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Abstract In this paper, we concentrate on generating cutting planes for the
unsplittable capacitated network design problem. We use the unsplittable flow
arc-set polyhedron of the considered problem as a substructure and generate
cutting planes by solving the separation problem over it. To relieve the com-
putational burden, we show that, in some special cases, a closed form of the
separation problem can be derived. For the general case, a brute-force algo-
rithm, called exact separation algorithm, is employed in solving the separation
problem of the considered polyhedron such that the constructed inequality
guarantees to be facet-defining. Furthermore, a new technique is presented
to accelerate the exact separation algorithm, which significantly decreases the
number of iterations in the algorithm. Finally, a comprehensive computational
study on the unsplittable capacitated network design problem is presented to
demonstrate the effectiveness of the proposed algorithm.
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1 Introduction

The unsplittable capacitated network design problem plays an important role
in many applications such as telecommunication network design, production
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distribution, and express package delivery; see [7,14,19] and the references
therein. Given a network, a demand set with its origin-destination pairs of
nodes for commodities, and a facility set with different types of facilities (with
varying capacities and installation costs), the unsplittable capacitated network
design problem is to install integer multiples of facilities on each arc of the
network and route the flow of each commodity on a single path such that
the total flow cannot exceed the total capacity on each arc, and the sum of
facility installation costs and flow routing costs is minimized while meeting
the demands of the commodities.

Let G = (V,E) be a directed graph with the node set V and the arc set
E. Denote Q and T be the sets of commodities and facilities, respectively.
The demand of commodity q ∈ Q from the source node ζq to the destination
node ηq is known as aq. Suppose that wij

q is the routing cost for commodity
q on arc (i, j) ∈ E. If one module of facility t ∈ T is installed on arc (i, j),
let bt and pijt represent the additional capacity and the installation cost on
arc (i, j), respectively. The existing capacity on arc (i, j) is known as cij . We
introduce the binary variable xij

q to denote whether or not commodity q goes

through arc (i, j). The variable yijt denotes the number of facility t installed on
arc (i, j). With these notations and variables, the mathematical formulation
of the unsplittable capacitated network design problem is

min
x,y

∑

(i,j)∈E

∑

q∈Q

wij
q xij

q +
∑

(i,j)∈E

∑

t∈T

pijt y
ij
t , (1)

s.t.
∑

(i,j)∈E

xij
q −

∑

(j,i)∈E

xji
q =







1, if i = ζq;
−1, if i = ηq;
0, otherwise,

∀ q ∈ Q, i ∈ V, (2)

∑

q∈Q

aqx
ij
q ≤

∑

t∈T

bty
ij
t + cij , ∀ (i, j) ∈ E, (3)

xij
q ∈ {0, 1}, yijt ∈ Z+, ∀ q ∈ Q, t ∈ T, (i, j) ∈ E. (4)

In the above formulation, we minimize the sum of facility installation costs
and flow routing costs in the objective function (1). Constraint (2) is the flow
balance constraint. Constraint (3) is the capacity constraint that requires that
the total flow cannot exceed the total capacity on each arc.

Problem (1)-(4) is NP-hard even for |Q| = 1 and |T | = 1 [15]. Hence there
is little hope to develop a theoretically efficient algorithm for solving it. Nev-
ertheless, several polyhedral studies of some special cases of the problem have
been done in the literature [2,4,7,8,13,14,19,28,30], which suggests us that it
is possible to develop a computationally efficient algorithm if the polyhedral
structure is well understood. Inspired by this, in this paper, we consider the
convex hull of the set related to the capacity constraint on each arc, i.e., the
so-called unsplittable flow arc-set polyhedron P = conv (X) where

X =







(x, y) ∈ {0, 1}|Q| × Z
|T |
+ :

∑

q∈Q

aqxq ≤
∑

t∈T

btyt + c







.
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Here the arc subscripts on variables xij
t and yijt , and parameter cijt are dropped.

There exist several works studying the unsplittable flow arc-set polyhedron.
In particular, Brockmüller et al. [13,14] developed the c-strong inequality for
the unsplittable flow arc-set polyhedron when there are only two facilities and
the capacity of the second facility is an integer multiple of that of the first
one. For problems with a single facility, i.e., |T | = 1, Atamtürk and Rajan
[4] proposed the k-split c-strong inequality and the lifted cover inequality. Van
Hoesel et al. [30] studied the lower convex envelope inequality. Their computa-
tional experiments on the c-strong inequality, the k-split c-strong inequality,
the lifted cover inequality, and the lower convex envelope inequality demon-
strate the effectiveness of integrating these inequalities in a branch-and-cut
framework. Benhamiche et al. [8] generalized the c-strong inequality to solve
a variant of the unsplittable capacitated network design problem.

Unfortunately, most of these studies are restricted to the unsplittable flow
arc-set polyhedron with a single facility or two facilities with divisible ca-
pacities. The valid inequalities developed under these assumptions cannot be
applied in the context of an arbitrary number of facilities and arbitrary ca-
pacities.

In this study, we do not make assumptions on either the number of facilities
or the structure of the capacities. Instead, our approach is to develop an exact
separation algorithm to solve the separation problem of the unsplittable flow
arc-set polyhedron P with an arbitrary number of facilities and arbitrary ca-
pacities. More precisely, given a point (x̄, ȳ) ∈ R

|Q|×R
|T |, we want to generate

a hyperplane to separate point (x̄, ȳ) from P or prove that point (x̄, ȳ) ∈ P .
To do this, we first analyze the coefficients in the nontrivial facet-defining
inequality of polyhedron P , which is employed in formulating the separation
problem as an optimization problem. We prove that the solution of the opti-
mization problem corresponds to a facet-defining inequality of polyhedron P .
To relieve the computational burden, we show that, in some special cases, a
closed form of the optimization problem can be derived. For the general case,
the exact separation algorithm, which includes the four steps: preprocessing,
row generation, numerical errors, and sequential lifting, is employed in solv-
ing the optimization problem. Furthermore, a new technique is presented to
accelerate the exact separation algorithm, which significantly decreases the
number of iterations in the row generation subroutine. Finally, a comprehen-
sive computational study is presented to test the effectiveness of the proposed
algorithm.

It is worth noting that the considered exact separation for the unsplittable
flow arc-set polyhedron can be seen as an extension of the exact separation
for the 0-1 knapsack polytope; see [5,6,9,10,11,12,20,31] and the references
therein. The difference is that the exact separation for the 0-1 knapsack poly-
tope cannot handle non-binary integer variables, whereas the approach in this
paper takes the non-binary integer variables into consideration such that it can
be customized to solve the unsplittable capacitated network design problem.

The organization of this paper is as follows. In Sect. 2, we analyze the
properties of the nontrivial facet-defining inequalities of polyhedron P and
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formulate the separation problem as an optimization problem. In Sect. 3, We
consider some special cases for which a closed form of the optimization prob-
lem can be derived. In Sect. 4, we give a framework of the exact separation
algorithm including preprocessing in Sect. 4.1, row generation in Sect. 4.2,
numerical errors in Sect. 4.3, and sequential lifting in Sect. 4.4. In Sect. 5, we
present the numerical results. Finally, in Sect. 6, we give some conclusions and
future works.

Throughout this paper, let ei ∈ R
|Q| and fj ∈ R

|T | be the i-th |Q|-
dimensional unit vector and j-th |T |-dimensional unit vector, respectively.
Denote e = (1, 1, . . . , 1)⊤ ∈ R

|Q| and f = (1, 1, . . . , 1)⊤ ∈ R
|T |. We use XLP to

denote the linear relaxation of set X obtained by relaxing the integer variables
to continuous variables. We assume that T = {1, . . . , |T |} 6= ∅, 0 < b1 ≤ · · · ≤
b|T |, and aq > 0 for all q ∈ Q. Without loss of generality, we assume a⊤e−c > 0
since otherwise the capacity constraint in the unsplittable flow arc-set X is
redundant.

2 Separation problem for the unsplittable flow arc-set polyhedron

In this section, we first study the polyhedral properties of the unsplittable flow
arc-set polyhedron P . Then we formulate the separation problem over poly-
hedron P as an optimization problem and prove that there exists an optimal
solution which corresponds to a facet-defining inequality of polyhedron P .

2.1 Characteristics of the unsplittable flow arc-set polyhedron

We first note that polyhedron P is full dimensional.

Proposition 1 The dimension of polyhedron P is |Q|+ |T |.

Next, the following characterizations of some vertices and extreme rays of
polyhedron P are straightforward.

Proposition 2 The extreme rays of polyhedron P are (0,f1), . . . , (0,f |T |).

Proposition 3 The point (x, ρt(x)f
t) is a vertex of polyhedron P for each

x ∈ {0, 1}|Q| and t ∈ T , where

ρt(x) = max
{⌈

(a⊤x− c)/bt
⌉

, 0
}

. (5)

The initial constraints xq ≥ 0, xq ≤ 1, yt ≥ 0, and a⊤x ≤ b⊤y+c are called
trivial inequalities of polyhedron P . We now present a necessary condition to
guarantee the nontrivial inequality

α⊤x ≤ β⊤y + γ (6)

to be facet-defining for polyhedron P .
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Proposition 4 Let (6) be a nontrivial facet-defining inequality of polyhedron
P . Then

(i) αq ≥ 0 and αq ≤ ⌈aq/bt⌉βt for each q ∈ Q and t ∈ T ;
(ii) 0 < βt ≤ ⌈bt/bk⌉βk for each t, k ∈ T with t 6= k;

(iii) γ ≥

{

0, if c ≥ 0;

−⌈−c/bt⌉βt, ∀ t ∈ T, otherwise.

Proof For notation convenience, denote F = P ∩ {(x, y) : α⊤x = β⊤y + γ}.
(i) For each q ∈ Q, since F is a nontrivial facet of polyhedron P and

inequality (6) differs from xq ≥ 0, there exists a point (x(1), y(1)) ∈ F with

x
(1)
q = 1 and

α⊤x(1) = β⊤y(1) + γ. (7)

Since the coefficient aq > 0, we have (x(1) − eq, y(1)) ∈ P , and hence point
(x(1) − eq, y(1)) satisfies the valid inequality (6), i.e.,

α⊤x(1) − αq ≤ β⊤y(1) + γ. (8)

Subtracting (7) from (8), we obtain αq ≥ 0. On the other hand, as inequality

(6) differs from xq ≤ 1, there exists a point (x(2), y(2)) ∈ F such that x
(2)
q = 0.

This, combined with the fact that (x(2) + eq, y(2) + ⌈aq/bt⌉f t) ∈ P for each
t ∈ T , indicates that αq ≤ ⌈aq/bt⌉βt.

(ii) For each t ∈ T , since inequality (6) differs from yt ≥ 0, there exists

a point (x(3), y(3)) ∈ F such that y
(3)
t ≥ 1. Then for all k ∈ T \{t}, we have

(x(3), y(3) − f t + ⌈bt/bk⌉f
k) ∈ P , which further implies that βt ≤ ⌈bt/bk⌉βk.

For each t ∈ T , as (0,f t) is an extreme ray of polyhedron P (see Proposition
2), we have βt ≥ 0. If βτ = 0 for some τ ∈ T , then 0 ≤ βt ≤ ⌈bt/bτ⌉βτ = 0
for all t ∈ T \{τ}. Hence, inequality (6) reduces to α⊤x ≤ γ. This, together
with the fact that (e, ⌈(a⊤e− c)/bt⌉f t) ∈ P , implies α⊤e ≤ γ. However, this
means that inequality (6) is dominated by the bound constraints and, thus it
cannot define a facet of polyhedron P . Therefore, βt > 0 for all t ∈ T .

(iii) If c ≥ 0, since (0,0) ∈ P , then γ ≥ 0; otherwise, as (0, ⌈−c/bt⌉f t) ∈ P ,
it follows that γ ≥ −⌈−c/bt⌉βt for all t ∈ T . ⊓⊔

2.2 Separation problem

Given a point (x̄, ȳ) ∈ R
|Q| ×R

|T |, the separation problem of polyhedron P is
to construct a hyperplane (induced by inequality (6)) separating (x̄, ȳ) from
P strictly, i.e.,

α⊤x ≤ β⊤y + γ, ∀ (x, y) ∈ P,

and
α⊤x̄ > β⊤ȳ + γ,

or prove that no such hyperplane exists, i.e., point (x̄, ȳ) ∈ P . The separation
problem is trivial to be solved if point (x̄, ȳ) /∈ XLP since one of the inequalities
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0 ≤ xq ≤ 1, q ∈ Q, yt ≥ 0, t ∈ T , and
∑

q∈Q aqxq ≤
∑

t∈T btyt + c must be
violated by this point. Hence, we assume that point (x̄, ȳ) ∈ XLP throughout
this paper. Solving the separation problem is equivalent to solving

v = max
α,β,γ

x̄⊤α− ȳ⊤β − γ,

s.t. x⊤α− y⊤β − γ ≤ 0, ∀ (x, y) ∈ P,

(α, β, γ) ∈ S,

(9)

where S is a closed convex set which guarantees that problem (9) is bounded. If
v ≤ 0, we prove (x̄, ȳ) ∈ P ; otherwise, we find the hyperplane α⊤x = β⊤y+ γ
separating (x̄, ȳ) from P strictly. Let (x1, y1), . . . , (xu, yu), u ∈ Z+, be the
vertices of polyhedron P . From the well-known Minkowski-Weyl theorem [25,
32] and the description of the extreme rays of polyhedron P in Proposition 2,
problem (9) can be reduced to

v = max
α,β,γ

x̄⊤α− ȳ⊤β − γ,

s.t. (xk)⊤α− (yk)⊤β − γ ≤ 0, k = 1, . . . , u,

βt ≥ 0, ∀ t ∈ T, (α, β, γ) ∈ S.

(10)

Notice that from Proposition 4, we have βt > 0 for all t ∈ T in the nontrivial
facet-defining inequality (6) of polyhedron P . Hence, here we consider a special
choice of S:

S = {(α, β, γ) : β1 = 1}, (11)

where 1 ∈ T . Based on this selection, problem (10) further reduces to

max
α,β,γ

x̄⊤α− ȳ⊤β − γ,

s.t. (xk)⊤α− (yk)⊤β − γ ≤ 0, k = 1, . . . , u,

β1 = 1, βt ≥ 0, ∀ t ∈ T \{1}.

(12)

Below we shall show that problem (12) is feasible and bounded.

Lemma 1 Given a point (x̄, ȳ) ∈ XLP, problem (12) is feasible and bounded.

Proof We only need to show that problem (12) is bounded since the point
(α, β, γ) = (0,f1, 0) is a feasible solution. We shall use the contradiction
argument to prove the boundedness of problem (12). Suppose that problem
(12) is unbounded. Then there exists a vector (∆α,∆β,∆γ) ∈ R

|Q|×R
|T |×R

such that ∆β1 = 0, ∆βt ≥ 0 for all t ∈ T \{1},

(xk)⊤∆α− (yk)⊤∆β −∆γ ≤ 0, for all k = 1, . . . , u, (13)

and
x̄⊤∆α− ȳ⊤∆β −∆γ > 0. (14)

Combining (13) and (14), we have

(x̄− xk)⊤∆α > (ȳ − yk)⊤∆β, for all k = 1, . . . , u. (15)
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Define a point x̂ ∈ R
|Q| such that

x̂q =

{

1, if ∆αq ≥ 0;

0, if ∆αq < 0.

From Proposition 3, point (x̂, ρ1(x̂)f
1) is a vertex of polyhedron P where ρ1(x̂)

is defined in (5). By substituting this point into (15) and using 0 ≤ x̄q ≤ 1 for
all q ∈ Q, ȳt ≥ 0 for all t ∈ T (as (x̄, ȳ) ∈ XLP), ∆β1 = 0, and ∆βt ≥ 0 for all
t ∈ T \{1}, we have that

0 ≥
∑

q∈Q,∆αq≥0

(x̄q − 1)∆αq +
∑

q∈Q,∆αq<0

(x̄q − 0)∆αq >

∑

t∈T\{1}

(ȳt − 0)∆βt + (ȳ1 − ρ1(x̂))∆β1 ≥ 0,

which leads to a contradiction. Thus problem (12) is bounded. ⊓⊔

Lemma 1 guarantees that problem (12) contains at least one optimal so-
lution. Next, we shall show that using the simplex method to solve problem
(12), we will obtain a facet-defining inequality of polyhedron P .

Theorem 1 Given a point (x̄, ȳ) ∈ XLP, the basic optimal solution (α, β, γ)
of the linear programming problem (12) defines a facet-defining inequality (6)
of polyhedron P .

Proof Let (α, β, γ) be a basic optimal solution of problem (12) and (6) be the
corresponding inequality. For notation purpose, denote h = |Q|+|T |. From the
linear programming theory, except the equality β1 = 1, there exist another h
active constraints at point (α, β, γ) such that the vectors of the coefficients of
the constraints are linearly independent. Without loss of generality, we assume
that these constraints are βt = 0 for t = ℓ1, . . . , ℓτ (ℓi ∈ T \{1}, i = 1, . . . , τ),
and (xk)⊤α− (yk)⊤β − γ = 0 for k = 1, . . . , h− τ . Then





















(x1)⊤ (y1)⊤ 1
...

...
...

(xh−τ )⊤ (yh−τ )⊤ 1
0⊤ (fℓ1)⊤ 0
...

...
...

0⊤ (fℓτ )⊤ 0

























α
−β
−γ



 =



















0

...

0



















,

where the rank of the coefficient matrix is h. By adding the first row to the
last τ rows, we have





















(x1)⊤ (y1)⊤ 1
...

...
...

(xh−τ )⊤ (yh−τ )⊤ 1
(x1)⊤ (y1 + fℓ1)⊤ 1

...
...

...
(x1)⊤ (y1 + fℓτ )⊤ 1

























α
−β
−γ



 =



















0

...

0



















.
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It follows immediately that the rank of the new coefficient matrix is also h.
Hence the points (x1, y1), (x2, y2), . . . , (xh−τ , yh−τ ), (x1, y1+fℓ1), . . . , (x1, y1+
fℓτ ) are affinely independent. Furthermore, these points satisfy (6) at equal-
ity. This, together with the fact that the dimension of polyhedron P is h in
Proposition 1, implies that (6) is a facet-defining inequality of polyhedron P .

⊓⊔

3 A closed form of the separation problem: sufficient conditions

Given a point (x̄, ȳ) ∈ XLP, in this section, we consider some special cases
for which a closed form of problem (12) can be derived. The analysis result
of these special cases will be used as a preprocessing technique to reduce
the computational time of solving problem (12) for the general case. We first
consider the case with a single facility, i.e., |T | = 1, and then generalize it to
the multifacility case, i.e., |T | ≥ 2. All proofs of the propositions in this section
are given in the appendix.

To simplify the notation, in what follows, we refer problem (12) as the sep-
aration problem of polyhedron P . We say inequality (6) solves the separation
problem (12) for polyhedron P if point (α, β, γ) is one of its optimal solutions.
For notation purpose, denote

r = max {⌈−c/b1⌉ , 0} (16)

and
d ∈ argmax q {x̄q : q ∈ Q} . (17)

3.1 Single facility

In this subsection, we consider the single facility case, i.e., T = {1}. If Q = ∅,
problem (12) is a single variable problem which can be trivially solved, and
hence we assume Q 6= ∅. Throughout this subsection, we restrict to consider
the case where (i) the capacity of one module of this facility is larger than
or equal to the demand of each commodity; and (ii) if any commodity q goes
through this arc, we need to install one more module of this facility on the
arc. Mathematically, this can be written as the following two assumptions:

(i) aq ≤ b1 for all q ∈ Q;
(ii) b1r + c < aq for all q ∈ Q.

We next give a closed form of the separation problem (12) under some condi-
tions in Propositions 5 and 6.

Proposition 5 Let (x̄, ȳ) ∈ XLP. Suppose that T = {1}, (i), (ii), and
∑

q∈Q

aq ≤ b1(r + 1) + c (18)

hold. The inequality xd ≤ y1− r solves the separation problem (12). Moreover,
it defines a facet of polyhedron P .
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Example 1 LetX1 =
{

(x, y) ∈ {0, 1}4 × Z+ : 11x1 + 15x2 + 24x3 + 50x4 ≤ 100y
}

and (x̄, ȳ) = (0.3, 0.5, 0.9, 0.1, 0.38). Since r = 0, c = 0 ≤ aq for q = 1, 2, 3, 4,

and
∑4

q=1 aq = 11+15+24+50 = 100 ≤ 100 = b1, by Proposition 5, inequal-
ity x3 ≤ y is a solution of the separation problem (12) which is violated by
point (x̄, ȳ).

The condition (18) in Proposition 5 requires a large b. To see this, suppose
c = 0. Then r = 0 and the condition reduces to

∑

q∈Q aq ≤ b1, which means
one module of the facility is enough to cover all the demands through this arc.
Due to this, we derive a closed form under a condition with a smaller b in the
following.

Proposition 6 Let (x̄, ȳ) ∈ XLP. Suppose that T = {1}, (i), (ii), and

∑

q∈Q

aq − aq̄ ≤ b1(r + 1) + c <
∑

q∈Q

aq, ∀ q̄ ∈ Q (19)

hold. Then we have the followings.

(a) If |Q| ≤ 2, the inequality
∑

q∈Q xq ≤ y1 − r solves the separation problem
(12).

(b) If |Q| ≥ 3, one of the following three inequalities solves the separation
problem (12), respectively:











































xd ≤ y1 − r, if

∑

q∈Q x̄q

|Q| − 1
≤ x̄d;

1

|Q| − 1

∑

q∈Q

xq ≤ y1 − r, if x̄d <

∑

q∈Q x̄q

|Q| − 1
≤ 1;

∑

q∈Q

xq ≤ y1 − r + |Q| − 2, if

∑

q∈Q x̄q

|Q| − 1
> 1.

Moreover, in both two cases, the inequalities define facets of polyhedron P ,
respectively.

Example 2 LetX2 =
{

(x, y) ∈ {0, 1}4 × Z+ : 11x1 + 15x2 + 24x3 + 50x4 ≤ 90y
}

.
It is easy to verify the conditions of Proposition 6 are satisfied. Suppose
(x̄, ȳ) = (0.4, 0.5, 0.4, 0.4, 0.47). By simple calculation, it follows that d = 2,

x̄d = 0.5, and 0.5 <
∑4

i=1 x̄i/(4− 1) = 17
30 < 1. From Proposition 6, this gives

us the inequality

1

3
(x1 + x2 + x3 + x4) ≤ y,

which cuts off point (x̄, ȳ).
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3.2 Multifacility

In this subsection, we consider the multifacility case, i.e., |T | ≥ 2. Throughout
this subsection, we restrict to consider the case with (i), (ii), and

(iii)
∑

q∈Q aq ≤ bt + c for all t ∈ T \{1}.

Assumption (iii) means that except the facility 1 ∈ T , the capacity of one
module of other facilities is large enough to carry out all commodities.

Given a point (x̄, ȳ) ∈ XLP, under assumption (iii), we observe that if
∑

t∈T\{1} ȳt ≥ 1, it follows that point (x̄, ȳ) ∈ P . Indeed, since point (x̄, ȳ) ∈

XLP, we have 0 ≤ x̄ ≤ 1. Then, using Proposition 4(i) and the fact that aq > 0,
in order to prove (x̄, ȳ) ∈ P , it is enough to show that point (e, ȳ) ∈ P .
Similarly, by Proposition 4(ii) and bt > 0 for all t ∈ T , it suffices to show
that (e, ȳ) ∈ P with

∑

t∈T\{1} ȳt = 1 and ȳ1 = 0. The latter is true since

(e, ȳ) =
∑

t∈T\{1} ȳt(e,f
t), and by assumption (iii), (e,f t) ∈ P for each

t ∈ T \{1}. Therefore, in the remaining of this subsection, we only consider
the case

∑

t∈T\{1} ȳt < 1.

Let

Q̃ :=

{

q ∈ Q : x̄q >
∑

t∈T\{1}

ȳt

}

. (20)

Based on Propositions 5 and 6, we can derive similar results under the addi-
tional assumption (iii) in the case |T | ≥ 2. This is summarized in Propositions
7 and 8.

Proposition 7 Let (x̄, ȳ) ∈ XLP. Suppose that |T | ≥ 2, (i), (ii), (iii), (18)
and

∑

t∈T\{1} ȳt < 1 hold. Then we have the followings.

(a) If Q̃ = ∅, the inequality 0 ≤ y1 + r
∑

t∈T\{1} yt − r solves the separation

problem (12).
(b) If Q̃ 6= ∅, the inequality xd ≤ y1 + (r + 1)

∑

t∈T\{1} yt − r solves the

separation problem (12).

Moreover, in both two cases, the inequalities define facets of polyhedron P ,
respectively.

Proposition 8 Let (x̄, ȳ) ∈ XLP. Suppose that |T | ≥ 2, (i), (ii), (iii), (19),
and

∑

t∈T\{1} ȳt < 1 hold. Then we have the followings.

(a) If Q̃ = ∅, the inequality 0 ≤ y1 + r
∑

t∈T\{1} yt − r solves the separation

problem (12).
(b) If Q̃ 6= ∅ and Q̃ 6= Q, the inequality xd ≤ y1 + (r + 1)

∑

t∈T\{1} yt − r

solves the separation problem (12).
(c) If Q̃ = Q with |Q| ≤ 2, the inequality

∑

q∈Q xq ≤ y1+(r+|Q|)
∑

t∈T\{1} yt−

r solves the separation problem (12).
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(d) If Q̃ = Q with |Q| ≥ 3, one of the following three inequalities solve the
separation problem (12), respectively:







































xd ≤ y1 + (r + 1)
∑

t∈T\{1}

yt − r, if

∑

q∈Q x̄q −
∑

t∈T\{1} ȳt

|Q| − 1
≤ x̄d;

1

|Q| − 1

∑

q∈Q

xq ≤ y1 +

(

r +
|Q|

|Q| − 1

)

∑

t∈T\{1}

yt − r, if x̄d <

∑

q∈Q x̄q −
∑

t∈T\{1} ȳt

|Q| − 1
≤ 1;

∑

q∈Q

xq ≤ y1 + (r + 2)
∑

t∈T\{1}

yt − r + |Q| − 2, if

∑

q∈Q x̄q −
∑

t∈T\{1} ȳt

|Q| − 1
> 1.

Moreover, in all four cases, the inequalities define facets of polyhedron P ,
respectively.

Remark 1 Together with the trivial inequalities, the inequalities listed in Propo-
sitions 5-8 describe polyhedron P , respectively. Otherwise, suppose that there
exists a facet-defining inequality (6) with β1 = 1 differing from any of the
inequalities in the list of Proposition 5 (Proposition 6, 7, or 8). Then there
exists a point (x̄, ȳ) ∈ P fulfilling inequality (6) at equality and the inequalities
listed in the proposition are all inactive at this point. Considering the separa-
tion problem (12) with point (x̄, ȳ), we know that the inequalities listed in the
proposition cannot solve this problem, which leads to a contradiction.

4 An exact separation algorithm

Unlike Sect. 3, in this section, we focus on solving problem (12) without any
assumptions on the data. To begin with, we note that since the number of
constraints in problem (12) may be exponential, from a computational per-
spective, it is impractical to solve problem (12) when all the constraints are
expressed explicitly. For this reason, we follow [31] to solve problem (12) by
decomposing into the following four steps.

1. Preprocessing. In order to save computational time, we implement some
preprocessing methods before solving problem (12). Firstly, instead of solv-
ing problem (12) directly, we solve a lower dimensional problem to find
a violated inequality for the lower dimensional polyhedron. Besides, we
avoid solving problem (12) if a most violated inequality is known or point
(x̄, ȳ) ∈ P (e.g., by using Propositions 5-8).

2. Row generation. We find a violated inequality or report that no violated
one exists by solving problem (12) over the lower dimensional polyhedron
with a row generation subroutine.

3. Numerical errors. To avoid numerical instabilities, the constructed in-
equality is scaled to obtain integral coefficients and the right hand side is
recomputed to guarantee its validity.

4. Sequential lifting. The variables that are fixed in the preprocessing step
are sequentially lifted to obtain a strong valid inequality for polyhedron P .
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4.1 Preprocessing

Given a point (x̄, ȳ) ∈ XLP, let us fix the variables which take values on their
bounds and consider the lower dimensional polyhedron P (x̄, ȳ) = conv (X(x̄, ȳ))
where

X(x̄, ȳ) =







(x, y) ∈ {0, 1}|Q̄| × Z
|T̄ |
+ :

∑

q∈Q̄

aqxq ≤
∑

t∈T̄

btyt + c̄







,

Q̄ = {q ∈ Q : 0 < x̄q < 1}, T̄ = {t ∈ T : ȳt > 0}, and c̄ = c−
∑

q∈Q, x̄q=1 aq.

Similar to problem (12), we may solve the separation problem over polyhedron
P (x̄, ȳ) by considering

max
α,β,γ

∑

q∈Q̄

x̄qαq −
∑

t∈T̄

ȳtβt − γ,

s.t.
∑

q∈Q̄

xk
qαq −

∑

t∈T̄

ykt βt − γ ≤ 0, k = 1, . . . , ū,

β1 = 1, βt ≥ 0, ∀ t ∈ T̄\{1},

(21)

where (x1, y1), . . . , (xū, yū), ū ∈ Z+, are the vertices of polyhedron P (x̄, ȳ).
Notice that here we, without loss of generality, assume that ȳ1 > 0. Both the
numbers of variables and constraints in problem (21) are less than or equal
to those in problem (12). Therefore, it can be expected that problem (21) is
easier to be solved than problem (12), especially when the number of fixed
variables is large.

We next present a preprocessing procedure based on the following obser-
vations.

(i) If Q̄ = ∅ and T̄ = ∅, then point (x̄, ȳ) ∈ P (x̄, ȳ) and, hence there does not
exist a violated inequality.

(ii) If Q̄ = ∅ and T̄ = {1}, there is only a single facet-defining inequality
y1 ≥ ⌈−c̄/b1⌉ of polyhedron P (x̄, ȳ). If it is violated by point (x̄, ȳ), we
directly move to the sequential lifting step in Sect. 4.4. Otherwise, we have
(x̄, ȳ) ∈ P (x̄, ȳ).

(iii) If
∑

q∈Q̄

aq⌈x̄q⌉ ≤
∑

t∈T̄

bt⌊ȳt⌋+ c̄, (22)

then we can conclude that (x̄, ȳ) ∈ P (x̄, ȳ). To see this, let

K =
{

(x̄, ȳ) : xq ∈ {⌊x̄q⌋, ⌈x̄q⌉}, ∀q ∈ Q̄, yt ∈ {⌊ȳt⌋, ⌈ȳt⌉}, ∀t ∈ T̄
}

.

It follows from (22) thatK ⊆ X(x̄, ȳ). Therefore, we have (x̄, ȳ) ∈ conv (K) ⊆
P (x̄, ȳ).

(iv) For polyhedron P (x̄, ȳ), if one of the conditions in Propositions 5-8 is sat-
isfied, we move to the sequential lifting step in Sect. 4.4 or conclude that
point (x̄, ȳ) ∈ P (x̄, ȳ) depending on whether or not one of the inequalities
listed in the corresponding proposition is violated by point (x̄, ȳ).
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4.2 Row generation

We now describe the row generation subroutine for solving problem (21). In-
stead of solving the whole problem (21) with the potentially exponential many
constraints, the row generation subroutine solves a problem with a subset of
constraints, i.e.,

v(U) = max
α,β,γ

∑

q∈Q̄

x̄qαq −
∑

t∈T̄

ȳtβt − γ,

s.t.
∑

q∈Q̄

xqαq −
∑

t∈T̄

ytβt − γ ≤ 0, ∀ (x, y) ∈ U,

βt ≥ 0, ∀ t ∈ T̄\{1}, β1 = 1,

(23)

in each iteration, where U ⊆ P (x̄, ȳ). We call (23) the partial separation prob-
lem. Apparently, the partial separation problem (23) is a relaxation of problem
(21). Therefore, if v(U) ≤ 0, we conclude that point (x̄, ȳ) ∈ P (x̄, ȳ); otherwise,
the solution (ᾱ, β̄, γ̄) of problem (23) corresponds to the inequality

∑

q∈Q̄

ᾱqxq ≤
∑

t∈T̄

β̄tyt + γ̄, (24)

which is violated by point (x̄, ȳ). To further test whether or not inequality
(24) is valid for X(x̄, ȳ), we solve the following unbounded integer knapsack
problem:

z = max
x,y







∑

q∈Q̄

ᾱqxq −
∑

t∈T̄

β̄tyt − γ̄ : (x, y) ∈ X(x̄, ȳ)







. (25)

If z ≤ 0, inequality (24) is valid for X(x̄, ȳ); otherwise the optimal solution of
(25) violates inequality (24), and hence, we add this solution into set U and
the procedure continues.

In contrast to the separation problem (12), for which it is shown to be
bounded in Lemma 1, the partial separation problem (23) can be unbounded.

Example 3 Let X0 = {(x, y) ∈ {0, 1} × Z+ : 3x ≤ 5y} and (x̄, ȳ) = (0.5, 0.3).
Initializing U = ∅, the partial separation problem (23) reduces to v(∅) =
maxα,γ {0.5α− 0.3− γ}, which is unbounded.

In order to avoid the partial separation problem (23) to be unbounded, we
shall provide some bounds on the variables. As it has been shown in Theorem
1, the basic optimal solution of problem (21) corresponds to a facet-defining
inequality of polyhedron P (x̄, ȳ). Combining it with Proposition 4 and the fact
that β1 = 1, we can add the bound constraints

0 ≤ αq ≤ ⌈aq/b1⌉, ∀ q ∈ Q̄,

1 ≤ βt ≤ ⌈bt/b1⌉, ∀ t ∈ T̄ ,

min {−⌈−c̄/b1⌉, 0} ≤ γ,

(26)
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to problem (21) and then derive a stronger partial separation problem:

v(U) = max
α,β,γ

∑

q∈Q̄

x̄qαq −
∑

t∈T̄

ȳtβt − γ,

s.t.
∑

q∈Q̄

xqαq −
∑

t∈T̄

ytβt − γ ≤ 0, ∀ (x, y) ∈ U,

0 ≤ αq ≤ ⌈aq/b1⌉, ∀ q ∈ Q̄,

1 ≤ βt ≤ ⌈bt/b1⌉, ∀ t ∈ T̄ ,

γ ≥ min{−⌈−c̄/b1⌉, 0}.

(27)

Clearly, problem (27) is bounded.
Another issue needed to be addressed is that the optimal solution of the

unbounded knapsack problem (25) may not be unique. The inequality derived
by some optimal solution may be stronger than those derived by other optimal
solutions.

Example 4 LetX3 =
{

(x, y) ∈ {0, 1}4 × Z+ : 11x1 + 15x2 + 24x3 + 50x4 ≤ 60y
}

.
Consider the point (x̄, ȳ) = (0.9, 0.5, 0.7, 0.1, 0.7). After solving the partial
separation problem (27) with U = {(1, 1, 1, 1, 2)}, we obtain the solution
(α, β, γ) = (1, 0, 1, 0, 1, 0) corresponding to the inequality x1 + x3 ≤ y. Con-
sidering the associated unbounded integer knapsack problem (25), we have
two optimal solutions (1, 0, 1, 0, 1) and (1, 1, 1, 0, 1) which correspond to the
inequalities

α1 + α3 − 1− γ ≤ 0 (28)

and
α1 + α2 + α3 − 1− γ ≤ 0, (29)

respectively. Obviously, inequality (29) is stronger than inequality (28). If we
add inequality (29) to problem (27), in the next iteration, we will obtain
the optimal solution (α, β, γ) = (1, 0, 0, 1, 1, 0) corresponding to the inequality
x1+x4 ≤ y, which is violated by point (x̄, ȳ). Moreover, by solving unbounded
integer knapsack problem (25), we know that x1 + x4 ≤ y is valid for P (x̄, ȳ).
However, if we add inequality (28) to problem (27), it can be checked that it
needs more iterations to solve the separation problem (21).

We see from Example 4 that, to speed up the row generation procedure,
among (possible) multiple optimal solutions of the unbounded integer knap-
sack problem, it is crucial to select one which corresponds to a stronger in-
equality for problem (27). Due to this, we next describe an iterative approach
to modify an existing optimal solution for problem (25) such that the new
optimal solution corresponds to a (possibly) stronger constraint in problem
(27).

Let (x̃, ỹ) be an optimal solution of the unbounded integer knapsack prob-
lem (25). The corresponding inequality in problem (27) is

∑

q∈Q̄

x̃qαq −
∑

t∈T̄

ỹtβt − γ ≤ 0. (30)
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Now suppose that x̃q′ = 0 for some q′ ∈ Q̄ and point (x̃ + eq
′

, ỹ) ∈ X(x̄, ȳ).
Notice that as point (ᾱ, β̄, γ̄) is feasible solution of problem (27), we have ᾱq′ ≥

0. Hence (x̃+eq
′

, ỹ) is also an optimal solution of problem (25) corresponding
to the inequality

∑

q∈Q̄

x̃qαq + αq′ −
∑

t∈T̄

ỹtβt − γ ≤ 0, (31)

which is obviously stronger than inequality (30). Furthermore, we can recur-
sively use this argument to strengthen an inequality based on the new optimal
solution. We describe this iterative approach in Algorithm 1.

Algorithm 1 A procedure to obtain a stronger constraint for problem (27)

Input: The set XLP (x̄, ȳ) and the point (x̃, ỹ) ∈ X(x̄, ȳ).
Output: A new point (x̃, ỹ) corresponding to a (possible) stronger inequality

of problem (27).
1: Reorder a1 ≥ a2 ≥ · · · ≥ a|Q̄|;

2: for q = 1, ..., |Q̄| do
3: if x̃q = 0 and a⊤x̃+ aq ≤ b⊤ỹ + c̄ then
4: x̃q ← 1;
5: end if
6: end for

In Algorithm 1, we first sort the variables such that a1 ≥ a2 ≥ · · · ≥ a|Q̄| in
Step 1. We then recursively modify a point to a new point which corresponds
to a (possibly) stronger constraint for problem (27) in Steps 3-5.

To conclude this subsection, we present our row generation procedure in
Algorithm 2.

Algorithm 2 Row generation procedure

Input: The set X(x̄, ȳ) and the point (x̄, ȳ) ∈ XLP(x̄, ȳ).
Output: Find a violated inequality (24) for polyhedron P (x̄, ȳ) or conclude

that point (x̄, ȳ) ∈ P (x̄, ȳ).
1: Initialize the paritial separation problem (27) with U = ∅;
2: Solve the paritial separation problem (27) with the solution (ᾱ, β̄, γ̄) and

the optimal value v(U);
3: If v(U) ≤ 0, stop and conclude that (x̄, ȳ) ∈ P (x̄, ȳ);
4: Solve the unbounded integer knapsack problem (25) with the solution

(x̃, ỹ) and the optimal value z̃;
5: If z̃ > 0, modify the solution (x̃, ỹ) using Algorithm 1 and set U ← U ∪

(x̃, ỹ). Go to Step 2;
6: Return the violated inequality (24) for polyhedron P (x̄, ȳ);
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In Algorithm 2, we first initialize the set U = ∅ in Step 1. We then solve
problem (27) in Step 2 using the dual simplex method with the warm start
information in the last step, see for example [21]. In Step 3, the optimal value
of problem (27) is nonpositive, and hence point (x̄, ȳ) ∈ P (x̄, ȳ). In Step 4, we
modify the code BOUKNAP, written by Pisinger [27], to solve the unbounded
integer knapsack problem (25) with fractional value costs. In Step 5, we know
the current inequality is invalid for P (x̄, ȳ). Therefore, we first modify the
solution (obtained in Step 4) using Algorithm 1 such that it corresponds to
a (possibly) stronger inequality. Then we add the corresponding inequality to
problem (27) and go to Step 2. Finally, in Step 6, if z̃ ≤ 0, we obtain the valid
inequality (24), which is violated by point (x̄, ȳ).

4.3 Numerical errors

Due to the numerical errors incurred in solving problem (27), we may get an
invalid inequality in Algorithm 2. To avoid this, we scale the inequality to
obtain integral coefficients by solving the integer programming problem

min
α,β,θ

θ,

s.t. β̄θ = β,

ᾱθ = α,

βt ∈ Z, ∀ t ∈ T̄ ,

αq ∈ Z, ∀ q ∈ Q̄,

θ ≥ 1.

Vasilyev et al. [31] suggested to use the enumeration of the multiplier θ from
2 to 104 and checked the integrality within the tolerance 10−5. To further
avoid too much computational efforts, here we use the approach described
in [1]. More formally, let

λq

µq
be the rational representation of coefficient ᾱq.

Note that
λq

µq
can be obtained by using the Euclidean algorithm within a small

tolerance. To avoid too large numbers, we give the following requirements:

∣

∣

∣

∣

λq

µq

− ᾱq

∣

∣

∣

∣

≤ ǫ := 10−9, |λq| ≤ λmax := 106, and µq ≤ µmax := 103.

The representation of β̄t for each t ∈ T is also required to be satisfied with
the same restrictions. Let µ be the least common multiple of all denominators.
We also require µ ≤ µmax. We scale ᾱ and β̄ by setting αq = µᾱq for all
q ∈ Q̄ and βt = µβ̄t for all t ∈ T̄ with the requirement that |µαq| ≤ µmax and
|µβt| ≤ µmax. If all the requirements are satisfied, we accept this inequality;
otherwise, we drop it.
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After scaling αq for all q ∈ Q and βt for all t ∈ T , we recompute the right
hand side γ by solving the unbounded integer knapsack problem

γ = max
x,y







∑

q∈Q̄

αqxq −
∑

t∈T̄

βtyt : (x, y) ∈ X(x̄, ȳ)







. (32)

This leads to the inequality
∑

q∈Q̄

αqxq ≤
∑

t∈T̄

βtyt + γ, (33)

which is valid for P (x̄, ȳ).

4.4 Sequential lifting

The inequality (33) is valid for P (x̄, ȳ). However, in general, it may be invalid
for P . To resolve this problem, the variables, which are fixed in the prepro-
cessing step, are sequentially lifted according to a given lifting order Π , i.e.,
a permutation of (Q\Q̄) ∪ (T \T̄ ). We now illustrate the procedure to lift the
first variable with index k based on inequality (33). Denote

W (C) = max
(x,y)∈{0,1}|Q̄|×Z

|T̄ |
+







∑

q∈Q̄

αqxq −
∑

t∈T̄

βtyt :
∑

q∈Q̄

aqxq ≤
∑

t∈T̄

btyt + C







.

We have the following three cases.

1) If k ∈ Q\Q̄ and x̄k = 0, then the lifted inequality is

∑

q∈Q̄

αqxq + αkxk ≤
∑

t∈T̄

βtyt + γ, (34)

where αk = γ −W (c̄− ak).
2) If k ∈ Q\Q̄ and x̄k = 1, then the lifted inequality is

∑

q∈Q̄

αqxq + αk(xk − 1) ≤
∑

t∈T̄

βtyt + γ, (35)

where αk = W (c̄+ ak)− γ.
3) If k ∈ T \T̄ with ȳk = 0, then the lifted inequality is

∑

q∈Q̄

αqxq ≤
∑

t∈T̄

βtyt + βkyk + γ, (36)

where
βk = max

{

(W (c̄+ ℓbk)− γ)/ℓ : ℓ = 1, . . . , ℓ̄
}

.

Here we set ℓ̄ = ⌈(
∑

q∈Q̄ aq − c̄)/bk⌉ since W (c̄ + ℓbk) =
∑

q∈Q̄ αq for all

ℓ ≥ ℓ̄.
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Similarly, we may continue to lift the other variables, which are fixed in the
preprocessing step in Sect. 4.1, to obtain a valid inequality of polyhedron P .
During the whole lifting process, we need to solve several integer knapsack
problems. This can be done via the dynamic programming algorithm. For
more details, we refer to [31].

5 Numerical results

In order to test the effectiveness of the exact separation algorithm for solving
the unsplittable capacitated network design problem, we implement it in C++
linked with IBM ILOG CPLEX optimizer 12.7.1 [16] library. Following [31],
to avoid changing the problem structure, the presolving features are turned
off in our experiments. Moreover, the dual simplex method is used to reop-
timize the linear programming problem (27) after adding cutting planes. To
eliminate the effect of multithreads, the computations are implemented in a
single thread. The time limit is set to 7200 seconds. Except where explicitly
stated, the other parameters in CPLEX are set to the default ones. The exact
separation procedure stops if the optimal value of the LP relaxation problem
of the unsplittable capacitated network design problem improves by less than
0.01% between two adjacent calls.

5.1 Testsets

We conduct our computational study on three testsets of the unsplittable
capacitated network design problem (1)-(4). The first testset NDP1, studied
in Atamtürk et al. [4], contains 20 instances with a single facility. We use
this testset to compare the performance effect of the cuts constructed in our
exact separation procedure with that of existing cuts studied in the literature.
The second testset NDP2 includes 26 realistic network instances generated
by the Survivable Network Design Library (SNDlib 1.0) [26]. 9 of them are
instances with a single facility and 17 of them are instances with multifacility.
To possibly reduce the unstable behavior of integer programming solvers (see,
e.g., [18,22]), we solve each instance using 10 different random seeds in 7200
seconds. We treat every pair of instance and seed as an individual model, which
results in 200 models for testset NDP1 and 260 models for testset NDP2 .

The third testset NDP3 is randomly generated based on [23]. We use this
testset to evaluate the performance effects of different capacity module sizes
and module costs on the unsplittable capacitated network design problem us-
ing standard integer programming solver or our exact separation procedure.
Table 1 lists different capacity module sizes and module costs studied in [23].
For the same facility, we assume that its module costs on all arcs are the same.
In total, we study problems with 27 different capacities and costs structures.
We generate the underlying graphs with 50 vertices using the procedure de-
scribed in [23]; see also [24,29]. We generate 10 graphs with 20 commodities
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with random source nodes and destination nodes. The demand of each com-
modity is chosen uniformly in {10, 11, . . . , 190}. For each graph, 27 problems
are generated based on each item of capacity module sizes and costs in Table
1. Thus, in total, we have 270 models for testset NDP3.

Table 1: Capacity module sizes and module costs of testset NDP3.

Capacity module sizes Capacity module costs

1 1 1 (130) (10000)

2 1 1 (130,50) (10000,5000)

3 1 1 (130,50,20) (10000,5000,2500)

1 1 2 (130) (18000)

2 1 2 (130,50) (18000,9000)

3 1 2 (130,50,20) (18000,9000,5000)

1 1 3 (130) (25000)

2 1 3 (130,50) (25000,13000)

3 1 3 (130,50,20) (25000,13000,9000)

1 2 1 (170) (10000)

2 2 1 (170,70) (10000,5000)

3 2 1 (170,70,30) (10000,5000,2500)

1 2 2 (170) (18000)

2 2 2 (170,70) (18000,9000)

3 2 2 (170,70,30) (18000,9000,5000)

1 2 3 (170) (25000)

2 2 3 (170,70) (25000,13000)

3 2 3 (170,70,30) (25000,13000,9000)

1 3 1 (200) (10000)

2 3 1 (200,80) (10000,5000)

3 3 1 (200,80,30) (10000,5000,2500)

1 3 2 (200) (18000)

2 3 2 (200,80) (18000,9000)

3 3 2 (200,80,30) (18000,9000,5000)

1 3 3 (170) (25000)

2 3 3 (200,80) (25000,13000)

3 3 3 (200,80,30) (25000,13000,9000)

5.2 Different lifting orders

In the sequential lifting step, different lifting orders lead to different inequali-
ties [31]. Hence the first experiment is conducted to test performance effect of
different lifting orders. We consider the following four lifting orders.

• LIFT1: Variables, fixed to one, are lifted first in decreasing order of their
coefficients. Then variables, fixed to zero, are lifted also in decreasing order
of their coefficients.
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• LIFT2: Variables are lifted in decreasing order of their coefficients.
• LIFT3: Variables are lifted in decreasing order of their reduced costs.
• LIFT4: Variables are lifted in increasing order of their reduced costs.

Table 2: Performance comparison of different lifting orders.

Testset LIFT1 LIFT2 LIFT3 LIFT4

NDP1 71.51 71.51 71.52 71.54

NDP2 54.39 54.49 54.12 54.96

NDP3 87.35 87.29 87.21 87.40

Table 2 presents the arithmetic means of the gap closeds [33] of all models
in the corresponding testsets. The gap closed is defined as

100 ·
zroot − zLP
zub − zLP

,

where zroot is the objective value of the LP relaxation at root node after adding
cuts, zLP is the value of the LP relaxation before adding cuts, and zub is the
value of the best known value of the model. Table 2 shows that using the
lifting order LIFT4, the gap closed is slightly better than those of other lifting
orders in all the three testsets. Therefore, in further computational studies,
the lifting order LIFT4 is used in our exact separation algorithm.

5.3 Performance effect of the exact separation procedure

In this subsection, we evaluate the performance effect of adding cuts generated
by the exact separation algorithm into the solver.

Table 3: Performance comparison of the exact separation procedure with the default
setting for testset NDP1.

Bracket total
CPX EXACT

solved nodes time solved nodes time faster slower

all 200 145 1313 32 151 1105 31 34 79

[1, 7200] 125 116 2968 48 122 2476 46 34 65

[10, 7200] 61 52 33410 304 58 29352 274 23 21

[100, 7200] 34 25 296061 2266 31 219844 1733 21 5

[1000, 7200] 24 15 423246 4142 21 356030 3469 13 4

Tables 3-5 compare the computational results obtained by using CPLEX
(CPX) and our exact separation procedure (EXACT). We report the number
of solved models, the average running time, and the average number of ex-
plored nodes1. Besides, columns “faster” and “slower” report the number of

1 Shifted geometric mean, 10s for average time and 100 for average nodes [1].



An exact separation algorithm for unsplittable flow arc-set polyhedron 21

Table 4: Performance comparison of the exact separation procedure with the default
setting for testset NDP2.

Bracket total
CPX EXACT

solved nodes time solved nodes time faster slower

all 260 55 26062 291 63 21904 269 33 20

[1, 7200] 63 55 26062 291 63 21904 269 33 20

[10, 7200] 56 48 38772 427 56 31884 391 30 17

[100, 7200] 49 41 48949 595 49 38996 531 27 14

[1000, 7200] 19 11 113188 3410 19 86696 2738 12 6

Table 5: Performance comparison of the exact separation procedure with the default
setting for testset NDP3.

Bracket total
CPX EXACT

solved nodes time solved nodes time faster slower

all 270 139 165616 1180 210 9172 145 196 7

[1, 7200] 210 139 165616 1180 210 9172 145 196 7

[10, 7200] 203 132 202814 1374 203 10758 158 193 4

[100, 7200] 178 107 331671 2211 178 16789 212 173 1

[1000, 7200] 125 54 704511 4781 125 31822 359 120 1

models that get at least 10% faster and slower, respectively. We group the three
testsets into several brackets. The bracket “all” contains the models which can
be solved by at least one of the settings. The bracket [n, 7200] contains the
models which can be solved by the slower setting in at least n seconds. The
larger n is, the harder of the model is. For each bracket, we report the number
of considered models in column “total”.

As it can be observed in Tables 3-5, our exact separation algorithm has
a positive effect on all these three testsets, especially on the hard models.
In particular, using the exact separation algorithm, we can solve 6, 8, and 71
more models than those using the default setting on testsets NDP1, NDP2, and
NDP3, respectively. This clearly shows that our exact separation algorithm can
improve the performance of the solver on solving the unsplittable capacitated
network design problem.

Specifically, for testset NDP1, using the exact separation algorithm, we
have 79 models for which the running times are slower than that of the default
setting while only 34 models are solved faster. This is due to the fact that
these models are easier than models in testsets NDP2 and NDP3, and, as a
result, the benefit of the exact separation algorithm cannot compensate for its
additional overhead on these easy models.

For testset NDP2, we notice that these models are harder than those in
testset NDP1 or NDP3. Among these 260 models, CPX and EXACT only
solve 55 and 63 of them, respectively. Nevertheless, for the solved models,
using EXACT, the average running time decreases from 291s to 269s.

For testset NDP3, Table 5 shows a significant improvement of using our
exact separation algorithm. The average running time decreases from 1180s
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Table 6: Results of different capacity module sizes and module costs on testset NDP3.

CPX EXACT

nodes time solved nodes time solved

1 1 1 101498 1107 6 52605 744 7

2 1 1 133392 833 7 6596 96 9

3 1 1 757202 2451 5 2857 55 9

1 1 2 115713 1274 6 48061 710 7

2 1 2 120158 794 7 6767 101 8

3 1 2 361194 1367 6 2927 66 9

1 1 3 98817 1081 6 50658 709 7

2 1 3 135529 892 6 7409 99 8

3 1 3 280378 1178 7 4800 78 10

1 2 1 77609 1228 6 44647 987 6

2 2 1 221946 1313 6 21803 217 9

3 2 1 364549 1700 5 4373 43 10

1 2 2 82223 1270 6 44890 973 6

2 2 2 157895 1096 6 22698 242 8

3 2 2 487028 2328 5 4140 47 10

1 2 3 87375 1373 5 42778 889 6

2 2 3 165320 1115 6 21347 244 9

3 2 3 321156 1579 8 16831 149 10

1 3 1 247636 4362 4 134158 3010 7

2 3 1 334434 3353 3 77329 1019 7

3 3 1 507180 3190 4 14150 165 10

1 3 2 223731 3916 3 125455 2897 5

2 3 2 283211 2889 3 90339 1325 6

3 3 2 536980 3464 3 14477 199 9

1 3 3 231183 4150 3 144692 3252 5

2 3 3 285635 2936 3 122664 1513 5

3 3 3 338583 2674 4 33673 460 8

to 145s. To further see where the improvement comes from, we report the
computational results of different capacity module sizes and costs of facilities
independently in Table 6. To be more specific, we list the results in 9 different
groups corresponding to Table 1. In each group, the number of facilities is
different in each item (i.e. i j k). There are 10 different models in each item
with different network structures and commodities. We report the number of
average nodes, the average running time, and the number of solved models in
each item. In the same group, we can observe that with our exact separation
algorithm, the models with more facilities are easier to be solved than those
with fewer facilities. However, the same behavior cannot be observed in the
computational results of CPX. This shows that compared with problems with
a single facility, our exact separation algorithm works better in problems with
more facilities.
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Fig. 1: Performance profile for testsets NDP1, NDP2, and NDP3.

To end of this subsection, we plot the performance profiles of CPX and
EXACT in Fig. 1 to further compare their performance. For each model in
the testsets NDP1, NDP2, and NDP3, we compute a factor τ as the ratio of the
running time to solve to optimality of the considered setting to the minimum
running time of two settings CPX and EXACT. Each point (τ, σ) of the curves
in Fig. 1 represents that in σ percentage of the models, this particular setting
is at most τ times slower than the faster setting; for more details, see [17].
Consequently, the higher the curve is, the better the setting performs. Fig. 1
clearly shows that EXACT performs much better than CPX. In particular,
EXACT is able to solve 58.1% of the models to optimality while CPX is only
able to solve 46.3% of the models to optimality.

5.4 Comparison with c-strong inequality [13,14]

According to [3], the c-strong inequality [13,14] is quite effective in solving the
unsplittable capacitated network design problem. Other proposed inequalities
[4,30] can provide additional improvement but the marginal effect on top of
the c-strong inequality is limited. Therefore, we only compare the performance
effects of the inequality generated by the exact separation procedure (EXACT)
with the c-strong inequality (CSTRONG). Since the c-strong inequality can
only be applied in the case of one facility or two facilities with divisible capac-
ities, we only conduct experiments on testset NDP1. The results are reported
in Table 7.

Table 7 shows that the performance of EXACT is better than that of
CSTRONG, especially on the hard models. In total, EXACT solves 4 more
models than CSTRONG. This shows that even compared with the existing
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Table 7: Performance comparison with the c-strong inequalities on testset NDP1.

Bracket total
CSTRONG EXACT

solved nodes time solved nodes time faster slower

all 200 147 1232 31 151 1033 28 53 67

[1, 7200] 130 125 2281 41 129 1883 38 45 62

[10, 7200] 60 55 31508 275 59 25637 232 27 22

[100, 7200] 32 27 366689 2374 31 222227 1585 20 4

[1000, 7200] 22 17 579321 4725 21 377860 3246 13 3

polyhedral studies on the unsplittable flow arc-set polyhedron, our exact sep-
aration algorithm is more effective in solving the unsplittable capacitated net-
work design problem.

5.5 Performance effect of using Propositions 5-8

We now report the performance effect of Propositions 5-8 in our procedure
in Table 8. The average results over all the models in each testset are pre-
sented. Compared with EXACT, NOPROS refers to the setting of calling the
row generation subroutine to solve the separation problem (21) even if one
of the conditions in Propositions 5-8 is satisfied. For each setting, we report
the running time spent in the row generation subroutine in column “rgtime”.
For EXACT, we additionally report the numbers of times that fulfilling the
conditions in Propositions 5-8 in “p5”-“p8”, respectively. In column “ncalls”,
we report the number of calling the exact separation algorithm. In column
“rate”, we list the successful rate computed by the number of times fulfilling
at least one of the conditions in Propositions 5-8 over the number of calling
the exact separation algorithm.

Table 8: Performance effect of using Propositions 5-8.

Testset
NOPROS EXACT

rgtime rgtime p5 p6 p7 p8 ncalls rate

NDP1 1.21 0.80 255 543 0 0 1158 66.42%

NDP2 102.91 91.10 183 151 10 411 1361 31.72%

NDP3 2.90 2.57 425 1020 5 19 3182 46.17%

As it can be seen in Table 8, using Propositions 5-8, the running time of
the separation algorithm decreases considerably. This is due to the fact that,
among the total number of the calls of the exact separation algorithm, 66.42%,
31.72%, and 46.17% of them can be computed directly using Propositions 5-8
for testsets NDP1, NDP2, and NDP3 without calling the time-consuming row
generation subroutine. Since the models in testset NDP1 contain only a single
facility, the conditions in Propositions 5 and 6 occur frequently while those
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in Propositions 7 and 8 never occur. Compared with those in Propositions 5
and 6, the conditions in Propositions 7 and 8 occur less frequently. This is not
surprising since the conditions in Propositions 7 and 8 are much stricter than
those in Propositions 5 and 6. Finally, we observe that the reduction on the
running time is not consistent with that of the successful rate. This is because,
using the row generation subroutine, the separation problems that fulfill one
of the conditions in Propositions 5-8 are easier to be solved than those that
do not fulfill any of them.

5.6 Performance effect of using Algorithm 1

Finally, we report the performance effect of employing Algorithm 1 in the exact
separation procedure. Compared with EXACT, NOALG2 refers to the setting
of the exact separation procedure without using Algorithm 1. Notice that this
may lead to a weaker constraint (30) in the row generation subroutine. For
each setting, we report the running time of the row generation subroutine and
the average iteration of a row generation call in columns “rgtime” and “iter”,
respectively. We present the average results among all the models.

Table 9: Performance effect of using Algorithm 1.

Testset
NOALG2 EXACT

rgtime iter rgtime iter

NDP1 1.42 8.87 0.80 4.63

NDP2 144.20 61.62 91.10 21.83

NDP3 3.92 9.22 2.57 6.36

As it can be seen in Table 9, with Algorithm 1, the iteration of row genera-
tion subroutine per call decreases significantly, which in turn, reduces 43.66%,
36.77%, and 34.44% of the row generation time in testsets NDP1, NDP2, and
NDP3, respectively. This confirms that our proposed algorithm indeed works
well in practice. Notice that it is reasonable to observe reductions on the av-
erage iteration exceeds reduction on the running time since Algorithm 1 also
leads to a denser constraint for the linear programming problem (27).

6 Conclusion and future work

In this paper, we have considered the separation problem of the flow arc-
set polyhedron in the unsplittable capacitated network design problem. By
solving the separation problem, we generated the facet-defining inequality for
the considered polyhedron. We showed that in some special cases, a closed
form of the separation problem can be derived. For the general case, we used
the exact separation algorithm to solve the separation problem. Moreover,
a new technique was proposed to reduce the computational time in the row
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generation subroutine of the exact separation algorithm. The numerical exper-
iments showed the effectiveness of the exact separation algorithm in solving
the unsplittable capacitated network design problem and the advantage of the
proposed technique in reducing the exact separation time.

There still exist some ideas to be explored in this study. For the flow
arc-set polyhedron, we have proposed a new technique to speed up the row
generation subroutine; see Algorithm 1. It deserves to test whether or not
the same improvement can be observed for the knapsack polyhedron. In this
study, we only implemented the exact separation algorithm on the flow arc-set
polyhedron, but it can be extended on the cut-set polyhedron, see for example
[2]. We are currently conducting this topic to see the performance effect of
generalizing this to the cut-set polyhedron.
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Appendix

Lemma 2 Suppose that T = {1} and inequality (6) with β1 = 1 is a facet-
defining inequality of polyhedron P . For each q ∈ Q, if aq ≤ b1, then 0 ≤ αq ≤
1.

Proof Combining with aq ≤ b1, β1 = 1, and Proposition 4, we have the state-
ment. ⊓⊔

Lemma 3 Given (x̄, ȳ1) ∈ [0, 1]
|Q| × R+, the linear programming problem

max
α,γ







∑

q∈Q

x̄qαq − ȳ1 − γ : −r − γ ≤ 0,

∑

q∈Q

αq − (r + 1)− γ ≤ 0, 0 ≤ αq ≤ 1, ∀ q ∈ Q







(37)

has an optimal solution (ed,−r) where r and d are defined in (16) and (17),
respectively.

Proof By simple calculation, point (ed,−r) is a feasible solution of problem
(37) with the objective value being x̄d − ȳ1 + r. It is optimal since

∑

q∈Q

x̄qαq − ȳ1 − γ

≤ x̄d

∑

q∈Q

αq − ȳ1 − γ (from αq ≥ 0 and the definition of d in (17))

≤ x̄d[γ + (r + 1)]− ȳ1 − γ (from
∑

q∈Q

αq − (r + 1)− γ ≤ 0 in problem (37))

= x̄d + x̄dr − (1 − x̄d)γ − ȳ1

≤ x̄d + x̄dr + (1 − x̄d)r − ȳ1 (from −r − γ ≤ 0 in problem (37))

= x̄d − ȳ1 + r. ⊓⊔

Proof of Proposition 5

Proof From the definition of r in (16), we have (0, r) ∈ X . This, combined
with assumption (ii) and condition (18), implies that

X =
{

(0, r)
}

∪
{

(x, k) ∈ {0, 1}|Q| × Z+ : k ≥ r + 1
}

.

It is obvious that the vertices of polyhedron P , i.e., conv (X), are points (0, r)
and (x, r + 1) for all x ∈ {0, 1}|Q| with x 6= 0. Particularly, in problem (12),
the vertex (e, r + 1) corresponds to the constraint

∑

q∈Q

αq − (r + 1)− γ ≤ 0. (38)
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By removing the constraints that are dominated by (38) and using Lemma
2 and Theorem 1, problem (12) is further equivalent to problem (37). Hence,
by Lemma 3, in this case, point (ed,−r) is optimal for problem (12), which
corresponds to the inequality xd ≤ y1 − r of polyhedron P . Furthermore,
inequality xd ≤ y1 − r is facet-defining for polyhedron P since the |Q| + 1
affinely independent points (0, r), (ed, r + 1), and (ed + eq, r + 1) for each
q ∈ Q\{d} are on the face {(x, y1) ∈ P : xd = y1 − r}. ⊓⊔

Lemma 4 Let r and d be the values defined in (16) and (17), respectively, and

(x̄, ȳ1) ∈ [0, 1]
|Q| × R+. Consider the following linear programming problem

max
α,γ







∑

q∈Q

x̄qαq − ȳ1 − γ : −r − γ ≤ 0,

∑

q∈Q\{q̄}

αq − (r + 1)− γ ≤ 0, ∀ q̄ ∈ Q, 0 ≤ αq ≤ 1, ∀ q ∈ Q







. (39)

The following results hold.

(a) If |Q| ≤ 2, one of the optimal solutions of problem (12) is (e,−r);
(b) If |Q| ≥ 3, one of the optimal solutions of problem (12) is







































(ed,−r), if

∑

q∈Q x̄q

|Q| − 1
≤ x̄d;

(
1

|Q| − 1
e,−r), if x̄d <

∑

q∈Q x̄q

|Q| − 1
≤ 1;

(e,−r + |Q| − 2), if

∑

q∈Q x̄q

|Q| − 1
> 1.

Proof If |Q| ≤ 2, by removing the redundant constraints that are dominated
by −r − γ ≤ 0 and αq ≤ 1, q ∈ Q, problem (39) is equivalent to

max
α,γ







∑

q∈Q

x̄qαq − ȳ1 − γ : −r − γ ≤ 0, 0 ≤ αq ≤ 1, ∀ q ∈ Q







.

Clearly, (e,−r) is an optimal solution. This proves case (a) in the statement.
Next, we consider the case |Q| ≥ 3. Since the coefficient of γ in the objective

function in problem (39) is −1, optimality of problem (39) requires that γ must
be equal to −r, or

∑

q∈Q\{q′} αq−(r+1) for some q′ ∈ Q. We have the following
two cases.

1) γ = −r. By eliminating the variable γ, problem (39) reduces to

max
α







∑

q∈Q

x̄qαq − ȳ1 + r :
∑

q∈Q\{q̄}

αq ≤ 1, ∀ q̄ ∈ Q, 0 ≤ αq ≤ 1, ∀ q ∈ Q







.

From the linear programming theory, there are at least |Q| constraints in
the above problem being active at the basic optimal solution.
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1.1) If
∑

q∈Q\{q̄} αq = 1 for all q̄ ∈ Q, we have αq = 1
|Q|−1 for all q ∈ Q, and

( 1
|Q|−1e,−r) is an optimal solution of problem (39).

1.2) Otherwise, we have αq′ = 0 or αq′ = 1 for some q′ ∈ Q. In any
case, there must exist some q′′ ∈ Q such that αq′′ = 0. Together with
∑

q∈Q\{q′′} αq ≤ 1, it can be easily verified that (ed,−r) is an optimal

solution of problem (39).
2) γ =

∑

q∈Q\{q′} αq − (r+1) for some q′ ∈ Q. By eliminating the variable γ,

problem (39) reduces to

max
α







−
∑

q∈Q\{q′}

(1− x̄q)αq + x̄q′αq′ − ȳ1 + (r + 1) :
∑

q∈Q\{q′}

αq ≥ 1,

αq ≥ αq′ , ∀ q ∈ Q\{q′}, 0 ≤ αq ≤ 1, ∀ q ∈ Q







. (40)

2.1) If αq′ = 0, the constraints αq ≥ αq′ , q ∈ Q\{q′}, are redundant. This

implies that (ed
′

,−r) is an optimal solution of problem (40) where
d′ ∈ argmax q∈Q\{q′}{x̄q}. We note that by the definition of d in (17),

the objective value of problem (39) at point (ed
′

,−r) cannot be better
than that at point (ed,−r).

2.2) If αq′ = 1, we have αq = 1, for all q ∈ Q\{q′}. Then (e,−r + |Q| − 2)
is an optimal solution of problem (40).

2.3) If 0 < αq′ < 1, we have αq ≥ αq′ > 0 for all q ∈ Q\{q′}. There
exists a basic optimal solution such that at least |Q| constraints in
problem (40) are active. By a simple analysis, the active constraints
must be

∑

q∈Q\{q′} αq = 1 and αq = αq′ for all q ∈ Q\{q′}. This

implies αq = 1
|Q|−1 for all q ∈ Q, and hence ( 1

|Q|−1e,−r) is an optimal

solution of problem (39).
In summary, for problem (39), there are three potentially optimal solutions
(ed,−r), ( 1

|Q|−1e,−r), and (e,−r+ |Q| − 2) with the objective value x̄d −

ȳ1+r, 1
|Q|−1

∑

q∈Q x̄q− ȳ1+r, and
∑

q∈Q x̄q− ȳ1+r−|Q|+2, respectively.

Finally, comparing these three values, we have case (b) in the statement.
This completes the proof. ⊓⊔

Proof of Proposition 6

Proof From the definition of r in (16), we have (0, r) ∈ X . This, together with
assumption (ii) and condition (19), implies that

X =
{

(0, r)
}

∪
{

(x, k) ∈ {0, 1}|Q| × Z+ : x 6= e, k = r + 1
}

∪
{

(x, k) ∈ {0, 1}|Q| × Z+ : k ≥ r + 2
}

.

The vertices of polyhedron P , i.e., conv (X), are (0, r), (x, r + 1) for all
x ∈ {0, 1}|Q| with x 6= 0 and x 6= e, and (e, r + 2). Similar to the proof
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in Proposition 5, by removing redundant constraints and using Lemma 2 and
Theorem 1, problem (12) reduces to problem (39). Hence, if |Q| ≤ 2, by
Lemma 4, the optimal solution (e,−r) of problem (39) corresponds to the
inequality

∑

q∈Q xq ≤ y1 − r of polyhedron P . The associated face {(x, y) ∈
P :

∑

q∈Q xq = y1 − r} contains |Q| + 1 affinely independent points: (0, r)
and (eq , r+ 1) for each q ∈ Q, which shows that inequality

∑

q∈Q xq ≤ y1 − r
defines a facet of polyhedron P . This proves case (a) in the statement.

Analogously, if |Q| ≥ 3, by Lemma 4, points (ed,−r), ( 1
|Q|−1e,−r), and

(e,−r+ |Q|−2) are three potentially optimal solutions for problem (39) which
correspond to inequalities xd ≤ y1−r,

1
|Q|−1

∑

q∈Q xq ≤ y1−r, and
∑

q∈Q xq ≤

y1−r+|Q|−2, respectively. To prove that each of the three inequalities defines
a facet of polyhedron P , we list the |Q| + 1 affinely independent points in
polyhedron P fulfilling them at equality in the following.

xd ≤ y1 − r (0, r), (ed, r + 1), (ed + eq , r + 1) for each q ∈ Q\{d}

1

|Q|−1

∑

q∈Q xq ≤ y1 − r (0, r), (e− eq, r + 1) for each q ∈ Q

∑

q∈Q xq ≤ y1 − r + |Q| − 2 (e− eq , r + 1) for each q ∈ Q, (e, r + 2)

Thus, we have case (b) in the statement. This completes the proof. ⊓⊔

Proof of Proposition 7

Proof From the definition of r in (16), we have (0, rf1) ∈ X . Combining with
assumptions (ii), (iii), and condition (18), we can write set X as:

X =

{

(0, rf1)

}

⋃

{

(x, k) ∈ {0, 1}|Q| × Z
|T |
+ : k1 ≥ r + 1,

∑

t∈T\{1}

kt = 0

}

⋃

{

(x, k) ∈ {0, 1}|Q| × Z
|T |
+ :

∑

t∈T\{1}

kt ≥ 1

}

.

Clearly, if r = 0, the vertices of polyhedron P , i.e., conv (X), are (0, rf1),
(x, (r + 1)f1) for all x ∈ {0, 1}|Q| with x 6= 0, and (x,f t) for all x ∈ {0, 1}|Q|

with x 6= 0 and t ∈ T \{1}. If r > 0, the additional vertices of polyhedron
P are (0,f t) for all t ∈ T \{1}. Similar to the proof in Proposition 5, by
removing redundant constraints and using Lemma 2 and Theorem 1, problem
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(12) reduces to

max
α,β,γ







∑

q∈Q

x̄qαq − ȳ1 −
∑

t∈T\{1}

ȳtβt − γ : −r − γ ≤ 0,

∑

q∈Q

αq − (r + 1)− γ ≤ 0,
∑

q∈Q

αq − βt − γ ≤ 0, ∀ t ∈ T \{1},

β1 = 1, βt ≥ 0, ∀ t ∈ T \{1}, 0 ≤ αq ≤ 1, ∀ q ∈ Q







. (41)

We now relax the bound constraints βt ≥ 0 for all t ∈ T \{1} in problem (41).
Then as the objective coefficient of βt in problem (41) is −ȳt ≤ 0, we have
βt =

∑

q∈Q αq − γ for all t ∈ T \{1} in the relaxation problem. Substituting
them into the objective function and dividing the objective function by the
positive value 1−

∑

t∈T\{1} ȳt, we obtain an equivalent relaxation problem:

max
α,γ







∑

q∈Q

x̄q −
∑

t∈T\{1} ȳt

1−
∑

t∈T\{1} ȳt
αq − γ −

ȳ1
1−

∑

t∈T\{1} ȳt
:

−r − γ ≤ 0,
∑

q∈Q

αq − (r + 1)− γ ≤ 0, 0 ≤ αq ≤ 1, ∀ q ∈ Q







. (42)

If, for some q ∈ Q, variable αq’s objective coefficient
x̄q−

∑
t∈T\{1} ȳt

1−
∑

t∈T\{1} ȳt
≤ 0,

then there must exist an optimal solution of problem (42) such that αq = 0.
Hence, we can remove the variables αq with nonpositive objective coefficients

(q ∈ Q\Q̃ where Q̃ is defined in (20)) from problem (42) and concentrate on
the equivalent form of problem (42):

max
α,γ







∑

q∈Q̃

x̄q −
∑

t∈T\{1} ȳt

1−
∑

t∈T\{1} ȳt
αq − γ −

ȳ1
1−

∑

t∈T\{1} ȳt
:

−r − γ ≤ 0,
∑

q∈Q̃

αq − (r + 1)− γ ≤ 0, 0 ≤ αq ≤ 1, ∀ q ∈ Q̃







. (43)

We have two following cases.

1) Q̃ = ∅. It can be easily verified that point (α, γ) = (0,−r) is optimal
for problem (42). Together with βt =

∑

q∈Q αq − γ = r ≥ 0 for all t ∈

T \{1}, we know that (0,f1+ r
∑

t∈T\{1} f
t,−r) is an optimal solution for

problem (41) corresponding to the inequality 0 ≤ y1 + r
∑

t∈T\{1} yt − r
of polyhedron P . Moreover, the inequality defines a facet of polyhedron
P since the |Q|+ |T | affinely independent points (0, rf1), (0,f t) for each
t ∈ T \{1}, and (eq,f t′) for each q ∈ Q and some t′ ∈ T \{1}, are on the
face {(x, y) ∈ P : 0 = y1 + r

∑

t∈T\{1} yt − r}.
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2) Q̃ 6= ∅. Notice that problem (42) are a form of problem (37) and hence by
Lemma 3, point (α, γ) = (ed,−r) is optimal for problem (42) where d is
defined in (17). Furthermore, for all t ∈ T , we have βt =

∑

q∈Q αq − γ =

r + 1 ≥ 0 showing that (ed,f1 + (r + 1)
∑

t∈T\{1} f
t,−r) is an optimal

solution of problem (41) which corresponds to the inequality xd ≤ y1 +
(r + 1)

∑

t∈T\{1} yt − r for P . Finally, the |Q| + |T | affinely independent

points (0, rf1), (ed, (r + 1)f1), (ed + eq, (r + 1)f1) for each q ∈ Q\{d},
and (ed,f t) for each t ∈ T \{1} are on the face {(x, y) ∈ P : xd = y1 +
(r + 1)

∑

t∈T\{1} yt − r}, which implies that the inequality xd ≤ y1 + (r +

1)
∑

t∈T\{1} yt − r is facet-defining for polyhedron P . ⊓⊔

Proof of Proposition 8

Proof From the definition of r in (16), we have (0, rf1) ∈ X . It follows from
assumptions (ii), (iii) and condition (19) that the set X can be equivalently
written as:

X =

{

(0, rf1)

}

⋃

{

(x, k) ∈ {0, 1}|Q|×Z
|T |
+ :x 6= e, k1 = r + 1,

∑

t∈T\{1}

kt = 0

}

⋃

{

(x, k) ∈ {0, 1}|Q| × Z
|T |
+ : k1 ≥ r + 2,

∑

t∈T\{1}

kt = 0

}

⋃

{

(x, k) ∈ {0, 1}|Q| × Z
|T |
+ :

∑

t∈T\{1}

kt ≥ 1

}

.

Clear, if r = 0, the vertices of polyhedron P , i.e., conv (X), are (0, rf1),
(x, (r + 1)f1) for all x ∈ {0, 1}|Q| with x 6= 0 and x 6= e, (e, (r + 2)f1), and
(x,f t) for all x ∈ {0, 1}|Q| with x 6= 0 and for all t ∈ T \{1}. If r > 0, the
additional vertices of polyhedron P are (0,f t) for all t ∈ T \{1}. Similar to the
proof in Proposition 5, by removing redundant constraints and using Lemma
2 and Theorem 1, problem (12) reduces to

max
α,β,γ







∑

q∈Q

x̄qαq − ȳ1 −
∑

t∈T\{1}

ȳtβt − γ : −r − γ ≤ 0,

∑

q∈Q\{q̄}

αq − (r + 1)− γ ≤ 0, ∀ q̄ ∈ Q,
∑

q∈Q

αq − βt − γ ≤ 0, ∀ t ∈ T \{1},

β1 = 1, βt ≥ 0, ∀ t ∈ T \{1}, 0 ≤ αq ≤ 1, ∀ q ∈ Q







. (44)

We now consider the relaxation of problem (44) obtained by relaxing the bound
constraints βt ≥ 0 for all t ∈ T \{1}. As the objective coefficient of βt in
problem (44) is −ȳt ≤ 0, we can set βt =

∑

q∈Q αq − γ for all t ∈ T \{1} in
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the relaxation problem. In analogy to the proof in Proposition 7, substituting
them into the objective function and dividing the objective function by the
positive value 1−

∑

t∈T\{1} ȳt, this relaxation problem reduces to:

max
α,γ







∑

q∈Q

x̄q −
∑

t∈T\{1} ȳt

1−
∑

t∈T\{1} ȳt
αq − γ −

ȳ1
1−

∑

t∈T\{1} ȳt
: −r − γ ≤ 0,

∑

q∈Q\{q̄}

αq − (r + 1)− γ ≤ 0, ∀ q̄ ∈ Q, 0 ≤ αq ≤ 1, ∀ q ∈ Q







. (45)

1) Q̃ 6= Q. For q ∈ Q\Q̃ where Q̃ is defined in (20), since
x̄q−

∑
t∈T\{1} ȳt

1−
∑

t∈T\{1} ȳt
< 0,

we can set αq = 0 in problem (45). This, together with αq ≥ 0 for all

q ∈ Q̃, implies that the |Q| constraints
∑

q∈Q\{q̄} αq − (r + 1)− γ ≤ 0, for

all q̄ ∈ Q, in problem (45), can be reduced to a single constraint
∑

q∈Q̃ αq−
(r + 1) − γ ≤ 0 since they are either equivalent to or dominated by this
constraint. Therefore, in this case, problem (45) reduces to problem (43),
and repeating 1) and 2) in the proof of Proposition 7, we have cases (a)
and (b) in the statement.

2) Q̃ = Q and |Q| ≤ 2. By Lemma 4, point (e,−r) is optimal for problem (45).
For each t ∈ T \{1}, we have βt =

∑

q∈Q αq−γ = r+ |Q| ≥ 0 showing that

(e,f1 + (r + |Q|)
∑

t∈T\{1} f
t,−r) is an optimal solution of problem (44)

corresponding to the inequality
∑

q∈Q xq ≤ y1+(r+|Q|)
∑

t∈T\{1} yt−r for
polyhedron P . Moreover, to show that it is facet-defining for polyhedron P ,
we list the |Q|+ |T | affinely independent points in polyhedron P satisfying
it on equality: (0, rf1), (eq, (r+1)f1) for each q ∈ Q, and (e,f t) for each
t ∈ T \{1}. Thus, we have case (c) in the statement.

3) Q̃ = Q and |Q| ≥ 3. By Lemma 4, one of the three points (ed,−r),
( 1
|Q|−1e,−r), and (e,−r + |Q| − 2) are optimal for problem (45). Using

these three points to compute βt =
∑

q∈Q αq − γ, for all t ∈ T \{1}, we

have βt = r + 1, r + |Q|
|Q|−1 , and r + 2, respectively. In all three cases, we

have βt ≥ 0 for all t ∈ T \{1} and hence one of the three points (ed,f1 +

(r + 1)
∑

t∈T\{1} f
t,−r), ( 1

|Q|−1e,f
1 + (r + |Q|

|Q|−1 )
∑

t∈T\{1} f
t,−r), and

(e,f1 + (r + 2)
∑

t∈T\{1} f
t, −r + |Q| − 2) must be optimal for problem

(44). Finally, the following table shows that the associated inequalities de-
fine facets of polyhedron P .
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xd ≤ y1 + (r + 1)
∑

y∈T\{1} yt − r

(0, rf1), (ed, (r + 1)f1),

(ed + eq, (r + 1)f1) for each q ∈ Q\{d},

(ed, ft) for each t ∈ T\{1}.

1

|Q|−1

∑

q∈Q xq ≤

y1 + (r + |Q|
|Q|−1

)
∑

y∈T\{1} yt − r

(0, rf1), (e− eq , (r + 1)f1) for each q ∈ Q,

(e, ft) for each t ∈ T\{1}.

∑

q∈Q xq ≤ y1+ (e− eq, (r + 1)f1) for each q ∈ Q,

(r + 2)
∑

y∈T\{1} yt − r + |Q| − 2 (e, ft) for each t ∈ T\{1}, (e, (r + 2)f1).

Thus, we have case (d) in the statement. This completes the proof. ⊓⊔
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