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Abstract
When solving large-scale cardinality-constrainedMarkowitzmean–variance portfolio invest-
ment problems, exact solvers may be unable to derive some efficient portfolios, even within
a reasonable time limit. In such cases, information on the distance from the best feasible
solution, found before the optimization process has stopped, to the true efficient solution is
unavailable. In this article, I demonstrate how to provide such information to the decision
maker. I aim to use the concept of lower bounds and upper bounds on objective function val-
ues of an efficient portfolio, developed in my earlier works. I illustrate the proposed approach
on a large-scale data set based upon real data. I address cases where a top-class commercial
mixed-integer quadratic programming solver fails to provide efficient portfolios attempted
to be derived by Chebyshev scalarization of the bi-objective optimization problem within a
given time limit. In this case, I propose to transform purely technical information provided
by the solver into information which can be used in navigation over the efficient frontier of
the cardinality-constrained Markowitz mean–variance portfolio investment problem.

Keywords Bi-objective optimization · Multiple criteria decision making ·
Cardinality-constrained Markowitz portfolio investment problem · Two-sided efficient
frontier approximations · Chebyshev scalarization

1 Introduction andmotivation

Due to the globalization of financial markets, investors have access to thousands of financial
instruments (assets). The portfolio selection problem can be modelled with the use of the
famousMarkowitz’s mean–variance (bi-objective) model [30]—the mean–variance problem
(MVP)—or its extensions. The portfolio selection problem has long attracted the attention
of researchers. A recent survey of modern portfolio theory can be found in [29]. The MVP is
still a base for other practical models of the portfolio selection problem with additional real-
life constraints, e.g., transaction costs, not present in the MVP. As nowadays a potentially
large set of assets is available to investors, efficient (or: Pareto optimal) portfolios of the
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MVP might consist of a relatively large number of assets (often fractions of an efficient
portfolio invested in these assets are very small). Portfolio management with a large number
of assets might be costly, especially when an investor makes investment decisions relatively
often. In order to limit the number of assets in efficient portfolios, a cardinality constraint
can be added to the MVP [34]. This leads to the Cardinality-Constrained Markowitz mean–
variance portfolio investment Problem (CCMP). Instead of adding the additional constraint
on portfolio cardinality, one can add the third criterion (portfolio cardinality) to the MVP
(see, e.g., [1]). My focus is the (bi-objective) CCMP.

The essence of solving practical instances of the CCMP is to select an efficient portfolio
(or: solution) by the decision maker (DM) (or: investor) which best fits his/her preferences
(see, e.g., [12]). I make a rational assumption that the DM’s focus is only on the set of
efficient portfolios (or: efficient set). In order to grasp the mean–variance trade-off, he/she
navigates over the efficient frontier (image of the efficient set in the mean–variance space).
This, however, requires the derivation of an a priori unknown number of efficient portfolios
during the decision making process. It may be problematic for large-scale instances of the
CCMP, especially when their efficient portfolios have to be derived during the interactive
decision making process on demand, and an effective search among potential decisions to
such problems can be time consuming or even beyond allotted limits.

For a large-scale bi-objective optimization problem, the cost of the derivation of a subset
of its efficient set cannot be ignored during the decision making process. I want to emphasize
that in the interactive multiple criteria decision making (MCDM) methods (see, e.g., [27,32,
38]), efficient solutions are determined by solving a number of single-objective optimization
problems using the so-called scalarization techniques. Such (exact) computations may be
time consuming. The DM should take this into account in the case of large-scale problems,
especially when he/she wishes to evaluate many efficient solutions during the interactive
decision making process.

Analternativeway to determine (exact) efficient solutions in interactiveMCDMmethods is
to use approximate (metaheuristic) methods, e.g., evolutionary single-objective optimization
(see, e.g., [31]). However, they produce, in general, only approximate solutions. This is the
main drawback of these methods—one is never sure how far from the efficient solution its
approximation lies. Even if they work well for a set of test problems (benchmarks), there is
no guarantee that they give a good approximation of the efficient solution to a given problem.
In other words, the DM may reveal his/her preferences during the decision making process,
evaluating only the possibly rough approximations of efficient solutions found by means
of the metaheuristic method. This may, however, result in making a bad (i.e., suboptimal)
decision (the decision making process is biased).

The approximation of the whole efficient set of the CCMP can be found using metaheuris-
tics (see, e.g., [3,41]). However, when making use of metaheuristic-based multiobjective
optimization methods, efficiency of derived solutions is also not guaranteed. Evolutionary
multiobjective optimization [5,6] is just an example. The review of other methods of approx-
imating the efficient set can be found in [36]. Some of them are dedicated to a specific class
of the bi-objective optimization problem (e.g., linear problems).

The CCMP can be modelled as the bi-objective mixed-integer quadratic programming
(MIQP) problem. With the use of either the linear scalarization technique or ε-constraint
method (see, e.g., [32]), commercial or open-source MIQP solvers can be applied to derive
efficient solutions to the CCMP. However, for large-scale instances of the CCMP, even com-
mercial top-class MIQP solvers (e.g., CPLEX, Gurobi) may be unable to find some efficient
solutions within a reasonable time limit on optimization. The existence of this time limit is
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the rational assumption, as the DMmay wish to evaluate a possibly numerous set of efficient
portfolios during the decision making process.

To account for this, when the MIQP solver is not able to derive an efficient solution within
the assumed time limit on optimization (computational budget), I propose to navigate over
the efficient frontier of the CCMP with the use of lower bounds and upper bounds on values
of objective functions of implicit efficient solutions. In the decision making process, such
bounds serve as replacements for the exact values of the objective functions [26]. Formulas
for calculating lower and upper bounds are relatively simple—they contain only arithmetic
operators and operators of deriving minimal and maximal elements in a set of numbers
[18,24]. The sources of such bounds are two finite sets. I shall call them lower shells and
upper shells. Images of these two sets in the mean–variance space form (in a sense) finite
two-sided efficient frontier approximations.

There are also other ideas for two-sided efficient frontier approximations in the literature,
e.g., bound sets for bi-objective combinatorial optimization problems [11]. Some methods
are dedicated to a specific type of the bi-objective optimization problem, e.g., inner and
outer approximations of the efficient frontier for linear bi-objective optimization problems
[37]. Inner and outer approximations can also be derived for convex efficient sets by so-
called sandwich algorithms (see, e.g., [35]). However, in the current article I make use of
lower and upper shells, whose images in the objective space are local (dependent on the
DM’s preferences) two-sided efficient frontier approximations. I use them to calculate lower
and upper bounds on components of implicitly given efficient solution outcomes being the
DM’s focus. By doing so, unnecessary calculations focused on determining the two-sided
approximation of the whole efficient frontier can be avoided. I show how to find lower and
upper shells controlled by the DM’s preferences with the use of purely technical information
provided by a top-class MIQP solver solving computationally demanding instances of the
parametrized single-objective optimization problem, which is Chebyshev scalarization (see,
e.g., [39]) of the CCMP, under time limit on optimization. I investigate experimentally the
accuracy of lower and upper bounds with an instance of the CCMP from my own large-scale
data set based upon actual data.

It is worth noting here that inventive methods (which fully exploit properties of MIQP
problems) to find efficient solutions to large-scale instances of the CCMP have been proposed
in recent years (see, e.g., [2,4,7,9,13,14]). However, none of these methods use Chebyshev
scalarization to derive efficient solutions. For example, in [4], an efficient portfolio is derived
by minimizing the portfolio variance with a given expected return, and in [2], the weighted
sum of the portfolio variance and portfolio expected return is used.

Navigating over the efficient frontier with the help of Chebyshev scalarization is a special
case of the well-knownWierzbicki’s reference point method for interactive-iterative MCDM
frameworks [40]. In the navigation method based on Chebyshev scalarization, the DM must
make concessions to the so-called ideal (or: reference) point representing the ideal portfolio,
which usually does not exist. This trade-off guidedmethod of unveiling the DM’s preferences
is an alternative to other methods and it is worth considering when solving the CCMP.

The outline of the article is as follows. In Sect. 2, I recall the bi-objective problem formu-
lation in its most general form and recall a method for the derivation of efficient solutions
which is instrumental for the subsequent development. In Sect. 3, the CCMP is formulated
and some of its properties that are mymotivation to apply lower and upper bounds are shown.
In Sect. 4, I show how to calculate lower and upper bounds on objective function values of
implicitly given efficient solutions, as well as a method of populating lower and upper shells
to the CCMP. In Sects. 5 and 6, I illustrate how the bounds work on a large-scale instance of
the CCMPwhen a time limit on optimization is assumed. Section 7 contains my conclusions.
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2 Bi-objective optimization

2.1 Preliminaries

Let x denote a solution, X a space of solutions, X ⊆ R
n , X0 a set of feasible solutions,

X0 ⊆ X . Then the general bi-objective optimization problem is defined as:

vmax f (x)
s.t.

x ∈ X0,

(1)

where f : X → R
2, f = ( f1, f2), fl : X → R, l = 1, 2, are objective functions, and vmax

denotes the operator of deriving all efficient solutions in X0. R2 is called the objective space
(or: outcome space).

Solution x̄ is efficient if fl(x) ≥ fl(x̄), l = 1, 2, implies f (x) = f (x̄). If fl(x) ≥
fl(x̄), l = 1, 2, and f (x) �= f (x̄), then it is said that x dominates x̄ , which is written
x̄ ≺ x . Solution x̄ is weakly efficient (or: weakly Pareto optimal) if there is no such x that
fl(x) > fl(x̄), l = 1, 2. Element f (x), x ∈ X0, is the outcome of x . Below, I shall denote
the set of efficient solutions to (1) by N . Set f (N ) is called the efficient frontier (EF) or the
set of efficient outcomes.

2.2 Chebyshev scalarization

It is a well-established result (cf. [10,18,32]) that solution x is efficient if and only if it solves
the augmented Chebyshev weighted optimization problem

min{maxl λl((y∗
l − fl(x)) + ρe	(y∗ − f (x)))}

s.t.
x ∈ X0,

(2)

whereweightsλl > 0, l = 1, 2, e is the all-ones vector, y∗
l = ŷl+ε, ŷl = maxx∈X0 fl(x), l =

1, 2, ε > 0, and ρ is a positive “sufficiently small” number. Actually, with the use of (2)
no the so-called improperly efficient solution [15] can be derived (see, e.g., [18,32]). This,
however, is not a barrier when solving practical decision making problems [18]. By solving
problem (2) with ρ = 0, weakly efficient solutions are derived (cf., e.g., [32]).

By the “only if” part of this result, no efficient solution is a priori excluded from being
derived by solving an instance of optimization problem (2). In contrast to that, maximization
of a weighted sum of objective functions over X0 does not, in general (and especially in the
case of problems with discrete variables), possess this property (cf., e.g., [10,18,27,32]).

At first glance the objective function in (2) seems to be difficult to handle. However,
problem (2) is equivalent to

min s
s.t.

s ≥ λl((y∗
l − fl(x)) + ρe	(y∗ − f (x))), l = 1, 2,

x ∈ X0.

(3)

In the sequel, I will assume that efficient solutions are derived by solving problem (2) with
varying λ.
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2.3 Chebyshev scalarization for interactive MCDMmethods

In interactiveMCDMmethods, the DM navigates over the set of efficient outcomes unveiling
his/her preferences gradually, step by step (see, e.g., [18,32]). The decision making process
stops when the DM points out the most preferred efficient outcome. Of the many existing
MCDM methods, interactive ones seem to be the most reasonable. In these methods, there
is no formal stopping rule of the decision making process—the DM is a sovereign actor in
it. The process stops when the DM’s preferences are firmly set or the DM no longer wishes
to continue it. An example of an interactive MCDM method is the well-known Wierzbicki’s
reference point method [40].

The Chebyshev scalarization technique can be used in interactive MCDM methods (see,
e.g., [38]). In [18], the preference-driven navigationmethod (valid for the number of objective
functions greater than or equal to two) over the set of efficient outcomes is proposed. This
method relies on the notion of the vector of concessions serving the DM as the preference
carrier. In practical decision making problems, element y∗ is usually unattainable. Hence,
to get an efficient outcome, the DM has to compromise on y∗. In the case of two objective
functions, he/she can do this by selecting a vector of concessions τ, τ1 > 0, τ2 > 0. Vector τ

defines proportions in which the DM agrees to sacrifice unattainable values of components
of y∗ in a quest for an element of the efficient frontier. The DM can explicitly define vector τ

by indicating its components. The DM can also do this implicitly by indicating a base point
yb ∈ {y | y1 ∈ y∗

1 − R
2+, y2 ∈ y∗

2 − R
2+} (R2+ is the positive orthant) which defines τ as

τ1 = y∗
1 − yb1 , τ2 = y∗

2 − yb2 . It is shown in [18] that λ1 = 1
τ1

, λ2 = 1
τ2
. Hence, translation

from τ or yb to λ is straightforward. Vector λ (a parameter of the objective function of
problem (2)) determines the so-called search direction in the objective space (Fig. 1). The
DM can express his/her preferences using λ vectors explicitly.

The trade-off guided method of unveiling the DM’s preferences presented above can be
used to solve practical decision making problems (see, e.g., [17,26,33]). The benefit of using
Chebyshev scalarization is that it can be applied in the user-friendly process of unveiling the
DM’s preferences [19], which can be expressed by vectors of concessions, weight vectors
(the atomistic manner), or base points (the holistic manner).

3 The CCMP

In the case of “the more, the better” shown in the previous section, the CCMP is formulated
as follows.

vmax

{
f1(x) := −x	Qx
f2(x) := r	x

s.t.
x ∈ X0,

(4)

where f1(x) (−V ARI ANCE) is the negative value of the portfolio x variance (maximizing
the negative value of the portfolio variance is equivalent tominimizing the portfolio variance),
f2(x) (EX P. RETU RN ) is the expected return (mean) of portfolio x , X0 := {x | e	x =
1, card(x) ≤ C, x ≥ 0}, x := (xi ) ∈ R

n , and xi is the fraction of the portfolio invested in
the i-th asset. Q ∈ R

n×n is the covariance matrix, r ∈ R
n is the vector of expected returns,

card(x) := ∑n
i=1 sgn(xi ), where sgn(·) is the signum function, C,C > 0, is the upper

bound on a number of assets in the portfolio, and card(x) ≤ C is the cardinality constraint.
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By introducing n binary variables zi (zi = 1 if the i-th asset is selected; zi = 0, otherwise),
as well as additional constraints coupling continuous variables xi with binary ones, problem
(4) can be formulated as the bi-objective MIQP problem in the following way.

vmax

{
f1(x)
f2(x)

s.t.
x ∈ X0 := {x | e	x = 1, e	z ≤ C,∀i=1,...,n(−xi + Mzi ≥ 0), x ≥ 0},

(5)

where M is a “sufficiently big number”, and z = (zi ).
In the general case, the efficient frontier of this problem is not a continuous curve (see, e.g.,

[3]). It may also contain elements which cannot be derived by linear scalarization (the so-
called unsupported elements). With the help of scalarization (2) and taking into account (3),
each efficient solution to (5) can be derived by solving an instance of the MIQP problem (in
fact, the instancewith the linear objective function subject to linear and quadratic constraints).

As it is shown in Sect. 2.3, the DM can navigate over the efficient frontier using λ param-
eters of the scalarization function in problem (2) as preference carriers. In this article, it is
assumed that the DM acts in this way. Further on, I assume that λ1 + λ2 = 1.

It is well known that the derivation of low-risk efficient portfolios is much more difficult
than high-risk ones (see, e.g., [2,13]).

4 Lower and upper bounds on objective function values of efficient
solutions

Given λ, let xef (λ) denote the efficient solution to problem (2), which would be derived if this
problemwere solved to optimality (the implicit efficient solution designated by λ). f (xef (λ))

denotes the implicit efficient outcome designated by λ. In this section, I briefly present the
theory of general 1 lower and upper bounds on components of implicit efficient outcomes I
developed earlier [20–22].

4.1 Lower bounds

Lower shell to problem (1) is a finite nonempty set SL ⊆ X0 whose elements satisfy

∀ x ∈ SL � x ′ ∈ SL x ≺ x ′. (6)

SL can be a singleton.
For the given y∗ and ρ, when deriving efficient solutions to (1) with the use of problem

(2), the formulas for lower bounds are

f1(x
ef (λ)) ≥ L1(SL , λ)

:= max

{
y∗
1 − (λ1(1 + ρ))−1 min

x∈SL
[max
j=1,2

λ j ((y
∗
j − f j (x))

+ρe	(y∗ − f (x)))] + ρ

1 + ρ
(y∗

2 −U2(λ)), L̄1

}
, (7)

f2(x
ef (λ)) ≥ L2(SL , λ)

1 The term “general”means that Imade no additional assumptions on properties of problem (1), e.g., convexity
of set f (X0).
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Fig. 1 The idea of the derivation of formulas for lower bounds with ρ = 0: �—image of lower shell {x̄} in
the objective space, �—vector of lower bounds on components of f (xef (λ))

:= max

{
y∗
2 − (λ2(1 + ρ))−1 min

x∈SL
[max
j=1,2

λ j ((y
∗
j − f j (x))

+ρe	(y∗ − f (x)))] + ρ

1 + ρ
(y∗

1 −U1(λ)), L̄2

}
, (8)

where L̄l , l = 1, 2, are static lower bounds implied by some a priori information (e.g., when
all objective functions are non-negative) on fl(xef (λ)). If static lower bounds are not known,
then it is possible to simply set L̄l := −∞. Ul(λ), l = 1, 2, are known upper bounds on
fl(xef (λ)) (e.g., when one can infer these bounds based on properties of problem (1)). For
details, see [18,24,25]. If Ul(λ) are not known, then it is possible to simply set Ul(λ) := y∗

l .
If this is the case, in formulas (7) and (8), elements with factor ρ

1+ρ
vanish.

Given λ, the idea of the derivation of formulas (7) and (8) for a simpler case with ρ = 0
and a lower shell {x̄} is shown in Fig. 1. Apexes of displaced cones (the cones correspond to
contours of the augmented Chebyshev metric used in (2)) lie on the half line (determined by
λ) emanating from element y∗. The apex, being the interception point of the half line with
straight line f1(x) = f1(x̄), determines the position of the cone most distant from y∗ (border
cone) on which f (xef (λ)) would lie. Thus, this point determines vector of lower bounds
L({x̄}, λ). If f (xef (λ)) lay on the border of a cone which is farther from y∗ than the border
cone, f (xef (λ)) would not be efficient. Therefore, element f (xef (λ)) is located somewhere
in the dashed rectangle in Fig. 1. When taking into account lower shell SL , |SL | > 1, one has
to consider the best lower bound on fl(xef (λ)), l = 1, 2. Hence, the “minx∈SL [. . .]” appears
in formulas (7) and (8). If ρ > 0, then displaced cones are open, and terms with ρ appear in
the formulas. For details see, e.g., [18,24].

A lower shell is simply any finite approximation (composed of feasible elements only) of
the efficient set containing non-dominated elements only (see (6)). Given two lower shells
SL and S′

L , set S
′′
L := SL ∪ S′

L is a lower shell after removing dominated elements in this set.
In case of the CCMP, an element of a lower shell can be derived by solving, within a given

time limit T , problem (2) (being scalarization of problem (5)) with a given λ. In that case,
either the exact solution or incumbent (approximate solution) can be obtained.
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Fig. 2 The illustration to the idea of general lower and upper bounds: �—image of lower shell SL in the
objective space, ◦—image of upper shell SU in the objective space, �—vector of lower bounds, �—vector
of upper bounds

4.2 Upper bounds

Upper shell to problem (1) is a finite nonempty set SU ⊆ R
n , elements of which satisfy

∀ x ∈ SU � x ′ ∈ SU x ′ ≺ x, (9)

∀ x ∈ SU � x ′ ∈ N x ≺ x ′. (10)

SU can be a singleton.
Elements of an upper shell may be infeasible. If feasible, they are efficient. By (10) they

are not dominated by any efficient solution to problem (1). Outcomes of elements of an upper
shell are located either on or (in a sense) above the efficient frontier of problem (1).

Given λ and SL , element x of the upper shell can be a source of the valid upper bound on
fl(xef (λ)) for some l, when f (x) is appropriately located with respect to the vector of lower
bounds L(SL , λ) := (L1(SL , λ), L2(SL , λ)). This is specified by the following lemma (the
proof of this lemma for more than two objective functions is found in [22]).

Lemma 1 Given lower shell SL and upper shell SU . Suppose x ∈ SU and L l̄ (SL , λ) ≤ f l̄ (x)
for some l̄ and Ll(SL , λ) ≥ fl(x) for all l = 1, 2, l �= l̄ . Then x provides an upper bound
for f l̄ (x

ef (λ)), namely f l̄ (x
ef (λ)) ≤ f l̄ (x).

Given λ, if for upper shell SU its elements provide upper bounds Ul(SU , λ) only on
fl(xef (λ)), l ∈ I , I ⊂ {1, 2}, I �= ∅, then one can set Ul(SU , λ) := ŷl (or Ul(SU , λ) := y∗

l ,
when ŷl is unknown, and y∗

l , ŷl ≤ y∗
l , is set a priori), l ∈ {1, 2}\I . Since many elements

of SU may provide upper bounds on fl(xef (λ)), I take the smallest upper bound, namely
Ul(SU , λ) = minx∈SU Ul({x}, λ), l = 1, 2. I call U (SU , λ) := (U1(SU , λ),U2(SU , λ)) the
vector of upper bounds.

The idea of general lower and upper bounds is shown in Fig. 2. I assume here ρ = 0.
Given the lower shell SL , upper shell SU and vector λ (determining the search direc-
tion in the objective space), the vector of lower bounds L(SL , λ) and vector of upper
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bounds U (SU , λ) determine the region in the objective space, where efficient outcome
f (xef (λ)) is located. Amongst all elements of SL , element x̄ provides the best lower
bounds on values of fl(xef (λ)), l = 1, 2. Element x ′ ∈ SU is the source of upper bound
U2(SU , λ) = U2({x ′}, λ) = f2(x ′), and element x ′′ ∈ SU—the source of upper bound
U1(SU , λ) = U1({x ′′}, λ) = f1(x ′′). These two elements fulfil conditions of Lemma 1.
Elements of set SU with their images in the objective space to the left of f (x ′) also are
sources of valid upper bounds on f2(xef (λ)); however, these bounds are greater than the
upper bound determined by f2(x ′). And similarly, elements of set SU with their images in
the objective space to the right of element f (x ′′) are also sources of valid upper bounds on
f1(xef (λ)); however, these bounds are greater than the upper bound determined by f1(x ′′).
Elements of SU with their images inside the rectangle are not sources of valid upper bounds
on fl(xef (λ)), l = 1, 2, as they do not fulfil conditions of Lemma 1 (are not properly located
with regards to vector L(SL , λ)).

4.3 Derivation of upper shells in case of the CCMP

At first glance, it seems difficult to derive upper shells when the efficient set (N ) is unknown.
However, in case of the CCMP in the form of problem (5), it can be done as follows.

When an MIQP solver provides no solution to problem (2) for some λ within a given
time limit T , we are left with incumbent I NC(λ) and the (mixed-integer programming) best
bound B(λ) on values of the objective function of problem (2). By solving the following set
of equations

B(λ) = λ1[(y∗
1 − f B(λ)

1 ) + ρe	(y∗ − f B(λ))]
B(λ) = λ2[(y∗

2 − f B(λ)
2 ) + ρe	(y∗ − f B(λ))] (11)

we can derive element f B(λ) := ( f B(λ)
1 , f B(λ)

2 ) belonging to the objective space.

Lemma 2 If for x B(λ) ∈ R
n ( f1(x B(λ)), f2(x B(λ))) = ( f B(λ)

1 , f B(λ)
2 ) holds, then set {x B(λ)}

is the upper shell.

Proof If efficient solution x̃ to (5) dominated x B(λ), then x̃ would provide a smaller value of
the objective function in problem (2) (s in (3)) with λ than bound B(λ), a contradiction to
x B(λ) defining the best (in this case, lower) bound on values of this function. ��

If element x B(λ) is unknown, then I say that it is a virtual element of upper shell {x B(λ)}.
By Lemma 1, one actually needs f1(x B(λ)) and f2(x B(λ)) to calculate upper bounds on
components of an implicit efficient outcome.

Let us assume that SL := {I NC(λ)} and SU := {x B(λ)} are the lower shell and upper
shell, respectively. The following remark arises from the derivation of formulas (7) and (8)
[24].

Remark 1 Element x B(λ) is not a valid source for upper boundsU1(SU , λ),U2(SU , λ) because
f1(x B(λ)) ≥ L1(SL , λ) and f2(x B(λ)) ≥ L2(SL , λ) hold (see Lemma 1).

According to Remark 1, element f B(λ) is not appropriately located with respect to vector
of lower bounds L(SL , λ). However, in order to find an upper shell whose element can be a
source of a valid upper bound for some l, l = 1, 2, problem (2) can be solved with other λ̃,
λ̃ is close to λ. The following two cases are possible.
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Case 1. When problem (2) with λ̃, λ̃ �= λ, is solved to optimality within time limit TU , its
solution x belongs to upper shell SU := {x}. x might be a valid source of either U1(SU , λ)

or U2(SU , λ). (As x is feasible, it can even be an element of a lower shell, e.g., {x}.)
Case 2. When problem (2) with λ̃, λ̃ �= λ, is not solved to optimality within time limit TU ,
by solving set of equations (11) with the best bound B(λ̃), one can provide the outcome

f B(λ̃) of element x B(λ̃), f B(λ̃) = f (x B(λ̃)). By Lemma 2, element x B(λ̃) belongs to upper

shell SU := {x B(λ̃)}.
However, in both cases, in order to find upper shells composed of elements suitable for

providing valid upper bounds (see Lemma 1) on values of both objective functions, it may
be necessary to select more than one λ̃ vectors being close to λ.

The time of solving set of equations (11) is negligible, so I will assume that TU is the
time limit on optimization when deriving an upper shell which is a singleton.

The method of deriving upper shells presented here is based on fact that the best bound
B(λ) is the result of solving a certain (implicit) relaxation of problem (2) by anMIQP solver.
A method of deriving an upper shell by solving an explicit relaxation of the multiobjective
optimization problem is proposed by Kaliszewski andMiroforidis in [21]. In this subsection,
I presented the method with the implicit relaxation first shown in [23] and applied to bi-
objective multidimensional 0–1 knapsack problems.

5 Numerical experiments

5.1 Experimental settings

In order to illustrate the presented idea, I applied the development of Sect. 4 to an instance
of the CCMP with a real-world data set with 600 assets. There is a description of this data
set in Appendix A.

I set: C = 5, ρ = 0.001. I also assumed that y∗ := (0, 0.00911) not deriving element
ŷ. 0.00911 is the highest expected return among all assets—the portfolio composed only of
the asset with the highest expected return belongs to the efficient set of the CCMP. 0 is my
arbitrarily selected upper bound on negative values of the portfolio variance. As ŷl ≤ y∗

l , l =
1, 2, the use of y∗ was legitimate.

I selected Gurobi version 8.1.1 for Windows 10 (x64) as the MIQP solver. The optimizer
was installed on the Intel Core i7-7700HQ based laptop with 16 GB of RAM.

In all experiments below (after conducting some preliminary experiments), I used arbi-
trarily selected λ vectors. These vectors designate relatively risky portfolios.

5.2 Experiment 1

In the first experiment, I assumed that λ := (0.95, 0.05). I set time limits as follows. T :=
300 s, TU := 300 s. There were 6 selected λi vectors I used to derive upper shells SiU (see
Table 1). The optimization time to derive lower shell SA

L := {I NC(λ)} as well as 6 upper
shells S1U , . . . , S6U was 300 + 6 × 300 = 2100 s. As all elements in set SA

U := ⋃6
i=1S

i
U are

non-dominated in this set (see Fig. 3), SA
U is an upper shell as well. By calculating lower and

upper bounds on values of objective functions of xef (λ), I obtained:

− 0.0002467 ≤ f1(xef (λ)) ≤ −0.0002001,
0.0044222 ≤ f2(xef (λ)) ≤ 0.0047897.
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Table 1 The set of λ vectors I
used to derive upper shells SiU in
Experiment 1

i λi1 λi2

1 0.935 0.065

2 0.940 0.060

3 0.945 0.550

4 0.955 0.045

5 0.960 0.040

6 0.965 0.035

Fig. 3 Experiment 1: �—vector of lower bounds, �—vector of upper bounds, �, ◦—images, respectively,
of lower shell SAL and upper shell SAU in the “expected return–variance” space, •—y∗, dashed line—search
direction determined by λ in the “expected return–variance” space

5.3 Experiment 2

In the second experiment, I assumed that λ := (0.98, 0.02). This vector designates a less
risky portfolio than one designated by vector λ used in the previous experiment. I set time
limits as follows. T := 1200 s, TU := 600 s. There were 5 selected λi vectors I used to derive
upper shells (see Table 2). The optimization time to derive lower shell SB

L := {I NC(λ)} as
well as 5 upper shells S1U , . . . , S5U was 1200 + 5 × 600 = 4200 s. As all elements in set

SB
U := ⋃5

i=1S
i
U are non-dominated in this set (see Fig. 4), SB

U is an upper shell as well. By
calculating lower and upper bounds on values of objective functions of xef (λ), I obtained:

− 0.0001686 ≤ f1(xef (λ)) ≤ −0.0001112,
0.0008468 ≤ f2(xef (λ)) ≤ 0.0034285.

5.4 Experiment 3

In the third experiment, I assumed that λ := (0.97, 0.03). I set time limits as follows.
T := 1200 s, TU := 600 s. There were 7 selected λi vectors I used to derive upper shells (see
Table 3). The optimization time to derive lower shell SCL := {I NC(λ)} as well as 7 upper
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Table 2 The set of λ vectors I
used to derive upper shells SiU in
Experiment 2

i λi1 λi2

1 0.965 0.035

2 0.970 0.030

3 0.975 0.025

4 0.985 0.015

5 0.990 0.010

Fig. 4 Experiment 2: �—vector of lower bounds, �—vector of upper bounds, �, ◦—images, respectively,
of lower shell SBL and upper shell SBU in the “expected return–variance” space, •—y∗, dashed line—search
direction determined by λ in the “expected return–variance” space

Table 3 The set of λ vectors I
used to derive upper shells SiU in
Experiment 3

i λi1 λi2

1 0.950 0.050

2 0.955 0.045

3 0.960 0.040

4 0.965 0.035

5 0.975 0.025

6 0.980 0.020

7 0.985 0.015

shells S1U , . . . , S7U was 1200 + 7× 600 = 5400 s. As all elements in set SCU := ⋃7
i=1S

i
U are

non-dominated in this set (see Fig. 5), SCU is an upper shell as well. By calculating lower and
upper bounds on values of objective functions of xef (λ), I obtained:

− 0.0001939 ≤ f1(xef (λ)) ≤ −0.0001313,
0.0028390 ≤ f2(xef (λ)) ≤ 0.0040999.
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Fig. 5 Experiment 3: �—vector of lower bounds, �—vector of upper bounds, �, ◦—images, respectively,
of lower shell SCL and upper shell SCU in the “expected return–variance” space, •—y∗, dashed line—search
direction determined by λ in the “expected return–variance” space

5.5 Discussion

In Figs. 3, 4 and 5, the triangle represents the vector of lower bounds on components of
implicit efficient outcome f (xef (λ)) in the “expected return–variance” space. The filled
rectangle represents the vector of upper bounds.

For vector λ used in Experiment 1, the (a priori unknown) optimization time for finding
the exact efficient solution xef (λ) was ∼ 733s (I checked this a posteriori). However, the
optimization time to derive lower and upper shell was 2100s. So, in this experiment, I could
get the exact solution, instead of only the bounds, in less than 2100s.

However, for vector λ used in Experiment 2, I tried to find the efficient solution xef (λ).
Gurobi reached the relativemixed-integer programming gap (MI Pgap) equal to 5.78%within
7476s. The optimization time to derive the lower shell and upper shells (thus, lower and
upper bounds) was 4200s. Within this time, I could provide the DM with the bounds on
components of f (xef (λ)). Please note that even though I know the MI Pgap > 0 (related to
the single-objective optimization problem (2)), I cannot infer the gaps related to components
of f (xef (λ)).

For vector λ used in Experiment 3, I tried to find efficient solution xef (λ) setting the time
limit on optimization to 10,000s. Gurobi reached the MI Pgap equal to 1.1828% within this
time limit.

For each λ vector used in Experiments 1–3, portfolio I NC(λ), as well as its outcome can
be shown the DM. Furthermore, lower and upper bounds on components of f (xef (λ)) can
be shown as well. The DM evaluates a portfolio x on the basis of values of components of
f (x). AsMI Pgap value is purely technical information related to solving the single-objective
optimization problem (2), presenting it to the DM is unreasonable.

The proposed approach requires a systematic scheme of selecting neighbouring λi vectors
to derive elements of upper shells which can provide upper bounds. In Experiments 1–3, those
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Fig. 6 �, ◦—images of SL and SU , respectively, used in Sect. 6 in the “expected return–variance” space

vectors were arbitrarily selected. Given λ, tighter bounds on components of f (xef (λ)) might
be provided to the DM, e.g., by deriving extra upper shells or by deriving a new incumbent
within another time limit—the extra computing effort is required then. There is a compromise
between the tightness of lower and upper bounds and the time budget for optimization.

The lower and upper shells derived in Experiments 1–3 can be reused to navigate over the
efficient frontier. This is demonstrated in the following section.

6 Navigating over the efficient frontier using pre-calculated lower and
upper shells

By summing up lower shells SA
L , S

B
L and SCL obtained fromExperiments 1–3 and by removing

dominated elements in the resulting set, a new lower shell SL can be obtained. In a similar
way, by summing up upper shells SA

U , S
B
U and SCU , aswell as by removing dominating elements

in the resulting set (since dominating elements are a source of either worse or equal upper
bounds—see Lemma 1), a new upper shell SU can be obtained. Let us recall that the total
optimization time needed to determine SL and SU was 3h and 15min. I can treat this as a
total computational budget on optimization in the decision making process. Images of these
new lower and upper shells in the “expected return–variance” space are shown in Fig. 6.

Taking this into account, one can use SL and SU to calculate lower and upper bounds on
components of f (xef (λ)) for other λ vectors. This means that the DM can navigate over the
efficient frontier using pre-calculated lower shell and upper shell. When the DM is satisfied
with the tightness of the bounds, there is no need to solve any new optimization problem.

In order to present the above idea, I selected three λ vectors: λa := (0.96, 0.04), λb :=
(0.975, 0.025), λc := (0.94, 0.06) which are different than ones used in Experiments 1–3.

Lower and upper bounds on values of components of xef (λα), α ∈ {a, b, c}, are as follows.
− 0.0002467 ≤ f1(xef (λa)) ≤ −0.0001532,
0.0031886 ≤ f2(xef (λa)) ≤ 0.0047897,
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− 0.0001911 ≤ f1(xef (λb)) ≤ −0.0001157,
0.0016580 ≤ f2(xef (λb)) ≤ 0.0040999,
− 0.0002989 ≤ f1(xef (λc)) ≤ −0.0002190,
0.0044280 ≤ f2(xef (λc)) ≤ y∗

2 .

There is no element of SU being a source of a valid upper bound on values of f2(xef (λc)).
Hence, the only available upper bound on values of f2(xef (λc)) is equal to y∗

2 .
Thus, when developing an interactive decision-support system for navigating over the

efficient frontier of large-scale instances of the CCMPwith the help of the presented method,
it seems reasonable to maintain (global) sets SL and SU . E.g., by storing them in a database
to reuse.

Also, please note that images of SL and SU in the “expected return–variance” space form
a finite two-sided approximation of the efficient frontier. This approximation depends on λ

vectors chosen by the DM during the decision making process. As for any given λ one can
calculate lower and upper bounds on components of f (xef (λ))with the use of SL and SU , I can
say that (parametrized) lower and upper bounds form a continuous two-sided approximation
of the efficient frontier induced on sets SL and SU .

7 Final remarks

The derivation of some efficient solutions (portfolios) to the CCMP with a large number
of assets might be difficult for commercial MIQP solvers, when there is a time limit on
optimization. It is clear that this time limit would depend on number of assets in the CCMP
as well on the right-hand side of the cardinality constraint. The time limit value can be set by
the DM before the decision making process begins, but it also could be changed by him/her
on demand during the decision making process.

When the time limit is reached by a solver, lower and upper bounds on components of
an implicit efficient outcome can be calculated by making use of the data provided by it.
When an interactive MCDM method based on Chebyshev scalarization is used to derive
efficient solutions to the CCMP, the DM can use the bounds to evaluate implicit efficient
portfolios when components of their images in the objective space are unknown due to
the fixed time limit on optimization. It can be said that preference-driven two-sided efficient
frontier approximations are sources of the bounds. The lower and upper bounds are calculated
with the help of these approximations.

Any subset of efficient solutions to the CCMP can be used to calculate lower and upper
bounds. To populate this subset (which is both a lower and an upper shell), sophisticated
methods of finding efficient solutions, e.g., methods described in [2,4,7,9,13,14], can be
applied to large-scale instances of the CCMP. However, even for such sophisticated methods
the derivation of a numerous subset of the efficient set (being its fine representation) may
be time-consuming for large-scale instances. In this case (in particular, when there is a time
limit on exact optimization), a smaller representation of the efficient set can be derived. If
y∗ is given, then each element of the image of this representation in the objective space
corresponds to a search direction (direction of concessions) in the objective space [18]. If,
without further optimization, the DM wishes to evaluate an efficient outcome corresponding
to another direction of concessions (expressed by one of these ways: a vector of concessions,
a base point, or a weight vector), bounds on components of this implicit efficient outcome
can be calculated based on the representation and provided to him/her. In this mixed scheme,
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the DM evaluates either the explicit efficient outcomes using their components or the implicit
ones using lower and upper bounds on the values of their components.

From a practical perspective, the advantage of the presented method is that the DM can
use off-the-shelf MIQP solvers. The strength of the presented approach is that it uses purely
technical (from the point of view of the DM) information provided by a commercial MIQP
solver (or any solver which is able to provide the mixed-integer best bound when solving
MIQP problems) to build upper shells and provide upper bounds. Its weakness is that it is
general (it uses theory of lower and upper boundswhich is valid for any kind ofmultiobjective
optimization problem) and does not fully exploit the properties of theCCMP to populate these
sets or provide tighter upper bounds.

The proposed approach based on MIQP solvers is valid for any extension of the CCMP
(when other practical constraints, e.g., upper bounds on assets’ shares, the pre-assignment
constraint [3,8], the round lot constraint [16,28], are introduced) if the extendedmodel belongs
to the MIQP class. Since the general theory of lower and upper bounds is valid for more than
two objective functions [22], after some modifications the approach can also be used for the
CCMP with, e.g., three objective functions.

In my future research, I plan to develop a rule-controlled method of populating lower and
upper shells. In order to populate lower shells, I also plan to make use of metaheuristics.
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Appendix A

The data set description

The data set called JKMP 600 was created from openly available data. Weekly stock quotes
from the New York Stock Exchange were collected for 600 companies, for the period from
July 2001 until June 2018, with no missing quotes. The data set in the format analogous to
the Beasley problems fromOR Library is available at: http://www.ibspan.waw.pl/~kaliszew/
JKMP_portfolio_problems/JKMP_600/JKMP_600.txt.

Lower and upper shells used in Sect. 6

Images of elements of lower shell SL and upper shell SU in the “expected return–variance”
space are shown in Tables 4 and 5, respectively. In Fig. 6, images of elements number 5 and
12 are represented by overlapping circles.
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Table 4 Images of elements of
lower shell SL in the “expected
return–variance” space

Nos. Variance EX P.RETU RN

1 0.0002420 0.0044282

2 0.0001877 0.0028418

3 0.0001612 0.0016581

Table 5 Images of elements of
upper shell SU in the “expected
return–variance” space

Nos. Variance EXP.RETURN

1 0.0002367 0.0045265

2 0.0002190 0.0043620

3 0.0002038 0.0040999

4 0.0001313 0.0023457

5 0.0001157000 0.0009790821

6 0.0002779 0.0050571

7 0.0002624 0.0049344

8 0.0002471 0.0047897

9 0.0001879 0.0037821

10 0.0001700 0.0034285

11 0.0001532 0.0028918

12 0.0001156996 0.0009791133

13 0.0001112 − 0.0031058
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