always form Uk by append-

ing only the newly generated vertices to U0, which we choose to be the identity matrix. The details are

described below.

Scheme 2: A forgetfulness upper bound scheme for (1.1)

Step 0. Start with a complete graph G0 and its embedding (G0, I) in ∆n. Set k = 0 and U0 = I.

Step 1. For an optimal solution Xk of (3.1) with (G,U) = (Gk, Uk), apply Lemma 1 to obtain

points wij for some {i, j} ∈ E ′ ⊆ E such that X = Xk is a conic combination of wijw
T
ij for

{i, j} ∈ E ′ and uiu
T
i for the vertex i of G.

Step 2. Define a new graph embedding (Gk+1, Uk+1): starting with (G0, I), add new vertices at

the points wij and then add edges between each new vertex and all vertices in G0. Go to Step

1.

Note that, in general, one cannot guarantee that the forgetfulness scheme is even monotone, as we

are dropping the factors uiu
T
i that were a part of the representation of the optimal solution X in Step 1.

However, in most studied random instances in our numerical experiments, the forgetfulness scheme appears

to be monotone. The main reason could be that the algorithm tends to write X as a conic combination of

just the matrices wijw
T
ij for {i, j} ∈ E ′. When this happens, we are guaranteed that the next iteration will

be non-increasing, but this need not always be the case.

5 Numerical simulations

In this section, we report on numerical experiments to test our proposed approaches. All experiments were

performed in Matlab (R2017a) on a 64-bit PC with an Intel(R) Core(TM) i7-6700 CPU (3.40GHz) and

16GB RAM. We used the convex optimization software CVX [14] (version 2.1), running the solver MOSEK

(version 8.0.0.60) to solve the conic optimization problems that arise.

In our tests, we specifically consider the following strategies:

∆-partition: In this approach, controlled by a parameter k ≥ 2, we generate the vertices of the graph Gk as

the (n+k−1
k ) vertices in the uniform subdivision of the simplex ∆n into simplices of size 1

k∆
n. We then add

edges between two vertices whenever their supports differ by 2.

Note that by Theorem 5, if (1.1) is in addition strictly feasible, then vp(G
k, Uk) will be close to vp for

all sufficiently large k, so this strategy is guaranteed to converge as k increases.

Max: This is a variant of Scheme 1. Specifically, in Step 1, we decompose Xk as described in Lemma 1

using the balanced option given in (4.2). Then, in Step 2, we add to Gk as new vertices all wij whose

corresponding entry Xk
ij is sufficiently large as new vertices, and add edges between all vertices so that the

new graph Gk+1 is complete.

Max1: This is another variant of Scheme 1. Step 1 is the same as in Max. However, in Step 2, we only add

the wij corresponding to the largest Xk
ij (if Xk

ij exceeds a certain threshold) as a new vertex. We then add

edges between all vertices so that the new graph Gk+1 is complete.
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Adaptive ∆-partition: This is also a variant of Scheme 1. Step 1 is the same as in Max. For Step 2, the way

of adding vertices is the same as in Max1. However, the way we add edges mimics the approach introduced

in [9], which maintains the set of edges as that of a simplicial partition. Specifically, we subdivide the edge

corresponding to the wij we added, and subdivide all the simplices containing that edge.

Forgetfulness: This is a variant of Scheme 2. We perform Step 1 as in Max. As for Step 2, we add all wij
whose Xk

ij is sufficiently large as new vertices to the original graph G0. We then add edges to join each

newly added vertex to all vertices in G0.

In Section 5.1, we compare the strategies Max, Adaptive ∆-partition and Forgetfulness on random

instances of (1.1). We will also present results obtained via ∆-partition (with k = 2) as benchmark. In

Section 5.2, we will look at how Forgetfulness performs on standard quadratic programs. In Section 5.3,

we will first review the standard completely positive programming formulation of the stable set problem,

and then examine how Max1 performs for some standard test graphs.

5.1 Random instances

In order to test the performance of our method in a generic setting, we test it for randomly generated

instances of problem (1.1). We generate our objective function by setting C = MTM where M is an n× n
matrix with i.i.d. standard Gaussian entries, guaranteeing strict feasibility of (1.3). Furthermore, we generate

the constraints by setting Ai = (Mi + MT
i )/2, where the Mi are also n × n matrices with i.i.d. standard

Gaussian entries, and choosing bi such that bi = tr(Ai(E + nI)). This guarantees strict feasibility of (1.1).

For the first of our tests we varied the number of variables, n, and the number of constraints m, so that

n is either 10 or 25 and m is either 5, 10 or 15. Given the complexity of copositive programming, there is

actually no reliable way to find the true solution for these problems and there is no available implemented

method that can generate lower bounds with which to compare our results. As a work-around, throughout

this section we will compare the results we obtain with the classical (and somewhat coarse) lower bound

provided by replacing CPn by Sn+ ∩ Nn in problem (1.1). We will use the difference of our approximations

to this lower bound, normalized by dividing it by the bound, as a proxy for the quality of the methods,

and will simply denote it by relative gap. Precisely, this quantity is defined by gap(x) = x−x∗
|x∗| , where x

is the objective value attained by the method being studied and x∗ the doubly nonnegative lower bound.

This makes it somewhat easier to compare different methods across different instances of the problem. The

drawback is that the gap we compute is actually the sum of the gaps of the proposed method and the doubly

nonnegative approximation, which we don’t know how to independently estimate.

Max Adaptive ∆-Partition Forgetfulness ∆-Partition

n m time(sec) Relative Gap time(sec) Relative Gap time(sec) Relative Gap time(sec) Relative Gap

10 5 8.2 5.035e-02 25.3 6.362e-02 13.0 2.006e-02 4.6 4.620e-01

10 10 19.5 2.281e-02 25.3 7.920e-02 23.0 1.849e-02 4.5 4.095e-01

10 15 41.7 1.212e-02 27.6 8.207e-02 27.0 1.179e-02 5.0 2.995e-01

25 5 23.0 6.748e-01 55.1 5.828e-01 38.4 2.975e-01 — —

25 10 45.8 4.660e-01 62.9 7.841e-01 52.7 2.020e-01 — —

25 15 71.8 3.715e-01 56.1 8.565e-01 61.5 1.545e-01 — —

Table 1 Comparison of different iterative approaches

The results obtained can be seen in Table 1, where we present both the average gaps and the average

running time for the studied methods. A few technical details are needed to be able to replicate the experi-

ment. The results presented are averages of 30 instances per parameter pair. Moreover we fix the maximum
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Fig. 2 Evolution of the gap for the forgetfulness scheme as iterations increase

number of iterations for the Max, Adaptive ∆-partition and Forgetfulness schemes as, respectively, 5, 20

and 15 for n = 10 and 5, 15 and 12 for n = 25. This was done (in an ad hoc way) to try to keep the

average execution time as similar as possible across iterative methods, so that a fair comparison can be

made. Also, since the maximalist approach can occasionally explode in size, we also stop this approach

early when tk+1 > 200 (Recall that Uk ∈ IRtk×n+ for all k). For the forgetfulness approach, we prune the Uk

in each step by removing redundant rows: we compute δkij := ‖uki − u
k
j ‖1, where uki and ukj are the i-th and

the j-th rows of Uk respectively, j > i, and discard ukj if δkij < 10−6. We also stop this approach early when

tk+1 > 200 for the Uk+1 after pruning. The static ∆-partition is not computed for n = 25 as it takes too

long.

These results show that the Forgetfulness scheme dominates the others in all categories as far as the

relation quality/time is concerned. The relative gaps of the attained solutions jumps from between 1% and

2% for n = 10 to between 15% and 30% for n = 25. Once again, we stress that these are upper bounds

for the Forgetfulness scheme quality as well as for the doubly nonnegative approximation quality, and we

cannot separate the contributions from each method.

We also plot in Figure 2 the evolutions of the gaps for the Forgetfulness scheme for 10 random instances

of the problem (1.1) with n = 25 and m = 10. We can see the logarithmic scale plot of the gap as iterations

increase, and the diminishing returns in improvement percentage. Again, note that the true gap might

actually be decreasing faster, as what we are seeing is the gap to the doubly nonnegative lower bound.

5.2 Standard Quadratic Program

We now focus on a class of more structured completely positive programs, those coming from standard

quadratic programs. A standard quadratic optimization problem (SQP) consists of finding global minimizers

for a quadratic form over the standard simplex. In other words, given p(x) = xTQx for some Q ∈ Sn, we

want to find its minimum over the simplex ∆ = {x ∈ IRn+ :
∑
xi = 1}. It is shown in [7] that this can be

written as the completely positive program

p∗ := min tr(QX)

s.t. tr(EX) = 1,

X ∈ CPn,
(5.1)

where E is the all ones matrix. It is not difficult to see that these problems always verify the blanket

assumptions presented in Section 1.1. Furthermore, since 1
nIn is feasible, our hierarchy can always start

from the base SDD relaxation.
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To illustrate the behaviour of our method we start by taking the four concrete examples collected in [6]

from several domains of application and applying the Forgetfulness scheme. We get the encouraging results

shown in Table 2, where we can see the source of the examples, their size n, their true solution p∗, and

the approximate solution obtained by the Forgetfulness scheme in 5 iterations (reported under the column

approx.). We can see that the third example is the only one where there is a significant deviation from the

optimal value, and all the results were attained in a few seconds.

Example n p∗ approx.

[6, Example 5.1] - independence number of pentagon 5 1/2 0.50000

[6, Example 5.2] - independence number of icosahedron complement 12 1/3 0.33333

[6, Example 5.3] - math. model of population genetics 5 −16 1
3

−16.331

[6, Example 5.4] - portfolio optimization 5 0.4839 0.4839

Table 2 Applying the Forgetfulness scheme in four small SQP examples

To further explore the behaviour of our approach we followed the idea of [6] to generate random instances

of SQP. In that paper they generate matrices Q to be 10 × 10, symmetric and with entries uniformly

distributed in the interval [0, 1]. However, solving five thousand random examples of such problems to

global optimality with CPLEX, we noticed that the true solutions seem to be commonly in the vertices of

the simplex (48.5% of observed instances) or in edges (40.1% of observed instances). But in those two cases,

by Theorem 1 our relaxation finds the optimal value at the first step. In other words, simply replacing CP10

by SDD10
∗ gives us the exact solution in 88.6% of the times, with our iterative procedure only kicking in in

the remaining instances.

To get a more meaningful test, we generated symmetric matrices Q with diagonal 1 and only off-diagonal

entries uniformly distributed in the interval [0, 1]. Experimentally this virtually never gives rise to optimal

solutions in the edges of the simplex, leading to non-trivial instances. We tested for both n = 10 and n = 15,

comparing the results against the true value obtained using CPLEX. The parameters were chosen in the

same way as in the previous section with the number of iterations being 15 for n = 10 and 12 for n = 15.

We ran 1000 instances for n = 10 and 100 for n = 15. The results are presented in Figure 3. On the

top row we show the histograms for the ratios between the true value, computed using CPLEX, and our

computed approximation, which provides an upper bound. We can see among other things that in both

cases around half the instances were within 1% of the true value and four fifths were within 10%. If we want

to more directly compare it with the results attained for the random instances in Table 1, one can compute

the mean value of the true relative gap p̂−p∗
p∗ where p∗ is the true optimal value returned by CPLEX and p̂

is the approximate value obtained by our approach. We get 4.823× 10−2 and 5.747× 10−2 for n = 10 and

n = 15 respectively, very much in line to what we have seen before.

On the bottom row of Figure 3, as a rough reference, we have the boxplots of the CPU times (in seconds)

taken by our method and CPLEX, presented here in logarithmic scale for readability. In both cases we can

see that the Forgetfulness scheme is quite stable, as it will simply stop after a set number of iterations,

while CPLEX has a huge number of outliers. While for n = 10 the exact CPLEX computation is faster, in

n = 15 it becomes much slower, with several outliers taking many hours. For larger values of n it quickly

becomes prohibitively slow compared to our approach.

5.3 Stable set problems

While in the previous section we focus on random problems, the main focus of the completely posi-

tive/copositive programming literature has been in highly structured combinatorial optimization problems.

One of the most common applications is to the stable set problem, i.e., the problem of finding in a graph
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Fig. 3 Results of the random SQP tests for n = 10 (left) and n = 15 (right). The top graphs are histograms of the ratio

between the true value and the attained upper bound, the bottom graphs box plots of the CPU times (in seconds) used by

our method (1) and CPLEX (2).

G a set of vertices of maximal cardinality such that no two are connected with an edge. The cardinality of

such a set is known as the independence number of G, denoted by α(G). In [12, Equation (8)], the following

completely positive formulation was introduced for that problem.

α(G) = max tr(EX)

s.t. tr((AG + I)X) = 1,

X ∈ CPn,
(5.2)

where AG is the adjacency matrix of G.

In this setting we have a single constraint, so m = 1. Our inner approximations of CPn will yield in

this case lower bounds, from which one might be able to extract an actual feasible stable set with given

cardinality. There are a number of good heuristic approaches to the stable set problem with good results, as

there exist implementations of exact algorithms that can handle small to medium sized graphs, all performing

necessarily much better than our all-purpose conic programming approach. However, we can still see how

our approach performs on its own, to get some indication of its performance on low codimension structured

problems.

In this class of problems, symmetry and structure likely imply that the growth of the matrix U in

the greedier Maximalist approach but also in the Forgetfulness approach is too fast and adds too much

redundancy. To avoid this phenomenon we take the Max1 approach: at every iteration we only add to U

the vertex that has the largest weight in the solution found. This yields a greedy sort of algorithm, that
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in practice tends to grow the stable set greedily one by one. We stopped as soon as the greedy process got

stuck and there was no improvement in two consecutive iterations.

We computed both stability numbers, α(G), and clique numbers, ω(G), which are simply the stability

numbers of the complementary graph. Following [9], we started by computing the clique numbers of the

graphs where their method was tested. Our method yields the correct answers in a relatively short time, as

can be seen in Table 3, where our results are presented under the column “result”, and the column “ω(G)”

corresponds to the known clique numbers. Note that this is not too surprising, as finding a large stable

set, or clique, is in a general sense computationally easier than proving that a larger one does not exist. In

other words, lower bounding the stable set and clique numbers of particular graphs tends to be easier than

upper bounding them, so our problem has a smaller scope than what was attempted in [9], leading to much

faster times. The graphs in the table come from two sources, the first is a 17 vertex graph from [20] that is

notoriously hard for upper bounding by convex approximations, the other five come from the 2nd DIMACS

implementation challenge test instances [16], and only hamming6-4 and johnson8-2-4 could be solved by

Bundfuss and Dür’s method in less than two hours as reported in their paper [9].

graph vertices iterations time(sec) result ω(G)

pena17 17 5 13.8 6.0000 6

hamming6-2 64 31 836.7 32.0000 32

hamming6-4 64 3 64.0 4.0000 4

johnson8-2-4 28 3 11.7 4.0000 4

johnson8-4-4 70 13 322.5 14.0000 14

johnson16-2-4 120 7 637.0 8.0000 8

Table 3 Clique number for different graphs

To explore the limits of our approach we tried a few more instances of the stable set problem. We tried

Paley graphs, known to mimic some properties of random graphs, with some degree of success, and a few

small-sized instances of graphs derived from error correcting codes, available at [24]. The results are much

worse in this family, with our algorithm failing in small instances, as can be seen in Table 4, where our results

are reported under the column “result”, and the true stability numbers are presented under the column

“α(G)”. One word of caution is that the entire procedure is highly unstable, and simply changing the solver

from MOSEK to SDPT3 can result in changes in the result, e.g. Paley137 becomes exact in SDPT3.

graph vertices iterations time(sec) result α(G)

Paley137 137 4 977.4 5.0000 7

Paley149 149 6 1841.6 7.0000 7

Paley157 157 6 2254.1 7.0000 7

1tc.16 16 6 15.7 7.0000 8

1tc.32 32 10 85.5 11.0000 12

1dc.64 64 7 235.8 8.0000 10

1dc.128 128 13 2491.0 14.0000 16

2dc.128 128 4 823.6 5.0000 5

Table 4 Stability number for different graphs
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