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Abstract
Papadimitriou and Yannakakis (Proceedings of the 41st annual IEEE symposium on the
Foundations of Computer Science (FOCS), pp 86–92, 2000) show that the polynomial-time
solvability of a certain auxiliary problem determines the class of multiobjective optimization
problems that admit a polynomial-time computable (1+ε, . . . , 1+ε)-approximate Pareto set
(also called an ε-Pareto set). Similarly, in this article, we characterize the class of multiobjec-
tive optimization problems having a polynomial-time computable approximate ε-Pareto set
that is exact in one objective by the efficient solvability of an appropriate auxiliary problem.
This class includes important problems such as multiobjective shortest path and spanning
tree, and the approximation guarantee we provide is, in general, best possible. Furthermore,
for biobjective optimization problems from this class, we provide an algorithm that computes
a one-exact ε-Pareto set of cardinality at most twice the cardinality of a smallest such set and
show that this factor of 2 is best possible. For three or more objective functions, however,
we prove that no constant-factor approximation on the cardinality of the set can be obtained
efficiently.

Keywords Multiobjective optimization · Approximation algorithm · Approximate Pareto
set · scalarization

Mathematics Subject Classification 90C29 · 90C59

1 Introduction

In many cases, real-world optimization problems involve several conflicting objectives, e.g.,
the minimization of cost and time in transportation systems or the maximization of profit and
security in investments. In this context, solutions optimizing all objectives simultaneously
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usually do not exist. Therefore, in order to support decision making, so-called efficient (or
Pareto optimal) solutions achieving a good compromise among the objectives are considered.
More formally, a solution is said to be efficient if any other solution that is better in some
objective is necessarilyworse in at least one other objective. The image of an efficient solution
in the objective space is called a nondominated point.

When no prior preference information is available, one main goal of multiobjective opti-
mization is to determine the set of all nondominated points and provide, for each of them,
one corresponding efficient solution.

Several results in the literature, however, show that multiobjective optimization problems
are hard to solve exactly [4,5,8] and, in addition, the cardinalities of the set of nondomi-
nated points (the nondominated set) and the set of efficient solutions (the efficient set) may
be exponentially large for discrete multiobjective optimization problems (and are typically
infinite for continuous problems).

This impairs the applicability of exact solution methods to real-life optimization problems
and provides a strong motivation for studying approximations of multiobjective optimization
problems.

1.1 Related work

The systematic study of generally applicable approximation methods for multiobjective opti-
mization problems startedwith the seminalwork byPapadimitriou andYannakakis [14]. They
show that, for any ε > 0, any multiobjective optimization problemwith a constant number of
positive-valued, polynomial-time computable objective functions admits a (1+ε, . . . , 1+ε)-
approximate Pareto set (also called an ε-Pareto set) with cardinality polynomial in the
encoding length of the input and 1

ε
. Moreover, they show that such a set is computable

in polynomial time if and only if the following auxiliary problem called the gap problem
(Gapδ) can be solved in polynomial time for a suitable value δ > 0.1

Given an instance of a p-objective minimization problem and a vector b ∈ R
p , either

return a feasible solution x whose objective value f (x) ∈ R
p satisfies f j (x) ≤ b j for all j

or answer correctly that there is no feasible solution x ′ with f j (x ′) ≤ b j
1+δ

for all j .
It should be noted that, even though the gap problem is often solvable for any δ > 0, δ

is not considered part of the input. Thus, an algorithm for Gapδ is said to run in polynomial
time if its running time is polynomial in the encoding lengths of the multiobjective instance
and of the vector b, but its running time might depend on 1

δ
in a super-polynomial way.Gapδ

being solvable in fully polynomial time means that the time needed to solve an instance of
Gapδ is not only polynomial in the encoding lengths of the multiobjective instance and b,
but also in 1

δ
.2

The result by Papadimitriou and Yannakakis [14] shows that the (fully) polynomial-time
solvability of Gapδ provides a complete characterization of the class of multiobjective opti-
mization problems for which ε-Pareto sets can be computed in (fully) polynomial time.

More recent articles building upon the results of [14] present methods that additionally
yield bounds on the cardinality of the computed ε-Pareto set relative to the cardinality of a
smallest ε-Pareto set possible [3,6,12,16].

1 The definition of Gapδ provided here is for minimization problems. The definition for maximization prob-
lems is completely analogous.
2 We will use the term fully polynomial throughout this paper to state that some quantity is polynomial in the
encoding length of the instance at hand and in the reciprocal of a certain accuracy parameter δ or ε.
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Koltun and Papadimitriou [12] show that, if all feasible solutions of a biobjective optimiza-
tion problem are given explicitly in the input (which is usually not the case for combinatorial
problems, where the feasible set is in most cases given implicitly, and its cardinality is
exponentially large in the input size), it is possible to compute an ε-Pareto set of minimum
cardinality in polynomial time using a greedy procedure. This greedy procedure can be gen-
eralized to the case that the budget-constrained problem associated with the given biobjective
optimization problem can be solved exactly in polynomial time [6]. For three or more objec-
tives, however, computing a minimum-cardinality ε-Pareto set is NP-hard even if all feasible
solutions are given explicitly.

Again for biobjective optimization problems, Vassilvitskii and Yannakakis [16] show that,
using a polynomial-time algorithm for Gapδ as a subroutine, it is possible to compute an ε-
Pareto set whose cardinality is atmost 3 times larger than the cardinality of a smallest ε-Pareto
set in polynomial time. Moreover, this factor of 3 is shown to be best possible in two different
ways: (1) No generic algorithm that uses only a routine for Gapδ can obtain a factor smaller
than 3 without solving Gapδ for exponentially large values of 1

δ
(even if P = NP), and (2)

for some biobjective optimization problems for which Gapδ is polynomially solvable, it is
NP-hard to obtain a factor smaller than 3. An alternative, simpler algorithm that also obtains
a factor of 3 and is also usable for any problem for which a polynomial time algorithm for
Gapδ is available is presented in [3]. For three or more objectives, however, Vassilvitskii
and Yannakakis [16] show that no generic algorithm based on solving Gapδ can obtain any
constant factor with respect to the cardinality of a smallest ε-Pareto set.

Diakonikolas and Yannakakis [6] show that, for a broad class of biobjective optimization
problems including ShortestPath and SpanningTree, a factor of 2 can be obtained with
respect to the cardinality of a smallest ε-Pareto set. To achieve this, they use subroutines
for two different auxiliary problems called Restrictδ and DualRestrictδ . Both of these
problems are harder to solve than Gapδ in the sense that any instance of Gapδ can be solved
by solving an instance of one of these problems, but there exist optimization problems (e.g.,
the biobjective knapsack problem [3]) for which Gapδ can be solved in polynomial time but
solvingRestrictδ orDualRestrictδ isNP-hard.However,Restrictδ andDualRestrictδ

are polynomially equivalent to each other for biobjective problems. The factor of 2 is again
shown to be best possible in [6] in the sense that no generic algorithm based onRestrictδ and
DualRestrictδ can obtain a smaller factor and, for some biobjective optimization problems
for which Restrictδ andDualRestrictδ are polynomially solvable, it is NP-hard to obtain
a smaller factor. For three or more objectives, however, it is not known whether Restrictδ

andDualRestrictδ can be used to improve upon the results obtained viaGapδ with respect
to the computation of (small) ε-Pareto sets. Moreover, these two auxiliary problems are not
polynomially equivalent anymore in the case of three or more objectives.

There are also many specialized approximation algorithms for particular multiobjective
optimization problems available. Among those, there are two algorithms that actually yield
approximations that are exact in one objective: For multiobjective ShortestPath, Tsag-
gouris and Zaroliagis [15] present a dynamic-programming-based algorithm that yields a
(1, 1 + ε, . . . , 1 + ε)-approximate Pareto set for any number of objective functions. For the
min-cost-makespan scheduling problem, Angel et al. [1,2] present an algorithm computing
a (1, 1+ ε)-approximate Pareto set. Neither of these algorithms, however, is shown to yield
a worst-case guarantee on the cardinality of the computed approximate Pareto set.
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1.2 Our contribution

We consider general multiobjective optimization problems with an arbitrary, fixed number
of objectives and show that, for any such problem, there exist polynomially-sized ε-Pareto
sets that are exact in one objective function. Assuming without loss of generality that the first
objective function is the one to be optimized exactly, we refer to such (1, 1+ ε, . . . , 1+ ε)-
approximate Pareto sets as one-exact ε-Pareto sets. Consequently, we improve upon the
existence result for polynomially-sized ε-Pareto sets of Papadimitriou and Yannakakis [14]
using the same assumptions. Moreover, the approximation guarantee of (1, 1+ ε, . . . , 1+ ε)

we provide is best possible in the sense that polynomially-sized approximate Pareto sets that
are exact in more than one objective do, in general, not exist.

We then consider the class of multiobjective optimization problems for which the
DualRestrictδ subproblem considered in [6] can be solved in polynomial time. We first
show that, for any constant number of objective functions, the polynomial-time solvability
of DualRestrictδ characterizes the class of optimization problems for which one-exact
ε-Pareto sets can be computed in polynomial time. Consequently, even for more than two
objective functions, our result provides a complete characterization of the approximation
quality achievable for the class of optimization problems studied in [6], which includes
ShortestPath, SpanningTree, and many more.

Moreover, we provide results about the cardinality of the computed one-exact ε-Pareto
sets compared to the cardinality of a smallest such set. We show that the cardinality of a
smallest one-exact ε-Pareto set (i.e., a one-exact ε-Pareto set having minimum cardinality
among all one-exact ε-Pareto sets) can be much larger than the cardinality of a smallest
ε-Pareto set (i.e., an ε-Pareto set having minimum cardinality among all ε-Pareto sets) even
for biobjective optimization problems. We prove that, similar to the case of ε-Pareto sets,
the cardinality of a smallest one-exact ε-Pareto set can be approximated up to a factor of 2
in the biobjective case by using a generic algorithm based on solving DualRestrictδ , and
we show that this factor is best possible given our assumptions. For three or more objectives,
however, it is again impossible to efficiently obtain any constant factor approximation on the
cardinality by using only routines for DualRestrictδ .

For multiobjective SpanningTree, our generic algorithms yield the first polynomial-
time methods for computing one-exact ε-Pareto sets when using the algorithm provided
in [10] to solve DualRestrictδ . For multiobjective ShortestPath, using the algorithm
from [11] to solve DualRestrictδ , our algorithms have running times competitive with
the running time of the specialized algorithm for computing one-exact ε-Pareto sets for
ShortestPath provided in [15]. This is particularly noteworthy since the algorithm from
[15] is currently the algorithm with the best worst-case running time for computing ε-Pareto
sets forShortestPath evenwhen no objective function is to be optimized exactly.Moreover,
for the case of two objectives, our biobjective algorithm additionally provides a worst-case
guarantee on the cardinality of the computed one-exact ε-Pareto set (while the algorithm
from [15] provides no such guarantee).

2 Preliminaries

We consider general multiobjective minimization and maximization problems formally
defined as follows:
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Definition 1 (Multiobjective Minimization/Maximization Problem) A multiobjective opti-
mization problem Π is given by a set of instances. Each instance I consists of a (finite
or infinite) set X I of feasible solutions and a vector f I = ( f I1 , . . . , f Ip ) of p objective func-

tions f Ii : X I → Q for i = 1 . . . , p. In a minimization problem, all objective functions f Ii
should be minimized, in a maximization problem, they should be maximized. The feasible
set X I might not be given explicitly.

Here, the number p of objective functions in a multiobjective optimization problem Π

is assumed to be constant. The solutions of interest are those for which it is not possible to
improve the value of one objective function without worsening the value of at least one other
objective. Solutions with this property are called efficient solutions:

Definition 2 For an instance I of a minimization (maximization) problem, a solution x ∈ X I

dominates another solution x ′ ∈ X I if f Ii (x) ≤ f Ii (x ′) ( f Ii (x) ≥ f Ii (x ′)) for i = 1, . . . , p
and f Ii (x) < f Ii (x ′) ( f Ii (x) > f Ii (x ′)) for at least one i . A solution x ∈ X I is called
efficient if it is not dominated by any other solution x ′ ∈ X I . In this case, we call the
corresponding image f I (x) ∈ f I (X I ) ⊆ Q

p a nondominated point. The set X I
E ⊆ X I of

all efficient solutions is called the efficient set (or Pareto set) and the set Y I
N := f I (X I

E ) of
nondominated points is called the nondominated set.

The goal inmultiobjective optimization typically consists of computing the nondominated
set Y I

N and, for each nondominated point y ∈ Y I
N , one corresponding efficient solution x ∈

X I
E with f (x) = y.
Throughout the paper, we make the standard assumption of rational, positive-valued,

polynomial-time computable objective functions used in the context of approximation of
multiobjective optimization problems (cf. [6,14,16]). Moreover, we make the following
widely-used assumption (cf. [6,16]):

Assumption 1 For any multiobjective optimization problem Π , there exists a polynomial P
such that, for any instance I of Π , there exists a polynomial-time computable value MI ≤
P(enc(I )) such that enc( f Ii (x)) ≤ MI for any x ∈ X I and any i ∈ {1, . . . , p}, where enc(I )
denotes the encoding length of the instance I and enc( f Ii (x)) denotes the encoding length of
the value f Ii (x) ∈ Q>0 in binary. This, in particular, implies that, for any instance I and any

objective function value f Ii (x), we have 2−MI ≤ f Ii (x) ≤ 2M
I
. Also, any two values f Ii (x)

and f Ii (x ′) differ by at least 2−2MI
if they are not equal.

In the following, we blur the distinction between the problem Π and a concrete instance
I = (X I , f I ) and usually drop the superscript I indicating the dependence on the instance
in X I , f I , MI , etc.

Multiobjective optimization problems consist of objective functions that are to be mini-
mized or objectives that are to be maximized (or even a combination of both). However, we
only consider minimization objectives in this article. This is without loss of generality here
since all our arguments can be straightforwardly adapted to maximization problems.

One of the main issues in multiobjective optimization problems is that the nondominated
set often consists of exponentially many points, which renders the problem intractable (see,
e.g., [7]). One way to overcome this obstacle is the concept of approximation. Instead of
computing at least one corresponding efficient solution for each point in the nondominated
set, we only require each image point in the objective space to be “almost” dominated by the
image of a solution from the computed set.
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Definition 3 (Approximate Pareto set) Let (X , f ) be a multiobjective optimization problem
and let αi ≥ 1 for i = 1, . . . , p. We say that a feasible solution x ∈ X (α1, . . . , αp)-
approximates another feasible solution x ′ ∈ X if f (x) (α1, . . . , αp)-dominates f (x ′), i.e.,
for minimization problems, if fi (x) ≤ αi · fi (x ′) and, for maximization problems, if αi ·
fi (x) ≥ fi (x ′), for all i = 1, . . . , p. A set P(α1,...,αp) ⊆ X of feasible solutions is called
an (α1, . . . , αp)-approximate Pareto set if, for every feasible solution x ′ ∈ X , there exists a
solution x ∈ P(α1,...,αp) that (α1, . . . , αp)-approximates x ′. For ε > 0, a (1+ ε, . . . , 1+ ε)-
approximate Pareto set is called an ε-Pareto set.

Remark 1 If αi = 1 for two or more indices i , there exist optimization problems for which
any (α1, . . . , αp)-approximate Pareto set requires exponentiallymany solutions. This follows
since even many biobjective optimization problems (e.g., the biobjective ShortestPath

problem) admit instances with exponentially many different nondominated points (see, e.g.,
[7]). Thus, using the two given objective functions as the objectives fi for two positions i
with αi = 1 (and arbitrary objective functions for all other positions) yields an instance
with p objectives where exponentially many solutions are required in any (α1, . . . , αp)-
approximate Pareto set.

In contrast to this, Papadimitriou and Yannakakis [14] show that if αi > 1 for all i , there
always exists an (α1, . . . , αp)-approximate Pareto set of polynomial cardinality. In this paper,
we focus on the case where αi = 1 for exactly one i . Thus, we study approximate Pareto sets
where, for any feasible solution x , there exists a solution in the approximate Pareto set that
has value no worse than fi (x) in objective fi and simultaneously achieves an approximation
factor of 1 + ε in all other objective functions for some ε > 0. For simplicity, we assume
that the first objective f1 is to be optimized exactly, i.e., that α1 = 1 and α j = 1 + ε for
j = 2, . . . , p.

Definition 4 (One-exact ε-Pareto set) For ε > 0, a (1, 1+ ε, . . . , 1+ ε)-approximate Pareto
set is called a one-exact ε-Pareto set.

A common way of dealing with multiobjective optimization problems are scalarizations,
which turn the multiple objective functions into one objective function in some useful way.
The resulting single objective optimization problem can be solved using known methods
from single objective optimization and the obtained solution can then be used in the process
of solving the multiobjective problem. One of the most common scalarization methods con-
sists of putting some upper bound/budget on all objective functions but one, which is then
minimized subject to the resulting budget constraints on the other objectives (see, e.g., [8]).

Definition 5 (Budget-ConstrainedProblem (Constrained))The subproblemConstrained

is the following: Given an instance (X , f ) of a multiobjective minimization problem and
bounds Bi > 0, i = 2, . . . , p, for all objective functions except the first one, either answer
that there does not exist a feasible solution x ′ ∈ X with

fi (x
′) ≤ Bi , i = 2, . . . , p,

or return a feasible solution that minimizes f1 among all such solutions, i.e., return x ∈ X
with

f1(x) = opt1(B2, . . . , Bp) := min
x ′∈X

{
f1(x

′) : fi (x
′) ≤ Bi for i = 2, . . . , p

}
,

fi (x) ≤ Bi , i = 2, . . . , p.
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This scalarization via budget constraints is widely used both in practice and in the theo-
retical literature on multiobjective optimization even though the problem Constrained is
hard to solve even for the biobjective versions of many relevant optimization problems such
as ShortestPath. However, there often exists a PTAS, i.e., a polynomial-time algorithm
that finds an arbitrarily good approximation. The problem of finding a (1+δ)-approximation
for Constrained for some given value δ > 0 is called the restricted problem [6]:

Definition 6 (Restricted Problem (Restrictδ)) For δ > 0, the subproblem Restrictδ is the
following: Given an instance (X , f ) of a multiobjective minimization problem and bounds
Bi > 0, i = 2, . . . , p, for all objective functions except the first one, either answer that there
does not exist a feasible solution x ′ ∈ X with

fi (x
′) ≤ Bi , i = 2, . . . , p,

or return x ∈ X with

f1(x) ≤ (1 + δ) · opt1(B2, . . . , Bp),

fi (x) ≤ Bi , i = 2, . . . , p.

An alternative way of circumventing the hardness of the budget-constrained problem is to
consider solutions that violate the given bounds slightly, while requiring an objective value
that is at least as good as the objective value of any solution that respects the bounds [6]:

Definition 7 (DualRestrictδ) For δ > 0, the subproblemDualRestrictδ is the following:
Given an instance (X , f ) of a multiobjective minimization problem and bounds Si > 0,
i = 2, . . . , p, for all objectives except the first one, either answer that there does not exist a
feasible solution x ′ ∈ X with

fi (x
′) ≤ Si , i = 2, . . . , p,

or return x ∈ X with

f1(x) ≤ opt1(S2, . . . , Sp),

fi (x) ≤ (1 + δ) · Si , i = 2, . . . , p.

Note that, in an instance of DualRestrictδ , the case might occur where there does not
exist any feasible solution x ′ ∈ X with fi (x ′) ≤ Si for i = 2, . . . , p, but there exists a
solution x ∈ X with fi (x) ≤ (1 + δ) · Si for i = 2, . . . , p. In this case, NO is a correct
answer to the DualRestrictδ instance, but, since opt1(S2, . . . , Sp) = +∞ > f1(x),
also x is a correct answer. Thus, for DualRestrictδ , there are situations where both of
the distinguished cases apply, whereas the two considered cases are always disjoint for
Constrained and Restrictδ . Also note that Constrained can be viewed as the limit case
δ = 0 for both Restrictδ and DualRestrictδ .

All three of the above subproblems can also be defined such that, instead of the first one,
some other objective is to be optimized subject to budgets on the rest of the objectives. In
the following, we sometimes use a superscript to indicate which objective is to be optimized.
For example, Restrictiδ denotes the restricted problem with a bound on all objectives but
the i-th one.
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3 Existence and cardinality of one-exact "-Pareto sets

Papadimitriou and Yannakakis [14] show that, for any instance of a multiobjective optimiza-
tion problem, there exists an ε-Pareto set whose cardinality is polynomial in the encoding
length of the instance and in 1

ε
. Similarly, we now show the existence of one-exact ε-Pareto

sets of polynomial cardinality.

Theorem 1 For any p-objective optimization problem (X , f ) and any given ε > 0, there

exists a one-exact ε-Pareto set of cardinality O
((M

ε

)p−1
)
.

Proof Figure 1 illustrates the proof.
Consider the hypercube [2−M , 2M ] × · · · × [2−M , 2M ], in which all the feasible

points are contained, and cover this hypercube by hyperstripes of the form
[2−M , 2M ] × [(1 + ε)i2 , (1 + ε)i2+1] × · · · × [(1 + ε)i p , (1 + ε)i p+1], for all i2, . . . , i p ∈
{−	 M

log(1+ε)

, . . . ,−1, 0, 1, . . . , 	 M

log(1+ε)

 − 1}. Note that, for this covering, we use

(
2 · 	 M

log(1+ε)


)p−1 = O (

(M
ε

)p−1
)
many hyperstripes.

For each hyperstripe H containing feasible points, we choose one feasible point y =
f (x) ∈ H with minimum f1-value among all feasible points in H . Then all points in H are
(1, 1 + ε, . . . , 1 + ε)-dominated by y. Thus, keeping one solution x ∈ X for each chosen
point y = f (x) (where points that are dominated by other chosen points can be discarded)
yields a one-exact ε-Pareto set. Since at most one solution is chosen for each hyperstripe, the
cardinality of the constructed set is in O (

(M
ε

)p−1
)
.

It is easy to see that (1, 1, 1 + ε)-approximate Pareto sets of polynomial cardinality do
not exist in general since this would imply the existence of polynomial (exact) Pareto sets
for biobjective optimization problems (see Remark 1). This means that, in this sense, an
approximation factor of (1, 1 + ε, . . . , 1 + ε) is the best one achievable with polynomially
many solutions.

In general, even a smallest ε-Pareto set may require Ω
(
(M

ε
)p−1

)
many solutions [14],

which equals the worst-case bound on the cardinality of a smallest one-exact ε-Pareto set
obtained from Theorem 1. For some instances, however, the two can be very different in
size. Any one-exact ε-Pareto set is, in particular, an ε-Pareto set, so, for any instance, a one-
exact ε-Pareto set of minimum cardinality is at least as large as an ε-Pareto set of minimum
cardinality. In the other direction, the following holds:

Theorem 2 For any ε > 0 and any positive integer n ∈ N+, there exist instances of biobjec-
tive optimization problems such that |P∗| > n · |P∗

ε |, where P∗ denotes a smallest one-exact
ε-Pareto set and P∗

ε denotes a smallest ε-Pareto set.

Proof Given ε > 0 and n ∈ N+, we construct an instance of a biobjective minimization
problem with |P∗| = n + 1 and |P∗

ε | = 1.
Let X := {x0, . . . , xn} and, for i = 0, . . . , n, let

f (xi ) = ( f1(xi ), f2(xi )) :=
(
1 + n − i

n
· ε, (1 + ε)2i

)
.

Then, we have

f1(x0) > f1(x1) > . . . > f1(xn)
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f1

f2

2−M 2M

2−M

(1 + ε)−1

1

(1 + ε)1

2M

(1+ε)
M

log(1+ε)

Fig. 1 Proof of existence of polynomial-cardinality one-exact ε-Pareto sets. Choose a feasible point minimiz-
ing f1 in each hyperstripe that contains at least one feasible point. One can discard points that are dominated
by other chosen points. In the picture, feasible points are marked by dots, chosen points are indicated by thick
dots, and discarded points are drawn as circles

and

f2(x0) <
1

1 + ε
· f2(x1) < . . . <

1

(1 + ε)n
· f2(xn),

so no solution (1, 1 + ε)-approximates any other solution and, thus, P∗ = X . However, we
also have

f1(x0) = 1 + n − 0

n
· ε = 1 + ε = (1 + ε) · f1(xn),

so x0 (1 + ε, 1 + ε)-approximates all other solutions and, thus, {x0} is an ε-Pareto set. This
construction is depicted in Fig. 2.

Note that, in the instance constructed in the proof of Theorem 2, we even have |P∗| =
Ω

(M
ε

)
, i.e., a smallest one-exact ε-Pareto set, in fact, has theworst-case size, while a smallest

one-exact ε-Pareto set P∗
ε consists of only one solution.

Moreover, the statement of Theorem 2 also holds for optimization problems with three
or more objectives. For any p ≥ 2, one can similarly construct instances of p-objective
optimization problems where a smallest one-exact ε-Pareto set has the worst-case size of
Ω

(
(M

ε
)p−1

)
, while a smallest ε-Pareto set has cardinality one.
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Fig. 2 Illustration of the instance
in the proof of Theorem 2. The
solution x0
(1 + ε, 1 + ε)-approximates all
other solutions, but no solution
(1, 1 + ε)-approximates any
other solution

f (xn )

f (x0)

f1

f2

1 1 + ε

1

(1 + ε)2n

4 Polynomial-time computability of one-exact Pareto sets

The proof of Theorem 1 can easily be turned into a method for computing one-exact ε-Pareto
sets that runs in fully polynomial time if and only ifConstrained1 is solvable in polynomial
time. In the appendix, we present a method that, for biobjective optimization problems, even
computes a smallest one-exact ε-Pareto set using a subroutine for Constrained. However,
Constrained is NP-hard to solve for many relevant optimization problems.

Instead, we now provide a method that computes a one-exact ε-Pareto set in (fully) poly-
nomial time if a (fully) polynomial method for DualRestrict1δ is available. This is the
case for a significantly larger class of (relevant) optimization problems including important
problems such as multiobjective ShortestPath and multiobjective SpanningTree. The
method is based on the following lemma, which is visualized in Fig. 3.

Lemma 1 Let x ∈ X be a solution to DualRestrict
1
δ (S2, . . . , Sp), where 0 < δ < ε for

some ε > 0. Then any feasible point in the hyperstripe

H =
[
2−M , 2M

]
×

[
1 + δ

1 + ε
S2, S2

]
× · · · ×

[
1 + δ

1 + ε
Sp, Sp

]

is (1, 1 + ε, . . . , 1 + ε)-dominated by f(x).

Proof By the definition of DualRestrictδ , we know that, in the first objective, we have
f1(x) ≤ opt1(S2, . . . , Sp), so there does not exist a feasible solution x ′ ∈ X that satisfies
f1(x ′) < f1(x) and fi (x ′) ≤ Si for all i = 2, . . . , p. We also know that fi (x) ≤ (1+ δ) · Si
for i = 2, . . . , p.

Now, let f (x ′) ∈ H be a feasible point in the hyperstripe. Then, since fi (x ′) ≤ Si for
i = 2, . . . , p, we must have f1(x ′) ≥ f1(x). Moreover, we have fi (x ′) ≥ 1+δ

1+ε
· Si , which

yields that

(1 + ε) · fi (x
′) ≥ (1 + ε) · 1 + δ

1 + ε
· Si = (1 + δ) · Si ≥ fi (x),
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f (x)

f1

f2

f1(x)

1
1+ε · f2(x)

1+δ
1+ε · S2

S2
f2(x)

(1 + δ) · S2

Fig. 3 Illustration of Lemma 1. The point f (x) is the image of a solution x ∈ X to DualRestrict1δ (S2) with
0 < δ < ε. The dark gray region does not contain any feasible point. Every feasible point in the light gray
region is (1, 1 + ε)-dominated by f (x)

so f (x ′) is (1, 1 + ε, . . . , 1 + ε)-dominated by f (x).

Note that, if NO is a solution to DualRestrict
1
δ (S2, . . . , Sp), then the hyperstripe H

considered in Lemma 1 does not contain any feasible point. Thus, we know a priori that
solving DualRestrict

1
δ takes care of H in the sense that, if H contains feasible points,

then DualRestrict
1
δ (S2, . . . , Sp) is guaranteed to yield a feasible solution x ∈ X that

(1, 1 + ε, . . . , 1 + ε)-approximates every feasible solution x ′ ∈ X with f (x ′) ∈ H .
If δ is chosen, e.g., such that (1+ δ)2 = 1+ ε, then the hypercube [2−M , 2M ]p , in which

all feasible points are contained, can be covered by O (
(M

ε
)p−1

)
many such hyperstripes,

each of which, in turn, can be taken care of by one solution of DualRestrict1δ .
This idea of covering the range of possible objective values by polynomially many solu-

tions of DualRestrictδ is used by Angel et al. [1,2] for the biobjective min-cost-makespan
scheduling problem.We formalize the idea for general multiobjective optimization problems
in Algorithm 1.
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Algorithm 1: A (1, 1 + ε, . . . , 1 + ε)-approximation for multiobjective optimization
problems
input : an instance (X , f ) of a p-objective minimization problem, ε > 0, an algorithm for

DualRestrict
1
δ , where δ = √

1 + ε − 1
output: a one-exact ε-Pareto set for (X , f )

1 P ← ∅
2 δ ← √

1 + ε − 1

3 u ← 	 M
log(1+δ)



4 foreach (i2, . . . , i p) such that i� ∈ {−u + 1, . . . , u}, l = 1, . . . , p do
5 x ← DualRestrict

1
δ ((1 + δ)i2 , . . . , (1 + δ)i p )

6 if x �= NO then
7 P ← P ∪ {x}
8 return P

Theorem 3 For a given instance (X , f ) of a p-objective minimization problem and a given
ε > 0, Algorithm 1 computes a one-exact ε-Pareto set. The algorithm solves O (

(M
ε

)p−1
)

instances of DualRestrict1δ , where (1 + δ)2 = 1 + ε. The returned set P has polynomial
cardinality |P| = O (

(M
ε

)p−1
)
.

Proof Algorithm 1 (implicitly) covers the hypercube [2−M , 2M ] × · · · × [2−M , 2M ] in the

objective space by (2u)p−1 =
(
2 · 	 M

log(1+δ)


)p−1 = O (

(M
ε

)p−1
)
hyperstripes of the form

H =
[
2−M , 2M

]
×

[
(1 + δ)i2−1, (1 + δ)i2

]
× · · · ×

[
(1 + δ)i p−1, (1 + δ)i p

]

=
[
2−M , 2M

]
×

[
1 + δ

1 + ε
(1 + δ)i2 , (1 + δ)i2

]
×. . .×

[
1 + δ

1 + ε
(1 + δ)i p , (1 + δ)i p

]
.

Lemma 1 implies that, for each of these hyperstripes, solving the subproblem
DualRestrict

1
δ ((1 + δ)i2 , . . . , (1 + δ)i p ) either yields a feasible solution x ∈ X such

that all feasible points in the hyperstripe are (1, 1 + ε, . . . , 1 + ε)-dominated by f (x), or it
yields NO, which guarantees that the hyperstripe does not contain any feasible point. Hence,
the set of all feasible solutions produced by solving DualRestrict

1
δ for these hyperstripes

is a one-exact ε-Pareto set of cardinality O (
(M

ε
)p−1

)
.

We note that the one-exact ε-Pareto set returned byAlgorithm 1may contain solutions that
are dominated by other solutions in the set. Such solutions can be removedwithout influencing
the obtained approximation quality.However, filtering out dominated solutionsmight actually
require more time than computing the set itself in situations where DualRestrictδ can be
solved very efficiently.

Papadimitriou and Yannakakis [14] show that there is an equivalence between solving the
Gapδ problem associated with a multiobjective optimization problem and finding an ε-Pareto
set in the sense that one can compute an ε-Pareto set in (fully) polynomial time if and only
if one can solve Gapδ in (fully) polynomial time.

We now prove an analogous result for DualRestrictδ and one-exact ε-Pareto sets. This
demonstrates that DualRestrictδ is, in fact, exactly the right auxiliary problem to consider
for computing one-exact ε-Pareto sets.
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Theorem 4 A one-exact ε-Pareto set for an instance I of a multiobjective optimization prob-
lem can be found for any ε > 0 in time polynomial in the encoding length of I (and in 1

ε
) if

and only if DualRestrict1δ can be solved for any δ > 0 in time polynomial in the encoding
length of I (and in 1

δ
).

Proof If DualRestrict1δ can be solved in (fully) polynomial time, a one-exact ε-Pareto set
can be found in (fully) polynomial time using Algorithm 1.

Conversely, suppose that we can compute a one-exact ε-Pareto set in (fully) polynomial
time. Then, given bounds S2, . . . , Sp > 0, we can solve DualRestrict

1
δ (S2, . . . , Sp) as

follows:
We start by computing a one-exact δ-Pareto set P . Then, if there is no solution x ∈ P

with fi (x) ≤ (1 + δ) · Si for i = 2, . . . , p, we return NO. This is a correct answer since, if
there was a solution x ′ with fi (x) ≤ Si for i = 2, . . . , p, there would be no solution x ∈ P
that (1, 1 + δ, . . . , 1 + δ)-approximates x ′ in contradiction to P being a one-exact δ-Pareto
set. If there exist solutions x ∈ P with fi (x) ≤ (1 + δ) · Si for i = 2, . . . , p, we return
one of them with minimum value in f1. Assume that, for the returned solution x , we have
f1(x) > opt1(S2, . . . , Sp). Then this means that there is some x ′ ∈ X with fi (x ′) ≤ Si for
i = 1, . . . , p and

f1(x
′) < f1(x) = min{ f1(x ′′) : x ′′ ∈ P, fi (x

′′) ≤ (1 + δ) · Si , i = 2, . . . , p}.
Thus, x ′ is not (1, 1 + δ, . . . , 1 + δ)-approximated by any solution in P , which again con-
tradicts P being a one-exact δ-Pareto set.

5 Computing small one-exact "-Pareto sets

In this section, we consider the question if and how we can compute one-exact ε-Pareto
sets that are not only of polynomial size, but also guarantee some bound on the cardinality
compared to the cardinality of a smallest one-exact ε-Pareto set P∗.

The worst-case cardinality of a one-exact ε-Pareto set computed by Algorithm 1 is(
2 · 	 M

log(1+δ)


)p−1

for (1 + δ)2 = 1 + ε, which is by a factor of 2p−1 larger than the

upper bound of
(
2 · 	 M

log(1+ε)


)p−1

for ε-Pareto sets constructed in the proof of Theorem 1.

However, even when adding a filtering step that removes solutions dominated by other solu-
tions in the computed set, Algorithm 1 does not provide an upper bound on the ratio |P|

|P∗| for
any fixed instance, where P is a one-exact ε-Pareto set computed by Algorithm 1 and P∗ is
a one-exact ε-Pareto set of minimum cardinality.

With such an additional filtering step, it is possible to show that, for biobjective optimiza-
tion problems, we have an upper bound of 4 on the ratio |P|

|P∗| . When using δ = 3
√
1 + ε − 1

instead of δ = √
1 + ε − 1 in Algorithm 1 and replacing 1 + δ by (1 + δ)2 in lines 3 and 5,

we can improve this ratio to 3. We can even achieve a ratio of 2 when setting δ = 4
√
1 + ε−1

and using a more sophisticated elimination technique than simply filtering out dominated
solutions.

Here, however, we derive a different algorithm for biobjective optimization problems that
does not operate on a predefined grid but instead uses adaptive steps in order to decrease the
number of solved instances of DualRestrictδ while still ensuring a cardinality guarantee
of |P|

|P∗| ≤ 2 even without an additional (potentially time-consuming) filtering step.

123



100 Journal of Global Optimization (2021) 80:87–115

We first give some results that substantiate the hardness of computing one-exact ε-Pareto
sets that are smaller than twice the minimum size. Then, we formulate our algorithm and
prove its correctness. We additionally consider the cases that an efficient routine for solving
Restrictδ or Constrained is given. Finally, we prove a result that indicates the hardness
of achieving similar results for more than two objectives.

5.1 Lower bounds for biobjective optimization problems

The following result shows that, for biobjective optimization problems, any generic algorithm
based on solving DualRestrict

1
δ that computes a one-exact ε-Pareto set P of cardinality

|P| < 2 · |P∗| needs to solve an instance of DualRestrict1δ for some δ > 0 for which 1
δ

is exponential in the encoding length of the input. Since the running time of a method for
solving DualRestrict

1
δ is typically at least linear in 1

δ
, this implies that it is unlikely for

such an algorithm to run in polynomial time. Note that, for optimization problems where
the running time of a routine for DualRestrict1δ is at most logarithmic in 1

δ
, we can solve

Constrained
1 efficiently by setting δ < 2−2M in DualRestrict

1
δ . Thus, in this case, we

can even compute a smallest one-exact ε-Pareto set in polynomial time (see Corollary 1).

Theorem 5 For any ε > 0, there does not exist an algorithm that computes a one-exact
ε-Pareto set P such that |P| < 2 · |P∗| for every biobjective optimization problem and
generates feasible solutions only via solving DualRestrict

1
δ for values of δ such that 1

δ
is

polynomial in the encoding length of the input.

Proof Given ε > 0, consider the two instances I1 = ({x1, x2}, f ) and I2 = ({x1, x2, x3}, f )
in which f (x1) = ( f1(x2)−1, (1+ε) · f2(x2)) and f (x3) = ( f1(x2), f2(x2)−1). Then {x1}
is a one-exact ε-Pareto set for I1. On the other hand, any one-exact ε-Pareto set for I2 needs
at least two solutions since neither x2 nor x3 (1, 1 + ε)-approximates x1, and x1 does not
(1, 1 + ε)-approximate x3. An algorithm that computes a one-exact ε-Pareto set P with
|P| < 2 · |P∗| would, therefore, have to be able to distinguish between I1 and I2, i.e., detect
the existence of x3.

Note that, for S2 < f2(x3), NO is a solution to DualRestrict1δ (S2) in both instances I1
and I2 for any δ. If f2(x1) > S2 ≥ f2(x3) and δ ≥ 1

f2(x3)
, we have

f2(x2) = f2(x3) + 1 =
(
1 + 1

f2(x3)

)
· f2(x3) ≤ (1 + δ) · f2(x3) ≤ (1 + δ) · S2,

so x2 is a solution toDualRestrict
1
δ (S2) in both instances. For S2 ≥ f2(x1), x1 is a solution

to DualRestrict1δ (S2) in both instances for any δ. Therefore, in order to tell the difference
between I1 and I2, an algorithm using only DualRestrict

1
δ to generate feasible solutions

would have to solve DualRestrict
1
δ (S2) for S2 and δ with f2(x1) > S2 ≥ f2(x3) and

δ < 1
f2(x3)

, i.e., 1
δ

> f2(x3) = f2(x2) − 1. Since the value f2(x2) might be exponentially
large in the encoding length of the input, this proves the claim.

While Theorem 5 shows that generic algorithms based on DualRestrictδ cannot obtain
a factor smaller than 2 with respect to the cardinality of a one-exact ε-Pareto set without using
exponentially large values of 1

δ
(even if P = NP), we now show that, for certain biobjective

optimization problems, no algorithm (whether based only on DualRestrictδ or not) can
obtain a factor smaller than 2 under the assumption that P �= NP. To this end, we consider
the following biobjective scheduling problem: We are given a set J of |J | = n independent
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jobs, which are to be scheduled onm parallel machines. Performing job j on machine i takes
processing time pi j ≥ 0 and causes cost ci j ≥ 0. The goal is to minimize the makespan (i.e.,
the maximum completion time of a job) and the total cost (i.e., the sum of the costs resulting
from assigning jobs to machines). We call this biobjective optimization problem, where the
cost-objective is the first objective f1 and the makespan-objective is the second objective f2,
the min-cost-makespan scheduling problem.

The min-cost-makespan scheduling problem is known to have a fully polynomial-time
algorithm for DualRestrict1δ and a fully polynomial-time one-exact approximation algo-
rithm due to Angel et al. [1,2]. For this problem, however, we can show the following
additional hardness result regarding the computation of small one-exact ε-Pareto sets.

Theorem 6 For the min-cost-makespan scheduling problem, if 0 < ε < 1
2 , it is NP-hard to

compute a one-exact ε-Pareto set P of cardinality |P| < 2 · |P∗|.

Proof We use a reduction from Partition. Given an instance a1, . . . , an ∈ N of Partition,
where, without loss of generality, A := ∑n

i=1 ai ≥ 4
1−2ε , define an instance of the min-cost-

makespan scheduling problem as follows: We have m = 2 machines and |J | = n + 2 jobs.
For j = 1, . . . , n, we have a job j with processing times p1 j = p2 j = a j and costs c1 j = a j

and c2 j = 0. We have two additional jobs n + 1 and n + 2, with p1(n+1) = p1(n+2) =
p2(n+1) = p2(n+2) = K , c1(n+1) = c2(n+2) = 1, and c2(n+1) = c1(n+2) = 2, where K > 0
is chosen such that

1

1 + ε
· (K + A) > K + A

2
, (1)

1

1 + ε
· (K + A) ≤ K + A

2
+ 1, (2)

1

1 + ε
· (K + A) ≤ 2 · K . (3)

Note that it is possible to choose K like this by our assumptions on ε and A. For instance,
one can check that K := 	 1−ε

2ε · A − 1 − 1
ε

 fulfills (1)–(3) and K > 0.

The schedule s̄ where machine 1 performs only {n + 1} and machine 2 performs the
jobs {1, . . . , n, n + 2} has a cost of f1(s̄) = 2. This is the unique minimum in f1 over all
schedules, so the schedule s̄ is not (1, 1 + ε)-approximated by any other schedule. Thus, it
must be part of every one-exact ε-Pareto set. Moreover, s̄ has a makespan of f2(s̄) = K + A,
so, by inequality (3), it (1, 1 + ε)-approximates every schedule where jobs n + 1 and n + 2
are performed on the same machine.

If the instance of Partition is a NO-instance, any schedule where jobs n+1 and n+2 are
performed on different machines has a makespan of at least K + A

2 +1, so, by inequality (2),
the one-element set {s̄} is a one-exact ε-Pareto set.

If the instance of Partition is a YES-instance, i.e., if there exists a partition (I1, I2) such
that

∑
i∈I1 ai = ∑

i∈I2 ai = A
2 , then the schedule wheremachine 1 performs jobs {n+1}∪ I1

and machine 2 performs jobs {n + 2} ∪ I2 has a makespan of K + A
2 . By inequality (1), this

schedule is not (1, 1 + ε)-approximated by s̄, so any one-exact ε-Pareto set must contain at
least two solutions. Therefore, it is NP-hard to distinguish between the two cases |P∗| = 1
and |P∗| ≥ 2.
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Algorithm 2: A (1, 1 + ε)-approximation for biobjective optimization problems
input : an instance (X , f ) of a biobjective minimization problem, ε > 0, an algorithm for

DualRestrict
1
δ , where δ = 4√1 + ε − 1

output: a one-exact ε-Pareto set for (X , f )

1 P ← ∅
2 δ ← 4√1 + ε − 1

3 S2 ← 2M

4 repeat
5 x ← DualRestrict

1
δ (S2)

6 if x = NO then break(repeat)
7 S2 ← 1

(1+δ)2
· f2(x)

8 xnext ← DualRestrict
1
δ (S2)

9 if xnext = NO then P ← P ∪ {x} and break(repeat)
10 while f1(x

next) = f1(x) do
11 x ← xnext

12 S2 ← 1
(1+δ)2

· f2(x)

13 xnext ← DualRestrict
1
δ (S2)

14 if xnext = NO then P ← P ∪ {x} and break(while,repeat)

15 P ← P ∪ {x}
16 S2 ← 1

1+ε
· f2(x)

17 return P

5.2 Algorithm for biobjective optimization problems

We now provide an algorithm that computes a one-exact ε-Pareto set P that is not larger
than twice the cardinality of a smallest one-exact ε-Pareto set P∗. It is formally stated in
Algorithm 2 and an illustration of its behavior is given in Fig. 4. The algorithm explores the
objective space top-left to bottom-right, i.e., in decreasing values of f2 and increasing values
of f1. It solves instances of DualRestrict

1
δ for δ > 0 such that (1 + δ)4 = 1 + ε and

starts by solving DualRestrict
1
δ (2

M ). This yields a solution that has minimum f1-value
among all feasible solutions. However, this solution is not automatically added to the output
set. Instead, the algorithm checks whether there exists a solution with the same f1-value and
an f2-value that is better by at least a factor of (1 + δ)2 by solving DualRestrict

1
δ (S2),

where S2 is chosen as the f2-value of the previous solution divided by (1+ δ)2 (we say that
the algorithm does a small (multiplicative) step of (1 + δ)2 = √

1 + ε). If the newly-found
solution has the same f1-value as the previous solution, the algorithm discards the previous
one and repeats the small step with the new solution. If the new solution has a larger f1-value
than the previous one, there cannot exist any solution that has the same (or a better) f1-value
as the previous solution and is better in f2 by at least a factor of (1+ δ)2. Thus, the previous
solution is added to the output set.

The added solution (1, 1 + ε)-approximates all solutions that have the same or a worse
f1-value and an f2-value that is better by at most a factor of 1 + ε. Therefore, instead of
resuming with the new solution (which resulted from a small step) the algorithm resumes
by solving DualRestrict

1
δ (S2), where S2 is chosen as the f2-value of the added solution

divided by 1+ ε (we say that the algorithm does a large (multiplicative) step of 1+ ε). This
ensures that the next solution has an f2-value that is better than the f2-value of the added
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f (x(1))

f (x(2))

f (x(3))

f (x(4))

f (x(5))

f (x(6))

f (x(7))

f (x(8))

f1

f2

f1(x(3)) f1(x(5)) f1(x(8))

2M =: S(1)2

1
(1+δ)2

f2(x(1)) =: S
(2)
2

1
(1+δ)2

f2(x(2)) =: S
(3)
2

1
(1+δ)2

f2(x(3)) =: S
(4)
2

1
1+ε

f2(x(3)) =: S
(5)
2

1
(1+δ)2

f2(x(5)) =: S
(6)
2

1
1+ε

f2(x(5)) =: S
(7)
2

1
(1+δ)2

f2(x(7)) =: S
(8)
2

1
(1+δ)2

f2(x(8)) =: S
(9)
2

2−M

Fig. 4 An illustration of Algorithm 2 in the objective space (on a logarithmic scale). Each x(i) is a solution

to DualRestrict
1
δ (S

(i)
2 ) for i = 1, . . . , 8, where (1 + δ)4 = (1 + ε). The dark gray region does not

contain any feasible point. Any feasible point in the light gray region is (1, 1 + ε)-dominated by f (x(i))

for some i ∈ {1, . . . , 8}. The solution x(4) is discarded since any solution that is (1, 1 + ε)-approximated
by x(4) is also (1, 1+ ε)-approximated by x(3) or x(5). The solution x(6) is discarded since any solution that
is (1, 1 + ε)-approximated by x(6) is also (1, 1 + ε)-approximated by x(5) or x(7). The solutions x(1), x(2),

and x(7) are discarded since they are dominated by x(2), x(3), and x(8), respectively. DualRestrictδ(S
(9)
2 )

returns NO, so the algorithm returns {x(3), x(5), x(8)}

solution by at least a factor of (1 + δ)3. This adaptive procedure of small and large steps is
iterated until DualRestrict1δ (S2) yields NO.

The following lemma collects several invariants that hold during the execution of Algo-
rithm 2.

Lemma 2 When performing line 10 in any iteration of the while/repeat loops in Algorithm 2,
the following properties hold:

(a) x �= NO and xnext �= NO,
(b) S2 = 1

(1+δ)2
· f2(x),

(c) f1(xnext) ≤ opt1(S2),
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(d) f2(xnext) ≤ 1
1+δ

· f2(x),
(e) f1(xnext) ≥ f1(x),
(f) The solutions in P ∪ {x} do (1, 1 + ε)-approximate all solutions x ′ ∈ X with f2(x ′) ≥

1
1+ε

· f2(x),

(g) f2(x) ≤ 1
(1+δ)3

· min{ f2(x̄) : x̄ ∈ P}.

Proof. (a) As soon as solving an instance ofDualRestrict1δ yieldsNOduring the execution
of Algorithm 2, the repeat loop breaks immediately, so line 10 is not reached anymore.

(b) Before line 10, either line 7 or line 12 is executed.
(c) Before line 10, either line 8 or line 13 is executed. Therefore we have xnext =

DualRestrict
1
δ (S2), which implies f1(xnext) ≤ opt1(S2).

(d) Again, we have xnext = DualRestrict
1
δ (S2). This implies that f2(xnext) ≤ (1+δ) · S2.

Using (b), we obtain that f2(xnext) ≤ (1 + δ) · 1
(1+δ)2

· f2(x) = 1
1+δ

· f2(x).
(e) Since the only way feasible solutions are generated in Algorithm 2 is by solving

DualRestrict
1
δ , x is a solution to DualRestrict

1
δ (S) for some parameter S ∈ Q,

where f1(x) ≤ opt1(S) and f2(x̃) ≤ (1 + δ) · S. Due to this and (c), we have

f2(x
next) ≤ 1

1 + δ
· f2(x) ≤ 1

1 + δ
· (1 + δ) · S = S,

so we can conclude that f1(x) ≤ opt1(S) ≤ f1(xnext).
(f) Consider an iteration of the inner while loop and suppose that (a)–(f) hold at the begin-

ning of this iteration.We show that (f) also holds at the end of this iteration (provided that
the algorithm does not terminate during the iteration). At the beginning of the iteration,
we have f1(xnext) = f1(x), so (d) implies that xnext strictly dominates x . Therefore,
also P∪{xnext} approximates all solutions x ′ ∈ X with f2(x ′) ≥ 1

1+ε
· f2(x). Moreover,

using (c) and (e), we know that

f1
(
xnext

) ≤ opt1(S2) = opt1

(
1

(1 + δ)2
· f2(x)

)
≤ opt1

(
1

1 + ε
· f2(x)

)
,

so xnext also approximates all solutions x ′ ∈ X with 1
1+ε

· f2(x) > f2(x ′) ≥ 1
1+ε

·
f2(xnext). During the iteration of the while loop, line 11 is performed, which implies
that (f) holds at the end of the iteration.
Now consider an iteration of the outer repeat loop and assume that (a)–(f) hold in line 15
of this iteration. We show that (f) holds in line 10 of the next iteration (given that line 10
is reached). After performing line 16, we know that P approximates every solution
x ′ ∈ X with f2(x ′) ≥ 1

1+ε
· f2(x) = S2. This implies that (f) holds after line 5 of the

next iteration and, thus, also in line 10 of the next iteration.
(f) If (d) holds at the beginning of a fixed iteration of the while loop, then the value of f2(x)

decreases during the iteration. Therefore, (g) holding at the beginning of the iteration
together with the fact that P remains unchanged during the while loop imply that (g)
also holds at the end of the iteration.
If (g) holds in line 15 of an iteration of the repeat loop, then, after line 16, we have that
min{ f2(x̄) : x̄ ∈ P} = f2(x), so S2 = 1

1+ε
· min{ f2(x̄) : x̄ ∈ P} holds after line 16.

After line 5 in the next iteration, we thus have

f2(x) ≤ (1 + δ) · S2 = 1

(1 + δ)3
· min{ f2(x̄) : x̄ ∈ P}.
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The following two results establish a bound on the number of instances ofDualRestrict1δ
solved in the algorithm.

Lemma 3 Every time the value of S2 is changed from some value Sold2 to a new value Snew2
during the execution of Algorithm 2, we have

Snew2 ≤ 1

1 + δ
· Sold2 .

Proof. We distinguish three cases: If the value of S2 is changed from Sold2 to Snew2 in line 7,
we have

Snew2 = 1

(1 + δ)2
· f2(x) ≤ 1

(1 + δ)2
· (1 + δ) · Sold2 = 1

1 + δ
· Sold2 ,

where the inequality is due to line 5.
If the value of S2 is changed from Sold2 to Snew2 in line 12, Lemma 2 (b) and (d) imply that

Snew2 = 1

(1 + δ)2
· f2(x) = 1

(1 + δ)2
· f2(x

next) ≤ 1

1 + δ
· Sold2 .

If the value of S2 is changed from Sold2 to Snew2 in line 16, we have Snew2 = 1
1+ε

· f2(x).

Since Lemma 2 (b) yields that Sold2 = 1
(1+δ)2

· f2(x), this implies that

Snew2 = 1

(1 + δ)2
· Sold2 <

1

1 + δ
· Sold2 .

Proposition 1 Algorithm2 terminates after solvingO (M
ε

)
many instances ofDualRestrict1δ .

Proof As soon as solving an instance ofDualRestrict1δ yields NO, Algorithm 2 terminates.
Note thatDualRestrict1δ(S2) is solved once whenever S2 is assigned a new value.We show

that the number of times the value of S2 is changed is bounded by
⌊

2M
log(1+δ)

⌋
+ 1 = O (M

ε

)
.

The initial value assigned to S2 is 2M . DualRestrict1δ (S2) yields NO if S2 < 2−M , so if
DualRestrict

1
δ (S2) is solved for some S2 < 2−M , the algorithm is guaranteed to terminate.

But this is the case after at most
⌊

2M
log(1+δ)

⌋
+ 1 many changes of the value assigned to S2

due to Lemma 3.

The correctness of the algorithm is established by the following proposition.

Proposition 2 Algorithm 2 returns a one-exact ε-Pareto set.

Proof Algorithm2 terminates as soon as solvingDualRestrict1δ (S2) yieldsNO for some S2.
We do a case distinction on where this happens in Algorithm 2 and show that the solutions
in the set P returned by the algorithm (1, 1 + ε)-approximate all solutions x ′ ∈ X with
f2(x ′) ≥ S2 (and, thus, all solutions x ′ ∈ X ). If DualRestrict1δ (S2) yields NO in line 5 of
the first iteration of the repeat loop, this implies that there does not exist any feasible solution
at all. If DualRestrict1δ (S2) yields NO in line 5 of some other iteration of the repeat loop,
Lemma 2 (f) holds in line 10 of the previous iteration, in which, in particular, lines 15 and 16
are executed. Therefore, the solutions in the set P returned by Algorithm 2 approximate all
solutions x ′ ∈ X with f2(x ′) ≥ 1

1+ε
· f2(x) = S2. If DualRestrict

1
δ (S2) yields NO in

line 8 or line 13 of some iteration (of the repeat loop or while loop, respectively), we can

123



106 Journal of Global Optimization (2021) 80:87–115

show that Lemma 2 (f) holds at this moment by using the same argumentation as in the proof
of Lemma 2 (f). Therefore and since x is added to P in these two cases, the solutions in the
returned set P approximate all solutions x ′ ∈ X with f2(x ′) ≥ 1

1+ε
· f2(x) > 1

(1+δ)2
· f2(x) =

S2.

It remains to bound the cardinality of the returned one-exact ε-Pareto set P . To this end,
we first show in Lemma 4 that any two solutions in P always differ by at least a factor of
(1 + δ)3 with respect to their f2-values.

Lemma 4 Let P be the set returned by Algorithm 2. For all x1, x2 ∈ P with x1 �= x2 and
f2(x1) ≥ f2(x2), we have

f2(x1) ≥ (1 + δ)3 · f2(x2),

where (1 + δ)4 = 1 + ε.

Proof Note that Lemma 2 (g) holds each time a solution is added to P in line 15 of Algo-
rithm 2. If some solution x ∈ X is added to P in line 9 or line 14, DualRestrict1δ (S2) must
have yielded NO in line 8 or line 13, respectively. We can show that Lemma 2 (g) holds at
this moment by using the same argumentation as in the proof of Lemma 2 (g).

Lemma 5 establishes that solutions in P are almost efficient in the sense that no other
solution with the same or a better f1-value is better by a factor of (1 + δ)2 or more in f2.

Lemma 5 Let P be the set returned by Algorithm 2. For any x ∈ P, there does not exist any
feasible solution x ′ ∈ X with f1(x ′) ≤ f1(x) and f2(x ′) ≤ 1

(1+δ)2
· f2(x).

Proof Given x ∈ P , consider the case that x is added to P in line 15 of Algorithm 2. At
this point in the algorithm, we know that f1(xnext) �= f1(x). Thus, Lemma 2 (b), (c), and (e)
imply that f1(x) < f1(xnext) ≤ opt1(S2) = opt1(

1
(1+δ2)

· f2(x)), so any solution x ′ ∈ X

with f2(x ′) ≤ 1
(1+δ2)

· f2(x) must have f1(x ′) > f1(x).
Now consider the case that x is added to P in line 9 or line 14 of Algorithm 2. In this

case, we have DualRestrict1δ (S2) = NO for S2 = 1
(1+δ2)

· f2(x), so there does not exist

any solution x ′ ∈ X with f2(x ′) ≤ 1
(1+δ2)

· f2(x).

Proposition 3 Let P be the set returned by Algorithm 2 and let P∗ be a smallest one-exact
ε-Pareto set. Then

|P| ≤ 2 · |P∗|.

Proof First, we show that no solution x ′ ∈ X can (1, 1 + ε)-approximate more than two
solutions in the returned set P . Let x1, x2, x3 ∈ P be three pairwise different solutions in P
such that f2(x1) ≥ f2(x2) ≥ f2(x3). Let x ′ ∈ X be an arbitrary feasible solution that
(1, 1+ε)-approximates x1 and x2. We show that x ′ does not (1, 1+ε)-approximate x3. Note
that Lemma 4 implies that

f2(x3) ≤ 1

(1 + δ)3
· f2(x2) ≤ 1

(1 + δ)6
· f2(x1).
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f (x1)

f (x2)

f (x3)

f (x )

f1

f2

S(1)2

S(2)2

S(3)2

Fig. 5 Any feasible solution x ′ ∈ X can (1, 1+ε)-approximate at most two solutions returned byAlgorithm 2.

The solution xi is a solution to DualRestrict
1
δ (S(i)

2 ) for i = 1, 2, 3, where (1 + δ)4 = (1 + ε). The gray
region does not contain any feasible point due to Lemma 5 and the definition of DualRestrictδ , so f (x ′)
has to lie outside of this region. The hatched region is the region that is (1, 1 + ε)-dominated by f (x ′)

Since x1 is (1, 1 + ε)-approximated by x ′, we have f1(x ′) ≤ f1(x1), so Lemma 5 implies
that

f2(x
′) >

1

(1 + δ)2
· f2(x1).

Combining the two inequalities above yields

f2(x
′) > (1 + δ)4 · f2(x3) = (1 + ε) · f2(x3),

i.e., x3 is not (1, 1+ε)-approximated by x ′. An illustration of this is given in Fig. 5. Note that
the above arguments also imply that no solution x0 ∈ P with x0 �= x1 and f2(x0) ≥ f2(x1)
can be approximated by x ′. If this was the case, then x ′ would not approximate x2.

Now let P∗ be an arbitrary minimum-cardinality one-exact ε-Pareto set. Then, for any
x ∈ P , there exists some x ′ ∈ P∗ that (1, 1 + ε)-approximates x . Thus, since any x ′ ∈ P∗

can approximate at most two solutions in P , there have to be at least
⌈ |P|

2

⌉
many elements

in P∗, so |P| ≤ 2 ·
⌈ |P|

2

⌉
≤ 2 · |P∗|.

Propositions 1, 2, and 3 directly yield the following theorem:

Theorem 7 Algorithm 2 computes a one-exact ε-Pareto set P of cardinality |P| ≤ 2 · |P∗|
solving O(M

ε
) many instances of DualRestrict1δ , where (1 + δ)4 = 1 + ε.

5.3 Available efficient routine forRESTRICTı

Diakonikolas and Yannakakis [6] show that, for biobjective optimization problems, the sub-
problems DualRestrict1δ and Restrict

2
δ are polynomially equivalent: An answer for an
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instance of DualRestrict1δ can be found by solving O(M) instances of Restrict2δ in a
binary search and vice versa.

They also give an algorithm that computes an ε-Pareto set Pε whose cardinality is not
larger than twice the cardinality of a smallest ε-Pareto set P∗

ε . This algorithm is based on
routines for both of these subproblems. In order to compute Pε, the algorithm solves O(M

ε
)

instances of DualRestrict1δ as well as O(M
ε

) instances of Restrict2δ , where (1 + δ)3 =
1 + ε. This a-priori bound can be refined a posteriori to the output-sensitive3 bound of
O(|Pε|) = O(|P∗

ε |) many instances of each subproblem that are solved. If only one of
the two routines is directly available (such as, e.g., for the min-cost makespan scheduling
problem), the polynomial reduction between the two subproblems can be used to solve the

other problem in the algorithm by Diakonikolas and Yannakakis, resulting in O(M
2

ε
) (or a

posteriori O(M · |P∗
ε |)) solved instances of the subproblem for which a routine is available.

We now show how this algorithm can be slightly modified such that it even computes
a one-exact ε-Pareto set in the same a-priori asymptotic running time. The cardinality of
the one-exact ε-Pareto set Q computed by this modified algorithm satisfies |Q| ≤ 2 · |P∗|,
where P∗ is a smallest one-exact ε-Pareto set, i.e., the modified algorithm yields the same
cardinality guarantee as Algorithm 2. Since it requires a routine for Restrict2δ in addition to

a routine forDualRestrict1δ , the number of solved subproblemsmight be in the order of M2

ε

(if this routine for Restrict2δ consists of simply applying the reduction toDualRestrict1δ ),
which is by a factor of M larger than the number of solved subproblems in Algorithm 2.

For some common optimization problems such as biobjective ShortestPath, however,
the best known algorithms for Restrictδ and for DualRestrictδ have similar asymptotic
running times [9,11,13]. For other optimization problems such as minimum-cost maximum
matching, a routine for Restrictδ is available (see, e.g., [10]), but no specific routine for
DualRestrictδ is known, i.e., we can only solve DualRestrictδ via the reduction to
Restrictδ . In these cases, ourmodification of the algorithm byDiakonikolas andYannakakis
offers an output-sensitive bound on the running time. It solvesO(|P∗|)many subproblems if
both routines are available andO(M ·|P∗|)many subproblems if only a routine forRestrictδ

is available. Algorithm 2 solvesO(M
ε

) andO(M
2

ε
) many subproblems, respectively, in these

cases, which is equal to the a-priori bound for the modified algorithm, but might be much
larger than the a-posteriori bound for some optimization problems.

The modified algorithm is stated in Algorithm 3. Its proof of correctness is similar to
the proof for the original algorithm by Diakonikolas and Yannakakis [6] and is given in the
appendix. The algorithm explores the objective space bottom-right to top-left. It uses δ such
that (1+ δ)3 = 1+ ε and starts by solvingDualRestrict1δ (2

M ) and Restrict2δ (2
M ), i.e., it

computes a solution havingminimum f1-value and a solution that (1, 1+ε)-approximates all
solutions having minimum f2-value. It adds the latter one to the output set and then computes
a solution that is not yet (1, 1 + ε)-approximated and is worse in f2 by a factor of at most
1+δ than a solution havingminimum f2-value among all solutions that are not yet (1, 1+ε)-
approximated. This is accomplished by solving Restrict

1
δ (B1) for B1 being the f1-value

of the previously added solution decreased by 2−2M . Thus, a lower bound for the f2-values
of all solutions that are not yet approximated is known up to a (multiplicative) accuracy of
1+δ. Now, a solution that (1, 1+ε)-approximates all solutionswith f2-values in between this
lower bound and this lower bound multiplied by (1+ ε) is computed using DualRestrict1δ

3 The term output-sensitive is often used to describe running times of algorithms that depend on the (a priori)
unknown output of the algorithm like, e.g., the cardinality of a returned set of solutions.
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and is added to the output set. This procedure is repeated until the solution having minimum
f1-value computed in the beginning of the algorithm is (1, 1 + ε)-approximated.

Algorithm 3:An alternative (1, 1+ε)-approximation for biobjective optimization prob-
lems.
input : an instance (X , f ) of a biobjective minimization problem, ε > 0, an algorithm for

DualRestrict
1
δ , an algorithm for Restrict2δ , where δ = 3√1 + ε − 1

output: a one-exact ε-Pareto set for (X , f )

1 δ ← 3√1 + ε − 1

2 if Restrict2δ (2M ) = NO then halt

3 x left ← DualRestrict
1
δ (2M )

4 x̃(1) ← Restrict
2
δ (2M )

5 S(1)
2 ← (1 + δ) · f2(x̃

(1))

6 x(1) ← DualRestrict
1
δ (S

(1)
2 )

7 B(1)
1 ← f1(x

(1)) − 2−2M

8 Q ← {x(1)}
9 i ← 1

10 while B(i)
1 ≥ f1(x

left) do

11 x̃(i+1) ← Restrict
2
δ (B(i)

1 )

12 S(i+1)
2 ← 1+ε

1+δ
· max{S(i)

2 , 1
1+δ

· f2(x̃
(i+1))}

13 x(i+1) ← DualRestrict
1
δ (S(i+1)

2 )

14 B(i+1)
1 ← f1(x

(i+1)) − 2−2M

15 Q ← Q ∪ {x(i+1)}
16 i ← i + 1

17 return Q

Theorem 8 Algorithm 3 computes a one-exact ε-Pareto set Q of cardinality |Q| ≤ 2 · |P∗|
solvingO(|P∗|)many instances ofDualRestrict1δ andRestrict2δ , where (1+δ)3 = 1+ε.

Similar to the proof of correctness for the original algorithm for computing ε-Pareto
sets by Diakonikolas and Yannakakis [6], the proof of Theorem 8 is based on comparing
the cardinality of the set computed by Algorithm 3 to the cardinality of a smallest one-
exact ε-Pareto set. This smallest one-exact ε-Pareto set is assumed to be computed by a
greedy procedure similar to the ones given by Diakonikolas and Yannakakis [6], Koltun and
Papadimitriou [12], and Vassilvitskii and Yannakakis [16]. The greedy procedure is based on
an (exact) routine for Constrained and is given as Algorithm 4 in the appendix. The fact
that Constrained1 and Constrained2 are polynomially equivalent via the same reduction
as for DualRestrict1δ and Restrict

2
δ yields the following corollary:

Corollary 1 For a biobjective optimization problem, it is possible to compute a smallest one-
exact ε-Pareto set in fully polynomial time if a polynomial-time algorithm forConstrained1

or Constrained2 is available.

Note that Constrained can, in particular, be solved efficiently if all feasible solutions
are given explicitly in the input of a biobjective optimization problem. Thus, in this case, a
smallest one-exact ε-Pareto set can be found in fully polynomial time.
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5.4 Impossibility result for three or more objectives

In contrast to the biobjective case, we now demonstrate that no polynomial-time generic
algorithm based on DualRestrictδ can produce a constant-factor approximation on the
cardinality of a smallest one-exact ε-Pareto set for general optimization problems with more
than two objective functions.

Theorem 9 For any ε > 0 and any positive integer n ∈ N+, there does not exist an algorithm
that computes a one-exact ε-Pareto set P such that |P| < n · |P∗| for every 3-objective
minimization problem and generates feasible solutions only via solving DualRestrictδ for
values of δ such that 1

δ
is polynomial in the encoding length of the input.

Proof Given ε > 0 and n ∈ N+, we construct two instances I1 and I2 with I1 =
({x0, x1, . . . , xn}, f ) and I2 = ({x0, x1, . . . , xn, x ′

1, . . . , x
′
n}, f ), where

f (xi ) =
⎛

⎝
f1(x0) + n − i

(1 + ε)2i · f2(x0)
1

1+ε
· f3(x0)

⎞

⎠ and f (x ′
i ) =

⎛

⎝
f1(x0) + n − i

(1 + ε)2i · f2(x0)
1

1+ε
· f3(x0) − 1

⎞

⎠ , i = 1, . . . , n.

Then the solution x0 (1, 1 + ε, 1 + ε)-approximates xi for i = 1, . . . , n, but x0 does not
(1, 1+ ε, 1+ ε)-approximate x ′

i for any i due to the f3-values. Also, no two solutions from
the set {x1, . . . , xn, x ′

1, . . . , x
′
n} approximate each other except for, possibly, xi and x ′

i for
i = 1, . . . , n. Thus, the set {x0} is a one-exact ε-Pareto set in instance I1, but any one-
exact ε-Pareto set in instance I2 consists of at least n + 1 solutions. Hence, an algorithm
that computes a one-exact ε-Pareto set P with |P| < n · |P∗| has to be able to distinguish
between I1 and I2, i.e., detect the existence of at least one x ′

i , using only DualRestrictδ .
Following a similar argument as in the proof of Theorem 5, one can show that, in order to

distinguish between the instances I1 and I2, an algorithm has to solve DualRestrict1δ for
some δ with 1

δ
> 1

1+ε
· f2(x0) − 1. Since f2(x0) can be exponential in the encoding length

of the input, the claim follows.

6 Conclusion and future research

This article addresses the task of computing approximate Pareto sets for multiobjective opti-
mization problems. In particular, we strive for such approximate Pareto sets that are exact in
one objective function (without loss of generality the first one) and obtain an approximation
guarantee of 1+ε in all other objectives.We show the existence of such (1, 1+ε, . . . , 1+ε)-
approximate Pareto sets of polynomial cardinality under mild assumptions on the considered
multiobjective optimization problem. Our main results address the relation between such a
so-called one-exact ε-Pareto set and an auxiliary problem, the so-called DualRestrictδ

problem. Interestingly, this auxiliary problem has been considered in the literature before,
but its full potential has not been revealed so far. In fact, we prove equivalence of computing a
(1, 1+ε, . . . , 1+ε)-approximate Pareto set in polynomial time and solvingDualRestrictδ

in polynomial time. This result complements the seminal work of Papadimitriou and Yan-
nakakis [14], who characterize the class of multiobjective optimization problems for which a
(1+ε, . . . , 1+ε)-approximate Pareto set is polynomial-time computable using the so-called
gap problem. With respect to the approximation quality, one cannot hope for a polynomial-
time computable approximate Pareto set that is exact in more than one objective function
since this would imply the polynomial-time solvability of a related biobjective optimization
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problem. In this sense, the factor of (1, 1+ε, . . . , 1+ε) obtained here is best possible. Addi-
tionally, we provide an algorithm that approximates the cardinality of a smallest one-exact
ε-approximate Pareto set by a factor of 2 for biobjective problems and show that this factor
is best possible. Finally, we demonstrate that, using DualRestrictδ , it is not possible to
obtain any constant-factor approximation on the cardinality for problems with more than two
objectives efficiently.

It should be pointed out that our work provides a general method for computing
polynomial-cardinality one-exact ε-Pareto sets by using an algorithm for theDualRestrictδ

problem. If applied tomultiobjectiveSpanningTree, our work provides the first polynomial-
time algorithm for computing a one-exact ε-Pareto set and, thus, yields the best possible
approximation guarantee for this problem. For multiobjective ShortestPath, our general
algorithms have running times that are competitive with the running time of the special-
ized algorithm of [15]. For biobjective ShortestPath, our algorithm additionally provides
a worst-case guarantee on the cardinality of the computed one-exact ε-Pareto set. Future
research could focus on the design of additional problem-specific algorithms that compute
one-exact ε-Pareto sets for certainmultiobjective (combinatorial) optimization problemswith
faster running times than the general methods provided here.
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Appendix

In Algorithm 4, we formally state an algorithm that computes a smallest one-exact ε-Pareto
set if a subroutine for solvingConstrained is given.We prove its correctness in Theorem 10.
Finally, we present a proof of Theorem 8.

Theorem 10 Algorithm 4 computes a smallest one-exact ε-Pareto set P∗ by solvingO(|P∗|)
instances of Constrained1 and of Constrained2.

Proof First, note that

B(i+1)
1 + 2−2M = f1(x

(i+1)) = opt1(B
(i+1)
2 ) ≤ opt1( f2(x̃

(i+1)))

≤ f1(x̃
(i+1)) ≤ B(i)

1

for i = 1, 2, . . ., where all the steps follow immediately from the algorithm and the definition
of opt1(·). Thus, the termination condition B(i)

1 < f1(x left) is fulfilled after finitely many
iterations and Algorithm 4 returns a set P∗ of finite cardinality. Moreover, we obtain the
following statements:

(a) x (1) (1, 1+ε)-approximates any solution x ′ ∈ X with f1(x ′) ≥ f1(x (1)). This is because
in the f2-component, we have

f2(x
(1)) ≤ B(1)

2 = (1 + ε) · f2(x̃
(1)) = (1 + ε) · opt2(2M ) ≤ (1 + ε) · f2(x

′).
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Algorithm 4: Greedy algorithm for computing a smallest one-exact ε-Pareto set for
biobjective optimization problems.
input : an instance (X , f ) of a biobjective minimization problem, ε > 0, an algorithm for

Constrained
1, an algorithm for Constrained2

output: a one-exact ε-Pareto set for (X , f )

1 if Constrained2(2M ) = NO then halt

2 x left ← Constrained
1
(2M )

3 x̃(1) ← Constrained
2
(2M )

4 B(1)
2 ← (1 + ε) · f2(x̃

(1))

5 x(1) ← Constrained
1
(B(1)

2 )

6 B(1)
1 ← f1(x

(1)) − 2−2M

7 P∗ ← {x(1)}
8 i ← 1

9 while B(i)
1 ≥ f1(x

left) do

10 x̃(i+1) ← Constrained
2
(B(i)

1 )

11 B(i+1)
2 ← (1 + ε) · f2(x̃

(i+1))

12 x(i+1) ← Constrained
1
(B(i+1)

2 )

13 B(i+1)
1 ← f1(x

(i+1)) − 2−2M

14 P∗ ← P∗ ∪ {x(i+1)}
15 i ← i + 1

16 return P∗

(b) For i = 2, . . . , |P∗|, the solution x (i) (1, 1 + ε)-approximates any solution x ′ ∈ X with
f1(x (i−1)) > f1(x ′) ≥ f1(x (i)) because in the f2-component, we have

f2(x
(i)) ≤ B(i)

2 = (1 + ε) · f2(x̃
(i)) = (1 + ε) · opt2(B(i−1)

1 )

≤ (1 + ε) · opt2( f1(x (i−1))) ≤ (1 + ε) · f2(x
′).

(c) There are no solutions x ′ ∈ X with f1(x ′) < f1(x (|P∗|)) since otherwise we would have

f1(x
′) ≤ B(|P∗|)

1 < f1(x
left) = opt1(2

M ),

where the strict inequality holds due to the termination condition of the algorithm.

Statements (a)–(c) imply that the set P∗ computed by Algorithm 4 is a one-exact ε-Pareto
set.

We now show via induction that, for all k ∈ {1, . . . , |P∗|}, there exists a smallest one-
exact ε-Pareto set P∗

k such that {x (1), . . . , x (k)} ⊆ P∗
k . This fact for k = |P∗| then yields

|P∗| ≤ |P∗|P∗||, which completes the proof.
In order to prove the claim for k = 1, consider a smallest one-exact ε-Pareto set P∗

0 . Let
x1 ∈ P∗

0 be a solution that (1, 1+ε)-approximates x̃ (1) and let x ′ ∈ X be an arbitrary solution
(1, 1+ε)-approximated by x1. In the second component,wehave f2(x1) ≤ (1+ε)· f2(x̃ (1)) =
B(1)
2 , so, in the first component, we have

f1(x
(1)) = opt1(B

(1)
2 ) ≤ f1(x1) ≤ f1(x

′).

Now, (a) implies that x (1) also (1, 1 + ε)-approximates x ′ and, thus, x1 can be replaced by
x (1) in P∗

0 .
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For the induction step k → k + 1, let P∗
k be a smallest one-exact ε-Pareto set with

{x (1), . . . , x (k)} ⊆ P∗
k . Let xk+1 ∈ P∗

k be a solution that (1, 1 + ε)-approximates x̃ (k+1)

and note that f1(xk+1) ≤ f1(x̃ (k+1)) ≤ B(k)
1 < f1(x (k)), so we must have xk+1 ∈ P∗

k \
{x (1), . . . , x (k)}. Now, let x ′ ∈ X be an arbitrary solution that is (1, 1 + ε)-approximated by
xk+1 but not by any other solution in the set P∗

k . In the first component, we then have

f1(x
(k+1)) = opt1(B

(k+1)
2 ) ≤ f1(xk+1) ≤ f1(x

′) < f1(x
(k)),

where the strict inequality holds due to (a) and (b) and because x ′ is not (1, 1 + ε)-
approximated by x (1), . . . , x (k). Now, (b) implies that x (k+1) also (1, 1+ ε)-approximates x ′
and, thus, xk+1 can be replaced by x (k+1) in P∗

k .

We now present the proof of Theorem 8.

Proof of Theorem 8 The proof is similar to the proof of the non-modified algorithm by
Diakonikolas and Yannakakis [6] and to the proof of Theorem 10. In fact, the first part
of the proof, where it is shown that Algorithm 3 correctly computes a one-exact ε-Pareto
set Q follows exactly the same steps as the proof of Theorem 10, so we omit this part here.

We prove the bound on the cardinality of Q by comparing Q to a smallest one-exact
ε-Pareto set P∗ = {x (1)∗ , . . . , x (|P∗|)∗ } computed by Algorithm 4.

We prove that the following statement holds for all k ∈ N by induction on k (which
immediately implies the claim): If |Q| ≥ 2k − 1, then |P∗| ≥ k, and if |Q| ≥ 2k, then
f1(x

(k)∗ ) ≥ f1(x (2k)).
For k = 1, it suffices to show that, if |Q| ≥ 2, we have f1(x

(1)∗ ) ≥ f1(x (2)). In order to
see this, note that

f2(x
(1)∗ ) ≤ (1 + ε) · opt2(2M ) ≤ (1 + ε) · f2(x̃

(1)) = 1 + ε

1 + δ
· S(1)

2 ≤ S(2)
2 .

This implies that f1(x
(1)∗ ) ≥ opt1(S

(2)
2 ) ≥ f1(x (2)).

Now suppose that, for some k ≥ 2, we have |Q| ≥ 2k−2 and f1(x
(k−1)∗ ) ≥ f1(x (2k−2)).

We first show that if |Q| ≥ 2k − 1, then |P∗| ≥ k. Recall that the sequence ( f1(x
(1)∗ ), . . . ,

f1(x
(|P∗|)∗ )) is strictly decreasing. Since the solution x left must be (1, 1 + ε)-approximated

by some solution in P∗, we must have f1(x
(|P∗|)∗ ) ≤ f1(x left), but for x

(k−1)∗ , we have

f1(x
(k−1)∗ ) ≥ f1(x

(2k−2)) > B(2k−2)
1 ≥ f1(x

left),

so |P∗| > k − 1.
Finally, we show that if |Q| ≥ 2k, then f1(x

(k)∗ ) ≥ f1(x (2k)). Note that we have
f1(x̃ (2k−1)) ≤ B(2k−2)

1 < f1(x (2k−2)) ≤ f1(x
(k−1)∗ ) due to the induction hypothesis, so

x̃ (2k−1) is not (1, 1 + ε)-approximated by x (1)∗ , . . . , x (k−1)∗ . Let x (i)∗ ∈ P∗ be a solution that
(1, 1 + ε)-approximates x̃ (2k−1). In the second component, we then have

f2(x
(i)∗ ) ≤ (1 + ε) · f2(x̃

(2k−1)) ≤ 1 + ε

1 + δ
· S(2k−1)

2 ≤ S(2k)
2 .

The above argument implies i ≥ k, so

f1(x
(k)∗ ) ≥ f1(x

(i)∗ ) ≥ opt1(S
(2k)
2 ) ≥ f1(x

(2k)),

which finishes the proof.
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