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Abstract
In this paper, we derive (partial) convex hull for deterministic multi-constraint polyhedral
conic mixed integer sets with multiple integer variables using conic mixed integer rounding
(CMIR) cut-generation procedure of Atamtürk and Narayanan (Math Prog 122:1–20, 2008),
thereby extending their result for a simple polyhedral conic mixed integer set with single
constraint and one integer variable. We then introduce two-stage stochastic p-order conic
mixed integer programs (denoted by TSS-CMIPs) in which the second stage problems have
sum of l p-norms in the objective function along with integer variables. First, we present suf-
ficient conditions under which the addition of scenario-based nonlinear cuts in the extensive
formulation of TSS-CMIPs is sufficient to relax the integrality restrictions on the second
stage integer variables without impacting the integrality of the optimal solution of the TSS-
CMIP.We utilize scenario-based CMIR cuts for TSS-CMIPs and their distributionally robust
generalizations with structured CMIPs in the second stage, and prove that these cuts pro-
vide conic/linear programming equivalent or approximation for the second stage CMIPs. We
also perform extensive computational experiments by solving stochastic and distributionally
robust capacitated facility location problem and randomly generated structured TSS-CMIPs
with polyhedral CMIPs and second-order CMIPs in the second stage, i.e. p = 1 and p = 2,
respectively. We observe that there is a significant reduction in the total time taken to solve
these problems after adding the scenario-based cuts.
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1 Introduction

In this paper, we consider two-stage stochastic p-order conic mixed integer programs (TSS-
CMIPs) in which the first stage has pure integer variables and the second stage problems have
sum of l p-norms in the objective function along with integer variables. More specifically, the
TSS-CMIP is defined as follows:

min
{
c�x + EξP [Qω(x)] : Ax ≥ b, x ∈ Z

n1
}
, (1)

where random variable ξP follows a known probability distribution P with a finite sample
space Ω , and for scenario ω ∈ Ω with pω probability of occurrence:
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{
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which is equivalent to

Qω(x) := min g�
ω yω +

∑

j∈J

ĝ j
ωd

j
ω,0 (2)

s.t. Wωyω ≥ rω − Tωx,
∥∥∥E j

ωy
j
ω + F j

ωx − h j
ω

∥∥∥
p

≤ d j
ω,0, j ∈ J , (3)

y j
ω ∈ Z
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Here, ‖·‖p denotes l p-norm, i.e. ‖y‖p = (∑
k |yk |p

)1/p for p ≥ 1, c ∈ R
n1 , A ∈ R

m1×n1 ,

b ∈ R
m1 , and for each ω ∈ Ω and j ∈ J := {1, . . . , |J |}, gω ∈ R

q|J |, ĝ j
ω ∈ R, E j

ω ∈ R
m2×q ,

F j
ω ∈ R

m2×n1 , h j
ω ∈ R

m2 , Wω ∈ R
m3×q|J |, Tω ∈ R

m3×n1 , and rω ∈ R
m3 . We refer to the

formulation (2)–(4) and function Qω(x) as the second stage subproblem and the recourse
function, respectively. For TSS-CMIPs, we make the following assumptions:

(A1) Tω ∈ Z
m3×n1 and F j

ω ∈ Z
m2×n1 for all ω ∈ Ω and j ∈ J (w.l.o.g.),

(A2) X := {x : Ax ≥ b, x ∈ Z
n1} is non-empty,

(A3) Relatively complete recourse, i.e.Kω(x) := {(yω, dω,0) : (3)− (4)} �= ∅ for (x, ω) ∈
X × Ω .

The deterministic equivalent (also referred to as extensive formulation) of TSS-CMIP (1)
is a large-scale deterministic CMIP, defined by

min

{
cx +
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n1 × (

Z
q1 × R

q−q1
)|Ω|×|J | × R
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+ , (6)

Ax ≥ b, Tωx + Wωyω ≥ rω, ω ∈ Ω, (7)
∥∥∥F j

ωx + E j
ωy

j
ω − h j

ω

∥∥∥
p

≤ d j
ω,0, j ∈ J , ω ∈ Ω

}
. (8)

We present sufficient conditions under which by adding scenario-based nonlinear cuts in
(x, yω, dω,0) space to the extensive formulation, the integrality constraints on the yω integer
variables can be relaxed without impacting the integrality of the optimal solution of the
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problem. In other words, we derive partial convex hull (see Definition 1) for the deterministic
equivalent of TSS-CMIP. For the following structured TSS-CMIPs, we derive scenario-based
cuts that satisfy these conditions:

(a) Eω = I2 (identity matrix of size 2 × 2), F j
ω = [1, 0]T for j ∈ J , and m3 = 0;

(b) E j
ω = 1 (vector of all ones) for j ∈ J and Wω is totally unimodular (TU);

(c) E j
ω for all j ∈ J , and Wω are network flow matrices;

(d) E j
ω for all j ∈ J are TU matrices, and Wω = Im3 or Wω = 0.

We prove that these cuts provide conic programming equivalent for the structured CMIPs in
the second stage of (a) with p = 2 and (b-d) with p = 1, and conic programming approxima-
tion for (b-d) with p = 2. Note that in (b-d), there is no restriction on matrices F j

ω for j ∈ J
and ω ∈ Ω . Moreover, we are considering TU matrices in the aforementioned structured
CMIPs because of the following reasons: (1) In the literature on TSS-MILPs, researchers
have considered two-stage stochastic mixed integer linear programs (TSS-MILPs) with TU
recourse matrix [51] and extensive formulation of TSS-MILPs and multi-stage stochastic
MIPs with TU constraint matrix [32,59]; (2) TU matrices also find their applications in
deterministic problems such as two-commodity transportation problem [49], network flow
model for nursing staffs’ scheduling problems [27], andmanymore [42]; and (3) TSS-CMIPs
and their distributionally robust variants (see Sect. 1.2) with these structured CMIPs have
not been studied in the literature.

In the following subsections, we discuss other contributions of this paper, in particular
(partial) convex hulls for deterministic multi-constraint polyhedral conic mixed integer sets
with multiple integer variables, conic/linear programming equivalent or approximation for
structured CMIPs in the second stage of TSS-CMIPs and their distributionally robust gener-
alizations, and application of the foregoing results for solving stochastic capacitated facility
location problem.

Definition 1 A partial convex hull of a conic mixed integer set N is another conic mixed
integer setNpch such thatN ⊆ Npch ⊆ conv(N) = conv(Npch). Note thatNpch has lesser
number of integrality constraints (but possibly more linear or nonlinear inequalities) thanN.
Whereas in comparison to conv(N),Npch might have lesser inequalities but more integrality
constraints.

1.1 Deterministic polyhedral conic mixed integer sets

Atamtürk and Narayanan [3] generalize the well-known mixed integer rounding (MIR)
inequalities of Nemhauser and Wolsey [43] by studying a polyhedral (or first-order) conic
mixed integer set defined by a single conic constraint and one integer variable, i.e.,
Z1,1 := {(σ, ρ1) ∈ Z×R+ : |σ −β| ≤ ρ1}. They introduce so-called conicMIR cut for Z1,1

which is facet-defining for the convex hull of Z1,1, denoted by conv(Z1,1). The conic MIR
cut along with defining and nonnegativity constraints are sufficient to describe conv(Z1,1).
Moreover, they demonstrate how this cut can be utilized to develop strong cutting planes for
general conic mixed integer programs (CMIPs), thereby providing an effective approach to
solve them. We introduce four new deterministic multi-constraint polyhedral conic mixed
integer sets with multiple integer variables, derive conic MIR cuts for them, and provide
conditions under which the addition of these cuts is sufficient to provide the convex hull or a
partial convex hull of the sets. More specifically, we study the following generalizations of
the set Z1,1:
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(i) Set I:

Sm,n
K :=

{
(σ, ρ, ρ0) ∈ Z

nK × R
mK+ × R

K+ : Aσ ≥ b,

∣∣∣∣

n∑
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giktσkt − βik

∣∣∣∣ ≤ ρk
i , i = 1, . . . ,m, k = 1, . . . , K

}

where β ∈ R
mK , A ∈ R

m3×nK and Gk = (gikt ) ∈ R
m×n for k = 1, . . . , K .

(ii) Set II:

Um,n,u
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{
(η, σ, ρ, ρ0) ∈ Z

u × Z
nK × R

mK+ × R
K+ : A1η + Aσ ≥ b,

‖ρk‖1 ≤ ρk
0 ,

∣∣∣∣

u∑

t=1

ciktηt +
n∑

t=1

giktσkt − βik

∣∣∣∣ ≤ ρk
i , i = 1, . . . ,m, k = 1, . . . , K

}

where β ∈ R
mK , A ∈ R

m3×nK , and Gk = (gikt ) ∈ R
m×n for k = 1, . . . , K .

We assume that matrices A1 and Ck = (cikt ), for k = 1, . . . , K , are integral. We also study
sets Sm,n

K and Um,n,u
K with n = 1 and gik1 = 1 for all (i, k).

1.2 Structured two-stage stochastic and distributionally robust p-order conic mixed
integer programs

We introduce TSS-CMIPs with structured multi-constraint p-order conic mixed integer sets
having multiple integer variables in the second stage. We derive scenario-based cuts for
these second stage structured CMIPs using conic MIR and prove that these cuts provide a
convex programming equivalent or approximation, in particular, a conic/linear program, for
the second stage CMIPs. The foregoing second stage convexification results also hold for
distributionally robust generalizations of TSS-CMIPswherewe seek a solution that optimizes
the expected value of the objective function for the worst case probability distribution within
a prescribed (ambiguity) set of distributions that may be followed by the uncertain parameters
[11,14,18,22,23,26,37,46–48,53,62,64]. The two-stage distributionally robust p-order conic
mixed integer program (TSDR-CMIP) is defined as follows:

min

{
cx + max

P∈PEξP [Qω(x)]
∣∣∣∣x ∈ X

}
, (9)

where complete information about the probability distribution P followed by the random
variable ξP is not known but it belongs to a set of distributionsP (referred to as the ambiguity
set). In addition, we derive scenario-based valid inequalities for the extensive formulation of
distributionally robust variants of the aforementioned structured TSS-CMIPs, i.e.,

min

{
cx + θ

∣∣∣∣
∑

ω∈Ω

pω

⎛

⎝gωyω +
∑

j∈J

ĝ j
ωd

j
ω,0

⎞

⎠ ≤ θ, { p̄ω}ω∈Ω ∈ P;

(6) − (8) hold

}
. (10)

For |P| = 1, these cuts provide partial convex hull for the extensive formulation with no
integrality restrictions on the second-stage integer variables. We also perform computational
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experiments to evaluate the effectiveness of scenario based cuts by solving structured TSS-
CMIPs where p = 1 or p = 2, and TSDR-CMIPs with p = 2. We observe that after adding
the scenario-based cuts, there is a significant reduction in the number of the second stage
integer variables for instances where p = 1 and tightening of second stage feasible region
for instances where p = 2, thereby leading to reduction in the total solution time taken to
solve the TSS-CMIP and TSDR-CMIP instances. For instance, CPLEX 12.70 (with default
settings) could not solve 85 out of 290 TSS-CMIP instances within a time limit of 3 hours
and the allocated memory of 24 GB RAM. In contrast, after adding the scenario-based cuts
at the root node, CPLEX could solve 82 out of these 85 (unsolvable) instances within 8.2
minutes (on average). For TSDR-CMIP instances with finite |P|, CPLEX 12.70 (with its
default settings) could not solve 4 out of 9 instances within the time limit. After adding the
cuts, CPLEX solved all these instances in 4.8 minutes (on average).

1.3 Multi-module capacitated stochastic and distributionally robust facility
location problemwith subcontracting

To illustrate the significance of the aforementioned structured TSS-CMIPs, we introduce a
multi-module capacitated stochastic facility location problem with subcontracting (denoted
as MM-SFLP-S), which is defined as follows. Given a set P = {1, . . . ,m} of facilities, a
set P ′ = {1, . . . ,m′} of retailers, per unit transportation cost ti j for each i ∈ P and j ∈ P ′,
machines of capacity αk , k ∈ {1, . . . , n}, that can be installed at facility i ∈ P at the cost
cik , and per unit subcontracting cost gi at facility i ∈ P , we formulate the MM-SFLP-S as a
TSS-CMIP:

min
∑

i∈P

n∑

k=1

cki xik +
∑

i∈P

∑

j∈P ′
ti j zi j +

∑

i∈P

giui +
∑

ω∈Ω

p̄ωQω(x, z, u) (11)

s.t.
n∑

k=1

xik ≤ si , i ∈ P, (12)

∑

j∈P ′
zi j ≤

n∑

k=1

αk xik + ui , i ∈ P, (13)

∑

i∈P

ui ≤ r , (14)

xik, ui , zi j ∈ Z+, i ∈ P, j ∈ P ′, k = 1, . . . , n, (15)

where xik denotes the number of machines of capacity αk installed at facility i , zi j denotes
the number of items transported from facility i ∈ P to retailer j ∈ P ′, and ui denotes the
number of items subcontracted by facility i ∈ P . Here, an item represents either a single
entity or a packet of uncountable commodity in liquid or powder form. Constraints (12)
restrict the number of machines installed at facility i to be at most si . Constraints (13) restrict
the total number of items transported from facility i to all retailers to be no more than the
sum of the total capacity of installed machines and number of items subcontracted at the
facility. Constraint (14) limits the total number of items subcontracted by all facilities to
be at most r . Let X := {(x, z, u) : (12)–(15) hold}. The objective (11) of MM-SFLP-S is
to minimize the total machines’ installation cost, transportation cost, subcontracting cost,
and the expected (second-stage) transportation cost, inventory cost at facilities, and penalty
cost after the realization of uncertain demand. Note that the penalty cost is incurred for
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shipping both more or less than a retailer’s demand because in case of supplying more than
the demand, the retailer has to incur inventory cost. Specifically, for (x, u, z) ∈ X andω ∈ Ω ,
the second-stage problem is defined by,

Qω(x, z, u) := min
∑

i∈P

wi
inv

⎛

⎝
n∑

k=1

αk xik + ui −
∑

j∈P ′

(
zi j + yi jω

)
⎞

⎠

+ wsc

∑

j∈P ′

∑

i∈P

ti j y
i j
ω + wpen

∑

j∈P ′

∣∣∣∣
∑

i∈P

(
yi jω + zi j

)
− ζ j

ω

∣∣∣∣ (16)

s.t.
∑

j∈P ′

(
zi j + yi jω

)
≤

n∑

k=1

αk xik + ui , i ∈ P, (17)

yω ∈ Z
|P|×|P ′|
+ , (18)

where yi jω denotes the number of items transported from facility i ∈ P to retailer j ∈ P ′
after realization of demand ζ

j
ω ≥ 0 in response to a last minute order and constraints (17)

ensure that the total number of items (including the last minute order) transported from each
facility to all retailers is not greater than the sum of total capacity of machines installed at the
facility and number of items subcontracted from the facility. We denote per unit inventory
cost at facility i bywi

inv , per unit surcharge on transportation cost for any last minute order by
wsc, and per unit penalty cost for either falling short of a retailer’s demand or supplying more
than the demand (thereby incurring inventory cost for the retailer) bywpen . The second-stage
objective (16) is to minimize the inventory cost at facilities, transportation cost for the last
minute orders, and the penalty cost for shortage or surplus at each retailer’s end. In this paper,
we derive linear programming equivalent for the second stage CMIP using scenario-based
conic MIR cuts and perform computational experiments which demonstrate that these cuts
significantly reduce time taken to solve the MM-SFLP-S instances.

We also consider distributionally robust variant of the MM-SFLP-S which is denoted by
MM-DRFLP-S and defined as follows:

min
∑

i∈P

n∑

k=1

cki xik +
∑

i∈P

∑

j∈P ′
ti j zi j +

∑

i∈P

gi ui + max{ p̄ω}ω∈Ω∈P
∑

ω∈Ω

p̄ωQω(x, z, u)

where (x, u, z) ∈ X , Qω(x, z, u) is defined by (16)–(18). We utilize the scenario-based
CMIR cuts in solving the extensive formulation of the MM-DRFLP-S with finite |P| and
observe that these cuts are computationally effective.

1.4 Organization of this paper

In Sect. 2, we review literature related to TSS-CMIP, TSDR-CMIP, and deterministic CMIP.
In Sect. 3, we first review the conic MIR cut [3], and then provide conditions under which
addition of cuts derived using conic MIR for the aforementioned deterministic polyhedral
conic mixed integer sets is sufficient to provide convex hull or partial convex hull of these
sets. In Sect. 4, we provide a reformulation of the second stage CMIP using additional
continuous variables, and describe feasible region of the reformulated second stage problem
(exactly/approximately) as the intersection of convex hull of a polyhedral conicmixed integer
set and a set of p-order cones. InSect. 5,wepresent conditions underwhich the scenario-based
nonlinear cuts provide partial convex hulls for the feasible set of the deterministic equivalent
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ofTSS-CMIPs. To provide special cases of TSS-CMIPs and cutting planeswhich satisfy these
conditions, in Sect. 6, we introduce TSS-CMIPs (and TSDR-CMIPs) with structured CMIPs
in the second stage, derive scenario-based cuts for them using conicMIR, and prove that these
cuts provide conic/linear programming equivalent or approximation for the second-stage
CMIPs. We also demonstrate the applicability of these results for solving the MM-SFLP-S
and MM-DRFLP-S. In Sect. 7, we explore the computational effectiveness of the scenario-
based cuts by solving instances ofMM-SFLP-S, andMM-DRFLP-S, and randomlygenerated
structured TSS-CMIPs and TSDR-CMIPs. We provide concluding remarks in Sect. 8.

2 Literature review

We review literature on special cases of TSS-CMIP and TSDR-CMIP in Sect. 2.1 and on
cutting planes for deterministic CMIPs in Sect. 2.2.

2.1 Literature review on special cases of TSS-CMIP and TSDR-CMIP

One of the most extensively studied special cases of TSS-CMIP is the class of two-stage
stochastic mixed integer linear programs (TSS-MILPs), i.e., (1) with J = ∅ (refer to [33]
for a comprehensive survey on TSS-MILPs), which includes the problems whose second
stage are pure integer programs [1,31,54], mixed binary programs [19,24,34,44,55,57], or
mixed integer programs [9,55,56,58]. To solve TSS-MILP, many researchers have been using
globally valid linear scenario-based cuts in (x, yω) space, for each scenario ω ∈ Ω , to
tighten the second stage problems with binary or integer variables, which are then embedded
within Benders’ decomposition algorithm [12] to solve TSS-MILP. These cuts are of the form
γωyω ≥ γω,0−γω,1x , where x is a first-stage feasible solution, and γω, γω,0, and γω,1 are real-
vectors, and are referred to as the “scenario-based” or “parametric” (linear) cuts. For instance,
Sherali and Fraticelli [57] derive parametric linear cuts using the reformulation-linearization
technique to solveTSS-MILPwith |Ω| = 1, only binary variables in the first-stage, andmixed
binary programs in the second stage. Likewise, Gade et al. [24] utilize parametric Gomory
fractional cuts for solving TSS-MILPs with only binary variables in the first stage and non-
negative integer variables in the second stage. Similarly, Bodur et al. [15] use parametric cuts
based on split disjunctions to solve TSS-MILP with mixed integer first stage and continuous
second stage variables.

In the aforementioned studies, the parametric cuts are developed/added sequentially in the
algorithms. Recently, Kim andMehrotra [30] formulate an integrated staffing and scheduling
problem under demand uncertainty as a TSS-MILP with the second stage MIPs having a
certain structure and utilize parametric mixed integer rounding inequalities (added a priori) to
obtain a linear programming equivalent of the second stageMIPs. Bansal et al. [9] generalize
their observation to the general TSS-MILPs and show that under suitable conditions, the
second stage MIPs can be convexified by adding parametric cuts a priori. As special cases,
the authors consider structured parameterized mixed integer sets or convex objective integer
program (COIP) in the second stage. In particular, they extend the results ofMiller andWolsey
[39] for deterministicmixed integer sets andCOIP to the two-stage stochastic framework, and
consider TSS-MILPs with the parametrized version of two special cases of the continuous
multi-mixing set [6,7] in the second stage. In this paper, we further generalize their results for
TSS-CMIPs, which is equivalent to TSS-MILPs with parametric p-order conic constraints in
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the second stage. We utilize parametric cutting planes to obtain a conic/linear programming
equivalent or approximation for some structured second stage CMIPs in TSS-CMIPs.

Another special case of TSS-CMIP is two-stage stochastic convex quadratic integer pro-
gram (TSS-QIP). Özaltin et al. [45] study TSS-QIPs with only stochastic right-hand sides in
the second stage along with deterministic quadratic objective functions, linear constraints,
and only integer variables in both stages. They reformulate this problem using value func-
tions for quadratic integer programs, and present a global branch-and-bound algorithm and a
level-set approach to solve the problem.Mijangos [38] present a branch-and-fix coordination
based algorithm to solve TSS-QIPwith quadratic terms in the second stage objective function
and two-stage stochastic convex problems where the objective function and constraints are
nonlinear; both of these problems have binary and continuous variables in the first stage and
only continuous variables in the second stage.

The TSDR-CMIPs generalize the two-stage distributionally robustmixed binary programs
with general ambiguity set, studied by [8], where both stages have linear constraints and
integer variables are bounded between 0 and 1. Another special case of TSDR-CMIPs are
TSDR linear programswhere |J | = 0 and both stages have continuous variables [8,16,17,50].
In literature, the ambiguity sets are defined using: linear constraints on the first two moments
of the distribution [13,23,48,53], conic constraints to describe the set of distributions with
moments [14,22], Kantorovich distance or Wasserstein metric [37,46,47,62], ζ -structure
metrics [64], andχ2 distance andKullback-Leibler divergence [11,18,26,35,61,63].Recently,
Luo and Mehrotra [36] propose a decomposition algorithm to solve general TSDR-CMIP,
where thefirst stage variables are pure binary and the second stage hasmixed integer variables.
They use branch-and-cut algorithm to solve second stage CMIPs, and generate optimality
cuts using disjunctive programming techniques and distribution separation algorithm [8]. In
contrast, we consider TSDR-CMIPs with pure integer variables in the first stage and provide
conic/linear programming equivalent or approximation for structured CMIPs in the second
stage.

2.2 Brief literature review on CMIPs

In the last two decades, researchers have extended various classes of cutting planes derived
for mixed integer linear programs (MILPs) to mixed integer nonlinear programs (MINLP).
It includes extensions of Gomory mixed integer cuts, MIR cuts, split cuts [21], and n-step
MIR inequalities [28] for MIPs to solve MINLPs [20], second-order CMIPs [3], second-
order conic mixed integer sets [41], and polyhedral CMIPs [52], respectively. Additionally,
attempts have been made to derive the convex hull description of (structured) conic mixed
integer sets (see [3,25,29,40] for few examples). In this paper, we consider TSS-CMIPs and
TSDR-CMIPs with (structured) p-order CMIPs in the second stage. Among all papers on
deterministic CMIPs, the work in [3] is most closely related to our work. As mentioned
before, Atamtürk and Narayanan [3] generalize the MIR inequalities [43] by studying a
conic mixed integer set defined by a single second-order conic constraint and one integer
variable. They introduce conic MIR cuts which are non-linear in the original space and linear
in higher dimensional space. Vinal and Krokhmal [60] extend the conic MIR [3] and lifted
conic MIR cuts [4] for second-order CMIPs to derive valid inequalities for p-order CMIPs.
In this paper, we introduce TSS-CMIPs with multi-constraint p-order conic mixed integer
sets having multiple integer variables in the second stage and describe the convex hull or
tighter approximation of these sets using parametric conic MIR inequalities.
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3 (Partial) convex hull for deterministic polyhedral conic mixed integer
sets

In this section, we first briefly review the conic MIR cut generation procedure [3] which
we will use in the proofs of the subsequent theorems. Atamtürk and Narayanan [3] study a
single-constraint conic mixed integer set with one integer variable, i.e., Z := {

(σ, v, ρ0) ∈
Z×R

2+ : √(σ − β)2 + v2 ≤ ρ0
}
,where β ∈ R. They reformulate set Z by using additional

continuous variables to get

Z := {
(σ, v, ρ0, ρ1, ρ2) ∈ Z × R

4+ : |σ − β| ≤ ρ1, |v| ≤ ρ2,

√
ρ2
1 + ρ2

2 ≤ ρ0
}
. (19)

Proposition 1 ( [3]) The conic MIR inequality
(
1 − 2β(1)

)
(σ − �β�) + β(1) ≤ ρ1 (20)

where β(1) = β − �β�, is a facet defining inequality for Z1,1.

Proposition 2 ( [3]) The convex hull of Z is obtained by adding
√((

1 − 2β(1)
)
(σ − �β�) + β(1)

)2 + v2 ≤ ρ0

to the continuous relaxation of Z.

Let Rm
K := {(σ, ρ, ρ0) ∈ Z

K×R
mK+ ×R

K+ : Aσ ≥ b,
∣∣σk − βik

∣∣ ≤ ρk
i , i = 1, . . . ,m, k =

1, . . . , K } and

Tm,u
K :=

{
(η, σ, ρ, ρ0) ∈ Z

u × Z
K × R

mK+ × R
K+ : A1η + Aσ ≥ b,

‖ρk‖1 ≤ ρk
0 ,

∣∣∣∣

u∑

t=1

ciktηt + σk − βik

∣∣∣∣ ≤ ρk
i , i = 1, . . . ,m, k = 1, . . . , K

}
,

where β ∈ R
mK and A ∈ R

m3×K , be special cases of Sm,n and Um,n,u
K , respectively, with

n = 1 and gik1 = 1 for all (i, k). Using the conic MIR cut generation procedure on each
defining conic inequality of the sets Rm

K , S
m,n , Tm,u

K , andUm,n,u
K , in Theorems 1, 2, and 3, we

provide (partial) convex hull description of these sets, under certain conditions. The proofs
of these theorems are provided in “Appendix D”. Note that Z1,1 is equivalent to R1

1, S
1,1
1 ,

T 1,0
1 , and U 1,1,0

1 where A and b are zero vectors, and g111 = 1. We denote the fractional part

of βik by β
(1)
ik := βik − �βik�.

Motivation behind studying these structured CMIPs comes from the work of Miller and
Wolsey [39] who introduced various structured mixed integer linear sets and utilized MIR
inequalities of Nemhauser andWolsey [43] to provide convex hull of these sets. Their results
led to a new direction of research in which polyhedral structure of more generalized mixed
integer sets have been studied, thereby resulting in new cut-generation approaches forMILPs
(see [5–7] for details). Moreover, these sets arise as substructure in the mixed integer pro-
gramming formulations of variety of applied problems such as production plannning, facility
location, and network design problems. Likewise, we extend the results of [3] for conicmixed
integer sets with a single constraint and one integer variable and consider structured conic
mixed integer sets that have not been studied in the literature. Our results will provide a
stepping stone for future polyhedral studies on more generalized conic mixed integer sets,
thereby leading to new cut generation approaches for general CMIPs.
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First, we consider a multi-constraint generalization of the simple polyhedral conic mixed
integer set Z1,1, denoted by Rm,k := {(σk, ρk) ∈ Z×R

m : |σk − βik | ≤ ρk
i , i = 1, . . . ,m}

for k ∈ {1, . . . , K }. Set Rm,k has m polyhedral conic constraints with one nonnegative
continuous variable in each constraint and an integer variable that is common among all
these constraints. In Theorem 1, we derive convex hull of Rm

K := ∩K
k=1R

m,k ∩ {σ : Aσ ≥ b}
using conic MIR cuts.

Theorem 1 If A is a totally unimodular (TU) matrix and b is integral, then the convex hull
of the set Rm

K is given by
{
(σ, ρ, ρ0) ∈ R

K × R
mK+ × R

K+ :
Aσ ≥ b,

∣∣σk − βik
∣∣ ≤ ρk

i , i = 1, . . . ,m, k = 1, . . . , K ,

(
1 − 2β(1)

ik

)
(σk − �βik�) + β

(1)
ik ≤ ρk

i , i = 1, . . . ,m, k = 1, . . . , K

}
.

Next, in Theorem 2, we consider a multi-integer generalization of the sets Rm,k and Rm
K

where each polyhedral conic constraint has n integer variables. We denote this set by Sm,n
K ,

and note that for n = 1, Sm,n
K reduces to Rm

K . We provide conditions under which addition
of conic MIR cuts is sufficient to describe the convex hull of Sm,n

K . In addition, we utilize
the foregoing results to demonstrate that under the same conditions, the conic MIR cuts also
provide a partial convex hull of a generalization of set Sm,n

K , i.e., Um,n,u
K , that has n + u

number of integer variables in each conic constraint.

Theorem 2 If either of the following conditions is satisfied, i.e.,

(i) A and Gk = (gikt ) for k = 1, . . . , K, are network flow matrices,
(2) A is a zero matrix and Gk = (gikt ) for k = 1, . . . , K, are TU matrices,
(3) A is an identity matrix and Gk = (gikt ) for k = 1, . . . , K, are TU matrices,

and b is integral, then the following results hold: (a) the convex hull of the set Sm,n
K is obtained

by adding inequalities,

(
1 − 2β(1)

ik

)( n∑

t=1

giktσkt − �βik�
)

+ β
(1)
ik ≤ ρk

i , i = 1, . . . ,m, k = 1, . . . , K ,

to the continuous relaxation of Sm,n
K ; and (b) a partial convex hull of the set Um,n,u

K is given
by

Um,n,u
K ,pch :=

{
(η, σ, ρ, ρ0) ∈ Z

u × R
nK × R

mK+ × R
K+ : A1η + Aσ ≥ b,

‖ρk‖1 ≤ ρk
0 ,

∣∣∣∣

u∑

t=1

ciktηt +
n∑

t=1

giktσkt − βik

∣∣∣∣ ≤ ρk
i , i = 1, . . . ,m, k = 1, . . . , K ,

(
1 − 2β(1)

ik

)( u∑

t=1

ciktηt +
n∑

t=1

giktσkt − �βik�
)

+ β
(1)
ik ≤ ρk

i , i = 1, . . . ,m, k = 1, . . . , K

}
.

In Theorem 3, we derive a partial convex hull of the set Um,n,u
K for n = 1, denoted by Tm,u

K ,
using conic MIR cuts under the condition that matrix A is TU (which is not considered in
Theorem 2).
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Theorem 3 If A is a TU matrix and b is integral, then a partial convex hull of the set Tm,u
K

is given by

Tm,u
K ,pch :=

{
(η, σ, ρ, ρ0) ∈ Z

u × R
K × R

mK+ × R
K+ : A1η + Aσ ≥ b,

‖ρk‖1 ≤ ρk
0 ,

∣∣∣∣

u∑

t=1

ciktηt + σk − βik

∣∣∣∣ ≤ ρk
i , i = 1, . . . ,m, k = 1, . . . , K ,

(
1 − 2β(1)

ik

)( u∑

t=1

ciktηt + σk − �βik�
)

+ β
(1)
ik ≤ ρk

i , i = 1, . . . ,m, k = 1, . . . , K

}
.

4 Reformulation of second stage of TSS-CMIPs and TSDR-CMIPs

We reformulate the second stage problem Qω(x) of the TSS-CMIP and TSDR-CMIP using
additional continuous variables, as follows:

Qω(x) := min gωyω +
∑

j∈J

ĝ j
ωd

j
ω,0 (21)

s.t. Wωyω ≥ rω − Tωx, (22)

|e jω,i y
j
ω + f j

ω,i x − h j
ω,i | ≤ d j

ω,i , quadi = 1, . . . ,m2, j ∈ J , (23)
∥∥∥d j

ω

∥∥∥
p

≤ d j
ω,0, j ∈ J , (24)

y j
ω ∈ Z

q , d j
ω,i ∈ R+, i = 0, 1, . . . ,m2, j ∈ J , (25)

where d j
ω :=

(
d j
ω,1, . . . , d

j
ω,m2

)
∈ R

m2+ for j ∈ J , e jω,i and f j
ω,i denote the i th row of

matrices E j
ω and F j

ω , respectively, and h j
ω,i denotes the i th element of real vector h j

ω. We
define the feasible region of the reformulated second stage program byKω(x) := {(yω, dω) :
(22)–(25) hold} for x ∈ X and ω ∈ Ω . We note that Kω(x) is in lower dimensional space
by rewriting (23) and (24).

Next, we describe the feasible region of the reformulated second stage problem
(exactly/approximately) as intersection of convex hull of a polyhedral conic mixed inte-
ger set and a set of p-order cones. Let Kω(x) = K1

ω(x) ∩ K2
ω(x) where K1

ω(x) :=
{(yω, dω) ∈ Z

q|J | ×R
m2|J |+|J |
+ : (22)–(23) hold} is a polyhedral conic mixed integer set and

K2
ω(x) := {(yω, dω) ∈ R

q|J | × R
m2|J |+|J |
+ : (24) holds} is an intersection of |J | number of

p-order cones. In Theorem 4, we provide a relation between the convex hull of Kω(x) and
the convex hull of K1

ω(x).

Theorem 4 For each x ∈ X and ω ∈ Ω , if p = 1,

conv (Kω(x)) = conv
(K1

ω(x)
) ∩ K2

ω(x), (26)

and if p ≥ 2, conv (Kω(x)) ⊆ conv
(K1

ω(x)
) ∩ K2

ω(x).

Proof For x ∈ X and ω ∈ Ω , Kω(x) = K1
ω(x) ∩ K2

ω(x). Therefore,

conv(Kω(x)) ⊆ conv
(K1

ω(x)
) ∩ K2

ω(x). (27)
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Now, for p = 1, assume that a point η̂ω =
(
ŷω, {d̂ j

ω, d̂ j
ω,0} j∈J

)
belongs to

conv
(K1

ω(x)
) ∩ K2

ω(x), i.e. η̂ω ∈ conv
(K1

ω(x)
)
and η̂ω ∈ K2

ω(x) or d̂ j
ω,0 −∑m2

i=1 d̂
j
ω,i ≥ 0.

Since η̂ω ∈ conv
(K1

ω(x)
)
, η̂ω can be written as convex combination of a finite num-

ber of points η̄kω =
(
ȳkω, {d̄ j,k

ω , d̄ j,k
ω,0} j∈J

)
∈ K1

ω(x), where we define d̄ j,k
ω,0 = d̂ j

ω,0 +
m2∑

i=1

(
d̄ j,k
ω,i − d̂ j

ω,i

)
for j ∈ J and k ∈ {1, 2, . . . , q|J | + 1 + (m2 + 1)|J |}, i.e., for

λk ∈ [0, 1] and
∑

k λk = 1,
∑

k λk η̄
k
ω = η̂ω. Observe that for all ( j, k), d̄ j,k

ω,0 ≥ 0 as

d̂ j
ω,0 −

m2∑

i=1
d̂ j
ω,i ≥ 0 and d̄ j,k

ω,i ≥ 0 for all i = 1, . . . ,m2. Also, note that η̄kω ∈ K2
ω(x)

as d̄ j,k
ω,0 = d̂ j

ω,0 +
m2∑

i=1

(
d̄ j,k
ω,i − d̂ j

ω,i

)
≥

m2∑

i=1
d̄ j,k
ω,i . Hence, η̄kω ∈ K1

ω(x) ∩ K2
ω(x) for all k.

This implies
∑

k λk η̄
k
ω = η̂ω ∈ conv

(K1
ω(x) ∩ K2

ω(x)
) = conv(Kω(x)), and therefore,

conv
(K1

ω(x)
) ∩ K2

ω(x) ⊆ conv(Kω(x)). Hence, for p = 1, we get

conv(Kω(x)) = conv
(K1

ω(x)
) ∩ K2

ω(x). (28)

and this completes the proof. ��

5 Scenario-based cuts for extensive formulation of TSS-CMIPs

In this section, we present sufficient conditions under which the integrality restrictions on
the second stage integer variables of the TSS-CMIPs can be relaxed (without impacting
the integrality of the optimal solution) by adding scenario-based nonlinear inequalities in
(x, yω, dω) space to the extensive formulation of TSS-CMIPs. In other words, using these
scenario-based cuts, we derive “partial convex hull(s)” for P , which is the feasible region
of the deterministic equivalent of TSS-CMIPs. Given a nonempty set Γ ⊆ Ω , we define a
partial convex hull of P by another conic mixed integer set,

P pch := {
Tωx + Wωyω ≥ rω, ω ∈ Ω,

∥∥∥E j
ωy

j
ω + F j

ωx − h j
ω

∥∥∥
p

≤ d j
ω,0, j ∈ J , ω ∈ Ω,

∥∥∥E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l

∥∥∥
p

≤ d j
ω,0, l ∈ L, j ∈ J , ω ∈ Γ ,

x ∈ X , d ∈ R
|J |×|Ω|
+ , y j

ω ∈ R
q , j ∈ J , ω ∈ Γ ,

y j
ω ∈ Z

q , j ∈ J , ω ∈ Ω \ Γ
}
,

where for each l ∈ L, j ∈ J , and ω ∈ Γ , E
j
ω,l , F

j
ω,l , h

j
ω,l are matrices (or vectors)

corresponding to scenario-based cuts in (x, yω, dω) space added a priori to P , such that
P ⊆ P pch ⊆ conv(P) = conv(P pch). Note that P pch has fewer number of integrality
constraints (but possiblymore linear or nonlinear inequalities) thanP .Whereas in comparison
to conv(P), Ppch might have lesser inequalities but more integrality constraints.

Theorem 5 Given a nonempty set Γ ⊆ Ω , if conv
(Kω(x)

) = Kω

tight (x) for all x ∈ X and
ω ∈ Γ , where

Kω

tight (x) := {(yω, dω) ∈ R
q|J | × R

|J |
+ : Wωyω ≥ rω − Tωx,
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∥∥∥E j
ωy

j
ω + F j

ωx − h j
ω

∥∥∥
p

≤ d j
ω,0, j ∈ J ,

∥∥∥E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l

∥∥∥
p

≤ d j
ω,0, l ∈ L, j ∈ J },

then P pch is a partial convex hull of P , i.e.,
P ⊆ P pch ⊆ conv(P) = conv(P pch).

Proof Refer to “Appendix A”. ��
Remark 1 Theorem 5 for TSS-CMIP extends the results (Lemma 1 and Theorem 3) of [9]
for TSS-MILP, i.e., TSS-CMIP with |J | = 0, with linear parametric cuts. In Sect. 6, we
introduce structured TSS-CMIPs and derive classes of cutting planes for them which satisfy
the conditions stated in Theorem 5.

6 Structured two-stage stochastic and distributionally robust p-order
conic mixed integer programs

In this section, we introduce TSS-CMIPs and TSDR-CMIPs with structured p-order CMIPs
in the second stage, derive scenario-based cuts using conic MIR for them, and prove that
these cuts along with the defining constraints provide conic/linear programming equivalent
or approximation for the second stage CMIPs. We also demonstrate the applicability of these
results for solving MM-SFLP-S. Specifically, we consider the following three structured
CMIPs in the second stage, i.e. Qω(x) (or Qω(x)) where

(a) Eω = I2, F
j

ω = [1, 0]T for j ∈ J , and m3 = 0 (Corollary 1);
(b) E j

ω = 1 for j ∈ J and Wω is TU (Theorem 6);
(c) E j

ω for all j ∈ J , and Wω are network flow matrices (Theorem 7(i));
(d) E j

ω for all j ∈ J are TU matrices, and Wω = Im3 or Wω = 0 (Theorem 7(ii)).

6.1 Tight second stage formulations for structured TSS-CMIPs and TSDR-CMIPs

We derive classes of parametric (non)-linear inequalities using conic MIR to get conic/linear
programming equivalent or approximation for the second stage problems. It is important
to note that for structured TSS-CMIP (a), we utilize the result of [3] for Z in Corollary 1;
whereas for structures (b), (c), and (d), no result is known for multi-constraint and multi-
variable generalizations of Z or Z1, except Theorems 1-3. We introduce case (a) mainly
to present a simple example that illustrates how parametric nonlinear inequalities can be
used to get conic programming equivalent of the second stage CMIP of TSS-CMIPs and
TSDR-CMIPs.

Corollary 1 In TSS-CMIP (1) and TSDR-CMIP (9), let

Qω(x) := min g1ωyω,1 + g2ωyω,2 + ĝωdω,0 (29)

s.t.
√(

yω,1 + fωx − hω

)2 + (
yω,2

)2 ≤ dω,0, (30)

yω,1 ∈ Z, yω,2 ∈ R+, dω,0 ∈ R+. (31)

The convex hull of the feasible region of Qω(x) for all x ∈ X is given by
{
(yω,1, yω,2, dω,0) ∈ R × R

2+ : (30) and
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√(
(1 − 2μω)

(
yω,1 + fωx − hω

)+ μω

)2 + (
yω,2

)2 ≤ dω,0

}
,

where μω = hω − �hω�. Furthermore, in higher dimensional space Qω(x) can be reformu-
lated as:

Qω(x) := min

{
g1ωyω,1 + g2ωyω,2 + ĝωdω,0 : |yω,1 + fωx − hω| ≤ dω,1,

|yω,2| ≤ dω,2,

√
d2ω,1 + d2ω,2 ≤ dω,0,

yω,1 ∈ Z, yω,2 ∈ R+, dω,i ∈ R+, i = 0, 1, 2

}
.

Then, for all x ∈ X, the convex hull of the feasible region of Qω(x), denoted by Kω(x), is
obtained by adding the following parametric linear inequality to the continuous relaxation
of Kω(x):

(1 − 2μω)
(
yω,1 − �hω� + fωx

)+ μω ≤ dω,1.

Proof Refer to “Appendix B.1”. ��
As mentioned before, the motivation behind the ensuing theorems is to extend the results

of Bansal et al. [9] for structured TSS-MILPs to structured TSS-CMIPs and TSDR-CMIPs.
More specifically, in [9], the authors considered structured mixed integer sets studied by
Miller and Wolsey [39] and two special cases of the continuous multi-mixing set [6,7] in
the second stage of TSS-MILPs, and provide linear programming equivalent for the second
stage programs. We also obtain a conic/linear programming equivalent or approximation for
aforementioned structured second stage CMIPs in TSS-CMIPs and TSDR-CMIPs, thereby
extending our results for deterministic CMIPs (Theorems 1 and 2 for Rm

K and Sm,n
K , respec-

tively) to stochastic CMIPs. In Theorem 6, we consider second stage problems with |J | conic
constraints (34) where each constraint has only one integer variables y j

ω ∈ Z associated to
it and these integer variables yω = (y1ω, y2ω, . . . , y|J |

ω ) ∈ Z
|J | are connected with linear

constraints (33).

Theorem 6 In TSS-CMIP (1) and TSDR-CMIP (9), let

Qω(x) := min gωyω +
∑

j∈J

ĝ j
ωd

j
ω,0 (32)

s.t. Wωyω ≥ rω − Tωx, (33)
∥∥∥1y j

ω + F j
ωx − h j

ω

∥∥∥
p

≤ d j
ω,0, j ∈ J , (34)

y j
ω ∈ Z, d j

ω,0 ∈ R+, j ∈ J , (35)

where Wω is a TU matrix and rω is integral. For p = 1 or p ≥ 2, the convex hull or an
approximation, respectively, of the feasible region of Qω(x) for all x ∈ X are given by

{
(yω, dω,0) ∈ R

|J | × R
|J |
+ : (33), (34), and

∥∥∥E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l

∥∥∥
p

≤ d j
ω,0, l ∈ L, j ∈ J

}
,

where the i th element of E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l is either y j

ω + f j
ω,i x − h j

ω,i or(
1 − 2μ j

ω,i

) (
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i , and μ

j
ω,i = h j

ω,i −
⌊
h j

ω,i

⌋
.
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Furthermore, in higher dimensional space Qω(x) can be reformulated as:

Qω(x) := min

{
gωyω +

∑

j∈J

ĝ j
ωd

j
ω,0 : (33), and (36)

|y j
ω + f j

ω,i x − h j
ω,i | ≤ d j

ω,i , i = 1, . . . ,m2, j ∈ J , (37)
∥∥∥d j

ω

∥∥∥
p

≤ d j
ω,0, j ∈ J , (38)

y j
ω ∈ Z, d j

ω,0 ∈ R+, d j
ω ∈ R

m2+ , j ∈ J

}
. (39)

Then, for all x ∈ X, the convex hull (for p = 1) and an approximation (for p ≥ 2) of
the feasible region of Qω(x), denoted by Kω(x), are obtained by adding m2 × |J | number
of the following parametric linear inequalities (in the higher dimensional space) to the

continuous relaxation of Kω(x):
(
1 − 2μ j

ω,i

) (
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i ≤ d j

ω,i , i =
1, . . . ,m2, j ∈ J .

Proof Let

K1
ω(x) =

{
(yω, dω) ∈ Z

|J | × R
m2|J |+|J |
+ : (40)

Wωyω ≥ rω − Tωx, (41)

|y j
ω + f j

ω,i x − h j
ω,i | ≤ d j

ω,i , i = 1, . . . ,m2, j ∈ J

}
(42)

for all x ∈ X . First we apply Proposition 1 to each defining inequality (42) ofK1
ω(x). In other

words, we substitute σ = y j
ω, β = h j

ω,i − f j
ω,i x , and ρ1 = d j

ω,i in Z1 and get the following

valid parametric conic MIR inequalities (20) for K1
ω(x):

(1 − 2μ j
ω,i )

(
y j
ω −

⌊
h j

ω,i − f j
ω,i x

⌋)
+ μ

j
ω,i ≤ d j

ω,i , i = 1, . . . ,m2, j ∈ J . (43)

Since f j
ω,i x is integral for all x ∈ X ,

⌊
f j
ω,i x

⌋
= f j

ω,i x and therefore, inequality (43) is

equivalent to

(1 − 2μ j
ω,i )

(
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i ≤ d j

ω,i , i = 1, . . . ,m2, j ∈ J . (44)

Thus,

conv
(K1

ω(x)
) ⊆ K3

ω(x) :=
{
(yω, dω) ∈ R

|J | × R
m2|J |+|J |
+ : (41), (42), (44) hold

}
(45)

for all x ∈ X . Notice that we can rewrite the set K3
ω(x) as

K3
ω(x) =

{
(yω, dω) ∈ R

|J | × R
m2|J |+|J |
+ : Wωyω ≥ rω − Tωx,

d j
ω,i ≥ y j

ω −
(
h j

ω,i − f j
ω,i x

)
, i = 1, . . . ,m2, j ∈ J , (46)

d j
ω,i ≥

(
h j

ω,i − f j
ω,i x

)
− y j

ω, i = 1, . . . ,m2, j ∈ J ,

d j
ω,i ≥

(
1 − 2μ j

ω,i

) (
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i , i = 1, . . . ,m2, j ∈ J

}
. (47)
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Now let K4
ω(x) be a bounded face of Projyω,d1,...,d|Ω|K3

ω(x) with maximum possible dimen-

sion. Since K4
ω(x) is a bounded face, for all points (yω, d1, . . . , d|Ω|) ∈ K4

ω(x), d j
ω,i ≤ d̂ j

ω,i

for i = 1, . . . ,m2 and j ∈ J , where (ŷω, d̂1, . . . , d̂|Ω|) ∈ Projyω,d1,...,d|Ω|K3
ω(x). Thus, for

i = 1, . . . ,m2 and j ∈ J , we have

d j
ω,i = max

{
y j
ω −

(
h j

ω,i − f j
ω,i x

)
,
(
h j

ω,i − f j
ω,i x

)
− y j

ω,

(1 − 2μ j
ω,i )

(
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i

}
.

Moreover, if h j
ω,i ∈ Z for all j ∈ J then μ

j
ω,i = 0, and as a result inequality (44) reduces to

inequality (46). However, when h j
ω,i /∈ Z for j ∈ J , then there are three possible cases:

Case I. d j
ω,i = y j

ω −
(
h j

ω,i − f j
ω,i x

)
: This case will happen if and only if y j

ω −
(
h j

ω,i − f j
ω,i x

)
≥

(
h j

ω,i − f j
ω,i x

)
− y j

ω and y j
ω −

(
h j

ω,i − f j
ω,i x

)
≥

(
1 − 2μ j

ω,i

)

(
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i , which are equivalent to y j

ω ≥ h j
ω,i − f j

ω,i x and y j
ω ≥

⌈
h j

ω,i

⌉
− f j

ω,i x , respectively. Note that the last inequality is stronger than the second

last inequality. Therefore, we can claim that d j
ω,i = y j

ω −
(
h j

ω,i − f j
ω,i x

)
if and only if

y j
ω ≥

⌈
h j

ω,i

⌉
− f j

ω,i x .

Case II. d j
ω,i = h j

ω,i − f j
ω,i x− y j

ω: This case will happen if and only if h
j
ω,i − f j

ω,i x− y j
ω ≥

y j
ω − (h j

ω,i − f j
ω,i x) and h j

ω,i − f j
ω,i x − y j

ω ≥
(
1 − 2μ j

ω,i

)

(
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i , which are equivalent to y j

ω ≤ h j
ω,i − f j

ω,i x and y j
ω ≤

⌊
h j

ω,i

⌋
− f j

ω,i x , respectively, as μ
j
ω,i ≤ 1. Again, note that the last inequality is stronger

than the second last inequality. Therefore, d j
ω,i = h j

ω,i − f j
ω,i x − y j

ω if and only if

y j
ω ≤

⌊
h j

ω,i

⌋
− f j

ω,i x .

Case III. d j
ω,i =

(
1 − 2μ j

ω,i

) (
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i : This case will happen

if and only if
(
1 − 2μ j

ω,i

) (
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i ≥ h j

ω,i − f j
ω,i x − y j

ω and
(
1 − 2μ j

ω,i

) (
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i ≥ y j

ω −
(
h j

ω,i − f j
ω,i x

)
, which are equiv-

alent to y j
ω ≥

⌊
h j

ω,i

⌋
− f j

ω,i x and y j
ω ≤

⌈
h j

ω,i

⌉
− f j

ω,i x , respectively. Therefore,

d j
ω,i =

(
1 − 2μ j

ω,i

) (
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i if and only if

⌊
h j

ω,i

⌋
− f j

ω,i x ≤ y j
ω ≤

⌈
h j

ω,i

⌉
− f j

ω,i x .

Next, for each j ∈ J , we partition the set I := {1, . . . ,m2} into the sets I j
1 , I

j
2 , and I j

3 ,

i.e. I = I j
1 ∪ I j

2 ∪ I j
3 , such that

I j
1 := {

i ∈ I : d j
ω,i = y j

ω − (h j
ω,i − f j

ω,i x)
}
, (48)

I j
2 := {

i ∈ I : d j
ω,i = (h j

ω,i − f j
ω,i x) − y j

ω

}
, and (49)

I j
3 :=

{
i ∈ I : d j

ω,i = (1 − 2μ j
ω,i )

(
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i

}
. (50)
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Therefore, in the light of the above discussed cases, we can rewrite K4
ω(x) as

K4
ω(x) =

{
(yω, dω) ∈ R

|J | × R
m2|J |+|J |
+ : Wωyω ≥ rω − Tωx,

y j
ω ≥

⌈
h j

ω,i

⌉
− f j

ω,i x, d j
ω,i = y j

ω −
(
h j

ω,i − f j
ω,i x

)
, i ∈ I j

1 , j ∈ J ,

y j
ω ≤

⌊
h j

ω,i

⌋
− f j

ω,i x, d j
ω,i =

(
h j

ω,i − f j
ω,i x

)
− y j

ω, i ∈ I j
2 , j ∈ J ,

⌊
h j

ω,i

⌋
− f j

ω,i x ≤ y j
ω ≤

⌈
h j

ω,i

⌉
− f j

ω,i x, i ∈ I j
3 , j ∈ J ,

d j
ω,i =

(
1 − 2μ j

ω,i

) (
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i , i ∈ I j

3 , j ∈ J

}
.

The compact form K4
ω(x) can be written as

K4
ω(x) = {

(yω, dω) ∈ R
|J | × R

m2|J |+|J |
+ : Wωyω ≥ rω − Tωx,

d j
ω,i = θ

j
ω,i y

j
ω + σ

j
ω,i , l

j
ω ≤ y j

ω ≤ u j
ω, i = 1, . . . ,m2, j ∈ J

}
,

where θ
j
ω,i , σ

j
ω,i ∈ R and l jω, u j

ω ∈ Z ∪ {−∞,+∞} for j ∈ J and i = 1, . . . ,m2. Since Wω

is a TU matrix (by assumption), transpose of (WT
ω , I,−I) is also a TU matrix. Therefore,

each bounded face K4
ω(x) of Projyω,d1,...,d|Ω|K3

ω(x), for x ∈ X , has extreme points with

integral y j
ω as rω − Tωx is integral. Since K3

ω(x) is a subset of the continuous relaxation of
K1

ω(x), and all bounded faces of K3
ω(x) have extreme points with integral yω components,

K3
ω(x) ⊆ conv

(K1
ω(x)

)
. Hence, conv

(K1
ω(x)

) = K3
ω(x) for all x ∈ X because of (45).

Finally, because of Theorem 4, conv
(K1

ω(x)
)∩K2

ω(x) ⊆ K3
ω(x)∩K2

ω(x)whereK2
ω(x) :=

{(yω, dω) ∈ R
|J | ×R

m2|J |+|J |
+ :

∥∥∥d j
ω

∥∥∥
p

≤ d j
ω,0, j ∈ J }, provides the convex hull (for p = 1)

or an approximation (for p ≥ 2) for (Kω(x)). In other words, we obtain the convex hull (for
p = 1) or an approximation (for p ≥ 2) of Kω(x) by adding m2 × |J | number of linear
inequalities:

d j
ω,i ≥ (1 − 2μ j

ω,i )
(
y j
ω −

⌊
h j

ω,i x
⌋

+ f j
ω,i

)
+ μ

j
ω,i , i = 1, . . . ,m2, j ∈ J , (51)

to the continuous relaxation ofKω(x).Moreover,K3
ω(x)∩K2

ω(x)when projected to (yω, dω,0)

space gives the convex hull of the feasible region of Qω(x), i.e.
{
(yω, dω,0) ∈ R

|J | × R
|J |
+ : (33), (34), and

∥∥∥E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l

∥∥∥
p

≤ d j
ω,0, l ∈ L, j ∈ J

}
,

where the i th row of E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l is either y

j
ω + f j

ω,i x − h j
ω,i or

(
1 − 2μ j

ω,i

)

(
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i . This completes the proof. ��

Next, we consider multi-integer generalization of the second stage problem studied in
Theorem 6. More specifically, we again consider second stage problems with |J | conic
constraints (54), but each constraint has q integer variables y j

ω ∈ Z
q associated to it and

these integer variables yω = (y1ω, y2ω, . . . , y|J |
ω ) ∈ Z

q|J | are also connected with linear
constraints (53).
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Theorem 7 In TSS-CMIP (1) and TSDR-CMIP (9), let

Qω(x) := min gωyω +
∑

j∈J

ĝ j
ωd

j
ω,0 (52)

s.t. Wωyω ≥ rω − Tωx, (53)
∥∥∥E j

ωy
j
ω + F j

ωx − h j
ω

∥∥∥
p

≤ d j
ω,0, j ∈ J , (54)

y j
ω ∈ Z

q , d j
ω,0 ∈ R+, j ∈ J , (55)

where rω is integral and either of following conditions is satisfied:

(i) E j
ω for j ∈ J and Wω are network flow matrices;

(ii) E j
ω for j ∈ J are TU matrices, and Wω = Im3 or Wω = 0.

For p = 1 or p ≥ 2, the convex hull or an approximation, respectively, of the feasible region
of Qω(x) for all x ∈ X are given by

{
(yω, dω,0) ∈ R

q|J | × R
|J |
+ : (53), (54), and

∥∥∥E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l

∥∥∥
p

≤ d j
ω,0, l ∈ L, j ∈ J

}
,

where the i th element of E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l is either e jω,i y

j
ω + f j

ω,i x − h j
ω,i or(

1 − 2μ j
ω,i

) (
e jω,i y

j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i , and μ

j
ω,i = h j

ω,i −
⌊
h j

ω,i

⌋
. Furthermore,

in higher dimensional space Qω(x) can be reformulated as:

Qω(x) := min

{
gωyω +

∑

j∈J

ĝ j
ωd

j
ω,0 : (53), and (56)

|e jω,i y
j
ω + f j

ω,i x − h j
ω,i | ≤ d j

ω,i , i = 1, . . . ,m2, j ∈ J , (57)
∥∥∥d j

ω

∥∥∥
p

≤ d j
ω,0, j ∈ J , (58)

y j
ω ∈ Z

q , d j
ω,0 ∈ R+, d j

ω ∈ R
m2+ , j ∈ J

}
. (59)

Then, for all x ∈ X, the convex hull (for p = 1) and an approximation (for p ≥ 2) of the
feasible region of Qω(x), denoted by Kω(x), is obtained by adding m2 × |J | number of the
following linear inequalities (in the higher dimensional space) to the continuous relaxation
of Kω(x):

(
1 − 2μ j

ω,i

) (
e jω,i y

j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i ≤ d j

ω,i , i = 1, . . . ,m2, j ∈ J .

Proof Let

K1
ω(x) =

{
(yω, dω) ∈ R

q|J | × R
m2|J |+|J |
+ :

Wωyω ≥ rω − Tωx, (60)

|e jω,i y
j
ω + f j

ω,i x − h j
ω,i | ≤ d j

ω,i , i = 1, . . . ,m2, j ∈ J

}
(61)
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for all x ∈ X . Since E j
ω is either a network flow matrix, or a TU matrix, e jω,i y

j
ω is integral.

Similar to the proof of the previous theorem, we again apply Proposition 1 to each defining
inequality (61) of K1

ω(x). In this case we substitute σ = e jω,i y
j
ω ∈ Z, β = h j

ω,i − f j
ω,i x ,

and ρ1 = d j
ω,i in Z1 and get the following valid parametric conic MIR inequalities (20)

for K1
ω(x):

(
1 − 2μ j

ω,i

) (
e jω,i y

j
ω −

⌊
h j

ω,i − f j
ω,i x

⌋)
+ μ

j
ω,i ≤ d j

ω,i , for i = 1, . . . ,m2 and

j ∈ J , which is equivalent to
(
1 − 2μ j

ω,i

) (
e jω,i y

j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i ≤ d j

ω,i , (62)

for i = 1, . . . ,m2 and j ∈ J , as f j
ω,i x is integral for all x ∈ X . Thus, conv

(K1
ω(x)

) ⊆ K3
ω(x)

for all x ∈ X , where

K3
ω(x) =

{
(yω, dω) ∈ R

q|J | × R
m2|J |+|J |
+ : Wωyω ≥ rω − Tωx,

d j
ω,i ≥ e jω,i y

j
ω −

(
h j

ω,i − f j
ω,i x

)
, i = 1, . . . ,m2, j ∈ J , (63)

d j
ω,i ≥

(
h j

ω,i − f j
ω,i x

)
− e jω,i y

j
ω, i = 1, . . . ,m2, j ∈ J ,

d j
ω,i ≥

(
1 − 2μ j

ω,i

) (
e jω,i y

j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i , i = 1, . . . ,m2, j ∈ J

}
.

(64)

Notice that K3
ω(x) is a subset of the continuous relaxation of K1

ω(x), and there is no
restriction on variables dω,0 for all ω ∈ Ω . Therefore, if we can prove that all bounded
faces of Projyω,d1,...,d|Ω|

(K3
ω(x)

)
have extreme points with integral yω component, then it

will imply that K3
ω(x) ⊆ conv

(K1
ω(x)

)
for all x ∈ X . So, we now consider a bounded

face of K3
ω(x) with maximum possible dimension, denoted by K4

ω(x), and on this face, d j
ω,i ,

i = 1, . . . ,m2 and j ∈ J , is minimal, i.e. d j
ω,i = max

{
z jω,i − h j

ω,i , h
j
ω,i − z jω,i , (1 −

2μ j
ω,i )

(
z jω,i −

⌊
h j

ω,i

⌋)
+μ

j
ω,i

}
where z jω,i = e jω,i y

j
ω + f j

ω,i x ∈ Z. Now if h j
ω,i ∈ Z for any

j ∈ J , then μ
j
ω,i = 0 and as a result inequality (62) reduces to inequality (63). However,

when h j
ω,i /∈ Z for some j ∈ J , then again there are three possible cases:

Case I. d j
ω,i = z jω,i − h j

ω,i : This case will happen if and only if z
j
ω,i − h j

ω,i ≥ h j
ω,i − z jω,i

and z jω,i −h j
ω,i ≥

(
1 − 2μ j

ω,i

) (
z jω,i −

⌊
h j

ω,i

⌋)
+μ

j
ω,i ,which are equivalent to z

j
ω,i ≥ h j

ω,i

and z jω,i ≥
⌈
h j

ω,i

⌉
, respectively. Therefore, we can claim that d j

ω,i = z jω,i − h j
ω,i if and only

if z jω,i ≥
⌈
h j

ω,i

⌉
.

Case II. d j
ω,i = h j

ω,i − z jω,i : This case will happen if and only if h
j
ω,i − z jω,i ≥ z jω,i − h j

ω,i

and h j
ω,i − z jω,i ≥

(
1 − 2μ j

ω,i

) (
z jω,i −

⌊
h j

ω,i

⌋)
+μ

j
ω,i , which are equivalent to z

j
ω,i ≤ h j

ω,i

and z jω,i ≤
⌊
h j

ω,i

⌋
, respectively, as μ

j
ω,i ≤ 1. Therefore, d j

ω,i = h j
ω,i − z jω,i if and only if

z jω,i ≤
⌊
h j

ω,i

⌋
.

Case III. d j
ω,i =

(
1 − 2μ j

ω,i

) (
z jω,i −

⌊
h j

ω,i

⌋)
+ μ

j
ω,i : This case will happen if and only

if
(
1 − 2μ j

ω,i

) (
z jω,i −

⌊
h j

ω,i

⌋)
+ μ

j
ω,i ≥ h j

ω,i − z jω,i and
(
1 − 2μ j

ω,i

) (
z jω,i −

⌊
h j

ω,i

⌋)
+
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μ
j
ω,i ≥ z jω,i − h j

ω,i , which are equivalent to z jω,i ≥
⌊
h j

ω,i

⌋
and z jω,i ≤

⌈
h j

ω,i

⌉
, respectively.

Therefore, d j
ω,i =

(
1 − 2μ j

ω,i

) (
z jω,i −

⌊
h j

ω,i

⌋)
+ μ

j
ω,i if and only if

⌊
h j

ω,i

⌋
≤ z jω,i ≤

⌈
h j

ω,i

⌉
.

For each j ∈ J , let I := {1, . . . ,m2} be partitioned into the disjoint sets I j
1 , I

j
2 , and I j

3 ,

i.e. I = I j
1 ∪ I j

2 ∪ I j
3 , such that I j

1 := {
i ∈ I : d j

ω,i = z jω,i − h j
ω,i

}
, I j

2 := {
i ∈ I : d j

ω,i =
h j

ω,i − z jω,i

}
, and I j

3 := {
i ∈ I : d j

ω,i = (1 − 2μ j
ω,i )

(
z jω,i −

⌊
h j

ω,i

⌋)
+ μ

j
ω,i

}
. Therefore,

in the light of the above discussed cases, we can define K4
ω(x) as

K4
ω(x) =

{
(yω, dω) ∈ R

q|J | × R
m2|J |+|J |
+ : Wωyω ≥ rω − Tωx,

e jω,i y
j
ω ≥

⌈
h j

ω,i

⌉
− f j

ω,i x, d j
ω,i = e jω,i y

j
ω −

(
h j

ω,i − f j
ω,i x

)
, i ∈ I j

1 , j ∈ J ,

e jω,i y
j
ω ≤

⌊
h j

ω,i

⌋
− f j

ω,i x, d j
ω,i =

(
h j

ω,i − f j
ω,i x

)
− e jω,i y

j
ω, i ∈ I j

2 , j ∈ J ,

⌊
h j

ω,i

⌋
− f j

ω,i x ≤ e jω,i y
j
ω ≤

⌈
h j

ω,i

⌉
− f j

ω,i x, i ∈ I j
3 , j ∈ J ,

d j
ω,i =

(
1 − 2μ j

ω,i

) (
e jω,i y

j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i , i ∈ I j

3 , j ∈ J

}
.

Let (ŷω, d̂ω) be an extreme point of Projyω,d1,...,d|Ω|
(K4

ω(x)
)
for a given x ∈ X , which is on the

intersection of |J |(q+m2) constraints ofK4
ω(x) such that thematrix defining these constraints

is nonsingular. Since the polyhedron K4
ω(x) already has m2|J | equality constraints, we need

a combination of at least q|J | defining inequalities of K4
ω(x) to be binding at the point

(ŷω, d̂ω). Let the constraints wω,i yω ≥ rω,i − tω,i x for i ∈ τ0, e
j
ω,i y

j
ω ≥

⌈
h j

ω,i

⌉
− f j

ω,i x ,

for i ∈ τ
j
1 , j ∈ J1, and e jω,i y

j
ω ≤

⌊
h j

ω,i

⌋
− f j

ω,i x for i ∈ τ
j
2 , j ∈ J2 be binding at the

point (ŷω, d̂ω) where wω,i , rω,i , and tω,i denote i th row of matrix/vector Wω, rω, and Tω,
respectively, and τ0, τ

j
1 , j ∈ J1 ⊆ J , and τ

j
2 , j ∈ J2 ⊆ J , are subsets of {1, . . . ,m2} such

that |τ0| + ∑
j∈J1 |τ j

1 | + ∑
j∈J2 |τ j

2 | = q|J |. Then, ŷω satisfies the following system of
equations:

wω,i ŷω = rω,i − tω,i x, i ∈ τ0, (65)

e jω,i ŷ
j
ω =

⌈
h j

ω,i

⌉
− f j

ω,i x, i ∈ τ
j
1 , j ∈ J1, (66)

e jω,i ŷ
j
ω =

⌊
h j

ω,i

⌋
− f j

ω,i x, i ∈ τ
j
2 , j ∈ J2, (67)

which in compact form is written as Πω ŷω = πω(x), where Πω is a submatrix of

[
Wω

Eω

]
=

⎡

⎢⎢⎢⎢
⎣

W 1
ω · · · W |J |

ω

E1
ω 0 0

0
. . . 0

0 0 E |J |
ω

⎤

⎥⎥⎥⎥
⎦

.

According to condition (i), if Wω and E j
ω are network flow matrices, i.e., each row of

these matrices represents arc in a network and each column corresponds to node, then

[
Wω

Eω

]
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is equivalent to adding arcs in a digraph, which is still a network flow matrix and is TU (
[42]). Thus, Πω is also TU. Similarly, for condition (ii) when E j

ω for j ∈ J are TU matrices,
which implies Eω is TU, and Wω = Im3 (or Wω = 0), Πω is a TU matrix.

Also, since each component of the vector πω(x), i.e., rω,i − tω,i x,
⌈
h j

ω,i

⌉
− f j

ω,i x , or⌊
h j

ω,i

⌋
− f j

ω,i x , is integral, ŷω is integral. Hence, all bounded faces of K3
ω(x) have extreme

point (ŷω, d̂ω) in Projyω,d1,...,d|Ω|
(K3

ω(x)
)
space with integral ŷω and since K3

ω(x) is a subset

of the continuous relaxation of K1
ω(x), K3

ω(x) ⊆ conv
(K1

ω(x)
)
for all x ∈ X . Therefore, we

have K3
ω(x) = conv

(K1
ω(x)

)
.

Finally because of Theorem 4, conv
(K1

ω(x)
)∩K2

ω(x) ⊆ K3
ω(x)∩K2

ω(x)whereK2
ω(x) :=

{(yω, dω) ∈ R
q|J |×R

m2|J |+|J |
+ :

∥∥∥d j
ω

∥∥∥
p

≤ d j
ω,0, j ∈ J }, provides the convex hull (for p = 1)

or an approximation (for p ≥ 2) for Kω(x). In other words, we obtain the convex hull (for
p = 1) or an approximation (for p ≥ 2) of Kω(x) by adding m2 × |J | number of linear
inequalities:

d j
ω,i ≥ (1 − 2μ j

ω,i )
(
e jω,i y

j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i

)
+ μ

j
ω,i , i = 1, . . . ,m2, j ∈ J , (68)

to the continuous relaxation ofKω(x).Moreover,K3
ω(x)∩K2

ω(x)when projected to (yω, dω,0)

space gives the convex hull (for p = 1) or an approximation (for p ≥ 2) of the feasible region
of Qω(x), i.e.

{
(yω, dω,0) ∈ R

q|J | × R
|J |
+ : (33), (34), and

∥∥∥E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l

∥∥∥
p

≤ d j
ω,0, l ∈ L, j ∈ J

}
,

where the i th row of E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l is either e jω,i y

j
ω + f j

ω,i x − h j
ω,i or(

1 − 2μ j
ω,i

) (
e jω,i y

j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i . This completes the proof. ��

6.2 Scenario-based cuts for extensive formulation of structured TSS-CMIPs

We consider extensive formulation of structured TSS-CMIPs introduced in the previous sec-
tion and present partial convex hull for them using Theorems 5–7 and Corollary 1; the proofs
are provided in “Appendix C”. Note that for x̂ ∈ X and ω ∈ Ω , Kω(x̂) = Projx=x̂,yω,dω

(P)

and Kω

tight (x̂) = Projx=x̂,yω,dω

(P pch
)
.

Corollary 2 Let

P :=
{√(

yω,1 + fωx − hω

)2 + (
yω,2

)2 ≤ dω,0, ω ∈ Ω

x ∈ X , yω,1 ∈ Z, yω,2 ∈ R+, dω,0 ∈ R+, ω ∈ Ω

}
. (69)

For each nonempty set Γ ⊆ Ω , a partial convex hull of P is given by

P pch :=
{
(x, yω,1, yω,2, dω,0) ∈ X × R × R

2+ : (69) and
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√(
(1 − 2μω)

(
yω,1 + fωx − hω

)+ μω

)2 + (
yω,2

)2 ≤ dω,0, ω ∈ Ω

}
,

where μω = hω − �hω�.
Corollary 3 Let

P :=
{ (

x, {yω, dω,0}ω∈Ω

) ∈ X × Z
|Ω|×|J | × R

|Ω|×|J |
+ : Tωx + Wωyω ≥ rω, ω ∈ Ω,

∥∥∥1y j
ω + F j

ωx − h j
ω

∥∥∥
p

≤ d j
ω,0, j ∈ J , ω ∈ Ω

}
,

where Wω is a TU matrix. For each nonempty set Γ ⊆ Ω , a partial convex hull of P with
p = 1 is given by

P pch :=
{ (

x, {yω, dω,0}ω∈Ω

) ∈ X ×
(
Z

|Ω|−|Γ | × R
|Γ |)|J | × R

|Ω|×|J |
+ :

Tωx + Wωyω ≥ rω, ω ∈ Ω,
∥∥∥1y j

ω + F j
ωx − h j

ω

∥∥∥
p

≤ d j
ω,0, j ∈ J , ω ∈ Ω,

∥∥∥E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l

∥∥∥
p

≤ d j
ω,0, l ∈ L, j ∈ J , ω ∈ Γ

}
,

where the i th row of E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l is either y j

ω + f j
ω,i x − h j

ω,i or
(
1 − 2μ j

ω,i

)

(
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i , and μ

j
ω,i = h j

ω,i −
⌊
h j

ω,i

⌋
.

Corollary 4 Let

P := { (
x, {yω, dω,0}ω∈Ω

) ∈ X × Z
q|Ω|×|J | × R

|Ω|×|J |
+ :

Tωx + Wωyω ≥ rω, ω ∈ Ω,
∥∥∥E j

ωy
j
ω + F j

ωx − h j
ω

∥∥∥
p

≤ d j
ω,0, j ∈ J , ω ∈ Ω

}
,

such that either of following conditions is satisfied:

(i) E j
ω, j ∈ J , and Wω are network flow matrices;

(ii) E j
ω, j ∈ J are TU matrices, and Wω = Im3 or Wω = 0.

For each nonempty set Γ ⊆ Ω , a partial convex hull of P with p = 1 is given by

P pch :=
{ (

x, {yω, dω,0}ω∈Ω

) ∈ X ×
(
Z

|Ω|−|Γ | × R
|Γ |)q×|J | × R

|Ω|×|J |
+ :

Tωx + Wωyω ≥ rω, ω ∈ Ω,
∥∥∥E j

ωy
j
ω + F j

ωx − h j
ω

∥∥∥
p

≤ d j
ω,0, j ∈ J , ω ∈ Ω,

∥∥∥E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l

∥∥∥
p

≤ d j
ω,0, l ∈ L, j ∈ J , ω ∈ Γ

}
,

where the i th row of E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l is either e jω,i y

j
ω + f j

ω,i x − h j
ω,i or(

1 − 2μ j
ω,i

) (
e jω,i y

j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i , and μ

j
ω,i = h j

ω,i −
⌊
h j

ω,i

⌋
.
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6.3 Tight second stage formulation and partial convex hull for the extensive
formulation of MM-SFLP-S

We also provide tight second stage formulation for MM-SFLP-S (introduced in Sect. 1.3)
and partial convex hull for the extensive formulation of the MM-SFLP-S. To do so, we first
reformulate the second stage problem (16)–(18) using additional continuous variables (as
discussed in Sect. 4) to get

Qω(x, z, u) = min
∑

i∈P

wi
inv

⎛

⎝
n∑

k=1

αk xik + ui −
∑

j∈P ′

(
zi j + yi jω

)
⎞

⎠

+ wsc

∑

j∈P ′

∑

i∈P

ti j y
ω
i j + wpendω,0 (70)

s.t.

∣∣∣∣
∑

i∈P

(
yi jω + zi j

)
− ζ j

ω

∣∣∣∣ ≤ dω, j , for j ∈ P ′, (71)

∑

j∈P ′
|dω, j | ≤ dω,0, dω, j ≥ 0, j ∈ P ′, (17), (18) hold. (72)

Corollary 5 Let Yω(x, z, u) := {yω : (71)–(72)}. For each (x, z, u) ∈ X and ω ∈ Ω , the
convex hull of Yω(x, z, u) is obtained by adding the following scenario-based conic MIR
cuts to the continuous relaxation of Yω(x, z, u):

(
1 − 2ζ j

ω + 2�ζ j
ω�
)(∑

i∈P

yω
i j − �ζ j

ω� +
∑

i∈P

zi j

)

+ ζ j
ω − �ζ j

ω� ≤ dω, j , for all j ∈ P ′.

(73)

Moreover, the addition of the foregoing cuts in (x, z, u, yω, dω) space to the extensive for-
mulation of the MM-SFLP-S provides a partial convex hull (with no integrality restrictions
on yω integer variables) for the feasible region of the extensive formulation.

Proof Observe that the coefficient matrix associated with y j
ω :=

(
y1 jω , y2 jω , . . . , y|P| j

ω

)
vari-

ables in constraint (71) is a network flow matrix. Likewise, the coefficient matrix associated
with yω variables in constraint (17) is a network flow matrix. Therefore, we utilize The-
orem 7(i) and Corollary 4(i) to derive convex hull of Yω(x, z, u) for each (x, z, u) ∈ X
and partial convex hull (with no integrality restrictions on yω variables) for the extensive
formulation of the MM-SFLP-S, respectively, by adding the scenario-based conic MIR cuts,

(
1 − 2ζ j

ω + 2�ζ j
ω�
)(∑

i∈P

yω
i j − �ζ j

ω� +
∑

i∈P

zi j

)

+ ζ j
ω − �ζ j

ω� ≤ dω, j , for all j ∈ P ′,

to the continuous relaxation of Yω and the extensive formulation, respectively. ��
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Remark 2 The scenario-based cuts (73) in (x, z, u, yω, dω) space are valid for the extensive
formulation of MM-DRFLP-S, i.e.,

min
∑

i∈P

n∑

k=1

cki xik +
∑

i∈P

∑

j∈P ′
ti j zi j +

∑

i∈P

giui + θ

s.t.
∑

ω∈Ω

p̄ω f (x, z, u, yω, dω) ≤ θ, for all { p̄}ω∈Ω ∈ P,

(x, z, u) ∈ X , (71) − (72) for all ω ∈ Ω,

(74)

where the affine function

f (x, z, u, yω, dω) :=
∑

i∈P

wi
inv

⎛

⎝
n∑

k=1

αk xik + ui −
∑

j∈P ′

(
zi j + yi jω

)
⎞

⎠

+ wsc

∑

j∈P ′

∑

i∈P

ti j y
ω
i j + wpendω,0.

7 Computational experiments

We perform computational experiments to evaluate the effectiveness of adding scenario-
based cuts (a priori) for solving MM-SFLP-S and MM-DRFLP-S (introduced in Sect. 1.3),
and structured TSS-CMIP test and TSDR-CMIP instances. We describe generation of the
test instances in Sects. 7.1 and 7.2, and present our computational results in Sect. 7.3. For
MM-SFLP-S and structured TSS-CMIP instances, we assume that all scenarios have same
probability, i.e., p̄ω = 1/|Ω| for all ω ∈ Ω . In contrast, for MM-DRFLP-S and structured
TSDR-CMIP instances, we consider a finite set of distributionsPwith |P| ∈ {5, 10, 25, 50}.
We generate the probability distributions for each ambiguity set as follows. For a probability
distribution with |Ω| scenarios, we randomly draw |Ω| numbers, i.e., RNω for ω ∈ Ω ,
between [0, 10000], and the probability of scenario ω is calculated as p̄ω = RNω∑

ω∈Ω RNω
.

7.1 Generation of MM-SFLP-S andMM-DRFLP-S test instances

Weutilize “capacitatedwarehouse location problem” instances from J.E.BeasleyOR-Library
[10] where a set P := {1, . . . , 16} of facilities, a set P ′ := {1, . . . , 50} of retailers, and trans-
portation cost ti j for each i ∈ P and j ∈ P ′ are given. However, unlike instance in this

library where demand μ ∈ R
|P ′|
+ is assumed to be deterministic, we consider uncertain

demand which follows a normal distribution with μ (provided in the library) as mean and
variance is randomly drawn from a uniform distribution, i.e., uniform[0.1μ, 0.3μ]. More-
over, instead of assuming that each facility has machines of fixed capacities, we consider n
different types of machines with different capacities (n ∈ {2, 4} for our experiments). Unlike
the warehouse location problem, the MM-SFLP-S and MM-DRFLP-S also allow subcon-
tracting and last minute order options, and its objective is to minimize the total machines’
installation cost, transportation cost, subcontracting cost, and the expected (second-stage)
transportation, inventory, and penalty costs associated with the last minute ordering after
a realization of uncertain demand. We generate the aforementioned cost parameters as
follows: the subcontract cost is 4 per unit, i.e., gi = 4 for all i , the inventory cost is
0.35 per unit, i.e., wi

inv = 0.35, for all i , the last minute order cost is 3 times the trans-
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portation cost ti j , i.e., wsc = 3, and the demand penalty is set to 100 per unit, i.e.,
wpen = 100. The capacity of modules and their installation costs, (αk, cki ), belong to the set{(1000, 2700), (4000, 9000), (10000, 18000), (16000, 25000)}. We allow at most 200 sub-
contract items, i.e., r = 2000, and the maximum number of modules at each facility is at
most 4, i.e., si = 4 for i ∈ P .

7.2 Generation of structured TSS-CMIP test instances

For our computational experiments, we consider the extensive formulation of reformulated
TSS-CMIP with p = 1 or p = 2, and structured CMIPs in the second stage (as discussed
in previous section), i.e. either E j

ω = I (an identity matrix) or E j
ω is a randomly generated

deterministic network flow matrix for j ∈ J , and Wω is a deterministic network flow matrix
for allω ∈ Ω . Specifically, we generate network flowmatrices as follows. First, we randomly
generate two graph edge vectors v1, v2 ∈ Z

m′
+ , where m′ is the number of rows of desired

matrix. For any element in v1 and v2, i.e., vi1 and vi2 for 1 ≤ i ≤ m′, we have vi1, v
i
2 ≤

n′ and vi1 �= vi2, where n′ is the number of columns of desired matrix. Here, v1 and v2
are vectors of index of graph nodes. We create an undirected graph with these m′ node
pairs using MATLAB function graph(v1, v2). This function specifies (vi1, v

i
2) for 1 ≤

i ≤ m′ as an edge, and generates a graph with m′ edges and n̂ (n̂ ≤ n′) nodes, where
n̂ = max{v11, . . . , vm

′
1 , v12, . . . , v

m′
2 }. We obtain the network flow matrix of size m′ × n̂

corresponding to this graph and set the remaining n′ − n̂ columns to 0, thereby providing a
network flow matrix of desired size. For each structured TSS-CMIP with p = 2 and only
integer variables in the second stage, we generate two sets of random instances: instances
from the first problem set are motivated from the Stochastic Integer Programming Library
(SIPLIB) TSS-MILP instances [2], in particular stochastic server location problem (SSLP)
and stochasticmultiple binary knapsack problem (SMBKP) instances, whereas for the second
problem set, we consider instances with larger number of scenarios (up to 10,000). More
specifically, in the first problem set, we generate random instances with similar problem size
as of SSLP and SMBKP instances but with uncertain cost-coefficients, technology matrix,
F j

ω , h
j
ω and right-hand-side.

Likewise for TSS-CMIPs with p = 1, we consider instances with network flow E j
ω

matrix for all j ∈ J and larger number of scenarios (up to 50,000). In Tables 1, 2, and 3, we
provide details of problem categories for different types of structured second-stage CMIPs,
i.e., E j

ω is an identity matrix or any network flow matrix, used for our experiments. We
denote the number of linear constraints and number of integer variables by #LCon and #IVar,
respectively, in each stage.Weuse #PCConand#p-OCcon to denote the number of polyhedral
conic constraints (23) or number of rows in E j

ω, and number of p-order conic constraints
(24), respectively, in the second stage.

We use SCMIP.α.β.λ to denote our instance category in Tables 1, 2, and 3, where α

is the number of integer variables in the first stage, β is the number of integer variables
in the second stage, and λ is the number of p-order conic constraints in the second stage.
Note that in Table 2, #PCCon is the same as #IVar in the second stage as E j

ω is an iden-
tity matrix. For each instance category, we generate instances as follow: we draw c from
uniform[0, 10], A, b from uniform[0, 100], rω, Tω from integer uniform [−100, 100], F j

ω

from integer uniform[−10, 10], h j
ω from uniform[−10, 10]. Moreover, for instance cate-

gories in Table 2, we let gω = 0 and ĝ j
ω = 1 for ω ∈ Ω , j ∈ J , while for instance categories

in Tables 1 and 3, gω is randomly generated from uniform[−1, 1] and ĝ j
ω is randomly gen-
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Table 1 Details of TSS-CMIP Instances with p = 1 and E j
ω is network flow matrix

Instance Stage I Stage II

Category #LCon #IVar #LCon #IVar #PCCon #p-OCon

SCMIP.25.50.5 10 25 20 50 25 5

SCMIP.50.100.5 25 50 40 100 50 5

SCMIP.100.150.5 75 100 50 150 70 5

SCMIP.5.10.5 50 5 2 10 3 5

Table 2 Details of TSS-CMIP Instances with p = 2 and E j
ω = I

Problem Instance Stage I Stage II

Set Category #LCon #IVar #LCon #IVar #PCCon #p-OCon

I SCMIP.5.125.1 1 5 30 125 125 1

SCMIP.10.500.1 1 10 60 500 500 1

SCMIP.15.675.1 1 15 60 675 675 1

SCMIP.20.800.1 1 20 60 800 800 1

SCMIP.240.120.1 50 240 5 120 120 1

II SCMIP.5.10.1 5 5 5 10 10 1

SCMIP.10.10.1 5 10 10 10 10 1

Table 3 Details of TSS-CMIP Instances with p = 2 and E j
ω is network flow matrix

Problem Instance Stage I Stage II

Set Category #LCon #IVar #LCon #IVar #PCCon #p-OCon

I SCMIP.5.125.3 1 5 30 125 100 3

SCMIP.10.500.3 1 10 60 500 300 3

SCMIP.15.675.3 1 15 60 675 400 3

SCMIP.240.120.3 50 240 5 120 100 3

II SCMIP.10.25.3 5 10 10 25 10 3

SCMIP.10.50.3 5 10 20 50 25 3

SCMIP.10.75.3 5 10 20 75 35 3

SCMIP.25.50.3 10 25 20 50 25 3

SCMIP.25.100.3 10 25 20 100 80 3

erated from uniform[−10, 10]. Since y j
ω is an unrestricted variable and gω ∈ [−1, 1] for

j ∈ J and ω ∈ Ω , we observed that many randomly generated TSS-CMIP instances have
unbounded solution values. Therefore, in order to obtain finite optimal solution values, we
impose an upper bound of 100 and a lower bound of −100 on each y j

ω variable. Note that
when E j

ω = I, the number of integer variables in the second stage, i.e., q , is same as number
of polyhedral conic constraints, i.e., m2. Whereas for instance categories in Table 1 and 3,
E j

ω is not a square matrix. These instances will be available at computational Operations
Research exchange (cORe) https://core.isrd.isi.edu/ and GitHub page of the authors.
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7.3 Computational framework

In this section, we evaluate the effectiveness of our scenario-based cuts by performing com-
putational experiments on instances belonging to the aforementioned instance categorieswith
different number of scenarios. The results of our experiments are presented in Tables 4, 6, 7,
and 9. Each row in Tables 6 and 7 reports the average over five randomly generated instances
corresponding to the instance category in Table 1 and 2, respectively, while each row in
Tables 4 and 9 report the average over three randomly generated (relatively harder) instances
belonging to MM-SFLP-S and instance category in Table 3, respectively. For instances in
Table 1, we perform three experiments: NO-SCUT,WITH-SCUTS, and BD-WITH-SCUTS.
While for instances in Table 2, 3 and 4, we only perform the first two experiments. In
NO-SCUT, we solve the reformulated extensive formulation of the problem using CPLEX
12.70 with its default settings, without adding our scenario-based cuts. (In order to improve
the performance of CPLEX, we substitute unrestricted variable y j

ω by y j+
ω − y j−

ω in our
experiments, where y j+

ω , y j−
ω ≥ 0 for j ∈ J , ω ∈ Ω .) Whereas in WITH-SCUTS, we add

our scenario-based linear cuts (provided in Theorem 7 or derived through reformulation of
P pch in Corollary 4 for Γ = Ω), a priori to the reformulated extensive formulation of the
problem instance, relax the integrality constraints of second stage integer variables, and use
CPLEX 12.70 with its default settings to solve it. In BD-WITH-SCUTS for TSS-CMIP with
p = 1, we first convexify the second stage problem by adding our parametric cuts (provided
in Theorem 7), and then solve it using Benders’ decomposition routine of CPLEX 12.70.
For NO-SCUT and WITH-SCUTS, we allow presolve option in CPLEX 12.70; while for
BD-WITH-SCUTS, we turn it off. All experiments are performed on a 8-core Xeon 2.4 GHz
machine with 24 GB RAM running with Windows 10.

In Tables 4, 5, 6, 7 and 9, we report following statistics: the number of integer variables
in the extensive formulation with(out) scenario-based cuts (#IVar), the number of linear
constraints in the extensive formulation without our scenario-based cuts (#LCon), and the
number of linear scenario-based cuts added in the the extensive formulation (#LCuts). Also,
we denote the total time taken to solve TSS-CMIP and TSDR-CMIP instances without
and with our scenario-based cuts in extensive formulation by T-EF and T-EFC, respectively,
and the percentage of integrality gap closed by a priori addition of scenario-based cuts by
ImprG% = 100 × (Vpcut − Vcp)/(Vmip − Vcp), where Vpcut , Vcp , and Vmip denote the
optimal objective value of continuous relaxation of extensive formulation with our scenario-
based cuts, continuous relaxation of extensive formulation without our scenario-based cuts,
and original formulation, respectively. In Table 6, T-BDC denotes the time taken to solve
TSS-CMIP with p = 1 and linear programming equivalent of the second stage CMIP, using
Benders’ decomposition routine of CPLEX. We use TL to notify that CPLEX cannot solve
the corresponding instance within 3 hours time limit and OM to notify that our system ran
out of 24 GB memory when solving this instance. Instances for which we could not obtain
the optimal value due to TL or OM, we put - in column ImprG%.

7.3.1 Computational results for MM-SFLP-S andMM-DRFLP-S instances.

In Table 4, we observe that by adding the scenario-based conic MIR cuts a priori, the number
of integer variables (#IVar) is significantly reduced for MM-SFLP-S instances. The average
gap closed by the scenario-based cuts is 98%. Without the scenario-based cuts, only 8 out of
24 MM-SFLP-S instances can be solved by CPLEX within the time limit. In contrast, after
adding the cuts, 10 out of 16 foregoing unsolved instances are solved in 2576 seconds (on
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Table 4 Results of computational experiments for the MM-SFLP-S instances

Instance |Ω| NO-SCUT WITH-SCUTs

Category #IVar #LCon T-EF #IVar #LCuts T-EFC ImprG%

100 80944 11633 72.8 944 5000 52 98

α1 = 1000 500 400944 58033 1173 944 25000 885 98

α2 = 4000 750 600944 87033 TL 944 37500 2125 98

1000 800944 116033 4913 944 50000 3633 98

100 80944 11633 TL 944 5000 145.1 89

α1 = 1000 500 400944 58033 TL 944 25000 3513 90

α2 = 16000 750 600944 87033 TL 944 37500 TL 90

1000 800944 116033 TL 944 50000 TL -

α1 = 1000 100 81072 11633 TL 1072 5000 360 92

α2 = 4000 500 401072 58033 6329 1072 25000 8645 92

α3 = 10000 750 601072 87033 TL 1072 37500 TL -

α4 = 16000 1000 801072 116033 TL 1072 50000 TL -

Table 5 Results of computational experiments for the MM-DRFLP-S instances

Instance |Ω| |P| NO-SCUT WITH-SCUTs

Category T-EF #LCuts T-EFC ImprG%

100 5 TL 5000 180 98.1

α1 = 1000 100 10 TL 5000 235 97.9

α2 = 4000 100 25 TL 5000 474 98.1

100 50 TL 5000 904 97.9

100 5 TL 5000 777 90.1

α1 = 1000 100 10 TL 5000 744 90.1

α2 = 16000 100 25 TL 5000 959 89.9

100 50 TL 5000 1666 89.9

α1 = 1000 100 5 TL 5000 1601 92.2

α2 = 4000 100 10 TL 5000 1944 91.9

α3 = 10000 100 25 TL 5000 1252 91.7

α4 = 16000 100 50 TL 5000 3008 91.9

average). After adding the scenario-based cuts, CPLEX took lesser time to solve 6 out of
above 8 instances, i.e., 1681 seconds on average. Whereas it took 2201 seconds (on average)
for CPLEX to solve these instances without the cuts.

In Table 5, we observe that by adding scenario-based conic MIR cuts a priori to the
extensive formulation of MM-DRFLP-S, the average gap closed is 93.3%. Without these
cuts, CPLEX could not solve any of the 36 MM-DRFLP-S instances within the time limit. In
contrast, after adding the cuts, all these instances can be solved in 1145 seconds (on average).
Recall thatMM-SFLP-S is equivalent toMM-DRFLP-S with |P| = 1, therefore as expected,
the time taken to solve MM-DRFLP-S instances in Table 5 is more than the time taken to
solve MM-SFLP-S instances in Table 4 with |Ω| = 100.
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7.3.2 Computational results for TSS-CMIPs where p = 1 and Ej! are network flow
matrices for all j ∈ J.

In Table 6, we observe that by adding scenario-based cuts a priori, the number of integer
variables (#IVar) is significantly reduced. Without our scenario-based cuts, CPLEX with
its default settings took 800 seconds (on average) to solve the extensive formulation of the
TSS-CMIP instances where p = 1 and E j

ω, j ∈ J , are network flow matrices. However, by
adding our cuts, CPLEX took 143 seconds (on average) to solve the extensive formulation
of these instances, and reduced the time by up to 25 times and 4.6 times (on average).
Our scenario-based cuts closed the integrality gap by almost 100%. It is worth noting that
even though we disabled presolve when using Benders decomposition routine, for instance
category SCMIP.5.10.5, T-BDC is on average 79.83% of T-EF.

7.3.3 Results for TSS-CMIPs and TSDR-CMIPs with p = 2 and Ej! = I.

For TSS-CMIP and TSDR-CMIPs with p = 2, adding our scenario-based cuts in the
extensive formulation and relaxing integrality restrictions on second stage integer vari-
ables provide an approximation of the problem. Let the approximation ratio be defined by
R% = 100 × Vapprox/Vmip where Vapprox is the optimal objective value obtained from the
experiment WITH-SCUTS (after adding scenario-based cuts in the extensive formulation
and relaxing the integrality constraints on the second stage variables). We observe that the
approximation ratio of all instances, with known Vmip , in Table 7 is greater than 99.99%,
thereby demonstrating the strength of our scenario-based cuts. In other words, these cuts
provide near-optimal solution for TSS-CMIPs with p = 2 and E j

ω = I.
Now by comparing T-EF and T-EFC in Table 7, we observe that adding our scenario-

based linear cuts (a priori) significantly reduces the time taken to solve the reformulated
extensive formulation of the TSS-CMIP instances, using CPLEX with its default settings.
More specifically, after adding our scenario-based cuts, CPLEX solved 132 out of 135 ran-
domly generated instances within the time limit, except three instances of SCMIP.10.50.1
with 500 scenarios. Whereas, without our cuts, CPLEX could not solve 35 out of 135 TSS-
CMIP instances within 3 hours time limit (32 instances) and allocated memory (3 instances),
and took 148 seconds (on average) to solve the remaining 100 instances in comparison to
32 seconds (on average) after adding our cuts. Additionally, WITH-SCUTS took 22 minutes
(on average) for 32 out of 35 (unsolvable) instances. Overall, for instances in Table 7, our
scenario-based cuts closed the integrality gap by 19.1% (on average) for instances solved to
optimality using NO-SCUT, and reduced the time taken to solve the TSS-CMIP instances by
5 times (on average).

In particular, for problem set I, WITH-SCUTS were performed at least 2 times and up
to 19 times faster than NO-SCUT. Whereas for problem set II, WITH-SCUTS is 5 times
(on average) and up to 39 times faster than NO-SCUT. It is interesting to observe that
while by adding our scenario-based cuts, there is a trade-off between the decrease in the
number of integer variables and increase in the number of constraints. For instances such as
SCMIP 10.10.1 where |Ω| ∈ {50, 100, 500, 1000}, WITH-SCUTS took marginally longer
time that NO-SCUT. However, for instances with larger number of scenarios, WITH-SCUTS
are notably faster than NO-SCUT.

In Table 8, we present results for distributionally robust versions of TSS-CMIPs instances
with p = 2 and E j

ω = I. Specifically, we consider three instance categories from Table 7 that
were solved in a reasonable time by CPLEX even without adding scenario-based cuts and for
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|P| = 1.We generated three TSDR-CMIP instances for each category, i.e., SCMIP.15.625.1,
SCMIP.240.120.3, and SCMIP.10.10.1, with fixed number of scenarios |Ω| and distributions
in the ambiguity set |P|. We observe that CPLEX could not solve the reformulated extensive
formulation of 4 out of 9 instances within a time limit of 3 hours. However, after adding
the scenario-based linear cuts (a priori), CPLEX solved these instances within 286 seconds
(on average). For the remaining instances, by comparing T-EF and T-EFC in Table 8, we
again observe that adding the scenario-based linear cuts reduces the time taken to solve the
instances by 446 times (on average).

7.3.4 Computational results for TSS-CMIPs with p = 2 where Ej! for j ∈ J are network
flowmatrix.

The problem instances considered in Table 9 are much harder to solve than problem instances
considered in Table 7, primarily because of multiple conic constraints (24) corresponding to
each scenario (as |J | = 3) and multiple integer variables in each constraint (23). Nonethe-
less, we again observe that the approximation ratio R% for all problem instances, with known
Vmip , in Table 9 is greater than 99.99%. It is evident from column T-EF in Table 9 which
shows that CPLEX 12.70 with its default settings could not solve reformulated extensive
formulation of 50 out of 75 TSS-CMIP instances (without our scenario-based cuts) within a
time limit of 3 hours and the allocated 24 GB RAM. In contrast, after adding our scenario-
based cuts, we solved all 75 instances in 449.64 seconds (on average). For instances solved to
optimality using NO-SCUT, our cuts closed the integrality gap by 47.29% (on average) and
reduced the time taken to solve the TSS-CMIP instances by 10.32 times (on average). It is
worth to note that even though ImprG% is small for some instances (i.e., SCMIP.15.625.3,
SCMIP.240.120.3, and SCMIP.25.100.3 for |Ω| ∈ {50, 200}), CPLEX with its default set-
tings (without scenario-based cuts) took longer time, at least 2.4 times and up to 18 times, to
solve these instances, in comparison to solving them using CPLEX with our scenario-based
cuts.

8 Conclusion

We presented conditions under which the addition of scenario-based nonlinear cuts in the
extensive formulation of TSS-CMIPs is sufficient to relax the integrality restrictions on the
second stage integer variables without impacting the integrality of the optimal solution of
the TSS-CMIP. We introduced structured TSS-CMIPs and cuts for them which satisfy these
conditions, thereby providing partial convex hull for them. We introduced TSS-CMIPs and
TSDR-CMIPs with structured p-order CMIPs in the second stage, derived scenario-based
conicMIR cuts for them, and proved that these cuts provide conic/linear programming equiv-
alent or approximation for the second stage CMIPs with p = 1 or p ≥ 2, respectively. We
also introduced a multi-module capacitated stochastic facility location problem with subcon-
tracting (MM-SFLP-S) and demonstrated the applicability of the foregoing results for solving
this problem. We also computationally evaluated the effectiveness of the scenario-based cuts
by considering instances of MM-SFLP-S, its distributionally robust variant, and structured
TSS-CMIPs with polyhedral CMIPs and second-order CMIPs in the second stage, i.e. p = 1
and p = 2, respectively. Our computational results showed that adding scenario-based cuts to
the extensive formulation significantly reduced the time taken to solve extensive formulation
of TSS-CMIPs and TSDR-CMIPs compared to solving the same problem instances without
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these cuts, using CPLEX 12.70 with its default settings. Furthermore, we derived (partial)
convex hull for new deterministic multi-constraint polyhedral conic mixed integer sets with
multiple integer variables.
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Appendix A: Proof of Theorem 5

Given ω1 ∈ Ω , let

conv
(Kω1(x)

) = Kω1
tight (x) (75)

for all x ∈ X . Suppose that a point
(
x̂, ŷω1 , . . . , ŷω|Ω| , d̂ω1,0, . . . , d̂ω|Ω|,0

)
∈ P ,which implies

(
ŷω1 , d̂ω1,0

)
∈ Kω1(x̂) and because of assumption (75),

(
ŷω1 , d̂ω1,0

)
∈ Kω1

tight (x̂). Since(
x̂, ŷω1 , . . . , ŷω|Ω| , d̂ω1,0, . . . , d̂ω|Ω|,0

)
satisfies all defining constraints of P pch,1, defined by

Tωx + Wωyω ≥ rω, ω ∈ Ω,
∥∥∥E j

ωy
j
ω + F j

ωx − h j
ω

∥∥∥
p

≤ d j
ω,0, j ∈ J , ω ∈ Ω,

∥∥∥E
j
ω1,l y

j
ω1

+ F
j
ω1,l x − h

j
ω1,l

∥∥∥
p

≤ d j
ω1,0

, l ∈ L, j ∈ J ,

x ∈ X , d ∈ R
|J |×|Ω|
+ , y j

ω1
∈ R

q , j ∈ J ,

y j
ω ∈ Z

q , j ∈ J , ω ∈ Ω \ {ω1},
the point

(
x̂, ŷω1 , . . . , ŷω|Ω| , d̂ω1,0, . . . , d̂ω|Ω|,0

)
∈ P pch,1. Therefore,

P ⊆ P pch,1 and conv(P) ⊆ conv
(P pch,1

)
. (76)

Now suppose that a point
(
x̂, ŷω1 , . . . , ŷω|Ω| , d̂ω1,0, . . . , d̂ω|Ω|,0

)
∈ P pch,1. Then point

(
ŷω1 , d̂ω1,0

)
∈ Kω1

tight (x̂). Also, because of assumption (75), (ŷω1 , d̂ω1,0) ∈ conv
(Kω1(x̂)

)
,

and hence this point can be written as convex combination of finite number of points, η̄kω1
∈

R
q+|J | for k ∈ {1, 2, . . .}, belonging to Kω1(x̂), i.e.,

(
ŷω1 , d̂ω1,0

)
=
∑

k

λk η̄
k
ω1

where
∑

k λk = 1 and λk ≥ 0 for all k. Since
(
ŷω, d̂ω,0

)
∈ Kω(x̂) for ω ∈ Ω \ {ω1} and

η̄kω1
∈ Kω1(x̂), (

x̂, η̄kω1
, ŷω2 , d̂ω2,0, . . . , ŷω|Ω| , d̂ω|Ω|,0

)
∈ P

for all k as Kω(x̂) = Projx=x̂,yω,dω
(P) for all ω ∈ Ω . This implies

(

x̂,
∑

k

λk η̄
k
ω1

=
(
ŷω1 , d̂ω1,0

)
, ŷω2 , d̂ω2,0, . . . , ŷω|Ω| , d̂ω|Ω|,0

)

∈ conv(P).
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Hence,

P pch,1 ⊆ conv(P) and conv
(P pch,1

) ⊆ conv(P). (77)

From (76) and (77), we get

P ⊆ P pch,1 ⊆ conv(P) = conv(P pch,1)

which means P pch,1 is a partial convex hull of P .
Next, we assume that conv

(Kω2(x)
) = Kω2

tight (x) for all x ∈ X . Replacing P by P pch,1

and using the similar arguments above, we can prove that P pch,2 is a partial convex hull of
P where

P pch,2 := {
Tωx + Wωyω ≥ rω, ω ∈ Ω,

∥∥∥E j
ωy

j
ω + F j

ωx − h j
ω

∥∥∥
p

≤ d j
ω,0, j ∈ J , ω ∈ Ω

∥∥∥E
j
ω1,l y

j
ω1

+ F
j
ω1,l x − h

j
ω1,l

∥∥∥
p

≤ d j
ω1,0

, l ∈ L, j ∈ J ,

∥∥∥E
j
ω2,l y

j
ω2

+ F
j
ω2,l x − h

j
ω2,l

∥∥∥
p

≤ d j
ω2,0

, l ∈ L, j ∈ J ,

x ∈ X , y j
ω1

∈ R
q , y j

ω2
∈ R

q , y j
ω ∈ Z

q , j ∈ J , ω ∈ Ω \ {ω1, ω2}
}
.

Werepeat the foregoing steps by replacingP byP pch,i forωi , i = 2, . . . , |Ω|−1.Meanwhile,

for each step, we assume that conv(K1
ωi

(x)) = Projy(K
ωi
t ight ) for all x ∈ X . Finally, we have

Projx,y,d(Ppch,|Ω|) = Projx,y,d(Ppch) is a partial convex hull ofP . This completes the proof.

Appendix B: Tight second stage formulations for structured TSS-CMIPs

Appendix B.1: Proof of Corollary 1

For x ∈ X and ω ∈ Ω , by substituting σ = yω,1 − fωx ∈ Z, β = hω, v = yω,2 ∈ R+ and
ρ0 = dω,0 ∈ R+ in the set Z , we get Kω(x). Hence according to Proposition 2, the convex
hull of the feasible region of Qω(x), i.e., conv(Kω(x)), for all x ∈ X can be obtained by
adding inequality,

√(
(1 − 2μω)

(
yω,1 + fωx − hω

)+ μω

)2 + (
yω,2

)2 ≤ dω,0,

to the continuous relaxation of Kω(x). Furthermore, we reformulate conv(Kω(x)) in higher
dimensional space by adding variables dω,1 and dω,2, and obtain

{
(yω,1, yω,2, dω,1, dω,2, dω,0) ∈ R × R

4+ : |yω,1 + fωx − hω| ≤ dω,1,

|yω,2| ≤ dω,2,

√
d2ω,1 + d2ω,2 ≤ dω,0, (1 − 2μω)

(
yω,1 − �hω� + fωx

)+ μω ≤ dω,1

}
,

which is the convex hull of the feasible region of Qω(x), i.e., conv(Kω(x)).
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Appendix C: Partial convex hull for extensive formulation of structured
TSS-CMIPs

Appendix C.1: Proof of Corollary 2

For x ∈ X and ω ∈ Γ , let

Kω

tight (x) =
{
(yω,1, yω,2, dω,0) ∈ R × R

2+ : (69) and

√(
(1 − 2μω)

(
yω,1 + fωx − hω

)+ μω

)2 + (
yω,2

)2 ≤ dω,0

}
.

From Corollary 1, we know that conv(Kω(x)) = Kω

tight (x) for all x ∈ X and ω ∈ Γ . Hence,

by utilizing Theorem 5, a partial convex hull of P is given by P pch .

Appendix C.2: Proof of Corollary 3

For x ∈ X and ω ∈ Γ , let

Kω

tight (x) =
{
(yω, dω,0) ∈ R × R

|J |
+ : (33), (34), and

∥∥∥E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l

∥∥∥
p

≤ d j
ω,0, l ∈ L, j ∈ J

}
,

where the i th row of E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l is either y

j
ω + f j

ω,i x − h j
ω,i or

(
1 − 2μ j

ω,i

)

(
y j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i , and μ

j
ω,i = h j

ω,i −
⌊
h j

ω,i

⌋
. From Theorem 6, we know that

conv(Kω(x)) = Kω

tight (x) for all x ∈ X and ω ∈ Γ when p = 1. Hence, by utilizing

Theorem 5, it is clear that P pch is a partial convex hull of P .

Appendix C.3: Proof of Corollary 4

For x ∈ X and ω ∈ Γ , let

Kω

tight (x) =
{
(yω, dω,0) ∈ R

q × R
|J |
+ : (53) and (54)

∥∥∥E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l

∥∥∥
p

≤ d j
ω,0, l ∈ L, j ∈ J

}
,

where the i th row of E
j
ω,l y

j
ω + F

j
ω,l x − h

j
ω,l is either e

j
ω,i y

j
ω + f j

ω,i x − h j
ω,i or

(
1 − 2μ j

ω,i

)

(
e jω,i y

j
ω −

⌊
h j

ω,i

⌋
+ f j

ω,i x
)

+ μ
j
ω,i , and μ

j
ω,i = h j

ω,i −
⌊
h j

ω,i

⌋
. From Theorem 7, we know

conv(Kω(x)) = Kω

tight (x) for all x ∈ X and ω ∈ Γ when p = 1. Hence, by utilizing

Theorem 5, we can claim that P pch is a partial convex hull of P .
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Appendix D: Deterministic polyhedral conic mixed integer sets

Since this paper is focused on stochastic programming,weprovide proofs ofTheorems6 and7
in the manuscript, and utilize these results to provide the following proofs for Theorems 1–3
(which are important in their own right).

Appendix D.1: Proof of Theorem 1

In the proof of Theorem 6, by substitutingWω, yω, rω − Tωx , f
j

ω,i x − h j
ω,i , d

j
ω,1, . . . , d

j
ω,m2 ,

for j = 1, . . . , |J |, by A, σ , b, βik , and ρk
1 , . . . , ρ

k
m , for k = 1, . . . , K , respectively, the set

K1
ω(x) reduces to Rm

K . Additionally, conv(K1
ω(x)) = conv(Rm

K ) reduces to the set defined
as in Theorem 1.

Appendix D.2: Proof of Theorem 2

(a) In the proof of Theorem 7, we substitute Wω, yω, rω − Tωx , E
j
ω, f

j
ω,i x − h j

ω,i , and d
j
ω,i ,

for i = 1, . . . ,m2 and j = 1, . . . , |J |, byA, σ , b, Gk , βik , and ρk
i , for i = 1, . . . ,m and k =

1, . . . , K , respectively. This reduces the set K1
ω(x) to Sm,n

K and conv(K1
ω(x)) = conv(Sm,n

K )

reduces to the set obtained by adding

(
1 − 2β(1)

ik

)( n∑

t=1

giktσkt − �βik�
)

+ β
(1)
ik ≤ ρk

i , i = 1, . . . ,m, k = 1, . . . , K ,

to the continuous relaxation of Sm,n
K .

(b) We prove this result using Corollary 4 in which we set |Ω| = |Γ | = 1 and X = Z
u , and

substitute variables x , y j
ω, and d j

ω,0 for j = 1, . . . , |J |, by η, σ k , and ρk
0 for k = 1, . . . , K ,

respectively, and parameters Tω, Wω, rω, E
j
ω, F

j
ω , and h j

ω by A1, A2, b, Gk , Ck , and βk ,
respectively. Then similar to the previous proof, by reformulatingP andP pch using additional
continuous variables ρk

i for i = 1, . . . ,m, and k = 1, . . . , K (as discussed in Sect. 4), we
get Um,n,u

K and Um,n,u
K ,pch , respectively. Since P pch is a partial convex hull of P according to

Corollary 4, it is clear that Um,n,u
K ,pch is a partial convex hull of Um,n,u

K .

Appendix D.3: Proof of Theorem 3

This result can be easily proved using Corollary 3 in which we set |Ω| = |Γ | = 1 and
X = Z

u , and substitute variables x , y j
ω, and d j

ω,0 for j = 1, . . . , |J |, by η, σ k , and ρk
0 for

k = 1, . . . , K , respectively, and parameters Tω, Wω, rω, F
j

ω , and h j
ω by A1, A2, b, Ck , and

βk , respectively. Then, by reformulating P and P pch using additional continuous variables
ρk
i for i = 1, . . . ,m, and k = 1, . . . , K (as discussed in Sect. 4), we get Tm,u

K and Tm,u
K ,pch ,

respectively. Since P pch is a partial convex hull of P according to Corollary 3, it is clear that
Tm,u
K ,pch is a partial convex hull of Tm,u

K .
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