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Abstract

Let P be a set of n points in the plane. We compute the value of θ ∈ [0, 2π) for which
the rectilinear convex hull of P , denoted by RHθ(P ), has minimum (or maximum) area
in optimal O(n log n) time and O(n) space, improving the previous O(n2) bound. Let O
be a set of k lines through the origin sorted by slope and let αi be the aperture angles
of the 2k sectors defined by every pair of two consecutive lines. Let Θi = π − αi and
Θ = min{Θi : i = 1, . . . , 2k}. We further obtain: (1) Given a set O such that Θ ≥ π

2 , we
provide an algorithm to compute the O-convex hull of P in optimal O(n log n) time and
O(n) space, while if Θ < π

2 the complexities are O( nΘ log n) time and O( nΘ ) space. (2) Given
a set O such that Θ ≥ π

2 , we compute and maintain the boundary of the Oθ-convex hull
of P for θ ∈ [0, 2π) in O(kn log n) time and O(kn) space, or in O(k nΘ log n) time and O(k nΘ )
space if Θ < π

2 . (3) Finally, given a set O such that Θ ≥ π
2 , we compute the Oθ-convex

hull of P of minimum (or maximum) area over all θ ∈ [0, 2π) in O(kn log n) time and O(kn)
space.

Keywords: Rectilinear convex hull, Restricted orientation convex hull, Minimum area.

1 Introduction

Restricted-orientation convexity is a generalization of traditional convexity that stems from the
notion of restricted-orientation geometry, where the geometric objects under study comply with
restrictions related to a fixed set of orientations. Restricted-orientation geometry started with
the work of Güting [16] in the early eighties, as a generalization of the study of orthogonal
polygons, whose edges are parallel to the coordinate axes.

Ortho-convexity or orthogonal convexity [20, 21, 25] was defined by defining as convex sets
those whose intersection with any line parallel to a coordinate axis is either empty or connected.
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The corresponding convex hull of a set P of n points in the plane, called rectilinear convex hull
of P and denoted RH(P ), has been extensively studied since its formalization in the early
eighties and, together with the rectilinear convex hull of other geometric objects, it has been
applied in several research fields, including illumination [1], polyhedron reconstruction [10],
geometric search [27], and VLSI circuit layout design [28].

Researchers have also studied relations between rectilinear convex hulls of colored point
sets [3], and developed generalizations of orthogonal convexity [14, 15, 19] along with related
computational results [4, 5, 6]. Among these generalizations, it is particularly relevant the one
by Fink and Wood [14], who defined O-convexity calling convex sets to those whose intersection
with any line parallel to one in a given set O of lines through the origin is either empty or
connected. Thus, one can consider the O-convex hull of a point set P , sometimes called O-hull
for short and denoted OH(P ).

1.1 Our work

Bae et al. [8] considered the rectilinear convex hull of a set of point P where convexity is defined
by lines parallel to a rotation of the coordinate axis by an angle θ, denoted byRHθ(P ) and called
θ-rectilinear convex hull. In fact, the coordinates will remain to be considered with respect to
the horizontal and the vertical axes, although convexity will be considered with respect to the
set O obtaining by rotating these axes by an angle θ ∈ [0, 2π). This is why these rotations will
be mentioned as “axes” instead of “coordinate axes”.

In O(n2) time and O(n) space, Bae et al. computed the value of θ ∈ [0, 2π) such that the
area of RHθ(P ) is minimum (notice that this area is orientation-dependent, more details in
Section 2). However, the authors did not achieve to efficiently maintain the linear number of
events where the structure of RHθ(P ) changes as the value of θ is increased from 0 to 2π.

In the present paper, we improve the results of Bae et al. [8] by providing an optimal
O(n log n) time and O(n) space algorithm. Our scheme for such an improvement is to maintain
two structures: The set of vertices of RHθ(P ), which has to be updated at every change arising
during the rotation θ ∈ [0, 2π) and the set of overlapping intervals, defined as the angular
intervals contained in [0, 2π) where opposite staircases of the boundary of RHθ(P ) overlap
with each other (more details in Section 2.2.1). Dealing with the set of vertices was achieved,
indirectly, by Dı́az-Báñez et al. [12] in optimal O(n log n) time and O(n) space, while designing
an algorithm to fit an orthogonal chain to a point set in the plane. Dealing with the set of
overlapping intervals in O(n log n) time and O(n) space is one of the main contributions in the
current paper. In Section 2, we show how to maintain these two structures and design the
optimal O(n log n) time and O(n) space algorithm for this improvement.

In Section 3 we focus on O-convex sets, i.e., sets for which the intersection with any line
parallel to a line in O is either empty or connected. We design algorithms to compute the O-
convex hull of a set P of n points, denoted by OH(P ); and also we generalize to O-convexity the
rotation in Bae et al. [8] considering the Oθ-convexity, i.e., the convexity defined by the set O of
k lines rotated by an angle θ, leading to OHθ(P ). One of the problems will be computing and
maintaining the boundary of OHθ(P ) during a complete rotation for θ ∈ [0, 2π). Some of the
algorithms are sensitive to the following two parameters. The first parameter will be the cardinal
k ≥ 2 of a set O = {`1, . . . , `k} of lines through the origin sorted by slope. The O(k log k) time
complexity for sorting the lines in O can be added to the complexity of the upcoming algorithms;
nevertheless, as we will see below, the number k will be smaller than the number n of input
points of the problems, and thus, O(k log k) will be in O(n log n). However, the complexity of
some of our algorithms can be sensitive to k, which will appear as a multiplicative factor. For
the second parameter, let αi be the aperture angles of the 2k sectors defined by two consecutive
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lines in O and let Θi = π − αi. The second parameter will be Θ = min{Θi : i = 1, . . . , 2k},
which measures how “well distributed” are the the orientations of the k lines of O into the unit
circle and, in particular, we will distinguish whether Θ ≥ π

2 or Θ < π
2 .

1.2 Contributions and relevance

The main contributions of this work are the following:

• We improve the O(n2) time complexity from Bae et al. [8], computing in optimal O(n log n)
time and O(n) space the value of θ ∈ [0, 2π) for which RHθ(P ) has minimum (or maxi-
mum) area, also returning RHθ(P ) (Theorem 5).

• Given a set O of k lines such that Θ ≥ π
2 , we provide an algorithm to compute OH(P ),

in optimal O(n log n) time and O(n) space (Theorem 6).

• Given a set O of k lines such that Θ < π
2 , we provide an algorithm to compute OH(P ) in

O( nΘ log n) time and O( nΘ) space (Theorem 7).

• We generalize to O-convexity the rotation in Bae et al. [8] showing that, for a set O of
k lines, computing and maintaining the boundary of OHθ(P ) during a complete rotation
for θ ∈ [0, 2π) can be done in O(kn log n) time and O(kn) space (Theorem 8) for Θ ≥ π

2
or in O(k nΘ log n) time and O(k nΘ) space (Theorem 9) for Θ < π

2 .

• As a consequence, for the two cases Θ ≥ π
2 or Θ < π

2 , computing an interval of θ such
that the boundary of OHθ(P ) has minimum number of staircases, or minimum number
of steps, or it is connected, or it has the minimum number of connected components, can
be done in O(kn log n) time and O(kn) space, or in O(k nΘ log n) time and O(k nΘ) space,
respectively (Corollaries 1 and 2).

• Given a set O composed by two non-perpendicular lines through the origin, we show
that computing and maintaining the boundary of OHθ(P ) during a complete rotation
for θ ∈ [0, 2π) can be done in O( nΘ log n) time and O( nΘ) space, where Θ is the smallest
aperture angle of the sectors defined by the two lines (Corollary 3).

• Given a set O of k lines such that Θ ≥ π
2 , we provide an algorithm to compute OHθ(P )

with minimum (or maximum) area over all θ ∈ [0, 2π) in O(kn log n) time and O(kn)
space (Theorem 12).

For possible applications, it is relevant to note that rotation-dependent and minimum area
enclosing shapes are commonly used in form-shape analysis [11, 13, 24, 29], as well as in feature
classification [18, 26].

2 Rectilinear hull of a point set

Let P = {p1, . . . , pn} be a set of n points in the plane, in general position. Let CH(P ) denote
the convex hull of P and let V = {p1, . . . , ph} be the set of vertices of its boundary ∂(CH(P )),
as we meet them in counterclockwise order (starting at an arbitrary vertex p1). Further, let
E = {e1, . . . , eh} be the set of edges of ∂(CH(P )), where ei = pipi+1 and the indices are taken
modulo h.
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An open quadrant in the plane is the intersection of two open half planes whose supporting
lines are parallel to the x- and y- axes. Such an open quadrant is said to be P -free if it contains
no element of P . The rectilinear convex hull of P [22] is the set:

RH(P ) = R2 \
⋃

W∈W
W,

where W denotes the set of all P -free open quadrants. See Figure 1, left, for an example. It
is interesting to note that, whith this definition, the rectilinear convex hull might be discon-
nected [22].

Figure 1: Left: The rectilinear convex hull RH(P ) of a point set P . Right: The rectilinear convex
hull RHθ(P ) of the same point set for θ = π/6.

As in Bae et al. [8], we will also consider the rectilinear convex hull when rotating the axes
by an angle θ, also called the θ-rectilinear convex hull of P :

RHθ(P ) = R2 \
⋃

Wθ∈Wθ

Wθ,

whereWθ denotes the set of all P -free open θ-quadrants, i.e., the open quadrants obtained when
the axes are rotated by θ. Figure 1, right, shows an example, where the π/6-rectilinear convex
hull happens to be disconnected.

2.1 Computing and maintaining RHθ(P )

In this subsection we describe an algorithm to compute and maintain RHθ(P ), together with
all its relevant features, over all the rotations of the axes by an angle θ ∈ [0, 2π). The algorithm
works in optimal O(n log n) time and O(n) space, thus improving the O(n2) time complexity
achieved by Bae et al. [8].

Let us start with the fixed value θ = 0. Given two points pi, pj ∈ P , the dominance relation
pi dominates pj , denoted by pj ≺ pi, is defined to be fulfilled when xj ≤ xi and yj ≤ yi. This
relation is a partial order in P , and a point pi ∈ P is called maximal if there does not exist
pj ∈ P such that i 6= j and pi ≺ pj . The Set Maxima Problem [23] consists of finding all the
maximal points of P under this dominance ≺. Note that the condition above is equivalent to pj
being contained in the open quadrant with apex pi which is a translation of the third quadrant.
Analogous set maxima problems can be defined considering the remaining three quadrants, and
the maxima problem for P with respect to any of the four quadrants can be solved optimally
in O(n log n) time and O(n) space [23], where each set of maximal points has a total ordering
and can be organized as a height balanced search tree. These sets of maxima points for P
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with respect to the four quadrants provide the points of P on the boundary ∂(RH(P )) of the
rectilinear convex hull of P for θ = 0. See again Figure 1, left.

Let us move to the case where the axes are rotated as in Bae et al. [8]. The set Vθ(P ) of
points of P lying on the boundary ∂(RHθ(P )) of the rotated RHθ(P ) will be called the set of
vertices of RHθ(P ). As above, for any fixed θ the computation of RHθ(P ) reduces to solving
four set maxima problems, since

Vθ(P ) = Vθ(P ) ∪ Vθ+π
2
(P ) ∪ Vθ+π(P ) ∪ Vθ+ 3π

4
(P ), (1)

for Vθ being the set of maximal points of P with respect to the θ-quadrant defined rotating by θ
the x- and y- axes [8, 12, 22]. In order to keep track of the changes in the set Vθ(P ) of vertices
of RHθ(P ) while changing θ in [0, 2π), we can use results from Avis et al. [7] and Dı́az-Báñez
et al. [12] as follows.

Every point p ∈ Vθ(P ) is the apex of a P -free open θ-quadrant in Wθ. Figure 2(a) shows
a point p that is in Vθ(P ) (i.e., a vertex of RHθ(P )) for all θ in the interval Ip = [θ′, θ′′). The
endpoints of Ip mark the in and out events of p, i.e., the values of θ when p starts and stops
being in Vθ(P ). Because of the general position assumption for P , a point p ∈ P can have at
most three intervals Ip for which it is a vertex of RHθ(P ), i.e., for which p ∈ Vθ(P ).

xθ′

xθ′′

p

Ip

Ipyθ′′

yθ′

(a)

p

Ip xθ′

xθ′′

xθ

(b)

p

Ip
xθ′

xθ′′
xθ

(c)

Figure 2: (a) Ip = [θ′, θ′′), together with P -free open θ′- and θ′′-quadrants (rotations of the first
quadrant) with apex p. (b) Situation for a θ ∈ Ip and P -free open θ-quadrant with apex p.
(c) Situation for a θ /∈ Ip and non-P -free open θ-quadrant with apex p.

The following Theorem 1 is not stated explicitly as a result in [12], but it appears as a main
step of an algorithm for a fitting problem. The proof is obtained by, first, computing the set of
intervals Ip as above for which the points p ∈ P are maximal with respect to some θ-quadrant
(using a result from Avis et al. [7]), then, computing the ordered set of in- and out-events while
θ increases from 0 to 2π (performing a line sweep with four lines to obtain the maximal points
of P for each of the four θ-quadrants). The reader is referred to [12] for further details.

Theorem 1 (Dı́az-Bañez et al. [12]). Computing and maintaining the θ-rectilinear convex hull
RHθ(P ) while θ increases from 0 to 2π can be done in optimal O(n log n) time and O(n) space.
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2.2 Finding the value of θ for which RHθ(P ) has minimum area

For a fixed value of θ, we can compute the area of RHθ(P ) using the fact that

area(RHθ(P )) = area(P(θ))− area(P(θ) \ RHθ(P )), (2)

where P(θ) denotes the filled polygon having the points in Vθ(P ) as vertices and an edge
connecting two vertices if they are consecutive elements in Vθ(P ), see Figure 3. We will compute
the area of P(θ)\RHθ(P ) by decomposing it into two types of regions: (i) The triangles defined
by every pair of consecutive elements in Vθ(P ), and (ii) the rectangular overlaps between two
triangles that make RHθ(P ) being disconnected, see again Figure 3.

Figure 3: Computing the area of RHθ(P ). The polygon P(θ) is bounded by the dash-dotted line.
A triangle and a rectangular overlap are filled with blue.

By Theorem 1, the triangles in (i) above can be maintained in optimal O(n log n) time and
O(n) space. While θ increases from 0 to 2π, the set Vθ(P ) of points on ∂(RHθ(P )) changes at
the values of θ where a point of P becomes (resp. is no longer) a vertex of RHθ(P ). We call
these angles in (resp. out) events.

The rest of this subsection will deal with the rectangles in (ii), showing how to maintain
the set Sθ(P ) of rectangular overlaps that, analogously to Vθ(P ), changes at overlap (resp.
release) events where such a rectangular overlap appears (resp. disappears). See Figure 4. It
is important to notice that there exist point configurations for which overlap and release events
do not coincide with vertex events [8] and, hence, the computations of Vθ(P ) and Sθ(P ) are
independent.

2.2.1 On overlap and release events

Let us label the points of P in Vθ(P ) (recall Equation 1) as v1, . . . , vm in increasing order
according to the rotation xθ of the x-axis. Let W i

θ denote the P -free θ-quadrant supported by
two points vi, vi+1 ∈ Vθ(P ), see Figure 4(a), and proceed analogously for Vθ+π

2
(P ), Vθ+π(P ),

and Vθ+ 3π
4

(P ). The P -free θ-quadrants obtained, that define the boundary of RHθ(P ), will

be called extremal. We say that two such θ-quadrants with a difference of π in the subindex,
e.g., W i

θ and W j
θ+π, are opposite, see again Figure 4(a). When the intersection of two opposite

extremal θ-quadrants is nonempty, as in Figure 4(b) where W i
θ ∩W

j
θ+π 6= ∅, we say that they

overlap, and we denote their intersection by Sθ(i, j). Thus, the set Sθ(P ) of rectangular overlaps
defined above is composed by these Sθ(i, j).

Recall, from the beginning of Subsection 2.1, that for a fixed value of θ the set Vθ(P ) of
vertices can be computed in optimal O(n log n) time and O(n) space. For that fixed θ, the set
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vi

vi+1

vj

vj+1

x
θ′

W i
θ

W j
θ+π

(a)

vi

vi+1

vj

vj+1

x
θ′

(b)

vi

vi+1

vj

vj+1

x
θ′

x
θ′′

(c)

Figure 4: (a) Overlap event (an overlap begins at angle θ′). (b) Overlap, which disconnectsRHθ(P ).
(c) Release event (an overlap ends at angle θ′′).

Sθ(P ) of rectangular overlaps can be computed from Vθ(P ) in O(n) time. In the following, we
show how to efficiently maintain the set Sθ(P ) while θ increases from 0 to 2π. We now justify
why overlaps were defined above only for opposite extremal θ-quadrants.

Lemma 1. If two extremal θ-quadrants have nonempty intersection, then they have to be op-
posite. When this happens, RHθ(P ) gets disconnected.

Proof. In any pair of non-opposite θ-quadrants, one of them contains a ray parallel to a bounding
ray of the other one. Since every extremal θ-quadrant is supported by at least two points of P
(recall that it defines part of the boundary of RHθ(P )), if a pair of non-opposite extremal
θ-quadrants had nonempty intersection, that would imply one of them not being P -free, a
contradiction. See again Figure 4(b).

This property will be useful in the next two subsections, where we will show that the number
of overlap and release events is linear and, then, we will illustrate an algorithm to compute them
in an optimal way.

2.2.2 The chain of arcs

Let the chain of arcs of P , denoted by A(P ), be the curve composed by the points a in the plane
which are apexes of a P -free extremal θ-quadrant W a for some θ ∈ [0, 2π). Notice that W a is
supported by at least two points of P . The sub-chain associated to an edge ei of ∂(CH(P )) will
be defined as the curve Aei composed by those points a such that W a intersects ei. See Figure 5,
left. This sub-chain Aei is monotone with respect to ei, since it is composed by arcs of circles,
which have to be monotone in order for W a to intersect ei, and two consecutive monotone
arcs whose extremal θ-quadrants intersect ei can only form a monotone curve. Finally, since a
sub-chain may have vertices not belonging to P , we call link to the part of a sub-chain which
lies between two points of P . See Figure 5, right.

Note that, if a pair of opposite extremal θ-quadrants generates an overlapping region, then
their apexes lie on intersecting links and the rectangular overlap lies in the area bounded by
the intersection of the two links. See again Figure 5, left. Hence, in order to prove that the
set Sθ(P ) of overlapping regions can be maintained in linear time and space, we will prove that
the number of overlap and release events is linear by proving that there is a linear number of
intersections between links.
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pi

pi+1

ei pi pi+1

Figure 5: Left: The arc-chain of P , highlighting the sub-chain associated to ei. Right: Highlighted,
a link of that sub-chain.

2.2.3 The number of intersections between links is in O(n)

Let us outline the flow of ideas in this subsection. We will construct a weighted graph, whose
vertices are the sub-chain disks, defined as disks that have as diameter an edge of ∂(CH(P )).
The edges of the weighted graph will join those sub-chain disks whose corresponding sub-chains
intersect. The number of intersections will be, precisely, the weight of the edge. Then, the total
number of intersections equals the sum of weights, which we are proving to be linear.

Each point p ∈ P can be in at most four sub-chain disks, because p can be the apex of at
most four P -free wedges of size π

2 (actually, of at most three when considering general position).

Thus, each point p ∈ P can be in the intersection of at most
(4
2

)
= 6 pairs of sub-chain disks,

therefore contributing to the weight of at most 6 edges of the weighted graph. We will prove
that the weight of every edge in the graph is linear on the number of points from P contained
in the corresponding sub-chain disks (Theorem 2). Therefore, the sum of weights in the graph
will be linear on the total number of points in P , as aimed.

We first need a series of three lemmas:

Lemma 2. For any three points a, b, c appearing from left to right on a link, the angle ∠abc lies
in [π2 , π). In particular, every link with endpoints p, q ∈ P is contained in the disk of diameter
pq, which will be called its link disk.

Proof. Since p, q are the endpoints of the link, hence consecutive points of P along the chain,
it turns out that b 6∈ P , W b being a P -free extremal θ-quadrant. That ∠abc ≥ π

2 follows from
a, c not being in the interior of W b (otherwise this would not be P -free, either because some of
a, c is in P or because one of the points of P supporting the extremal θ-quadrants with apexes
a, c is in the interior of W b). That ∠abc < π follows from the orthogonal projections of p and
q over the corresponding edge of ∂(CH(P )) being inside the intersection of that edge with W b.
See Figure 6.

In the following lemma we identify the diameter of a link with the diameter of its link disk.

Lemma 3. Consider the link disks in the two sub-chains associated to a pair of edges of the
boundary ∂(CH(P )). The link disk D of the smallest diameter can be intersected by at most five
links from the other sub-chain Ae.

Proof. Let R be the strip bounded by the lines that orthogonally project D over the edge e
associated to the sub-chain Ae. Because of the monotonicity, only the part of the sub-chain
being inside R can intersect D (see Figure 7, left).

8



b

c

W bp

q
a

Figure 6: Illustration of Lemma 2.

e

D

R

e

p

q

r

e

Figure 7: Left: Only the part of the sub-chain being inside R can intersect D. Middle: There are
no peaks at points of P inside R. Right: At most 5 links intersectD.

If no arc in the sub-chain Ae has endpoints inside R, then at most one link can intersect D.
Otherwise, we will see that the sub-chain Ae has no peaks at points of P inside R: If there
were a peak p ∈ R, let q, r be its neighbors, being r the one closer to the edge e. The segment
obtained by intersecting the parallel to e through q with the strip R, determines a disk which
does not contain the peak p, since the length of pq equals the diameter of a link-disk and, hence,
has to be greater than the diameter of D, which equals the width of R. See Figure 7, middle.
Then ∠qpr < π

2 , a contradiction with W p being P -free.
Since Ae has no peaks at points of P inside R, it can have at most one valley inside R

and, therefore, at most five links from Ae can intersect D, since this is inside R. See Figure 7,
right.

Lemma 4. There are O(n) pairs of intersecting links in the two sub-chains associated to a pair
of edges of ∂(CH(P )).

Proof. Let L be the list of all those links, ordered by increasing diameter. From Lemma 3, the
first link in L is intersected by at most five of the remaining links in L. By removing this link
from L, we get that the next link in the list is also intersected by at most a constant number of
links. As there is a linear number of arcs and each arc belongs to a single link, there is also a
linear number of elements in L. Therefore, by recursively removing the link with the smallest
diameter from L, the total number of intersecting pairs adds up to O(n).

We are now ready to prove the main result of this section, Theorem 2, which implies that
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the weight of every edge in the weighted graph defined above is linear on the number of points
from P contained in the corresponding sub-chain disks.

Theorem 2. There are O(n) intersection points between the links in the two sub-chains as-
sociated to a pair of edges of ∂(CH(P )). Hence, the number of overlap and release events is
in O(n).

Proof. Because of the monotonicity, we know that two links within the same sub-chain can
intersect only at one of their endpoints. By Lemma 4, we just have to prove that links from
two different sub-chains intersect at most twice.

Suppose that there exist at least three intersection points a, b, c between two links from
sub-chains associated to ei and es. Without loss of generality, assume that a, b, c appear from
left to right on the link associated to ei. Note that, then, they also appear from left to right on
the link associated to es, since otherwise at least one of the points cannot belong to this link,
as the three of them would form an angle either smaller than π

2 (Figure 8(a)) or greater than π
(Figure 8(b)), in contradiction with Lemma 2.

ei

es

a

b

c

(a)

ei

es

a

b

c

(b)

Figure 8: (a) ∠cab < π
2 , (b) ∠cba > π.

Let el and em be respectively, the edges of ∂(CH(P )) intersected by the rays from b passing
through a and c. While traversing the edge set of ∂(CH(P )) in counterclockwise direction, es
lies between either el and ei, or ei and em (see Figure 9(a)). Consider es to be in the first case
(the argument for the second case is symmetric) and denote with ` the line perpendicular to
ei passing through a. Since W a is a maximal wedge bounded by rays intersecting ei, as in the
proof of Lemma 2, W a does not contain any other point from the link associated to ei (see
Figure 9(b)). Note that c and ps+1 are in opposite sides of ` and are not contained in W a and,
thus, ∠ps+1ac ≥ π

2 and ∠acps+1 < π
2 . Since a, c, ps+1 appear from left to right on the link

associated to es, we get from Lemma 2 that c cannot belong to As.

2.2.4 Computing the sequence of overlap and release events

Next, we outline the algorithm to compute the sequence of overlap and release events.

Event-sequence algorithm

1. Compute the chain of arcs of P .

Each arc should be described by the points supporting the corresponding extremal θ-
quadrant and the angular interval defined by these points, called the tracing interval. The
elements in A(P ) should be grouped by links.

10
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Figure 9: (a) Valid relative positions of the edge es, (b) c is not contained in As(P ) as ∠acps+1 <
π
2 .

(a) At each insertion event, at most two arcs are generated, and at most one arc is
interrupted. Pointers should be set up from the interrupted arc to the ones just
generated. If an extreme of a new arc is a point in P , a new link should be initialized
with the respective arc.

(b) At each deletion event, at most one arc is generated, and at most two arcs are
interrupted. One of the interrupted arcs will be always ending at a point in P , so a
link is completed. As before, pointers from the interrupted to the newly created arcs
should be set up.

2. Color arcs.

Traverse A(P ) in such way that the vertices of ∂(CH(P )) are visited in counterclockwise
order, while assigning the following colors to each arc: red if its subchain corresponds
to an edge in the upper chain ∂(CH(P )), and blue otherwise (see Figure 10). Note that
regardless of the value of θ, a pair of extremal θ-quadrants intersecting an edge in the upper
chain (resp. lower chain) of ∂(CH(P )) are not opposite to each other. Then, if there is
an intersection between monochromatic links, such an intersection does not correspond to
overlapping extremal θ-quadrants.

Figure 10: The colored chain of arcs of P .

3. Identify bichromatic intersecting links.

Note that the largest possible arc is a semicircle and, therefore, any arc can be partitioned
into at most three segments to get a set of curves monotone with respect to an arbitrary
direction. The arcs in A(P ) can thus be transformed into a set A′(P ) of curves monotone
with respect to the same direction. The Bentley and Ottmann plane sweep algorithm [9]
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can then be applied on A′(P ) to compute the intersection points between arcs. We
discriminate from these points those belonging to bichromatic pairs of arcs. Pointers to
the links containing the arcs involved in each intersection should be set up, so we can
obtain the set of all bichromatic pairs of intersecting links in A(P ).

4. Compute the sequence of overlap and release events.

Consider two extremal θ-quadrants, denoted as Qθ (p, q) and Qθ (r, s), and a pair of arcsıab ∈ C(p, q) and ıcd ∈ C(r, s) (where C(p, q) is the semicircle with diameter the segment
pq, and C(r, s) similarly) with their corresponding tracing intervals (αa, αb) and (αc, αd).
See Figure 11. We say that ıab and ıcd admit overlapping θ-quadrants, if Qϕ (p, q) and
Qψ (r, s) overlap for some ϕ ∈ (αa, αb) and ψ ∈ (αc, αd).

p

q

s

r
a

b

c

d

(a)

p

q

s

r
a

b

c

d

(b)

Figure 11: (a) The arcs Ùab and Ùcd (highlighted) admit overlapping θ-quadrants. (b) Release event
of the corresponding overlapping region.

Assume that ıab and ıcd admit overlapping of opposite θ-quadrants (recall Lemma 1) and,
without loss of generality, suppose that p precedes q in Vθ(P ) for all θ ∈ (αa, αb), and that
r precedes s for all θ ∈ (αc, αd). It is not hard to see that, since the extremal θ-quadrants
Qθ (p, q) and Qθ (r, s) are opposite to each other, (αa, αb) ∩ (αc + π, αd + π) is not empty
and, during this interval, the ray of Qθ (p, q) passing through p (resp. q) is parallel to the
ray of Qθ (r, s) passing through r (resp. s). Note that q and s lie on different sides of the
line `p,r passing through p and r, as otherwise Qθ (p, q) ∩ Qθ (r, s) could not be P -free.
For the same reason, the points p, r lie on opposite sides of `q,s and, therefore, the line
segments pr and qs intersect with each other. It is easy to see that this intersection is
contained in the overlapping region generated by Qθ (p, q) and Qθ (r, s) and, thus, we have
that pr ∩ qs ⊂ D(p, q) ∩D(r, s). Note that the angular interval of maximum size where
Qθ (p, q) and Qθ (r, s) may overlap, called the maximum overlapping interval, is bounded
by the orientations where xθ is parallel to pr and where yθ is parallel to qs.

Observation 1. The arcs ıab and ıcd admit overlapping θ-quadrants if, and only if,
Qθ (p, q) and Qθ (r, s) define a maximum overlapping interval (θ1, θ2), and

(θ1, θ2) ∩ (αa, αb) ∩ (αc + π, αd + π) 6= ∅.

Let
〈
ā1a2, ā2a3, . . . ,˚�akak+1

〉
be the set of arcs for all θ ∈ [0, 2π), where k = O(n), labeled

while traversing A(P ) in such way that the vertices of ∂(CH(P )) are visited in counter-
clockwise circular order. We denote with

a
`u,v the subsequence 〈(au, au+1), . . . , (av, av+1)〉

of consecutive arcs in A(P ) forming a link. Note that the extremal intervals of the arcs
in
a
`u,v define the sequence

〈
αau , . . . , αav+1

〉
of increasing angles. See Figure 12.
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(a) (b)

(c) (d)

Figure 12: The extremal intervals in the same link define a sequence of increasing angles.

Based on the Observation 1 above, we can compute the overlapping regions generated
by the arcs belonging to a pair

a
`u,v and

a
`s,t of intersecting links, as an extension of the

well-known linear-time merge procedure that operates on the lists
〈
αau , . . . , αav+1

〉
and〈

αas + π, . . . , αat+1 + π
〉
, and their corresponding arc sequences: the intersection between

a pair of non-consecutive maximal intervals in the merged list is empty. These pairs can
be ignored, as they do not comply with Observation 1 and, therefore, at most a linear
number of pairs of arcs in

a
`u,v and

a
`s,t admit overlapping θ-quadrants.

Let `u,v and `s,t be two intersecting links containing respectively, nu,v = u − v + 1 and
ns,t = t− s+ 1 arcs. At most O(nu,v + ns,t) pairs of arcs admit overlapping θ-quadrants.
The overlapping regions generated by the admitted extremal θ-quadrants can be computed
using O(nu,v + ns,t) time and space.

By Theorem 2, we know that Step 1 takes O(n log n) time and O(n) space, as a constant
number of additional operations are performed at each event while traversing the vertex event
sequence. Step 2 takes O(n) time and space, as the number of arcs in A(P ) is linear in the
number of elements in P . To compute A(P ) we require a linear run on A(P ) and, by Theorem 2,
the Bentley and Ottmann [9] plane sweep processes A(P ) in O(n log n) time and O(n) space.
Additional linear time is needed to discriminate, from the resulting intersection points, those
belonging to bichromatic intersecting links, thus Step 3 requires a total of O(n log n) time and
O(n) space. Finally, from Lemma 4 and Theorem 2, and the facts that there is a linear number
of arcs and each arc belongs to a single link, Step 4 requires O(n log n) time and O(n) space.
Therefore, we have the following result:

Theorem 3. The sequence of overlap and release events of RHθ(P ), while θ increases from 0
to 2π, can be computed in O(n log n) time and O(n) space.

2.2.5 Sweeping the sequence of overlap and release events

We now store Sθ(P ) in a hash table, using as keys tuples with the points supporting the
overlapping θ-quadrants, in the same order as they are found while traversing Vθ(P ). For an
example, the overlapping region in Figure 11(b) would be stored in Sθ(P ) using as key the
tuple (p, q, r, s).
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Figure 13: Left: Representation of overlap and release events and 0-quadrants. Right: Simultaneous
rotation of the four θ-quadrants, stopping when one of their defining rays passes over an overlap
event.

We further store the sequence of overlap and release events as points on an unit circle [0, 2π),
over which we represent the θ-quadrants. See Figure 13, left. Then, we counterclockwise rotate
the four θ-quadrants simultaneously around the center, stopping when one of their defining rays
passes over an overlap event, in order to update Sθ(P ) accordingly. See Figure 13, right. It is
easy to see that, at any fixed value of θ there are O(n) overlapping regions in RHθ(P ), which
can be computed in linear time from Vθ(P ). Since, by Theorem 2, there are O(n) overlap and
release events, we obtain the following result.

Theorem 4. Using the sequence of overlap and release events, the set Sθ(P ) can be maintained
while θ increases from 0 to 2π in O(n) time and O(n) space.

2.3 Minimum area

In this section we adapt the results from Bae et al. [8] to compute the value of θ that minimizes
the area of RHθ(P ) in optimal O(n log n) time and O(n) space.

Let (α, β) be an angular interval in [0, 2π) containing no events. Extending Equation (2),
we express the area of RHθ(P ) for any θ ∈ (α, β) as

area(RHθ(P )) = area(P(θ)) −
∑
j

area(4j(θ)) +
∑
k

area(�k(θ)). (3)

Remember that P(θ) denotes the polygon having the points in Vθ(P ) as vertices, with an edge
connecting two vertices if they are consecutive elements in Vθ(P ). The term 4j(θ) denotes the
triangular region bounded by the line through two consecutive vertices vj , vj+1 ∈ Vθ(P ), the
line through vj parallel to the rotation of the x-axis, and the line through vj+1 parallel to the
rotation of the y-axis. Finally, the term �k(θ) denotes the k-th overlapping region in Sθ(P ).
Recall Figure 3.

We now show that at any particular value of θ we can evaluate Equation (3) in linear time
and, as θ increases from 0 to 2π, a constant number of terms need to be updated at each event,
regardless of its type.

2.3.1 The polygon

At any fixed value of θ, the area of P(θ) can be computed from Vθ(P ) in O(n) time. The term
area(P(θ)) changes only at vertex events. These changes can be handled in constant time: at an
in (resp. out)-event, the area of a triangle needs to be subtracted (resp. added) to the previous
value of area(P(θ)). See Figure 14.
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Figure 14: (a) The point p is about to become a vertex. (b) After the insertion event of p, the area
of the white triangle needs to be subtracted from area(P(θ)).

2.3.2 The triangular regions

According to Bae et al. [8], the area of 4j(θ) can be expressed as

area(4j(θ)) = b2j · cos(cj + (θ − α)) · sin(cj + (θ − α)), (4)

where b2j and cj are constant values depending on the coordinates of the vertices supporting the
θ-quadrant which bounds 4j(θ). Contracting Equation (4) we have that

area(4j(θ)) =
1

2
b2j · sin 2(cj + (θ − α))

=
1

2
b2j · [ sin(2cj) · cos 2(θ − α) + cos(2cj) · sin 2(θ − α) ]

= Bj · cos 2(θ − α) + Cj · sin 2(θ − α), (5)

where Bj = 1
2b

2
j · sin(2cj) and Cj = 1

2b
2
j · cos(2cj). Equation 5 can be computed in constant

time, and there are O(n) triangles, since the number of vertices in Vθ(P ) is linear. Thus, at any
fixed value of θ the term

∑
j area(4j(θ)) can be computed in O(n) time. At an insertion event

the term for one triangle is removed from
∑
j area(4j(θ)) and, as a vertex supports at most

two extremal θ-quadrants, the terms of at most two triangles are added. The converse occurs
for deletion events. The term

∑
j area(4j(θ)) is not affected by overlap or release events. See

Figure 15.

vj

vj+1

(a)

vj

vj+2

vj+1

(b)

Figure 15: Updating the term
∑
j area(4j(θ)). At an insertion event, (a) at most one triangle have

to be removed, and (b) at most two triangles have to be added.
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2.3.3 The overlapping regions

According to Bae et al. [8] the area of the k-th overlapping region can be expressed as

area(�k(θ)) = |(xi − xj) cos(θ − α) + (yi − yj) sin(θ − α)| (6)

× |(yi+1 − yj+1) cos(θ − α) + (yi+1 − yj+i) sin(θ − α)|,

where (xi, yi) are the coordinates of the vertex pi, and similarly for pi, pi+1, pj , and pj+1. These
four points are the vertices that support the overlapping θ-quadrants that generate �k(θ).
Contracting Equation 6 the area of the k-th overlapping region can be expressed as

area(�k(θ)) = Bk + Ck cos 2(θ − α) +Dk sin 2(θ − α), (7)

where Bk, Ck, and Dk are constants depending on the coordinates of the vertices supporting
the overlapping θ-quadrants that generate �k(θ). Equation (7) can be computed in constant
time and there are O(n) overlapping regions in Sθ(P ), so at any fixed value of θ the term∑
k area(�k(θ)) can be computed in O(n) time. Overlap or release events require the term of a

single overlapping region to be added to or deleted from
∑
k area(�k(θ)). As a vertex supports

at most two extremal θ-quadrants, at an overlap event the terms of a constant number of
overlapping regions are added or deleted.

Before describing the minimum area algorithm, we need the next three important properties of
area(RHθ(P )). First of all, from Lemma 4 in Bae et al. [8], there are configurations of points
such that the optimal area does not occur at in- or out vertex events, i.e., the value of θ for which
area(RHθ(P )) is minimum in (α, β) will be a value such that α < θ < β. Second, Equation (3)
has O(n) terms for any θ ∈ (α, β) and thus, it can be reduced to

area(RHθ(P )) = C +D cos 2(θ − α) + E sin 2(θ − α) (8)

in O(n) time. The terms C, D and E denote constants resulting from adding up the constant
values in area(P(θ)) and in Equations (5) and (7). Finally, as Equation (8) has a constant
number of inflection points in [0, 2π), a constant number of operations suffice to obtain the
value of θ that minimizes area(OHθ(P )) in (α, β). Notice that at this point we can also ask for
the value of θ that maximizes area(OHθ(P )) in (α, β), and that, in fact, the maximum can be
also take place in any of the extremes α or β.

2.3.4 The search algorithm

We now outline the algorithm to compute the angle θ for which RHθ(P ) has minimum area.

1. Compute the sequence of events.

Compute the sequence of vertex in- and out-events, as described in Subsection 2.1, and
the sequence of overlap and release events, as described in Subsection 2.2.4. Merge both
sequences into a single circular sequence of angles < θ1, θ2, . . . , θm−1, θm, θ1 >, m ∈ O(n),
which we can represent in a circular table as in Figure 13. Clearly, while θ increases in
[0, 2π) the relevant features of RHθ(P ) remain unchanged during each interval (θi, θi+1),
and each angle θi is an in-, out-, overlap-, or release-event.

2. Initialize the angular sweep.

Represent the four θ-quadrants over the circular table, as we did in Figure 13. Without loss
of generality, assume that the first (counterclockwise) defining ray of the first θ-quadrant
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intersects the angular interval (θ1, θ2). Compute the sets Vθ1 and Sθ1 for the current θ1

as before, and express area(RHθ(P )) for θ ∈ [θ1, θ2) using Equation (8). Compute the
constant values in this equation considering the restriction θ ∈ [θ1, θ2). Optimize the
resulting equation to compute the angle θmin (resp. θmax) of minimum (resp. maximum)
area.

3. Perform the angular sweep.

Rotate simultaneously the four four θ-quadrants, as we did in Subsection 2.2.5. During
the sweeping process, update Vθ(P ) and Sθ(P ) as explained before. Additionally, at each
event:

(a) Update Equation (8) by adding or subtracting terms as previously explained.

(b) Optimize the updated version of Equation (8) to obtain the local angle of minimum
(resp. maximum) area, and replace θmin (resp. θmax) if area(RHθ(P )) is improved.

From Theorems 1 and 3, computing the sequences of vertex and overlap and release events
takes O(n log n) time and O(n) space. As both sequences have O(n) events, we require linear
time to merge them into the sequence of events and thus, Step 1 consumes a total of O(n log n)
time and O(n) space. At Step 2, Vθ(P ) can be computed in O(n log n) time and O(n) space
(see [17]), and Sθ(P ) can be easily computed from Vθ(P ) in linear time. An additional linear
time is required to obtain Equation (8), while θmin (resp. θmax) can be computed in constant
time. This gives a total of O(n log n) time and O(n) space. Finally, by Theorems 1 and 4,
respectively, maintaining Vθ(P ) and Sθ(P ) requires O(n log n) time and linear space for each.
Step 3(a) and Step 3(b) are repeated O(n) times (one per event in the sequence) and, as we
described before, each repetition takes constant time. Therefore, to perform Step 3 we consume
a total of O(n log n) time and O(n) space. Notice that, after the sweeping process is finished, in
additional O(n log n) time and O(n) space we can compute both RHθ(P ) and area(RHθ(P ))
for the angle θmin (resp. θmax) giving the minimum (resp. maximum) area.

The optimality of the algorithm is clear since given RHθ(P ) we can compute in linear time
CH(RHθ(P )) = CH(P ), and it is known that computing the convex hull of a set of n points
in the plane has an Ω(n log n) time lower bound [23]. From this analysis, we obtain our main
result.

Theorem 5. Computing RHθ(P ) for the value of θ ∈ [0, 2π) such that RHθ(P ) has minimum
(or maximum) area can be done in optimal O(n log n) time and O(n) space.

3 O-hull of a point set

As mentioned in Section 1, orthogonal convexity can be generalized to consider a finite set O
of k different lines passing through the origin. A set is thus said to be O-convex if its intersection
with any line parallel to an element of O is either connected or empty. Following the lines in
Section 2, here we study the O-convex hull of a set P of n points.

3.1 Definitions

Let us label the lines in O as `1, . . . , `k, so that i < j implies that the slope of `i is smaller than
the slope of `j . We consider the set of lines in O being sorted by slope; otherwise we would
spend O(k log k) time for that sorting and add this complexity to the total complexity of the
upcoming algorithms. Nevertheless, the number k of lines will be smaller than the number n
of input points of the problem because if k > n then, at most n lines can participate as it
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will becomes clear in Subsection 3.2.1, and thus O(k log k) will be in O(n log n). However, the
complexity of some of our algorithms can be sensitive to k, which will appear as a multiplicative
factor.

The origin splits each `i into two rays ri and ri+k, generating a set of 2k rays. Hereinafter,
indices are such that 2k + i := i. Given two indexes i and j, we define the wedge Wi,j to be
the open region spanned as we rotate ri in the counterclockwise direction until it reaches rj . A

translation of a Wi,j wedge will be called a W j
i wedge, and one of these will be said to be P -free

if it does not contain any point of P . Of particular interest to us is the set of W i+k
i+1 wedges,

i = 1, . . . , 2k, which we will call O-wedges for short. See Figure 16.
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Figure 16: Top: A set O with k = 3. Bottom: From left to right, the corresponding Wi+1,i+k

wedges for i = 1, . . . , 2k.

We denote by W i the union of all the P -free W i+k
i+1 wedges. Thus, by analogy with the

orthogonal case in Section 2, the O-hull of P is (see Figure 17 for an example):

OH(P ) = R2 \
2k⋃
i=1

W i.

Figure 17: The set O in Figure 16 and the O-hull OH(P ) for a point set P .

As in Section 2, we consider rotations of the axes by an angle θ. Let Oθ be the set of lines
obtained after rotating the elements of O by an angle θ. Clearly, the Oθ-hull of P , denoted as
OHθ(P ), changes while θ goes from 0 to 2π, since rotating O by an angle θ makes the wedges
Wi,j rotate as well and, hence, the sets W i change accordingly. We will denote the resulting set
as W i

θ, so that OHθ(P ) is now defined as (see Figure 18 for an example):

OHθ(P ) = R2 \
2k⋃
i=1

W i
θ.
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Figure 18: Changes on the Oθ-hull OHθ(P ) while changing θ.

3.2 Computing OH(P )

In this subsection we provide an optimal O(n log n) time and O(n) space algorithm to compute
the O-hull OH(P ) of a set P of n points.

3.2.1 Computing the vertices

For each ri, compute first the directed line parallel to ri which supports (the pre-computed)
CH(P ) leaving P on its right side. Suppose, without loss of generality, that each of these lines
intersects CH(P ) at a single point, labelled psi , i = 1, . . . , 2k. Notice that it is not necessarily
true that psi is different from psi+1 . Thus, ps1 , ps2 , . . . , ps2k are vertices of the boundary of the
O-hull, ∂(OH(P )), see Figure 19, labelled as we meet them in counterclockwise order. Note
also that these psi might not give all the vertices of ∂(OH(P )), see again Figure 19.

Because of the definition OH(P ) = R2\∪2k
i=1W i, we need to compute ∂(W i) and this requires

knowing when a wedge in W i can intersect the interior of CH(P ). It is easy to see that there
are wedges in W i that intersect the interior of CH(P ) if, and only if, psi 6= psi+1 , and that any
wedge in W i intersecting the interior of CH(P ) necessarily does so by intersecting an edge of
∂(CH(P )) whose endpoints pj , pj+1 fulfill si ≤ j, j + 1 < si+1. See Figure 19. Abusing the
notation, let us denote by [si, si+1] the closed interval of those indices of vertices on ∂(CH(P ))
between si and si+1, called the stabbing interval of W i. See the caption of Figure 19.

Observation 2. If s belongs to the stabbing interval [si, si+1] of a wedge in W i, then the
orientation of the edge es of ∂(CH(P )) belongs to the sector formed by the rays ri and ri+1

in O. See Figure 19 once more. Also note that, if O contains the supporting lines of the h
edges in ∂(CH(P )), then the stabbing interval of each of all the W i is a point and therefore
OH(P ) = CH(P ).

It is easy to see that we can calculate the elements ps1 , . . . , ps2k on ∂(CH(P )) in O(n log n)
time, in fact, in O(k log n) time. This gives us the endpoints of the stabbing interval [si, si+1].
Only those intervals not being a single index will be needed, the others can be discarded. Next,
we calculate the alternating polygonal chain on ∂(OH(P )) connecting psi to psi+1 , which we
refer to as staircase.

19



ps1 = ps2

ps3 = ps4

ps5

ps6r1

r2r3

r4

r5 r6

r2

r4

r3

r5

r3

r5

r4

r6

r1

r5

r2

r6

r1

r3

Figure 19: Left: Recalling Figure 16. Right: The O-hull OH(P ) in Figure 17, showing which edges
of ∂(CH(P )), if any, are intersected by wedges in each Wi. Note that wedges in W1 and W3, for
which examples are lined instead of solid, do not intersect the interior of CH(P ). For p1 being the
uppermost point and labelling counterclockwise the vertices of ∂(CH(P )), the stabbing intervals
are [1, 4], [4, 6], [6, 7], and [7, 1].

3.2.2 Computing the staircases

The staircase connecting psi to psi+1 is determined by wedges in W i and is contained in the
boundary ∂(W i). Counterclockwise around OH(P ), right turns arise at apexes of wedges inW i

which we call extremal, and left turns arise at points of P which we call the supporting points
of those extremal wedges. See Figure 20.

p

r

s

Figure 20: Another OHθ(P ) for the O in Figure 16. Left: An extremal wedge in W6 with apex p
and supporting points r and s. Right: Opposite extremal O-wedges, one in W6 and the other
in W3. In dark, the overlapping region, which is now a rhomboid instead of a rectangle.

Before presenting how to compute the staircase, let us note that OH(P ) can also be dis-
connected. Similarly to Subsection 2.2.1, we say that a pair of extremal wedges are opposite to
each other if one of them is in W i and the other in W i+k (i.e., one is defined by parallels to the
rays ri+1 and ri+k and the other by parallels to the rays ri+k+1 and ri). As seen in Figure 20, a
non-empty intersection between two opposite O-wedges results in OH(P ) being disconnected.
In such case, we say that the intersecting wedges overlap, and refer to their intersection as their
overlapping region. The following lemma is a straightforward generalization of Lemma 1.

Lemma 5. If two extremal O-wedges have nonempty intersection, then they have to be opposite.
When this happens, OHθ(P ) gets disconnected.
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We now proceed with the computation of the staircases, starting by the computation of
their supporting points. In order to do so, we make use of an algorithm by Avis et al. [7]. Let
us call αi the angle defined by two consecutive rays ri and ri+1, so that the wedges in W i have
aperture angle Θi = π − αi. We consider Θ = min{Θi : i = 1, . . . , 2k} and we will distinguish
two cases: either Θ ≥ π

2 or Θ < π
2 according to the “well distributed” criteria of the lines in O.

For the first case where Θ ≥ π
2 , i.e., all the sectors defined by the k lines have aperture angle

at most π
2 , the algorithm by Avis et al. [7] finds, in O(n log n) time and O(n) space, the maximal

Θ-escaping wedges, defined as those (i) having as apex a point p ∈ P , (ii) having aperture angle
at least Θ, and (iii) being P -free, i.e., not containing any point of P in its interior. (In other
words, maximal Θ-escaping wedges are the maximal wedges allowing an angle Θ to escape from p
without hitting other points of P .) The points being apexes of a maximal Θ-escaping wedge
are called Θ-maxima. Indeed, for each such wedge the algorithm by Avis et al. [7] provides its
two defining rays. Thus, the algorithm gives at most three maximal Θ-escaping intervals for
every p ∈ P , hence a linear number in total.

p
. . .

Figure 21: Left: Escaping intervals for a point p and Θ = π
2 as in Figure 16. Right: Circular table

where the solid circles correspond to the points p1, . . . , pn from the inside to the outside. On them,
the Θ-escaping intervals, where the ones for the p depicted in the left are highlighted. In gray, the
stabbing interval corresponding to the wedge W2,4 from Figure 16 (the other stabbing intervals are
omitted for the sake of clarity). Finally, the innermost circle reflects, as small marks, the vertex
events in [0, 2π) corresponding to the endpoints of the escaping intervals.

We will store these intervals in a circular table, together with the stabbing wedges Wi+1,i+k.
See Figure 21. Doing so, when a stabbing wedge Wi+1,i+k fits into the escaping interval of a
point p, we know that p is not only a Θ-maxima, but actually a Θi-maxima, which is indeed
equivalent to be a supporting point in ∂(W i). (In Figure 21, right, the gray stabbing interval
from the wedge W2,4 does not fit into the black escaping interval, because in the left picture the
wedge W 4

2 with apex p cannot escape from p.)
Thus, in O(n log n) time and O(n) space we can sort the endpoints of the two types of

intervals and sweep circularly the table, stopping at the defining rays of the wedges Wi+1,i+k to
check if the corresponding p supports the staircase contained on ∂(W i). This gives the set V(P )
of vertices of OH(P ). It just remains to obtain the boundary of OH(P ), for which standard
techniques [23] can be used in order to compute the staircases ∂(W i) from their supporting
points and to join them in O(n log n) time and O(n) space. Hence, we have computed OH(P )
in O(n log n) time and O(n) space. This time complexity is optimal, since given OH(P ) we can
compute in linear time CH(OH(P )) = CH(P ), and it is known that computing the convex hull
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of a set of n points in the plane has an Ω(n log n) time lower bound [23]. Therefore, we get the
following result.

Theorem 6. Given a set O of k lines such that Θ ≥ π
2 , OH(P ) can be computed in optimal

O(n log n) time and O(n) space.

For the second case where Θ < π
2 , the algorithm from Avis et al. [7] also works for Θ < π

2 , but
now in O( nΘ log n) time and O( nΘ) space. The algorithm gives at most 2π

Θ maximal Θ-escaping
intervals for every p ∈ P . Thus, we can construct a circular table as above, storing at most 2π

Θ
circular intervals for each p, hence using O( nΘ) space in total. Therefore, the previous result is
extended as follows:

Theorem 7. Given a set O of k lines such that Θ < π
2 , OH(P ) can be computed in O( nΘ log n)

time and O( nΘ) space.

Note that the value 1
Θ can be considered a constant for not too small values of Θ.

3.3 Computing and maintaining OHθ(P )

Recall that, as we rotate O by an angle θ to obtain Oθ, the wedges Wi,j also rotate. Thus, the
sets W i change accordingly, giving rise to the sets W i

θ. The rotated hull Oθ-hull of P is then
(recall Figure 18):

OHθ(P ) = R2 \
2k⋃
i=1

W i
θ.

Let ∂(W i
θ) denote the boundary of W i

θ. As in Subsection 3.2.2, ∂(W i
θ) is an alternating

polygonal chain, or staircase, with interior angle Θi = π−αi where, in counterclockwise direction
around OHθ(P ), right turns arise at apexes of Oθ-wedges inW i

θ, called extremal, and left turns
arise at points of P which are the supporting points of those extremal wedges. Recall Figure 20.

The following lemma follows directly from Lemma 5.

Lemma 6. If two extremal Oθ-wedges have nonempty intersection, then they have to be opposite.
When this happens, OHθ(P ) gets disconnected.

As in Subsection 3.2.2, let Θ = min{Θi : i = 1, . . . , 2k} for Θi = π − αi, and again we will
consider the two cases above.

The first case is where Θ ≥ π
2 . We next show how to maintain OHθ(P ) for θ ∈ [0, 2π). As in

Subsection 2.2, we will denote by Sθ(P ) the set of overlapping regions in OHθ(P ), and by Vθ(P )
the set of vertices of OHθ(P ) in counterclockwise order while traversing ∂(W i

θ), i = 1, . . . , 2k.
Applying a rotation of angle θ to the set O changes the OHθ(P ). In particular, the sup-

porting vertices of the staircases ∂(W i
θ) might change. We now aim to update those staircases,

in O(log n) time per insertion or deletion of a point. In order to do so, we need to maintain
the (at most) 2k staircases into (at most) 2k different balanced trees, one for each staircase.
Notice that some of the staircases may appear and/or disappear during the rotation. The total
insertion or deletion operations can be done in O(kn log(kn)) = O(kn log n) time.

Using the circular table in Figure 21, we can rotate the (gray) stabbing wedges Wi+1,i+k,
stopping at events arising when a defining ray of a stabbing wedge hits a vertex event in
the innermost circle, i.e., entering or leaving an escaping interval (black). This provides the
information about whether the stabbing wedges fit or not into the escaping intervals and this,
as in Subsection 3.2.2, allows to handle the insertion or deletion of points in the set Vθ(P ) of
vertices of OHθ(P ) (i.e., the points on the staircases). Since the number of escaping intervals
for a point is at most three and during the rotation these can arise in any of the 2k wedges
corresponding to rotated Wi+1,i+k, there are O(kn) events. Thus, we get the following result.
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Theorem 8. Given a set O of k lines such that Θ ≥ π
2 , computing and maintaining the

boundary of OHθ(P ) during a complete rotation for θ ∈ [0, 2π) can be done in O(kn log n) time
and O(kn) space.

Furthermore, it is easy to see that while running our algorithm, we can keep track of the
parameters in the following result.

Corollary 1. Given a set O of k lines such that Θ ≥ π
2 , computing an orientation θ such

that the boundary of OHθ(P ) has minimum number of steps, or minimum number of staircases,
or it is connected, or it has the minimum number of connected components, can be done in
O(kn log n) time and O(kn) space.

Now, as in Section 3.2, we can also handle the second case where Θ < π
2 .

Theorem 9. Given a set O of k lines such that Θ < π
2 , computing and maintaining the

boundary of OHθ(P ) during a complete rotation for θ ∈ [0, 2π) can be done in O(k nΘ log n) time
and O(k nΘ) space.

Corollary 2. Given a set O of k lines such that Θ < π
2 , computing an orientation θ such

that the boundary of OHθ(P ) has minimum number of steps, or minimum number of staircases,
or it is connected, or it has the minimum number of connected components, can be done in
O(k nΘ log n) time and O(k nΘ) space.

Another interesting consequence of Theorem 9 is that we can also generalize Theorem 1 to
the case where k = 2 and the two lines are not perpendicular.

Corollary 3. For a set O given by two non-perpendicular lines, computing and maintaining
the boundary of OHθ(P ) during a complete rotation for θ ∈ [0, 2π) can be done in O( nΘ log n)
time and O( nΘ) space, where Θ is the smallest aperture angle of the sectors defined by the two
lines.

3.4 Finding the value of θ for which OHθ(P ) has minimum area

The results in Subsections 2.2 and 2.3 can be adapted to the case of a set O of k lines through
the origin such that all the sectors they define have aperture angle at most π

2 , i.e., with Θ ≥ π
2 .

Again, for a fixed value of θ, we can compute the area of OHθ(P ) using the fact that

area(OHθ(P )) = area(P(θ))− area(P(θ) \ OHθ(P )), (9)

where P(θ) denotes the polygon having the points in Vθ(P ) as vertices and an edge connecting
two vertices if they are consecutive elements in Vθ(P ). Again, we will compute the area of
P(θ) \ OHθ(P ) by decomposing it into two types of regions: (i) The triangles defined by every
pair of consecutive elements in Vθ(P ), and (ii) those rhomboid overlaps between two triangles
which make OHθ(P ) be disconnected. Recall Figures 3 and 20.

By Theorem 8, the triangles in (i) above can be maintained in O(kn log n) time and O(kn)
space. While θ increases from 0 to 2π, the set Vθ(P ) of points on ∂(OHθ(P )) changes at the
values of θ where a point of P becomes (resp. is no longer) a vertex of OHθ(P ). These angles
are again called insertion (resp. deletion) events.

Next, we will deal with the rhomboids in (ii), showing how to maintain the set Sθ(P ) of
rhomboid overlaps which, analogously to Vθ(P ), changes at overlap (resp. release) events. We
will use the same techniques as in Subsection 2.2, but repeating the process at most k times, i.e.,
computing separately all the possible overlapping rhomboids for each pair of opposite staircases
in OHθ(P ) while θ increases in [0, 2π).
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3.4.1 The sequence of overlap and release events

Let us denote an overlap as Sθ(i, j), and let Sθ(P ) be the set of all overlaps Sθ(i, j) of OHθ(P ),
for angle θ. By Theorem 8, for a fixed value of θ, OHθ(P ) can be computed in O(kn log n) time
and O(kn) space, and then Sθ(P ) can be computed from Vθ(P ) in O(n) time.

To maintain the set Sθ(P ) while θ increases from 0 to 2π, we will compute a sequence of
events for each pair of opposite staircases, computing their overlap and release events. The
events of each pair are computed independently, and then the k sequences are merged in O(kn)
time to form the definitive sequence of all overlap and release events.

By Lemma 6, only opposite staircases ∂(W i
θ) and ∂(W i+k

θ ) can intersect, i.e., for any θ,
only one pair {i, i+ k} of opposite staircases can intersect, making OHθ(P ) disconnected. The
corresponding intersection can be composed of several overlapping regions, which we will show
next how to maintain as θ increases.

We will adapt the definitions and observations in Subsection 2.2.2, highlighting the differ-
ences. First, the chain of arcs is defined in the same way, with the only difference that the locus
of the points being apexes of P -free extremal θ-wedges might be “flatter arcs”, with curvature
smaller than or equal to that of circle arcs, since the aperture angles of the wedges are now at
least π

2 instead of exactly π
2 . Naturally, the possibility of the arcs being flatter does not affect

to the monotonicity of a sub-chain Aei with respect to an edge ei of ∂(CH(P )). The property
of overlapping regions corresponding to intersecting links is also maintained. The reader might
recall Figure 5, considering the possibility that flatter arcs appear.

Next, we adapt Subsection 2.2.3 to see that the number of intersections between links is
now in O(kn). For that, it is enough to check that Lemmas 2, 3, and 4 are valid for each of the
k pairs of opposite staircases in OHθ(P ) and, using them, Theorem 2 is still true for each of
the O(k) pairs of opposite staircases in OHθ(P ). It is important to notice that the assumption
of Θ ≥ π

2 in this Subsection 3.4 is needed for these two last paragraphs to work.
Then, we can adapt Subsection 2.2.4 to compute the sequence of overlap and release events.

In order to do so, we proceed with an algorithm analogous to the one outlined there, but
computing in O(n log n) time and O(n) space the sequence of overlap and release events for
each pair of opposite staircases. After doing so, we merge the k sequences of overlap and release
events obtained into a single sequence of overlap and release events, obtaining the sorted events
during a complete rotation of θ from 0 to 2π. In this way, we get the following result, which
generalizes Theorem 3.

Theorem 10. The sequence of overlap and release events for OHθ(P ), while θ increases from 0
to 2π, can be computed in O(kn log n) time and O(kn) space.

In order to sweep the sequence of overlap and release events, we store again the events
sequence as points on a circle [0, 2π), over which we represent the wedges Wi+1,i+k in a similar
way as we did in the innermost circle in Figure 21, right (where we stored the vertex events
instead). Proceeding as in Subsection 2.2.5, but considering that now we have at most O(kn)
total overlap and release events, we get the following result, which generalizes Theorem 4.

Theorem 11. Using the sequence of overlap and release events for OHθ(P ), the set Sθ(P ) can
be maintained while θ increases in [0, 2π) using O(kn) time and O(kn) space.

3.4.2 Computing minimum area

The final step is to compute the value of θ that minimizes (or maximizes) the area of OHθ(P ).
We show next how to compute this angle in O(kn log n) time and O(kn) space.
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Let α, β be two events (of any type) such that (α, β) is an angular interval in [0, 2π) containing
no events. Extending Equation 9 and mimicking Equation 3, we express the area of OHθ(P )
for any θ ∈ (α, β) as follows:

area(OHθ(P )) = area(P(θ)) −
∑
i

area(4i(θ)) +
∑
j

area(♦j(θ)). (10)

As before, P(θ) denotes the polygon having the points in Vθ(P ) as vertices, and an edge connect-
ing two vertices if they are consecutive elements in Vθ(P ). The term 4i(θ) denotes a triangle
defined by two consecutive vertices p, q ∈ Vθ(P ). The boundary of this triangle is formed by the
line segment pq and one of the current Oθ-wedges inW i

θ supported by p and q. As the aperture
angle of an extremal wedge is at least π

2 , the triangle is now either rectangular (Figure 3) or
obtuse (Figure 22). Finally, the term ♦j(θ) denotes the j-th overlapping region in Sθ(P ), which
is now either a rectangle (Figure 3) or a rhomboid (Figure 23).

We now show that, for any particular value of θ, we can evaluate Equation (10) in O(kn log n)
time and, as θ increases from 0 to 2π, a constant number of terms need to be updated at each
event, regardless of its type.

The polygon. At any fixed value of θ the area of P(θ) can be computed from Vθ(P ) in O(n)
time. The term area(P(θ)) changes only at vertex events. These events can be processed in
constant time, since at an insertion (resp. deletion) event, the area of a single triangle needs to
be subtracted (resp. added) to the previous value of area(P(θ)), as the same as in Figure 14.

The triangles. Let p and q be two consecutive vertices in Vθ(P ) such that p precedes q. Sup-
pose that, for any θ ∈ (α, β), the points p and q define the triangle 4i(θ). This triangle is
bounded by pq and an extremal wedge supported by p and q. Let ω ≥ π

2 denote the aperture
angle of the extremal wedge, and ωp and ωq denote respectively, the internal angles of 4i(α) at
p and q. See Figure 22.

r1

r5

(a)

p

qω

(b)

Figure 22: Computing the area of a triangular region. (a) The wedge of size ω that bounds the
triangle. (b) The triangle defined by p and q.

The area of 4i(θ) can be expressed as

area(4i(θ)) =
|pq|2

2 sin(ω)
· sin(ωp + (θ − α)) · sin(ωq − (θ − α)), (11)

and expanding Equation (11) we obtain

area(4i(θ)) = A · cos2(θ − α) +B · cos(θ − α) · sin(θ − α) + C · sin2(θ − α)

= D + E · cos(2(θ − α)) + F · sin(2(θ − α)), (12)
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where A . . . F are constant values in terms of ω, ωp, ωq, and the coordinates of p and q. Therefore,
the term

∑
i area(4i(θ)) is linear in cos(2(θ− α)) and sin(2(θ− α)). Since each point of P can

appear in O(k) staircases we have O(kn) triangles, which can be processed in O(kn) time as we
described in Subsection 2.2.

The overlapping regions. Let p, q be two consecutive vertices in Vθ(P ) such that p precedes
q, and let r, s be two consecutive vertices in Vθ(P ) such that r precedes s. Suppose that, for any
θ ∈ (α, β), the points p, q, r, s define the overlapping region ♦j(θ). Without loss of generality, we
assume that p and q support an extremal wedge in W i, and that r and s support an extremal
wedge in W i+k. We denote with ω ≥ π

2 the aperture angle of both wedges. See Figure 23(a).
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Figure 23: Computing the area of an overlapping region. (a) The overlapping region defined by
p, q, r, and s. (b) The triangle 4prA. (c) The triangle 4qsB.

Let us consider the overlapping region when θ = α. Based on the triangles 4prA (Fig-
ure 23(b)) and 4qsB (Figure 23(c)), the area of ♦j(θ) can be expressed as

♦j(θ) =
|pr| · |qs|
sin2(w)

· sin(ωp + (θ − α)) · sin(ωs − (θ − α)), (13)

and expanding Equation 13 we obtain

area(4i(θ)) = A′ · cos2(θ − α) +B′ · cos(θ − α) · sin(θ − α) + C ′ · sin2(θ − α)

= D′ + E′ · cos(2(θ − α)) + F ′ · sin(2(θ − α)), (14)

where A′ . . . F ′ are constant values in terms of ω, ωp, ωs, and the coordinates of p, q, r, and s.
The term

∑
i area(♦i(ϕ)) is therefore linear in cos(2(θ − α)) and sin(2(θ − α)). We thus can

have at most O(kn) overlapping regions in the sequence of overlap and release events, so they
can be processed in O(kn) time as in Subsection 2.3. Notice that the area of a rhomboid can
be computed in constant time analogously to the area of a rectangle, so the formulas there are
analogous. Using the algorithm in Subsection 2.3.4 with the mentioned changes in the number
of events and complexities, we get our final result.

Theorem 12. Given a set O of k lines such that Θ ≥ π
2 , computing OHθ(P ) with minimum

(or maximum) area over all θ ∈ [0, 2π) can be done in O(kn log n) time and O(kn) space.
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[4] C. Alegŕıa-Galicia, D. Orden, C. Seara, and J. Urrutia. On the O-hull of planar point
sets. 30th European Workshop on Computational Geometry (EuroCG), (2014).
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