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Abstract We present two bilevel programming formulations for the aircraft
deconfliction problem: one based on speed regulation in k£ dimensions, the other
on heading angle changes in 2 dimensions. We propose three reformulations
of each problem based on KKT conditions and on two different duals of the
lower-level subproblems. We also propose a cut generation algorithm to solve
the bilevel formulations. Finally, we present computational results on a variety
of instances.
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Management - cutting plane - bilevel programming

1 Introduction

Two aircraft are said to be in conflict if their relative distance is less than a
given safety threshold. By aircraft deconfliction we mean the set of strategies
for detecting and solving conflicts among flying aircraft. A growing effort
is dedicated to automate its optimal management, which is currently still
widely performed on the ground by (human) Air Traffic Controllers (ATC).
The development of urban air mobility will also rely on such decision-making
support tools. Looking at a certain restricted airspace on a radar screen, the
human controllers give real-time instructions to the pilots, based essentially on
the change of their trajectories.
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Many strategies can be used to avoid conflicts. In this paper, we focus on
heading angle and speed changes. While heading angle changes (HAC) are often
used by ATC to prevent collisions, speed changes are almost never performed
in practice because of the tight speed modification restrictions imposed by air
travel regulations. There are several reasons for the strict bounds, which include
aircraft dynamics, passengers’ comfort and the real-time nature of the decision
process needed to make this maneuver efficient. In 2004, however, the concept
of Subliminal Control was introduced in the context of the European project
ERASMUS [I]. Subliminal speed control consists in allowing minor speed
adjustments that have to be small enough to remain imperceptible to ATC,
thus reducing their workloads. During the ERASMUS project, the efficiency of
this method was validated through human-in-the-loop experiments by Drogoul
et al. [2], who proposed two speed modulation ranges: a weak one from -6% to
+3% and a strong one from -12% to +6%. Nowadays, the European Union is
working towards implementing these types of approaches through the Single
European Sky ATM Research (SESAR) project [3].

When we consider aircraft moving in a three-dimensional space, the need
for subliminal speed changes becomes less relevant: speed regulation (SR) is
not realistically performed while changing altitude, but only when aircraft are
flying within a fixed altitude layer. This does not apply to Unmanned Aerial
Vehicles (UAVs), however, which have different dynamics. As discussed in [4],
the minimum distance between UAVs can be guaranteed by modifying their
3D trajectories, including by SR methods.

In this paper, we present different formulations of the Aircraft Deconfliction
Problem (ADP) based on both HAC and SR. We present different bilevel pro-
gramming formulations for each case, with several corresponding reformulations.
Our formulations can also apply to other problems, such as coordinating a fleet
of robots or unmanned vehicles in a complex obstacle-ridden region [5]. This
includes, among others, the scenario of automated material handling vehicles
moving on fixed routes in warehouses or production plants, to transport raw
materials or perform tasks in production processes [6].
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Fig. 1: Two conflicting aircraft in 2 dimensions
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Fig. 2: Two conflicting aircraft in 3 dimensions

This paper considerably extends [7], where SR was applied to aircraft at the
same flight level. This implies that the optimization takes place in the plane
(see Figure . Here, we propose a more general approach by modeling the ADP
through SR in a k-dimensional airspace (see Figure , an additional single-level
reformulation based on the Wolfe dual, as well as a new bilevel formulation
of the ADP based on the HAC strategy in the plane. Moreover, we extend
the Cut Generation (CG) algorithm in 7] to the HAC based formulation, and
provide a new analysis thereof.

The rest of the paper is organized as follows. We review the relevant
literature in Section [2} In Section [3| we introduce our SR based ADP (SRADP)
formulations: a natural formulation and a bilevel formulation, with three single-
level reformulations. In Section ] we introduce a bilevel formulation of the HAC
based ADP (HACADP), and its reformulations. A CG solution algorithm for
both SRADP and HACADP is presented in Section [5} In Section [6] we discuss
computational results. Some concluding comments are given in Section

2 Literature review

There exists a wide range of approaches for modeling and solving the ADP. Here,
we give a non-exhaustive review on those related works proposing mathematical
programming formulations based on SR, HAC, or both.

SR is one of the most common strategies for aircraft deconfliction by
Mathematical Programming. In [8], speed is converted to travel time in order
to minimize the total cost of all potential conflicts: the cost of a conflict
depends on the time two aircraft spend travelling at a distance below the
security threshold, since this time is proportional to the ATC monitoring and
conflict solution effort. The decision variables of the proposed Mixed Integer
Linear Program (MILP) are the arrival times at the different intersection points
of the trajectories in the considered time horizon. An equity-oriented conflict
resolution (ECR) model, based on these same variables, is introduced in [9]. It
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proposes an innovative aircraft collision avoidance model promoting equitable
solutions (airlines are equally affected by the trajectory adjustments). The
ECR model combines three optimization stages, which can be formulated as
MILP and attempt respectively to: maximize the number of solved conflicts;
resolve conflicts in the fairest way; reduce the delay induced by the trajectory
changes. A different kind of approach is proposed in [I0,11], where Mixed
Integer Nonlinear Programming (MINLP) formulations for the SRADP in
the plane are considered. Specifically, [I0] proposes a heuristic algorithm that
decomposes the problem into smaller subproblems. The exact solutions of
the subproblems are then combined to form a globally feasible but possibly
sub-optimal solution of the original problem. A feasibility pump heuristic is
proposed in [I1]. This algorithm builds two sequences of points: one consisting
of points that are feasible w.r.t. nonlinear constraints, and the other consisting
of points satisfying the integrality conditions. The algorithm iterates until the
two sequences converge to a feasible solution of the MINLP.

SR fails to solve frontal conflicts; moreover, it may not be sufficient to ensure
safety if speed bounds are tight. Consequently, it is usually combined with other
maneuvers, such as flight level reallocation. For instance, the authors of [12]
present a MILP formulation where conflict situations are avoided by performing
both speed and altitude changes over predefined routes. The objective is to
minimize the expected fuel costs of the aircraft. Binary variables are used to
assign flight levels, which indicate whether two aircraft fly at different altitudes,
as well as allowing deconfliction of aircraft traversing the same flight level. A
multi-objective MILP approach in a similar vein, based on both maneuver types,
and aiming at an equitable distribution of the maneuvers over the aircraft,
is proposed in [13]. In [I4], two disjunctive formulations are proposed for the
ADP based on speed and altitude changes. Their objective functions penalize
the number of changes linearly or quadratically, giving rise to a MILP or a
Mixed Integer Quadratic Program, respectively.

A part of the literature focuses on the geometric characterization of conflicts.
These are then used in SR or HAC based models. This is, for example, the case
of [I5], where the geometric characteristics of aircraft trajectories are used in
order to obtain closed-form expressions for single planar conflicts, based on SR
and HAC alone, as well as closed-form expressions yielding minimum deviations
from the original trajectories with combined SR and HAC. The authors of [16]
present a geometric analysis of the conflicts leading to two MILPs: one for SR
and another for HAC. The resulting separation constraints are linear on speeds
and heading angles, respectively.

Other works interpret maneuvers as a combination of SR and HAC. In [I7],
SR and HAC are applied sequentially. First, a MINLP formulation minimizing
HAC and subject to the safety separation condition is presented. Then, another
MINLP is proposed which maximizes the number of collisions avoided by SR.
These two models are solved sequentially. Then, using a two-step methodol-
ogy, the solution of the SR MINLP is used as a pre-processing step for the
HAC MINLP. SR and HAC are sometimes combined in the same formulation.
In [18], the planar ADP is formulated as a nonconvex Quadratically Con-
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strained Quadratic Program (QCQP) where the objective function minimizes
the deviations from the original velocity vector. If the solution of the “natural”
Semidefinite Programming relaxation of this QCQP has rank one, then the
problem is solved; otherwise, a locally optimal and conflict-free solution with
a certain crossing pattern can be obtained via a stochastic rank reduction
procedure. A different approach, which also combines SR and HAC to find
optimal aircraft maneuvers, is proposed in [I9]. In this case, a formulation in
complex numbers with disjunctive constraints is introduced; speed bounds are
translated into nonconvex quadratic constraints by considering the Euclidean
norm of the vectors of velocities; different relaxations of the resulting MINLP
are then proposed, solved, and compared.

In this paper, we formulate the SRADP in k dimensions and the HACADP
in two dimensions via bilevel programming. To the best of our knowledge,
this is the first time that a bilevel approach is used to model the ADP. Our
objective is to minimize the changes w.r.t. the original flight plan while still
satisfying the safety distance on aircraft pairs. The terminology and symbols,
as well as the formule aircraft separation, are taken from [TOLITII7].

3 Aircraft deconfliction via speed regulation

The goal of the approach presented in this section is to minimize the total
speed changes needed to satisfy the minimum safety distance for each pair
of aircraft in a given time horizon. An important assumption is that changes
occur instantaneously and that the new speeds remain constant in the time
horizon. Specifically, given a constant speed for every aircraft, our formulation
decides new optimal constant speeds satisfying the safety constraints. The sets,
parameters, and variables used in all the mathematical formulations in this
section are listed below.

e Sets:
- A={1,...,4,...,n} is the set of aircraft flying in a shared airspace;
— K ={1,..., kmax} is the set of dimension indices.

e Parameters:
— T is the length of the time horizon [hours];
— d is the safety distance between aircraft [Nautical Miles NM] E|;
— a9, is the k-th component of the initial position of aircraft i;
— wv; is the initially planned speed of aircraft ¢ [NM/h];
— u; is the k-th component of the direction of aircraft i;
— g™ and ¢M® define the feasible range of the speed modification ratios
of aircraft i s.t. ¢"" < 1 < ¢
e Variables: ¢; is the ratio of the implemented speed w.r.t. the initially
planned speed of aircraft i: g; = 1 if the speed is equal to the initially

planned one, ¢; > 1 if it is increased, ¢; < 1 if it is decreased.

11 NM = 1852 m



6 Martina Cerulli, Claudia D’Ambrosio, Leo Liberti, Mercedes Pelegrin

Note that, having in mind real applications, we consider the upper bound
T on the time in our formulations. In fact, human ATCs monitor a portion
of the airspace during a fixed time window. Moreover, a finite time horizon is
often considered in the literature.

3.1 Natural problem formulation

The following provides a “natural” way to formulate SRADP:

min Z(ql —1)? (1a)

q

i€A
Vie A ¢ < g <@ (1b)
o 2
Vi<jeA tel0,T] Z (2D — 25)) + tqivivie — qjvjuze)]” > d®. (1c)
kEK

Formulation 7 is a semi-infinite program, where the last line (Eq. )
contains uncountably many constraints, which ensure aircraft separation. Specif-
ically, Eq. requires the squared Euclidean distance between each two aircraft
i and j to be greater than or equal to d? at each instant ¢ in the time window
[0,77]. In these constraints, the k-th component of the position vector of aircraft
i at time ¢ is defined as @k (t) = 29, + tqiviuik.

The (convex) objective function is the sum of squared aircraft speed changes.
This is equivalent to finding the feasible solution with the minimum speed
change, which must be in [¢M", g"®] for every aircraft i. As mentioned earlier,
each aircraft ¢ will start flying with the implemented speed, which is equal to

Vidi-

3.2 Bilevel formulation of the problem

Since it is difficult to deal with the uncountably many constraints of
the natural formulation, we propose a bilevel reformulation of SRADP with
multiple lower-level subproblems. More details on the connections of semi-
infinite and bilevel programming can be found in [20]. For an introduction to
bilevel programming, see, for instance, [21].

We first introduce a bilevel formulation with a lower-level subproblem for
each pair of aircraft i < j € A:

min (g~ 1)? (2a)

T iea
VieA ¢ <g <g (2b)
. 2
Vi<jeA Z [(x?k — x?k) + 755 (g viuin — qjvjugn)]” > d? (2¢)
keK

o . 2
Vi<jeA 7 €argmin Z (29, — x?k) + tij(qivivie — giojuge)]” . (2d)
ti; €[0,T) keK
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Note that each lower-level subproblem is an optimization problem in the lower-
level variables t;;, parametrized by the upper-level variables ¢; and ¢;. An
optimal solution of each lower-level subproblem, denoted by 7;;, corresponds
to the time instant at which aircraft ¢ and j are closest.

Formulation 7 is equivalent to f because, if aircraft pairwise
separation constraints (constraints ) hold at the time instant 7;; which is
a minimizer of aircraft relative distance (constraints (2d)), it will be true for
each time instant in the time horizon [0, T]. Next, we reformulate Eq. 7
by means of the optimal value function of each lower-level subproblem:

. 2
¢ij(q) == min [(‘T?k - x(j)k) + tij (qivitix — ijjujk)} ) (3)
ti; €[0,T] ek

which yields the so-called (and equivalent) optimal value formulation:

min Y (i —1)? (42)

@ icA
Vie A ¢ <gq; < gl (4b)
. 2
Vi<jeA Y [@d —2%) + 7 (givivi — goju)]” < wiil)  (4e)
keEK
. . 0 0 2 2
Vi<jeA Z [(aczk — 2j) + Tij(qivivig — qjvjujk)] >d-. (4d)
kEK

By inspection, Eq. f can be replaced by
Vi<jeA <pij(q) > d?.

Hence, using the definition (3)) of ¢;;(q), we obtain the following bilevel formu-
lation

min Z(ql —1)2 (5a)

q,t

icA
Vie A ¢"" < g < g (5b)
Vi<jeA , Iél[iglﬂ (29 — x?k) + tij(qivinix — ijjujk)]2 >d?, (5c)
ij )

keK

which is an exact reformulation of the semi-infinite formulation in Eq. 7.

3.3 KKT reformulation

Certain bilevel programs, notably those having a convex lower-level subproblem,
can be easily reformulated to single-level by replacing the lower-level subproblem
by its KKT conditions — see [21] Sec. 3.5] and [22] for the specific case of linear
bilevel programs. Assuming some regularity condition (e.g. Slater’s condition)
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holds, this yields a single-level mathematical program with complementarity
constraints. Given the subproblem for each (i, )

2
min 3 [(‘T?k — xfy) + tij(gviuim — ijjujk)}

tii  kek y
s.t. _tij S 0 (SRLLZJ)

and the KKT multipliers p;; and A;; defined for each pair of lower-level
subproblem constraints —¢;; < 0 and ¢;; < T respectively, we have the following

single-level reformulation of f:
min Z(ql —1)? (6a)

Gh 1A iI€EA
VieA g™ <q < ¢ (6b)
Vi < ] cA Z [(iC?k — {Egk) + tiqu)ijk]Q > d2 (6(3)
keK
Vi<jeA Z [2t550755 + 2(x0, — 20 Vijk] — pij + Xij =0 (6d)
keK
Vi < ] € A Hig, )‘ij Z 0 (66)
Vi<jeA pijti; =0 (Gf)
V’L'<j€A )\ijtij—)\ijTZO <6g)

where the symbol 1, appearing in Eq. and , and defined as:
Yijk = QiViUik — G5V Ujk, (7)

is used throughout the paper as short-hand for its definition in the right hand
side.

Constraints (setting the gradient of the lower-level Lagrangian function
equal to zero) correspond to the stationary condition of problem ,
Eq. (6€]) and @ to dual and primal feasibility conditions respectively, and
Eq. to complementary slackness. Eq. enforce the safety distance
for each KKT solution. No dual variable is introduced for Eq. since they
are upper-level constraints.

We remark that the complementarity constraints Eq. |@| involve
products of continuous decision variables, and, therefore, define nonconvex
feasible sets in general. A possible reformulation based on MILP modeling
may define mixed-integer linear feasible sets instead, but also requires the
determination of some big-M constant providing a valid bound to u, A. Finding
a correct big-M cannot be done efficiently, i.e., in polynomial-time, unless
P = NP [23]. This particular reformulation, moreover, would not dispose of
the nonconvexities in constraints Eq. and . We therefore propose to
solve the formulation above by means of global optimization techniques (see
Section [6]).
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3.4 Dual reformulations

We propose another reformulation of the bilevel problem 7, which arises
because the lower-level subproblems in are convex Quadratic Programs
(QPs) occurring in constraints having general form:

1
min{§ vy Quy —i—p;y + ¢, | Ay > b} > const (8)
Yy

with @), positive semidefinite.
In general, given the dual variable z, by strong duality we have:

max{LowerDualObj(z, z) | LowerDualConstr(z, z) }
et
=min{zy' Quy+p,y+eo | Ay = bl 9)

where LowerDualObj(x, z) and LowerDualConstr(z, z) denote the objective func-
tion and the constraints of the dual problem of the left hand side of Eq. ,
respectively. If we impose the following inequality:

max{LowerDualObj(z, z) | LowerDualConstr(x, z)} > const (10)

then, of course, Eq. (§)) will also hold due to Eq. (@ The two constraints
Eq. (8) and are then equivalent. This was first proved in [7] limited to
Dorn’s dual problem. The following lemma generalizes the result.

Lemma 1 Assume FEq. occurs in a bilevel formulation. Replacing Eq.
by the constraint set:

LowerDualObj(z, z) > const
LowerDualConstr(z, 2)

(11)
yields a single-level formulation with the same optima of the bilevel formulation.

Proof We can replace Eq. by the equivalent Eq. . If Eq. is active
(i.e. it is satisfied as an equality), then the maximum objective function value
of the dual lower-level subproblem is const. Because of the max operator, its
objective function cannot be greater than this value. This means that Eq.
can only be feasible when LowerDualObj(x,y) attains its maximum over its
feasible region, defined by LowerDualConstr(z, z). If Eq. is inactive, it has
no effect on the optimum. Since Eq. is a relaxation of Eq. , the same
holds. (]

Lemma [l provides us with a scheme for reformulating 7, since, as
already mentioned, Eq. is of the form . We observe that we can consider
two different duals of the lower-level subproblems: Dorn’s dual [24125] (as done
for K = {1,2} in [7]), and Wolfe’s dual [26]. We recall that strong duality is
used to reformulate bilevel linear problems (see e.g. [27]), and bilevel linear
integer programs as well (see [28§]).
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3.4.1 Dorn’s dual reformulation

Given the dual variables g;; and z;; of each lower-level subproblem in the left
hand side of Eq. (defined for constraints —¢;; < 0 and ¢;; < T respectively),
using Dorn’s dual [24]25] and Lemmal[i] the following reformulation of (5a)—(5d)
follows:

min Z(ql —1)? (12a)

q,9,% N
€A
VieA ¢ <q <q™ (12b)
Vi<jeA — Z Vi 9oy — T2y > d* — Z (25, — 293)? (12¢)
keK kEK
Vi < ] €A - Z wzjk Gij < Z 1/’ka (lzd)
keK kK
Vi < J € A Zij >0, (126)

obtained by the application of Lemma [I| to replace the lower-level subproblems
of Eq. f by their Dorn duals in the variables g;5, z;; for each aircraft

pair i < j € A. This yields Eq. —(12d)). Note that the primal lower-level
1 -i (126}

variable t;; does not appear in e)). This is not an issue because we
just want to know the new aircraft speeds such that each potential conflict is
avoided.

Proposition 1 Eq. (12a)-(12€)) is an ezact reformulation of (5a))—(5d).
Proof By Dorn’s duality theory [24], (D) is a dual problem of (P):

min 5y Qy+p'y max —39' Qg +b'z
Ay >b (P) ATz —Qg<p (D)
y=>0 z2>0

In our case, we have:

oy =1
hd Q 2 Z wzyk’
=2 Z ( Lig — ‘T )wljlﬁ

keK
=1,
= -T.

O‘:B"B

[ ]
[ ]
Recall that 1);;1 is constant in the lower level since, by Eq. 7 it only depends

on the upper-level variables ¢; and ¢;. By easy replacements and Lemma

with const = d? — kEK( z9 — xjk) in Eq. (L1)), the formulation Eq. (12a])—(12€]
€
follows. U
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3.4.2 Wolfe’s dual reformulation

Another single-level reformulation can be obtained using Lemma [I] and Wolfe’s
dual [26] of the convex lower-level subproblems in Eq. (5d). The lower-level
dual objective function is the Lagrangian of the lower-level primal problem in

Eq.

2
(@ — 2% + tigtbige]” + ity — T) — Bijti,
keK

where a;; and B;; are the Lagrangian multipliers associated to the constraints
—t;; < 0 and t;; < T, respectively. Therefore, by Lemma m we obtain the

following reformulation of Eq. f:

min Z(ql —1)2 (13a)

ahef i
VieA ¢ <gq <q™ (13b)
o 2
Vi<jeA Z (@ — 5)) + tighige]” + iy (tiy — T) — Bijti; > d* (13c)
keK
Vi<je A Z [2tijwi2jk + 2($?k — ‘T?k)wzjk + iy — ﬁ”] =0 (13d)
kEK
Vi <je€ A Ozij,,Bij > 0. (136)

We note that the single-level reformulation presented above involves some
of the KKT conditions as constraints: the stationarity condition Eq. and
the nonnegativity of the Lagrangian multipliers Eq. (I3€). The (nonlinear)
complementarity constraints, however, are not needed in Wolfe’s duality [26].

The obtained reformulation Eq. (13a)—(13€]) is exact.
Proposition 2 Eq. (13a)—(13€]) is an exact reformulation of Eq. 7,
Proof By Wolfe’s duality theory [26], (D) is a dual problem of (P):

min 3y 'Qy+p'y+c max L(y,a, B)
Yy a,
oL
Ay > b (P) 9 -0 (D)
y=0 a,B>0
with:

1
Ly, o, B) = §yTQy +p'y+c+ald— Ay) — By,
and

oL

oy —Qytpta—p
y

In our case, we have:

® y =t
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e Q:=2>" ¢?jk,
keK

o pi=2 3 (a7, — x?k)d’ijkv

keK
e ci= ) (x?k - x?k)z,
keK
e A:=-1,
o b:=-T.

Again, we recall that ;5 is constant in the lower level because, by Eq. ,
it only depends on the upper level variables ¢; and ¢;. By easy replacements

and Lemma [I] with const = d? in Eq. (I), the formulation Eq. (13a)—(T3€)

follows. O

4 Aircraft deconfliction via heading angle changes

In this section, we present several formulations to model the HACADP in
two dimensions. The goal is again to satisfy the minimum safety distance for
each pair of aircraft while minimizing the total deviations with respect to
the original flight plan. The outcome of the HACADP will be the set of new
heading angles of the aircraft (see Figure [3).

. e e %
4 Oy mii

k=1

Al

Fig. 3: Heading angles of two aircraft (in black before deconfliction)

The new parameters and variables used in the mathematical formulations
introduced in this section are listed below.

e Parameters:
— ¢; is the initial heading angle of aircraft ¢
— 29 is the first component of the initial position of aircraft i
— oY is the second component of the initial position of aircraft i
— ™" and M3 are the bounds on heading angle variation, with ™" < 0
and 67" > 0
e Variables: 6, is the heading angle variation for each aircraft ¢
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4.1 Bilevel formulation of the problem

We introduce a bilevel formulation where the upper-level decision variables
are the heading angle variations 6; (for all i € A) and the lower-level decision
variables are t;; (for all i < j € A). Each lower-level subproblem is parametrized
by the upper-level variables 0;, 0;.

: 2
min Z 0; (14a)
€A
Vie A grin <6, <or (14b)
vi<jeA m[iOnT] [(29 — 22) + tij(cos(¢i + 0, v — cos(; + 0;)v;)]”
i; €10,
. . 2
+ [ = y) + tij (sin(e; + 0;)v; — sin(¢; + 6;)v;)]” > d°.
(14c)

The convex objective function of the upper level is the sum of squared
heading angle changes, which are bounded by [#™", §72<]. The objective of
each lower-level subproblem is to minimize the squared Euclidean distance
between aircraft ¢ and j over ¢;; € [0,T]. Its expression is obtained by defining
the position (z;(t),y;(t)) of aircraft ¢ at time ¢ as

zi(t) = 20 + cos(¢s + 0;)vit  and  y;(t) = v + sin(p; + 0;)v;t.

Note that the lower-level objective function is also convex in ¢;;. Similarly
to Eq. of the previous section, Eq. guarantees that the minimum
squared distance between each pair within the time horizon is at least d?. In
Appendix [A] we detail the procedure to calculate the optimal instant of time in
which each aircraft ¢ has to change again its heading angle to reach its original
trajectory.

4.2 KKT reformulation

We derive the KKT reformulation of Eq. (14a)—(14c)), based on KKT multipliers
Aij (resp. ;) associated to constraints ¢;; < T (resp. —t;; < 0) of each lower
level subproblem

min (2 = 29) 4t (cos(6: + 6.)0; — cos(@; +6,)v;)]
(10 = 40) + tos(sin(ey + 0:)vi — sin(é; + 0;)v;)] (HACLL;;)

s.t. —tij S 0
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Since Slater’s condition holds, and the lower level is convex in the variable ¢;;,
the reformulation is exact [2I] Sec. 3.5].

. 2
i 20 )
Vic A gMn <9, < O (15b)

. . 2 2
Vi < VRS A [(IE? — I(J)) + tijcij] + [(y? — y?) + tijsij] > d? (15(3)

Vi<jeA Qtij(c?j + 522]) +2(z — x?)cij +2(y) — y?)sij

+Xij — pij =0 (15d)
Vi<jeA Ny, pij >0 (15e)
Vi<jeA Njti;—A;T=0 (15f)
Vi<jeA pijtij=0 (15g)
Vi<jeA 0<t; <T. (15h)

where the symbols ¢;; and s;; are shorthand for the following nonlinear expres-
sions:

Cij = COS(gf)i -+ 91)1}1 — COS(¢j + Oj)vj (16)
Sij = bln(qbz + 91)’[}1 — sin(qu + (9]‘)1}]'. (17)

The formulation in Eq. 7 is a single-level Nonlinear Programming
(NLP) problem in the variables 6, ¢, A, and u. Constraints Eq. (15d)) correspond
to stationarity conditions of the lower-level subproblems, Eq. to primal
feasibility, Eq. to dual feasibility, Eq. and Eq. to complemen-
tarity conditions. We, again, require that the safety distance is satisfied for
each pair of aircraft and for each ¢;; satisfying the KK'T conditions imposed in

(15d)—(15h), with constraints (L5c)).

4.3 Dual reformulations

We follow the procedure discussed in Section [3.4]in order to obtain two dual
reformulations of Eq. (14al)—(14c). The first involves Dorn’s dual of the lower-
level subproblems, while the second involves Wolfe’s dual.
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4.8.1 Dorn’s dual reformulation

Given the dual variables g;; and z;; of the lower-level subproblems, using Dorn’s
dual and Lemma |1} the following reformulation of Eq. (14al)—(14c) is obtained:

min =y 67 (18a)

0.9,z i€A
Vie A 0;“"‘ <0; <O

(
Vi<jeA —gi(c+s) —Tz; > d® — (x —a))” — () —9))* (18
Vi<jeA - 7j — (cfj + S?j)gij < (29 - .T?)Cij + () — y?)sij (
(

Vi<jeA z;2>0.

The formulation in Eq. 7 is a single-level problem in the variables 6, g,
and z, the exactness of which is proved below. Note that the primal lower-level
variable ¢;; does not appear in f. This is not an issue because we
just want to know the new heading angles such that each potential conflict is
avoided.

Proposition 3 Fq. (18a)—(18¢|) is an exact reformulation of Eq. (14a))—(14c]).

Proof By Dorn’s duality theory [24], (D) is a dual problem of (P):

min LyTQy+p'y max —19"Qg+b"z
Ay >b (P) ATz —Qg<p (D)
y=>0 220

In our case, we have:

® y = tij,

e Q= Q(ng + 522]‘),

o pi=2(x) —x))ei; + 20y — y9)si,
e A:=-1,

e b:=-T.

We recall that c;; and s;; are constant in the lower level because, by Eq. 7
, they only depend on the upper-level variables 6; and ;. By easy replace-
ments and Lemma [1} with const = d? — () — 29)? — (v — %)* in Eq. (1),

O

i~ T
Eq. (18a)—(18¢) follow.

4.8.2 Wolfe’s dual reformulation

Using Lemmal[l]and Wolfe’s dual of each lower-level subproblem in the variables
a;; and B;;, we obtain the following single-level reformulation of of Eq. (14a)—
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(L4c):
. 2 1
i 20 o
Vie A oMt <9, < or (19b)
. 2 2
Vi<jeA [(zf—af) +tiyey]” + [0 — o)) + tigsi)

+ ij(tiy = T) — Bijtij > d* (19¢)

Vi<jeA 2tij(c?j + Sfj) +2(z? — x?)cij +2(y? — y?)sij
+a; —Bi;;=0 (19d)
Vi < j e A Ozij,ﬂij > 0. (196)

With Eq. , the Lagrangian of each lower-level subproblem is required to
exceed the minimum required safety distance. The stationarity KKT condition
(gradient of the Lagrangian equal to zero) corresponds to . Constraints
impose the nonnegativity of the dual variables a;; and f3;;. The exactness

of formulation (19a))—(19¢|) is proved below.
Proposition 4 FEq. (19a)—(19¢) is an ezxact reformulation of Eq. (14a)—(14c)).
Proof By Wolfe’s duality theory [26], (D) is a dual problem of (P):

min 3y Qy+pTy+ec max L(y, a, f)
Y a,
oL
Ay>b ¢ (P) L-op (D)
y>0 a,B>0
with: )
Ly, o, B) = §yTQy +p'y+c+alb— Ay) — By,
and or
B0 = Qy+p+a-—p.
Yy

In our case, we have:

® y =ty

o (Q:= 2(cgj + s?j),

o pi=2(x) — x3)ei + 2(y) — y9)sij,
o c:=(af —29)? + () —y7)%

e A:=-1,

o b:=-T.

Again we recall that ¢;; and s;; are constant in the lower level because, by
Eq. 7, they only depend on the upper-level variables ¢; and ¢;. By

easy replacements and Lemma with const = d? in Eq. (1)), Eq. (19a)—(19¢)
follow. a

We recall that in this section we used the symbols c¢;; and s;; defined in
f to replace differences between trigonometric operators having the
main control variable #; in the argument.
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5 Cut generation algorithm

Cutting-plane approaches are one of the major techniques used for solving linear,
quadratic [30], and convex semi-infinite programs. In 7], we proposed a tailored
CG algorithm for the bilevel formulation Eq. f in two dimensions.
We recall our CG algorithm in Section for SRADP in k dimensions. In
Section we tailor the CG algorithm for the bilevel formulation Eq. (T4a])-
of HACADP.

The problem solved at each iteration of the CG the algorithm is nonconvex.
In our implementation, its solution is obtained either with global solvers or, in
the interest of efficiency, by executing a local NLP solver several times within
a multistart procedure that starts from randomly chosen points.

We assume that aircraft are separated at the beginning of the time horizon
considered, otherwise the problem is infeasible.

In Appendix [B] we discuss dominance relationships among quadratic cuts,
which we do not take into account in the rest of the paper. In fact, we prove that
a cut added in a certain iteration for a pair of aircraft will not be dominated
by any other cut added in future iterations for the same pair.

5.1 Cut generation algorithm for ADP via speed regulation

Algorithm [1|is a solution algorithm for the bilevel formulation 7, which
iteratively defines the feasible set of the upper-level problem by means of
quadratic cuts in the upper-level variables g. At each iteration h, the relaxation
Ry, of the original bilevel problem, obtained by considering the upper-level
problem together with the cuts added in previous iterations, is solved. At the
outset, Ry is:

min Z(Qi —1)?
T ea
VieA ¢ <q < g
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Algorithm 1 CG algorithm for SRADP

1: Let h = 1. Initialize the relaxation Ry, of the bilevel program, obtained by considering
the upper-level problem only.

2: while true do

3: Solve Ry, to obtain the optimal solution ¢*.

4:  for each aircraft pair (3,5) do

5: if VEke K: (qfvius, — q;fvjujk) =0 then

6: Set Tihj = %

7 else

8: Compute the instant T,Z; €1[0,T] as

(@), — 29 ) (qF vivik — afvjugk)
7l = min { T, max<{ 0, — Zner (T *Jk — : : zj - :
2 ke ke (@] vitiik — @5 vjuzr)
9: end if
10: end for
11: if kgK((:c?k — x[])k) + Tzf;-(qfviuik - q;vjujk))2 >d? Vi< j€ Athen
12: The algorithm terminates and ¢* is the optimal solution of the bilevel formulation.
13: else
14: For each pair (4,7) violating the inequality, define Rj 41 as Ry with the adjoined
inequality:
D (@ — 2%) + i (qivivik — gujuge))? > d2 (20)
ke K

15: h:=h+1
16: end if

17: end while

The problem Ry, solved at each iteration of Algorithm [I] is nonconvex since
constraints are of the form f(qi,q;) > d* with f(g;,q;) convex. Therefore,
in order to find global optima of Ry, a global optimization algorithm should be
employed. This, however, would make the CG algorithm excessively slow. In
our implementation (see Section @ we chose to heuristically solve Ry using a
multistart algorithm calling a local NLP solver, from randomly chosen starting
points, when global optimization solvers are too slow.

Ti’} is the instant for which the distance between ¢ and j is minimum. If this
distance is greater than or equal to the safety value for each pair of aircraft,
the algorithm terminates at Step as ¢* must be an optimal solution of the
bilevel formulation.

Note that, in Step 7'{;»7 easily computed in closed form, is set to 0 or T if

 Pker (@8, — 25 (@ vivae — g vjun)

> oker (@ vitin — ¢ vju k)

is negative or greater than T respectively. In Step |§|, it is set to % if

*
(g viwi, — q;vjujr) = 0,
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for all k € K i.e., if aircraft ¢ and j fly on parallel trajectories with the same
speed. Having assumed that aircraft are separated at the beginning (namely

> (29— a:?k)2 > d?), no cut will be added in the next steps of the algorithm.
kEK

5.2 Cut generation algorithm for ADP via HAC

We propose a tailored version of the CG algorithm for the bilevel formulation
Eq. (14a)—(14c|), which models the HACADP. In this case, the nonconvex
problem R; solved at the first iteration is

min > 6
i€A
Vie A oMt <o, <or

Algorithm 2 CG algorithm for HACADP

1: Let h = 1. Initialize the relaxation Ry, of the bilevel program, obtained by considering
the upper-level problem only.

2: while true do

3 Solve Ry, to obtain the optimal solution 6*.
4:  for each aircraft pair (¢,5) do

5: if c;f‘j :}? an(; s;-‘j =0 then

6 Set T = g

7 else

8 Compute the instant TZ;- €[0,7T] as

20 — 20 [ y.OfyO, s*.
Tihj:min T, max 0,—(1 ]3 Z; (i 3 ]) Y )
(Cij) +(Si]’)

with ¢f; = cos(¢; +0; )v;—cos(¢;+07)v; and s}; = sin(¢; +0; )v; —sin(¢; +07)v;.
9: end if

10: end for ) )
11:  if [(z? — x?) + T;ch;‘j] + [(yiD — y?) + Tzhjs:.‘j] >d? Vi< j€ Athen
12: The algorithm terminates and 6* is the optimal solution of the bilevel formulation.
13: else
14: For each pair (i,j) violating the inequality, define Ry 41 as Rj, with the adjoined
inequality:
0_ .0 B 2
{(:cZ — ;) + 75 (cos(¢i + 0;)v; — cos(d; + 6]’)'0]’)]
0 0 h (e . 2 2
+ [(yi —yj) + 7 (sin(e; + 0;)v; —sin(¢; + Gj)vj)] > d”. (21)
15: h:=h+1
16: end if

17: end while

Again, the problem Ry, solved at each iteration of the algorithm, is non-
convex since the constraints are of the form f(6;,0;) > d* with f(6;,6;)
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convex. We find 6* in Step |3| using a global NLP solver or, when the time
limit is exceeded, with a local NLP solver within a multistart procedure from
randomly chosen starting points.

As in Algorithm [1} 7% € [0, 7] indicates when the distance between i and
j is minimized and it is always computed in closed form in Step [§| If this
distance satisfies the safety threshold for each pair of aircraft, the algorithm
terminates at Step Again, in Step |§| we discarded the case in which Ti};- is
not well defined whenever aircraft ¢ and j share the same direction and speed.

6 Computational experiments

For the SRADP in k dimensions, we use a 3D generalization of the 2D instances
tested in [7] (named sphere instances in Table , where n aircraft are placed
on a sphere of a given radius r — see Figure ] We consider also instances in
which aircraft move along straight 3D trajectories (named non-sphere instances
in Table , which intersect in at least & conflict points. For reproducibility
purposes these instances are available online at the public repository https:
//github.com/MartinaCerulli/SRADP,

Ay

.

Fig. 4: n conflicting aircraft flying towards the center of a sphere

A trajectory is defined by two angles: the so-called pitch angle v; (angle
that the vector of the direction u; forms with the axis k3) and the heading
angle ¢; (angle between the projection of u; onto the kjks-plane and the axis
k1) — see Figure

We test our approaches for the HACADP using the set of instances proposed
in [I7], where n aircraft are randomly placed on a circle of a given radius r.
All aircraft speeds are initially set to the same value, and their trajectories are
such that the aircraft fly exactly or almost exactly towards the center of the
circle — see Figure [6] from [7]. These problems, characterized by an unrealistic
highly symmetric configuration, are known in literature as circle problems.


https://github.com/MartinaCerulli/SRADP
https://github.com/MartinaCerulli/SRADP
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: k2
I
I

k1

Fig. 5: The 3-dimensional airspace

We also consider instances, always from [I7], in which aircraft are placed
around a circle and have trajectories with a starting heading angle ¢; randomly
chosen in [—%, &] with respect to the diameter of the circle. The end point of
each trajectory belongs to the circle as well. Note that these problems, named
random circle instances in Table [2, are more realistic than circle problems
without deviation.

Moreover, we test some non-circle instances from [II] in which aircraft

move along straight trajectories intersecting in n. conflict points.

n aircraft
Fig. 6: n conflicting aircraft flying towards the center of a circle - from [7]

In all the experiments, we consider standard safety distance d = 5 NM and
a time horizon of T' = 2 hours. It could be worth carrying out a sensitivity
analysis to evaluate the impact of varying the value of T' in future works.
The choice of solver was carried out through some preliminary computational
experiments. All the solvers are run with their default settings. The tests are
performed on a 2.53GHz Intel(R) Xeon(R) CPU with 49.4 GB RAM.
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6.1 ADP in 3 dimensions via speed regulation

For the sphere instances the initial speed is v; = 400 NM/h for each i € A and
the angles 7; and ¢; are randomly generated within [0, §] and parameters x?k

and u;x are given by
U1 = COS(d)i) sin(’yi), Uip = sin((bi) Sin(’}/i), U3 = COS(’YZ‘), l‘gk = —T Uik

where the sphere radius 7 is chosen in {100, 200, ..., 700}. The bounds ¢™"
and ¢"™ are set to 0.94 and 1.03 respectively, following the weaker bounds
proposed by the ERASMUS project. We decided to stick to these well-known
bounds on ¢;, having in mind the ADP application. In the context of urban air
mobility, vehicles might have less strict bounds on admissible deceleration or
acceleration. However, urban air mobility concepts are still being developed

and estimations on these control parameters are not yet available.

We implement the single-level formulations using the AMPL modeling
language [31] and solve them with the global optimization solver Baron [32] (B
in the Table [T). When Baron exceeds the time-limit (set to 3600 seconds), we
use a Multistart algorithm (MS in Table 1), which performs 1000 calls to the
SNOPT [33] local NLP solver from randomly sampled starting points.

We solve the bilevel formulation using the CG algorithm in Section [5| (CG
in Table |1)) with maximum iteration number set to 1000; at each iteration we
solve the relaxed formulation Ry, using the SNOPT [33] local NLP solver called
50 times within a Multistart procedure from randomly chosen points.

All the results are reported in Table [II The headings are the following:
n number of aircraft; r radius of the sphere in NM; 0bj best objective value
found by each model; c¢pu computing time in seconds; slv solver used (for the
CG algorithm the solver used to solve the inner problem Ry ); UB and LB
respectively upper and lower bound on the optimal solution value, determined
by Baron when time limit is reached (we write 0 whenever a bound is less
than 107%); it number of CG iterations, i.e., number of times R is solved.
Table [[] is divided into two blocks, one for spherical instances and another for
non-spherical ones. Each block is followed by a row that shows the percentage
of instances for which each approach outperforms (or is as good as) the rest. To
build this last row, only those instances for which the same resolution method
was applied (namely B or MS) were considered.

The value of the objective function is always very small, given the nature
of the problem (g must be in [0.94,1.03]). The tight speed variation bounds im-
posed by ERASMUS project lead to an additional complication since instances
are not guaranteed to be feasible. Best objective values and minimum required
time are reported in bold for each instance. The best formulation in terms of
solution quality is the one in Eq. f based on KKT conditions of the
lower-level subproblems. In terms of computational efficiency, for most of the
instances the CG Algorithm [T] is the best.
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Results obtained solving 4 different formulations of SRADP

Table 1
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6.2 ADP in 2 dimensions via heading angles changes

As mentioned above, the HACADP instances are taken from [I7II]. The
authors set v; = 400 NM/h for each i € A for all the instances. For the circle
instances the angles ¢; are randomly generated and parameters 2 and y) are
given by

z) = —rcos(¢;), vy = —rsin(¢;).

For the random circle instances both the angles ¢; and the parameters x? and
y? are randomly generated. The bounds #™" and 01> are set to —/6 and 7/6
respectively.

We again implement the formulations using the AMPL modeling language
[31] and solve them with the global optimization solver Couenne [34] (C in
the Table . We do not use Baron because it cannot handle the trigonometric
functions sine and cosine. When Couenne exceeds the time-limit (set to 3600
seconds), we use a Multistart algorithm (MS in Table [2)). Tt performs 1000
calls to SNOPT [33] for KKT reformulation Eq. (I5a)-(15d) and Wolfe’s dual
reformulation Eq. 197, and 1000 calls to IPOPT [35] in the case of
Dorn’s dual reformulation Eq. f. In all of the calls, starting points
are randomly chosen.

We solve the bilevel formulation using the CG algorithm in Section [5| (CG
in Table [2) with maximum iteration number set to 1000; at each iteration we
solve the relaxed formulation Ry using Couenne, or, when the CG exceed the
time-limit of 3600 seconds, the SNOPT [33] local NLP solver called 50 times
within a Multistart procedure from randomly chosen points.

Our results are reported in Tables [2] and [3] The headings are the following:
name of the instance; n number of aircraft; n, number of potential conflicts; obj
best objective value found by each model; cpu computing time in seconds; slv
solver used (in the last column, the solver used to solve the inner problem R},
of the CG algorithm); UB and LB respectively upper and lower bound on the
optimal solution value, determined by Couenne when time limit is reached (we
write 0 whenever a bound is less than 107%); it number of CG iterations, i.e.,
number of times R}, is solved. Table 2] includes Circle instances, while Table [3]
is divided into two blocks, which correspond to Random Circle and Non-Circle
instances. Both Table [2[ and each block of Table [3| are followed by a row that
shows the percentage of instances for which each approach outperforms (or is
as good as) the rest. As before, only instances solved with the same method
(namely C or MS) were used for the average. In Tables [2] and [3] the results
on circle and random circle instances are also compared with those that are
obtained using HAC only (without pre-processing) in [17]. Best objective values
and minimum required time are reported in bold for each instance.

Among the models proposed in this paper, for most of the instances the
CG algorithm is the best in terms of objective function and computational
time, even when the inner problem Ry, is solved using Couenne. Looking at
the comparison of our results with the ones obtained in [I7], it appears that
they are comparable.
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f HACADP compared

10118 O

Results obtained solving 4 different formulat

with those obtained in [I7], Circle instances
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Table 3: Results obtained solving 4 different formulations of HACADP compared

with those obtained in [I7], Random Circle and Non-Clircle instances
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7 Conclusions

We propose bilevel programming as a suitable approach to model the well-
known aircraft deconfliction problem or ADP. In particular, we present two
bilevel formulations of the ADP: one based on speed regulation in k& dimensions
and another where potential conflicts are avoided via heading angle changes in
two dimensions. In both cases, the convexity of the lower-level subproblems
allows us to derive three different single-level problems respectively, using KKT
conditions, Dorn’s duality, and Wolfe’s duality.

The single level reformulations of both problems are solved by using state-
of-the-art solvers, which provide good solutions in reasonable computing time.
Alternatively, we propose a cut generation algorithm to solve the bilevel
problems. This algorithm, compared with state-of-the-art solvers, obtains
the best results for most of the tested instances in few seconds. Numerical
results, when compared with other approaches in the literature, are encouraging
and stress the potential of the proposed approach.

Appendix

A Returning aircraft to original trajectories

The optimal heading angle change 07 for each aircraft 7 is obtained by solving Eq. 7.
The trajectory deviation is followed until necessary to guarantee the safety distance, then the
aircraft must return to their initial trajectories. Following what is done in [29][I7], for each
pair of aircraft the convex unconstrained QP Eq. is solved as a post-processing step to
return each aircraft to its original flight plan as soon as possible after conflict resolution:

(22)

min
tij

(.I? — m?) + tij (COS(¢i + 9:)1)1 — COS(d)j + 0;)’1)]') 2
(¥ — y)) + tij(sin(¢i + 07 )v; —sin(¢; +07)v;) /||

The objective function of the problem Eq. (22) is the relative squared Euclidean distance
between aircraft, which is computed using the optimal heading angles of the proposed bilevel

problem Eq. (14a)—(L4c).

Once the optimal solution TZ-*j for problem Eq. (22)) is found, we compute

T = x 23
i = max T (23)

as the optimal time for which aircraft ¢ can return to its initial trajectory after the deconfliction
(there will be, for each i, a different 7;; for every pair of aircraft (i, 7)).

Knowing (z;(T}),y:(T})) and the exit point from the air sector, it is easy to determine
the new trajectory each aircraft has to follow in order to go back to its initial trajectory, as
shown in Figurem

As clarified in [29], when the aircraft are returning to the initial trajectories, new conflicts
may occur. In order to ensure a conflict-free situation, the HACADP must be solved again.
Sometimes, the maneuver to return to the initial trajectory must start when the aircraft
is already close to the boundary of the air sector. This could lead to an angle variation
exceeding the bounds. In this case, [29] proposes turning at the maximum bound and sending
a warning message to the air traffic controllers of the following sector notifying that the
aircraft is arriving in that sector at a different entry point w.r.t. the scheduled one.
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Exit point 1

(z1(T7), 1 (T7))

Exit point 2

Fig. 7: New trajectories of two aircraft that, after conflict resolution, return to
their initial trajectories (dashed lines)

B Cut dominance

The time per iteration taken by Algorithm [[]and Algorithm [2] increases with the number of
cuts added to the formulation. In fact, while solutions of the lower-level subproblems are easily
computed in closed form in Step 4 of both algorithms respectively, increasing the number
of quadratic constraints and yields a time increase when solving Rj. It would
therefore be desirable to remove as many unnecessary cuts as possible. Consequently, we
study the existence of dominance relationships between cuts in the proposed cut generation
algorithms.

Proposition 5 Let (3,j) be a pair of aircraft. There is no dominance relationship between
any pair of the cuts added for (i,j) by either Algom'thm or Algorithm @

Proof Let h,h’ be two different iterations of the cut generation algorithm in which cuts

were added for the pair (¢,j). We consider the time instants at which ¢ and j are closest in
each iteration, TZ} and Tfj/, with Tihj # T,le/. Taking the case of Algorithm (1| (the proof for
Algorithm |2|is analogous), we proceed by contradiction and suppose that the cut added in
iteration h dominates that of iteration h’. That is, for all feasible g;, q;:

> (% = 2%) + Tl (@ivivik — gjvjuge))? > d?
keK
implies

!
D (@ — 2%) + 7 (@vivie — gyvgugn)® > d2,
keK

or, equivalently,

!’
D> (% — 2 + Tl (@viwin — guguse))® < Y (@9, — 29)) + 75 (@vivir — gususe))®.
keK keK

In particular, for g¢;,q; equal to the solution obtained at iteration h’, qih,,q?,, the
inequality ’

0 0 h( h' n’' 2 0 0 n' ¢ h' n' 2
Z((xik_xjk)+Tij(qi Villik —4j vjujk))° < Z((xik_xjk)+7ij (g Villik —4j UROTY)
keK keK
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must hold. Being 7'2.};/ a minimizer of the function

@) =D (@9, — 2% + t(g) viuix — q;'l/'l}jujk))2a

keK
it has to be:

0 0 h h' h' 2 0 0 h' ¢ R’ h' 2
Z((xik*xjk)JrTij(qi Villik —qj VjUjk))T = Z((ﬂ%k*v’ﬂjk)+fij (@ vivik—q5 viusK))™
kEK kEK

Since 7'1-};- #* 'ri};-/, it yields that f(t) attains its minimum at two different points. This is only
possible if f(t) is constant for all ¢, i.e., if qzhlfuiuik = q?lvjujk. But, if a cut is added for

(i,7) at iteration h’ is because the separation distance was violated also at ¢ = 0 (since f is
constant), something that we discarded by assumption. O

Proposition [5| ensures that a cut added in a certain iteration for a pair of aircraft will
not be dominated by any cut added in future iterations for the same pair. However, whether
several cuts together dominate a single cut is a question that remains open. Similarly, the
study of potential dominance between cuts involving conflicting triplets of aircraft in special
cases would be worth-studying for future work.
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