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Unique solvability of weakly homogeneous generalized

variational inequalities

Xueli Bai∗ Zheng-Hai Huang† Mengmeng Zheng‡

Abstract

An interesting observation is that most pairs of weakly homogeneous mappings

have no strongly monotonic property, which is one of the key conditions to ensure

the unique solvability of the generalized variational inequality. This paper focuses

on studying the unique solvability of the generalized variational inequality with

a pair of weakly homogeneous mappings. By using a weaker condition than the

strong monotonicity and some additional conditions, we achieve several results on the

unique solvability of the underlying problem. These results are exported by making

use of the exceptional family of elements or derived from new obtained Karamardian-

type theorems or established under the exceptional regularity condition. They are

new even when the problem comes down to its important subclasses studied in recent

years.
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1 Introduction

Variational inequalities (VIs) and complementarity problems (CPs) have been widely stud-
ied because of their applications in many fields (see [4,5,14,15] for example). The unique
solvability of these problems has always been one of the important issues, which has been
extensively studied in the literature (see [2, 3, 8, 11, 12, 21, 23, 24, 30–32] for example).
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In 1988, Noor [34] introduced a class of generalized variational inequalities (GVIs),
which contains VIs and CPs as subclasses. The unique solvability of the GVI can be
guaranteed under several conditions, where one of the key conditions is the strong mono-
tonicity of the mapping pair involved (see [36] for example). The strong monotonicity of
a mapping pair is a generalization of the strong monotonicity of a single mapping. The
latter is a classical condition to guarantee the unique solvability of VIs (see [4]). We find
that the pair of weakly homogeneous mappings generally does not have the property of
strong monotonicity.

In recent years, several classes of special VIs and CPs have attracted people’s attention,
including tensor complementarity problems (TCPs) (see [17, 18, 37]), polynomial comple-
mentarity problems (PCPs) (see [7]), generalized polynomial complementarity problems
(PGCPs) (see [26]), tensor variational inequalities (TVIs) (see [41]), polynomial variational
inequalities (PVIs) (see [16]), and generalized polynomial variational inequalities (PGVIs)
(see [39]). With the help of structural properties of tensors and properties of polynomials,
lots of theoretical results for these problems have been obtained. Recently, Gowda and
Sossa [10] studied the variational inequality with a weakly homogeneous mapping (WHVI)
over a finite dimensional real Hilbert space, which is a unified model for the above classes
of special problems. By making use of the degree theory and properties of the weakly
homogeneous mapping, they obtained several profound results on the nonemptiness and
compactness of solution sets of WHVIs. Moreover, they also obtained a uniquely solvable
result of the complementarity problem with a weakly homogeneous mapping (WHCP), a
subclass of WHVIs. More recently, the nonemptiness and compactness of solution sets of
WHVIs was also investigated by [29].

Inspired by the works mentioned above, in this paper, we investigate the unique solv-
ability of the GVI with a pair of weakly homogeneous mappings (WHGVI) over a finite
dimensional real Hilbert space. The contribution of this paper is threefold.

• First, we introduce a definition of exceptional family of elements for a pair of map-
pings and establish an alternative theorem for the WHGVI, and by which, we show
that the WHGVI has a unique solution under some assumptions, where one of the
key conditions is the strict monotonicity which is weaker than the strong mono-
tonicity. An example is constructed to claim the advantage of the achieved result.
Incidentally, we also get a new result on the nonemptiness and compactness of so-
lution sets of WHGVIs.

• Second, after obtaining a result on the nonemptiness and compactness of solution sets
of WHGVIs, we extend a Karamardian-type theorem obtained by [10] for WHVIs to
WHGVIs. Furthermore, several uniquely solvable results of WHGVIs are given by
making use of the achieved Karamardian-type results and the strict monotonicity of
the involved mapping pair.

• Third, we derive a result on the nonemptiness and compactness of solution sets of
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WHGVIs under an exceptional regularity condition and some additional conditions,
and by which, we achieve a uniquely solvable result of the WHGVI. An example is
given to confirm the achieved result.

Moreover, since the WHGVI contains WHVIs (and more, TCPs, PCPs, PGCPs, WHCPs,
TVIs, PVIs, and PGVIs) as its subclasses, we reduce our main results to these subclasses,
which give some new observations for these subclasses.

This paper is divided into eight parts. In Sect. 2, we briefly recall some basic concepts
and conclusions in the VI as well as the degree theory. In particular, we give a definition of
exceptional family of elements for a pair of mappings and present an alternative theorem
by using the exceptional family of elements. In Sect. 3, we show that many pairs of
weakly homogeneous mappings do not possess the strong monotonic property, which are
also illustrated by several examples. In Sect. 4, we establish a uniquely solvable result of
the WHGVI with the help of the exceptional family of elements for a pair of mappings,
and we illustrate that this result is different from the well-known result achieved by Pang
and Yao [36] by an example. In Sect. 5, we establish a Karamardian-type theorem for the
WHGVI, and further obtain several uniquely solvable results for WHGVIs. In Sect. 6, we
investigate the unique solvability of the WHGVI under an exceptional regularity condition
and some additional conditions. In Sect. 7, we reduce our main results to several subcases
of WHGVIs and compare the results with those existing ones for these subcases. In Sect.
8, we complete this paper via giving some conclusions.

2 Preliminary

Throughout this paper, let H be a finite dimensional real Hilbert space with inner product
x¨, ¨y and norm } ¨ }, and C be a closed convex cone in H . For any nonempty set Ω
in H , intpΩq, BΩ and Ω̄ denote the interior, boundary and closure of Ω, respectively.
In addition, for any continuous mapping g : H Ñ H and a nonempty set K in H ,
C Ě g´1pKq :“ tx P H | gpxq P Ku means that if gpx˚q P K, then x˚ P C.

For any z P H and a closed convex setK inH , ΠKpzq denotes the orthogonal projection
of z onto K, which is the unique vector z̄ P H satisfying the inequality xy ´ z̄, z̄ ´ zy ě 0
for all y P K. Besides, as a mapping, ΠKpzq is nonexpansive, that is, }ΠKpuq ´ ΠKpvq} ď
}u ´ v} holds for any u, v P H . For a projection mapping ΠKp¨q, we have the following
property:

0 P K and u P K˚ ùñ ΠKp´uq “ 0, (2.1)

where K˚ denotes the dual cone of K which is defined by K˚ :“ tu P H | uTx ě 0, @x P
Ku. We use NKpzq to denote the normal cone of K at z which is defined by

NKpzq :“
"

tu P H | uT py ´ zq ď 0, @y P Ku, if z P K,

H, otherwise,
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and K8 to denote the recession cone of K which is defined by

K8 :“
"

u P H | Dtk Ñ 8, Dxk P K such that lim
kÑ8

xk

tk
“ u

*

.

Then, with the definition of the recession cone K8, we have that the mapping

Kptq “ tK ` K8, 0 ď t ď 1 (2.2)

satisfies the following property:

Kptq “ tK ` K8 “ tK pt ‰ 0q and Kp0q “ K8,

where the first statement comes from the fact that K8 is a cone. In [10], the authors
obtained the following result:

Lemma 2.1. ( [10]) Let Kp¨q be defined as (2.2) and θp¨, ¨q : Hˆr0, 1s Ñ H be continuous.
Then, the mapping px, tq ÞÑ ΠKptqθpx, tq is continuous.

2.1 Variational inequalities with weakly homogeneous mappings

A continuous mapping f : C Ñ H is said to be positively homogeneous of degree δ with
δ ě 0, if fpλxq “ λδfpxq holds for any x P C and λ ą 0. Now, we recall the definition of
the weakly homogeneous mapping.

Definition 2.1. ( [10]) A mapping f : C Ñ H is called to be weakly homogeneous of
degree δ if f “ h ` g, where h : C Ñ H is positively homogeneous of degree δ and
g : C Ñ H is continuous and gpxq “ op}x}δq (that is, gpxq

}x}δ
Ñ 0) as }x} Ñ 8 in C.

Some basic properties of weakly homogeneous mappings are given below.

Proposition 2.1. ( [10]) Let f “ h`g be a weakly homogeneous mapping of degree δ ą 0.
Then, the following statements hold:

(i) hp0q “ 0;

(ii) limλÑ8
gpλxq
λδ “ 0 for all x P C;

(iii) hpxq “ limλÑ8
fpλxq
λδ for all x P C;

(iv) In the representation f “ h ` g, h and g are unique on C.
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According to item (iii), we use f8 to represent h in f and call it the leading term.
Besides, for a weakly homogeneous mapping f with degree δ ą 0, it can be easily seen
that

lim
kÑ8

fpxkq
}xk}δ “ lim

kÑ8

„

h

ˆ

xk

}xk}

˙

` gpxkq
}xk}δ



“ hpx̄q “ f8px̄q

holds for all }xk} Ñ 8, where x̄ :“ limkÑ8
xk

}xk}
.

Hereafter, we denote two weakly homogeneous mappings f and g by

fpxq :“ f8pxq ` f̄pxq ` p and gpxq :“ g8pxq ` ḡpxq ` q, (2.3)

where f8 and g8 are two leading terms in f and g with degrees δ1 ą 0 and δ2 ą 0,
respectively; p and q are two constant items in f and g, respectively; and f̄pxq “ fpxq ´
f8pxq ´ p and ḡpxq “ gpxq ´ g8pxq ´ q. Obviously, f̄pxq “ op}x}δ1q and ḡpxq “ op}x}δ2q
as }x} Ñ 8.

Given a nonempty closed convex set K in H and two continuous mappings f, g : H Ñ
H . The generalized variational inequality, denoted by GVIpf, g,Kq, is to find an x˚ P H

such that
gpx˚q P K, xfpx˚q, y ´ gpx˚qy ě 0, @y P K. (2.4)

When f : C Ñ H and g : H Ñ H with g´1pKq Ď C are weakly homogeneous mappings
with degrees δ1 ą 0 and δ2 ą 0, respectively, we call the problem (2.4) to be a weakly
homogeneous generalized variational inequality, which will be investigated in this paper.
In the following, we denote this problem by WHGVIpf, g,Kq for notational convenience.

• When gpxq “ x, WHGVIpf, g,Kq reduces to the WHVI, which is to find an x˚ P K

such that
xfpx˚q, y ´ x˚y ě 0, @y P K.

We denote it by WHVIpf,Kq.

• When K is a cone, WHGVIpf, g,Kq is equivalent to a complementarity problem,
called the weakly homogeneous generalized complementarity problem, which is to find
an x˚ P H such that

gpx˚q P K, fpx˚q P K˚ and xfpx˚q, gpx˚qy “ 0. (2.5)

We denote it by WHGCPpf, g,Kq.

• Furthermore, if gpxq “ x, then WHGCPpf, g,Kq reduces to the weakly homogeneous
conic complementarity problem, which is denoted by WHCPpf,Kq

Remark 2.1. Actually, the WHGVI is a wide class of problems. Except from the above
mentioned VIs and CPs, it also includes many other important problems as its special
cases. Thus, by studying the properties of WHGVIs, we can directly obtain many good
results about these subclasses (please see Sect. 7 for details).
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For any GVIpf, g,Kq, we recall that the natural mapping (see [4] for more details) is
defined by

pf, gqnatK pxq :“ gpxq ´ ΠKrgpxq ´ fpxqs. (2.6)

With the help of the natural mapping and the same technique in Proposition 1.5.8 given
in [4], an equivalent reformulation of GVIpf, g,Kq can be easily established.

Lemma 2.2. Let K be a closed convex set in H, and f : C Ñ H and g : H Ñ H

be two continuous mappings. Then, x˚ P H is a solution of GVIpf, g,Kq if and only if
pf, gqnatK px˚q “ 0.

Let SOLpf, g,Kq denote the solution set of GVIpf, g,Kq. Then, by Lemma 2.2 it
follows that x˚ P SOLpf, g,Kq if and only if pf, gqnatK px˚q “ 0.

Lemma 2.3. ( [4]) Let Φ : S Ď R
n Ñ R

m be a continuous mapping defined on the
nonempty closed set S. A continuous extension Φ̄ : Rn Ñ R

m exsits such that Φ̄pxq “ Φpxq
for all x P S.

From Lemma 2.3 it can be easily deduced that for any weakly homogeneous mapping
f : C Ñ H , there always exist continuous extension F of f from C to H . What is more,
if WHGVIpf, g,Kq satisfies g´1pKq Ď C, then we have SOLpf, g,Kq “SOLpF, g,Kq.

Next, we give the definitions of three classes of mappings, which reduce to the ones
in [36] when D “ H “ R

n.

Definition 2.2. Let K be a nonempty closed convex subset of H, and f : D Ñ H

and g : H Ñ H be two continuous mappings, where D is a nonempty subset of H with
g´1pKq Ď D. f is said to be

(i) monotone with respect to g on K if

gpxq, gpyq P K ùñ rfpxq ´ fpyqsT rgpxq ´ gpyqs ě 0;

(ii) strictly monotone with respect to g on K if

rgpxq, gpyq P K, and x ‰ ys ùñ rfpxq ´ fpyqsT rgpxq ´ gpyqs ą 0;

(iii) strongly monotone with respect to g on K if there exists a scalar c ą 0 such that

gpxq, gpyq P K ùñ rfpxq ´ fpyqsT rgpxq ´ gpyqs ě c}x ´ y}2.

When g is the identity mapping, we simple call that f is monotone on K, strictly monotone
on K and strongly monotone on K, respectively.
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From the above definitions, it can be easily seen that if f is strongly monotone with
respect to g on K, then f must be strictly monotone with respect to g on K. However,
the converse is not necessarily true. Besides, we have the following result about strictly
monotone mappings, whose proof is very simple, and hence, we omit it here.

Lemma 2.4. Let K be a closed convex set in H, and f : C Ñ H and g : H Ñ H be
two weakly homogeneous mappings defined by (2.3) with g´1pKq Ď C. Suppose that f is
strictly monotone with respect to g on K. Then, WHGVIpf, g,Kq has no more than one
solution.

2.2 Degree theory

The degree theory has been extensively applied to the investigation of VIs and CPs (see
[6, 9] for example). In this subsection, we recall some basic notations used in the degree
theory (readers can also refer to [4,28,35]). Let Ω be a bounded open set in H , φ : Ω̄ Ñ H

be a continuous mapping, and b P H satisfying b R φpBΩq. Then, the topological degree
of φ over Ω with respect to b is defined, which is an integer and denoted by degpφ,Ω, bq.

In addition, if x˚ P Ω and φpxq “ φpx˚q has a unique solution x˚ in Ω̄, then, let Ω1 be
any bounded open set containing x˚, degpφ,Ω1, φpx˚qq remains a constant, which is called
the index of φ at x˚ and denoted by indpφ, x˚q. Especially, when the continuous mapping
ϕ : H Ñ H satisfies ϕp0q “ 0 if and only if x “ 0, then,

indpϕ, 0q “ degpϕ,Ω, ϕp0qq “ degpϕ,Ω, 0q

holds for any bounded open set Ω containing 0.

Furthermore, we review the following conclusions.

Lemma 2.5. ( [35]) Let Ω be an open bounded set in H and φ : Ω̄ Ñ H be continuous. If
b P H with b R φpBΩq and degpφ,Ω, bq ‰ 0, then, φpxq “ b has a solution in Ω.

Lemma 2.6. ( [35]) Let Ω be an open bounded set in H and Hpx, tq : Ω̄ ˆ r0, 1s Ñ H be
continuous. If b P H with b R tHpx, tq : x P BΩ, t P r0, 1su, then, degpHp¨, tq,Ω, bq remains
a constant as t varies over r0, 1s.

Lemma 2.6 is also known as the homotopy invariance of degree.

2.3 Exceptional family of elements

It is well-known that the exceptional family of elements is a powerful tool to study the
existence of solutions to CPs (see [19, 20]) and VIs (see [13, 42, 43]). In the following,
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referring to [13] and [19], we present a definition of exceptional family of elements for a
pair of mappings over a finite dimensional real Hilbert space.

Definition 2.3. Let f : D Ñ H and g : H Ñ H be two continuous mappings where D

is a nonempty set in H, and K be a closed convex set in H with g´1pKq Ď D. A set of
points txru Ă D is called an exceptional family of elements for the pair pf, gq with respect
to any x̂ P H, if

(i) }xr} Ñ 8 as r Ñ 8;

(ii) gpxrq P K for any r ą 0;

(iii) for any r ą }ΠKpx̂q}, there exists a real number αr ą 0 such that

´ rfpxrq ` αrpgpxrq ´ x̂qs P NKpgpxrqq. (2.7)

Remark 2.2. When D “ H “ R
n and gpxq “ x, Definition 2.3 reduces to Definition 2.1

in [13], in which an exceptional family of elements for the mapping f was defined.

By employing the degree theory, we can establish an alternative theorem for GVIpf, g,Kq,
which is useful in later analysis.

Theorem 2.1. Let K be a nonempty closed convex set in H, f, g : H Ñ H be two
continuous mappings, and Ωx̂

r :“ tx P H | }gpxq} ă ru where r ą }ΠKpx̂q} for any given
x̂ P H. Suppose that

(a) the boundedness of }gpxq} implies the boundedness of }x}; and

(b) degpgp¨q,Ωx̂
r ,ΠKpx̂qq is defined and nonzero.

Then, there exists either a solution of GVIpf, g,Kq or an exceptional family of elements
for the pair pf, gq with respect to any given x̂ P H.

Proof. The proof is similar to the one in [13, Theorem 2.2]. We hereby present it for the
integrity of the paper. Suppose that GVIpf, g,Kq has no solution. We will show that
there exists an exceptional family of elements for the pair pf, gq with respect to any given
x̂ P H . Let homotopy Hp¨, ¨q : H ˆ r0, 1s Ñ H be defined by

Hpx, tq :“ gpxq ´ ΠKttrgpxq ´ fpxqs ` p1 ´ tqx̂u, (2.8)

and let
Sr :“ tx P H | }gpxq} ă ru, where r ą 0. (2.9)

First, we show the following result:
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R1. For any r ą }ΠKpx̂q}, there exists xr P BSr and tr P r0, 1s such that Hpxr, trq “ 0.

To this end, we assume that the result R1 does not hold and derive a contradiction.
Suppose that there exists an r̃ ą }ΠKpx̂q} such that

0 R tHpx, tq : x P BSr̃, t P r0, 1su.

Then, by using item paq, the continuity ofH and Lemma 2.6, we know that degpHp¨, tq, Sr̃, 0q
remains a constant on r0, 1s. From (2.8) we have Hpx, 0q “ gpxq ´ ΠKpx̂q. Since x̂

is an arbitrary given element in H and r̃ ą }ΠKpx̂q}, from item pbq we obtain that
degpHpx, 0q, Sr̃, 0q ‰ 0, and then

degpHpx, 1q, Sr̃, 0q “ degpHpx, 0q, Sr̃, 0q ‰ 0.

From Lemma 2.5 and the fact thatHpx, 1q “ gpxq´ΠKrgpxq´fpxqs, it immediately follows
that Hpx, 1q “ 0 has a solution. According to Lemma 2.2, this implies that GVIpf, g,Kq
has a solution, which is a contradiction. Thus, R1 holds. Then,

gpxrq “ ΠKttrrgpxrq ´ fpxrqs ` p1 ´ trqx̂u P K, (2.10)

which indicates that

´ tgpxrq ´ rtrpgpxrq ´ fpxrqq ` p1 ´ trqx̂su P NKpgpxrqq. (2.11)

On one hand, the fact that GVIpf, g,Kq has no solution leads to Hpx, 1q ‰ 0, and then,
tr ‰ 1 in (2.10). On the other hand, from (2.9) and R1 we obtain that }gpxrq} “ r ą
}ΠKpx̂q}, which leads to Hpx, 0q ‰ 0, and then, tr ‰ 0 in (2.10). These two aspects
together give rise to the fact that tr P p0, 1q in (2.11). Denote αr :“ p1´ trq{tr ą 0. From
(2.11) we know that

´rfpxrq ` αrpgpxrq ´ x̂qs P NKpgpxrqq.
Besides, for 0 ă r ď }ΠKpx̂q}, let gpxrq be any point in K. Then, we have that gpxrq P K

and }gpxrq} Ñ 8 as r Ñ 8. So, based on the continuity of g, we obtain that }xr} Ñ 8
as r Ñ 8.

Therefore, txru is an exceptional family of elements for the pair pf, gq with respect to
x̂.

Corollary 2.1. Given a nonempty closed convex set K in H, and two continuous map-
pings g : H Ñ H and f : C Ñ H. Let g´1pKq Ď C and Ωx̂

r :“ tx P H | }gpxq} ă ru where
r ą }ΠKpx̂q} for any given x̂ P H. Suppose that

(a) the boundedness of }gpxq} implies the boundedness of }x}; and

(b) degpgp¨q,Ωx̂
r ,ΠKpx̂qq is defined and nonzero.
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Then, there exists either a solution of GVIpf, g,Kq or an exceptional family of elements
for the pair pf, gq with respect to any given x̂ P H.

Proof. Suppose that GVIpf, g,Kq has no solution. We will show that there exists an
exceptional family of elements for the pair pf, gq with respect to any given x̂ P H . Let
F be any extension of f to H , then, it follows that GVIpF, g,Kq has no solution. Thus,
following the steps in Theorem 2.1, we can get an exceptional family of elements txru Ă H

for the pair pF, gq with respect to any given x̂ P H , which satisfies: }xr} Ñ 8 as r Ñ 8;
gpxrq P K for any r ą 0; and for any r ą }ΠKpx̂q}, there exists a real number αr ą 0 such
that ´rF pxrq ` αrpgpxrq ´ x̂qs P NKpgpxrqq.

Since gpxrq P K for any r ą 0, we have xr P g´1pKq Ď C, and then, F pxrq “ fpxrq
for any r ą 0. Thus, the set of points txru Ă H also satisfies ´rfpxrq ` αrpgpxrq ´ x̂qs P
NKpgpxrqq for any r ą }ΠKpx̂q}, which shows that txru is also an exceptional family of
elements for the pair pf, gq with respect to any given x̂ P H . This completes the proof.

3 Discussions of the strong monotonicity

In this paper, our aim is to investigate the unique solvability of WHGVIpf, g,Kq, where
f and g are two weakly homogeneous mappings defined by (2.3). To see the need for this
research, we first recall a well-known uniquely solvable result of GVIpf, g,Kq achieved by
Pang and Yao in [36], which is stated as follows.

Theorem 3.2. Let K be a nonempty closed convex subset of Rn, and f, g : Rn Ñ R
n be

two continuous functions with g being injective. Suppose there exists a vector z P g´1pKq
and positive scalars α and L such that }gpxq ´ gpzq} ď L}x´ z} holds for any x P g´1pKq
with }x} ě α. If f is strongly monotone with respect to g on K, then there exists a unique
vector x̄ P R

n satisfying gpxq “ ΠKrgpxq ´ fpxqs.

From Lemma 2.2 we know that the unique vector x̄ in Theorem 3.2 is actually the
unique solution of GVIpf, g,Kq. To obtain the unique solvability of GVIpf, g,Kq, Theorem
3.2 requires that the involved pair of mappings satisfies }gpxq ´ gpzq} ď L}x ´ z} for any
x P g´1pKq with }x} ě α and possesses the strongly monotonic property. However, it can
be seen that these two assumptions may not be true in lots of cases when both f and g

are weakly homogeneous mappings. In the following, we only show that for many pairs of
weakly homogeneous mappings f and g, it is impossible that f is strongly monotone with
respect to g on K.

Proposition 3.2. Let K be a nonempty closed convex subset of H and f, g : C Ñ H be
weakly homogeneous mappings defined by (2.3) with degrees δ1 ą 0 and δ2 ą 0, respectively.
Suppose that g´1pKq is unbounded. If δ1 ` δ2 ă 2, then f is not strongly monotone with
respect to g on K.
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Proof. Suppose on the contrary that f is strongly monotone with respect to g onK. Then,
there exists a scalar c ą 0 such that for any given gpyq P K,

xfpxq ´ fpyq, gpxq ´ gpyqy ě c}x ´ y}2

holds for any gpxq P K, that is,

xf8pxq ` f̄pxq ` p ´ fpyq, g8pxq ` ḡpxq ` q ´ gpyqy ě c}x ´ y}2. (3.12)

Obviously the degree of the left-hand side of (3.12) is δ1 ` δ2 ă 2. Dividing both sides of
(3.12) by }x ´ y}2, we obtain that

xf8pxq ` f̄pxq ` p ´ fpyq, g8pxq ` ḡpxq ` q ´ gpyqy
}x ´ y}2 ě c. (3.13)

By the unboundedness of g´1pKq, there exists an unbounded sequence txku such that
gpxkq P K for any k. Let }xk} Ñ 8, then, the left-hand side of (3.13) tends to 0, which is
a contradiction!

Thus, f is not strongly monotone with respect to g on K.

Remark 3.3. Suppose that gpxq “ x. Then, the condition δ1 ` δ2 ă 2 in Proposition 3.2
reduces to the degree of f is less than one, that is, if the degree of f is less than one, then
f is not strongly monotone on K.

Here, we use an example to illustrate Proposition 3.2.

Example 3.1. Suppose that H “ R
2, C “ R

2

`, and K “ tps, tqT | s ě 0, t ě 1u. We
define two weakly homogeneous mappings from C to H by

fpxq “
˜

x
1{2
1

` 2

x
1{2
2

¸

and gpxq “
˜

x
1{3
1

x
1{3
2

` 1

¸

.

In Example 3.1, δ1 ` δ2 “ 1{2 ` 1{3 “ 5{6 ă 1. Suppose f is strongly monotone with
respect to g on K. Since gp0q P K, there exists a positive scalar c ą 0 such that for any
gpxq P K,

rfpxq ´ fp0qsTrgpxq ´ gp0qs “ x
5{6
1

` x
5{6
2

ě c}x}2.
Dividing the above inequality both sides by }x}2 we obtain that

x
5{6
1

` x
5{6
2

}x}2 “ 1

}x}7{6
hpx̃q ě c,

where x̃ “ x
}x}

and hpxq “ x
5{6
1

` x
5{6
2

is a positive homogeneous function with degree

5{6. Let }x} Ñ 8, then, the left-hand side of the above inequality tends to 0, which is a
contradiction! Therefore, f is not strongly monotone with respect to g on K.
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Proposition 3.3. Let K be a nonempty closed convex subset of H and f, g : C Ñ H be
two weakly homogeneous mappings. If there exists some x̂ P C satisfying gpx̂q P K such
that

xfpxq ´ fpx̂q, gpxq ´ gpx̂qy
}x ´ x̂}2 Ñ 0 as x Ñ x̂,

then f is not strongly monotone with respect to g on K.

Proof. Suppose on the contrary that f is strongly monotone with respect to g onK. Then,
there exists a positive scalar c ą 0 such that for any gpxq, gpyq P K,

xfpxq ´ fpyq, gpxq ´ gpyqy ě c}x ´ y}2,

and hence, we have
xfpxq ´ fpx̂q, gpxq ´ gpx̂qy

}x ´ x̂}2 ě c.

Let x Ñ x̂, then, the left-hand side of the above inequality tends to zero, while the
right-hand side is a positive constant, which is a contradiction!

Thus, f is not strongly monotone with respect to g on K.

Now, we present an example to illustrate Proposition 3.3.

Example 3.2. Let H “ C “ R
2 and K “ R

2

`. We define two weakly homogeneous
mappings from R

2 to R
2 by

fpxq “
ˆ

x3

1
` 3

x3

2
` 6

˙

and gpxq “
ˆ

x4

1
` cosx1 ` 1
x4

2
` 2

˙

.

In Example 3.2, since K “ R
2

`, we may take x̂ “ 0, i.e., gpx̂q P K. Suppose that f is
strongly monotone with respect to g on K. Then, since gp0q P K, there exists a positive
scalar c ą 0 such that for any gpxq P K,

xfpxq ´ fp0q, gpxq ´ gp0qy “ x7

1
` x7

2
` x3

1
pcos x1 ´ 1q ě c}x}2.

Dividing both sides of the above inequality by }x}2, we have

x7

1
` x7

2
` x3

1
pcosx1 ´ 1q

}x}2 ě c.

Let }x} Ñ 0, then, the left-hand side of the above inequality tends to zero, while the
right-hand side is a positive constant, which is a contradiction! Hence, f is not strongly
monotone with respect to g on K.

From Proposition 3.3, the following result holds immediately.
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Corollary 3.2. Let K be a nonempty closed convex subset of H and f, g : C Ñ H be
two weakly homogeneous mappings. Suppose that f and g are finite sums of homogeneous
mappings on C of the forms:

fpxq “ hνpxq ` hν´1pxq ` ¨ ¨ ¨ ` h1pxq ` h0pxq,

gpxq “ h̄ωpxq ` h̄ω´1pxq ` ¨ ¨ ¨ ` h̄1pxq ` h̄0pxq,
respectively, where ν, ω ą 0 are integers, hipxq and h̄jpxq are positively homogeneous with
degrees γi and βj on C, and γν ą γν´1 ą ¨ ¨ ¨ ą γ1 ą γ0 “ 0, βω ą βω´1 ą ¨ ¨ ¨ ą β1 ą β0 “
0. If gp0q P K and γ1 ` β1 ą 2, then, f is not strongly monotone with respect to g on K.

Remark 3.4. (i) Suppose that gpxq “ x. Then, the conditions gp0q P K and γ1 ` β1 ą 2
in Corollary 3.2 reduce to 0 P K and the degree of h1pxq is no less than one.

(ii) Recall that for any positive integers m and n with m,n ě 2, A “ pai1i2¨¨¨imq,
where ai1i2¨¨¨im P R for ij P t1, 2, . . . , nu and j P t1, 2, . . . , mu, is called an m-th order
n-dimensional tensor. We denote the set of all m-th order n-dimensional tensor by R

rm,ns.
For any A “ pai1i2¨¨¨imq P R

rm,ns and x “ px1, . . . , xnqT P R
n, we have Axm´1 P R

n, whose
the ith component is given by

`

Axm´1
˘

i
:“

n
ÿ

i2,¨¨¨ ,im“1

aii2¨¨¨imxi2 ¨ ¨ ¨xim , @i P t1, 2, . . . , nu.

In Corollary 3.2, if both weakly homogeneous mappings f and g are polynomials, which
are defined by

fpxq “
m´1
ÿ

k“1

Apkqxm´k ` a and gpxq “
l´1
ÿ

p“1

Bppqxl´p ` b (3.14)

where pAp1q, . . . ,Apm´1qq P R
rm,ns ˆ ¨ ¨ ¨ ˆ R

r2,ns, pBp1q, . . . ,Bpl´1qq P R
rl,ns ˆ ¨ ¨ ¨ ˆ R

r2,ns,
a P R

n, and b P R
n, then, Corollary 3.2 reduces to Proposition 1 in [39].

Just as the strong monotonicity of the mapping plays a role in the study of VIs, the
uniform P -property of the mapping is one of the important conditions to guarantee that
the complementary problem has a unique solution. At the end of this section, we give
some observations on the concept of the uniform P -mapping.

Definition 3.4. The mapping f : R
n
` Ñ R

n is said to be a unform P -mapping with
respective to g : Rn Ñ R

n on R
n
`, if there exists some ρ ą 0 such that

max
iPt1,2,...,nu

rfipxq ´ fipyqsrgipxq ´ gipyqs ě ρ}x ´ y}2, @gpxq, gpyq P R
n
`.

If Rn
` is replaced by R

n, we simple call that f is a unform P -mapping with respective to g.

13



Consider a class of generalized complementarity problems, which is GVIpf, g,Kq with
H :“ R

n and K :“ R
n
`. Similar to the one in [21], one can show that this problem has a

unique solution under the assumption that f is a uniform P -mapping with respective to
g on R

n
` and some additional conditions.

When g is the identity mapping, the uniform P -property of mapping pair pf, gq reduces
to the uniform P -property of mapping f which is called that f is a uniform P -mapping
on R

n
`. Such a property is one of the key conditions to ensure the unique solvability of

CPs (see [2, 4, 14] for example).

Remark 3.5. In a similar way as those in Propositions 3.2 and 3.3, it is easy to verify
that lots of weakly homogeneous mapping pairs f : Rn

` Ñ R
n and g : Rn Ñ R

n do not
possess the uniform P -property described in Definition 3.4.

4 Uniqueness derived by using the exceptionally fam-

ily of elements

From Propositions 3.2 and 3.3, we can see that many pairs of weakly homogeneous map-
pings do not satisfy the strongly monotonic property. Thus, Theorem 3.2 cannot be
directly applied to the WHGVI in many cases. In the following, we investigate the unique
solvability of the WHGVI under the strict monotonicity and some additional assump-
tions. We also construct an example to compare our result with the famous uniqueness
result stated in Theorem 3.2 in the case of the both involved mappings being weakly
homogeneous.

Before showing the main result, we first define

B :“ tx P H | }x} “ 1u and R :“ tx P H | g8pxq P K8u.

It is easy to see that for a weakly homogeneous mapping g : H Ñ H defined by (2.3) with
degree δ2 ą 0, we have that

gpλxq “ λδ2g8pxq ` ḡpλxq ` q

holds for all λ ą 0. Let λ Ñ 8, we have }λx} Ñ 8 and }gpλxq} Ñ 8. Hence, in this
case, the boundedness of }gpxq} implies the boundedness of }x}, which means that the
condition (a) in Corollary 2.1 holds trivially.

Theorem 4.3. Given a nonempty closed convex subset K of H, and two weakly homo-
geneous mappings f : C Ñ H and g : H Ñ H defined by (2.3) with degrees δ1 ą 0 and
δ2 ą 0, respectively. Let g´1pKq Ď C and Ωx̂

r :“ tx P H | }gpxq} ă ru where r ą }ΠKpx̂q}
for any given x̂ P H. Suppose that degpgp¨q,Ωx̂

r ,ΠKpx̂qq is defined and nonzero, and the
following conditions hold:
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(i) f is strictly monotone with respect to g on K; and

(ii) xf8pxq, g8pxqy ‰ 0 for any x P B
Ş

R.

Then, WHGVIpf, g,Kq has a unique solution.

Proof. First, we show that the solution set of WHGVIpf, g,Kq is nonempty. Here, we
use the proof by contradiction. Suppose on the contrary that WHGVIpf, g,Kq has no
solution. Then, from Corollary 2.1 we know that there exists an exceptional family of
elements txru for the pair pf, gq with respect to any x̂ P H , which satisfies gpxrq P K and
}xr} Ñ 8 as r Ñ 8. Let x̂ “ 0, then from (2.7) we obtain that for any r ą }ΠKp0q},
there exists a scalar αr ą 0 such that

´rfpxrq ` αrgpxrqs P NKpgpxrqq.

According to the definition of normal cone, we have that for any r ą }ΠKp0q},

xy ´ gpxrq, fpxrq ` αrgpxrqy ě 0, @y P K. (4.15)

Dividing both sides of (4.15) by }xr}δ1`δ2 , we obtain that for any r ą }ΠKp0q},
B

y ´ gpxrq
}xr}δ2 ,

fpxrq
}xr}δ1

F

` αr}xr}δ2´δ1

B

y ´ gpxrq
}xr}δ2 ,

gpxrq
}xr}δ2

F

ě 0, @y P K. (4.16)

From condition (i) and gpxrq P K we know that for any given gpθq P K and any r ą
}ΠKp0q},

xfpxrq ´ fpθq, gpxrq ´ gpθqy ą 0. (4.17)

Let x̃r “ xr

}xr}
and x̃r Ñ x̃ as r Ñ 8, then,

lim
rÑ8

fpxrq
}xr}δ1 “ f8px̃q and lim

rÑ8

gpxrq
}xr}δ2 “ g8px̃q P K8.

Obviously, x̃ P B
Ş

R. Dividing both sides of (4.17) by }xr}δ1`δ2 and let r Ñ 8, we have
xf8px̃q, g8px̃qy ě 0. This, together with condition (ii), implies that xf8px̃q, g8px̃qy ą 0.
Thus, for any fixed y P K,

lim
rÑ8

B

y ´ gpxrq
}xr}δ2 ,

fpxrq
}xr}δ1

F

“ ´xf8px̃q, g8px̃qy ă 0. (4.18)

Besides, from item (ii) we can also obtain that g8px̃q ‰ 0, which leads to

lim
rÑ8

B

y ´ gpxrq
}xr}δ2 ,

gpxrq
}xr}δ2

F

“ ´}g8px̃q}2 ă 0
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for any fixed y P K. Hence, for all sufficiently large r, we have that for any fixed y P K,

B

y ´ gpxrq
}xr}δ2 ,

gpxrq
}xr}δ2

F

ă 0.

Thus, it follows from (4.16) that for all sufficiently large r,

B

y ´ gpxrq
}xr}δ2 ,

fpxrq
}xr}δ1

F

ě 0

holds for any fixed y P K, which implies that

lim
rÑ8

B

y ´ gpxrq
}xr}δ2 ,

fpxrq
}xr}δ1

F

ě 0.

This contradicts (4.18). Thus, WHGVIpf, g,Kq has a nonempty solution set.

From Lemma 2.4, under the assumption of strict monotonicity, WHGVIpf, g,Kq has
no more than one solution. Thus, WHGVIpf, g,Kq has a unique solution.

Now, we use other restrictions on the mapping g to replace the degree condition used
in Theorem 4.3, and get the following result.

Theorem 4.4. Given a nonempty closed convex subset K of H, and two weakly homo-
geneous mappings f : C Ñ H and g : H Ñ H defined by (2.3) with degrees δ1 ą 0 and
δ2 ą 0, respectively. Suppose that g is an injective mapping, g´1pKq Ď C, and for any
y P K, there exists an x P H such that gpxq “ y. If the following conditions hold:

(i) f is strictly monotone with respect to g on K; and

(ii) xf8pxq, g8pxqy ‰ 0 for any x P B
Ş

R,

then, WHGVIpf, g,Kq has a unique solution.

Now, we construct an example in which all the conditions in Theorem 4.4 are satisfied,
but the conditions in Theorem 3.2 are not satisfied.

Example 4.3. Let C “ tpc, 0qT | c ě 0u Ď H “ R
2 and K “ tps, 0qT | s ě 2u. Consider

WHGVIpf, g,Kq, where f : C Ñ H and g : H Ñ H are defined as follows:

fpxq “
˜

x
17{3
1

` x
8{3
1

x
5{3
2

` 2

x
17{3
2

` x
4{3
1

x2 ` 1

¸

and gpxq “
ˆ

x3

1
` 1

1`x2

2

` 1

x3

2

˙

.
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From Example 4.3, obviously, g is a continuous injection on H and satisfies g´1pKq Ď
C. Besides, it is also easy to see that

f8pxq “
˜

x
17{3
1

x
17{3
2

¸

, f̄pxq “
˜

x
8{3
1

x
5{3
2

x
4{3
1

x2

¸

, p “
ˆ

2
1

˙

,

g8pxq “
ˆ

x3

1

x3

2

˙

, ḡpxq “
ˆ

1

1`x2

2

0

˙

, q “
ˆ

1
0

˙

,

and
g´1pKq “ tpx1, x2qT | x1 ě 0, x2 “ 0u.

First, for any gpxq, gpyq P K, where x2 “ y2 “ 0 and x1 ě 0, y1 ě 0 with x1 ‰ y1, we
have

rfpxq ´ fpyqsTrgpxq ´ gpyqs “ px
17

3

1
´ y

17

3

1
qpx3

1
´ y3

1
q ą 0,

which means that f is strictly monotone with respect to g on K. Besides, for any x P
B
Ş

R, we have

xf8pxq, g8pxqy “ x
26

3

1
` x

26

3

2
‰ 0.

Thus, all the conditions of Theorem 4.4 hold.

Second, we show that the conditions in Theorem 3.2 are not satisfied. Obviously, from
Proposition 3.3, f is not strongly monotone with respect to g on K. Moreover, suppose
there exist positive scalars α ą 0 and L ą 0 and a vector z P g´1pKq such that for all
x P g´1pKq with }x} ě α,

}gpxq ´ gpzq} ď L}x ´ z}.
Since x, z P g´1pKq, we know that x2 “ z2 “ 0 and x1 ě 0, z1 ě 0. Thus,

}gpxq ´ gpzq} “ |x3

1
´ z3

1
| ď L|x1 ´ z1|,

which implies that
|x2

1
` x1z1 ` z2

1
| ď L.

Let x1 Ñ `8, then the left-hand side of the above inequality tends to positive infinity,
which is a contradiction! Hence, for WHGVIpf, g,Kq in Example 4.3, the conditions in
Theorem 3.2 are not satisfied.

Last, we show that WHGVIpf, g,Kq does have a unique solution. ForWHGVIpf, g,Kq,
our purpose is to find x “ px1, x2qT, with x1 ě 0 and x2 “ 0, such that

˜

x
17{3
1

` x
8{3
1

x
5{3
2

` 2

x
17{3
2

` x
4{3
1

x2 ` 1

¸

T
ˆ

y1 ´ x3

1
´ 1

1`x2

2

´ 1

y2 ´ x3

2

˙

ě 0, @y1 ě 2, y2 “ 0,

that is,
´

x
17{3
1

` 2
¯

`

y1 ´ x3

1
´ 2

˘

ě 0, @y1 ě 2.
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Obviously, x˚ “ p0, 0qT is the unique solution of WHGVIpf, g,Kq in Example 4.3.

If the strict monotonicity assumption in Theorem 4.3 is replaced by a weaker one (i.e.,
the mapping f is monotone with respect to some fixed vector gpθq P K), we can still
get the existence of solutions to WHGVIpf, g,Kq. Furthermore, combining with other
conditions in Theorem 4.3, we can obtain the compactness of solution sets. This is given
as follows.

Theorem 4.5. Given a nonempty closed convex subset K of H, and two weakly homo-
geneous mappings f : C Ñ H and g : H Ñ H defined by (2.3) with degrees δ1 ą 0 and
δ2 ą 0, respectively. Let g´1pKq Ď C and Ωx̂

r :“ tx P H | }gpxq} ă ru where r ą }ΠKpx̂q}
for any given x̂ P H. Suppose that degpgp¨q,Ωx̂

r ,ΠKpx̂qq is defined and nonzero, and the
following conditions hold:

(i) there exists some gpθq P K such that xfpxq ´ fpθq, gpxq ´ gpθqy ě 0 holds for any
gpxq P K;

(ii) xf8pxq, g8pxqy ‰ 0 for any x P B
Ş

R.

Then, WHGVIpf, g,Kq has a nonempty compact solution set SOLpf, g,Kq.

Proof. Following the steps in Theorem 4.3, we can easily get that SOLpf, g,Kq is nonempty.
Now we show the boundedness of SOLpf, g,Kq. Suppose on the contrary that SOLpf, g,Kq
is unbounded, then, there exists an unbounded sequence txku Ď SOLpf, g,Kq. Thus, we
have

gpxkq P K and xfpxkq, y ´ gpxkqy ě 0, @y P K.

For any u P K8 and fixed gpx0q P K, we have gpx0q ` }xk}δ2u P K. By dividing both sides
of the above inequality by }xk}δ1`δ2 and taking y :“ gpx0q ` }xk}δ2u, we obtain that

B

fpxkq
}xk}δ1 , u ` gpx0q ´ gpxkq

}xk}δ2

F

ě 0, @u P K8.

Let k Ñ 8 and limkÑ8
xk

}xk}
“ x̄, then,

xf8px̄q, u ´ g8px̄qy ě 0, @u P K8. (4.19)

According to the definition of the recession cone, we know that

g8px̄q “ lim
kÑ8

gpxkq
}xk}δ2 P K8. (4.20)

Since K8 is a cone, it is easy to obtain from (4.19) and (4.20) that xf8px̄q, g8px̄qy “ 0,
which is a contradiction to condition (ii)! Therefore, SOLpf, g,Kq is bounded. In addition,
the closedness of SOLpf, g,Kq can be obtained by the continuity of the involved mappings.

Thus, WHGVIpf, g,Kq has a nonempty compact solution set.
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By weakening the strict monotonicity assumption in Theorem 4.3, we obtained a result
on the nonemptines and compactness of the solution set of WHGVIpf, g,Kq in Theorem
4.5. However, the conditions of Theorem 4.5 cannot guarantee the uniqueness of solutions
to WHGVIpf, g,Kq, which can be seen from the following example.

Example 4.4. Let H “ C “ R
2 and K “ tps, 0qT | s ě ´1u. Consider WHGVIpf, g,Kq,

where f : C Ñ H and g : H Ñ H are defined as follows:

fpxq “
ˆ

x3

1
´ x2

1

x3

2
` x2

˙

and gpxq “
ˆ

x3

1

x3

2

˙

.

In Example 4.4, take y :“ p1, 0qT and z :“ p0, 0qT, then xfpyq ´ fpzq, gpyq ´ gpzqy “ 0,
which indicates that f is not strictly monotone with respect to g on K. However, it is
easy to see that

• the degree condition of g in Theorem 4.5 holds;

• take θ :“ p1, 0qT, then gpθq “ p1, 0qT P K, and for any gpxq P K, we have

x1 ě ´1, x2 “ 0, and xfpxq ´ fpθq, gpxq ´ gpθqy “ x2

1
px1 ´ 1q2px2

1
` x1 ` 1q ě 0;

• xf8pxq, g8pxqy “ x6

1
` x6

2
‰ 0 for any x ‰ 0.

Thus, all the conditions in Theorem 4.5 are satisfied. By Theorem 4.5, we obtain that the
solution set of WHGVIpf, g,Kq in Example 4.4 is nonempty and compact. However, the
solution is not unique. In fact, it is easy to verify that both x˚ “ p0, 0qT and x˚ “ p1, 0qT
are solutions to WHGVIpf, g,Kq in Example 4.4.

5 Uniqueness derived from Karamardian-type theo-

rems

In [10], the authors established many good theoretical results on the nonemptiness and
compactness of solution sets of WHVIs, including a Karamardian-type theorem. First, we
generalize one of main results on the nonemptiness and compactness of solution sets of
WHVIs in [10] to WHGVIs. A uniqueness result is obtained directly.

Theorem 5.6. Given a nonempty closed subset K in C, and two weakly homogeneous
mappings f : C Ñ H and g : H Ñ H defined by (2.3) with degrees δ1 ą 0 and δ2 ą 0,
respectively. Let F and F8 be any given continuous extensions of f and f8, respectively.
Suppose that g satisfies that g´1pCq Ď C and ḡpxq ` q P C as }x} Ñ 8, and the following
conditions hold:
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(a) SOLpf8, g8, K8q “ t0u; and

(b) indppF8, g8qnatK8pxq, 0q ‰ 0, where pF8, g8qnatK8p¨q is defined in (2.6).

Then, WHGVIpf, g,Kq and WHGCPpf, g,K8q have nonempty compact solution sets.

Proof. In the following, we only show the nonemptiness and compactness of solution
sets of WHGVIpf, g,Kq, since the nonemptiness and compactness of solution sets of
WHGCPpf, g,K8q can be obtained by similar steps.

Consider the following homotopy mapping:

Hpx, tq :“rp1 ´ tqg8pxq ` tgpxqs´
ΠKptqtrp1 ´ tqg8pxq ` tgpxqs ´ rp1 ´ tqF8pxq ` tF pxqsu,

where Kptq is defined in (2.2). Then,

Hpx, 1q “ gpxq ´ ΠKrgpxq ´ F pxqs and Hpx, 0q “ g8pxq ´ ΠK8rg8pxq ´ F8pxqs.

Denote the set of zeros of Hpx, tq by:

Z :“ tx P H | Hpx, tq “ 0 for some t P r0, 1su.

Next, we show that Z is uniformly bounded. For the sake of contradiction, assume that
Z is not uniformly bounded. Then we can find sequences ttku Ď r0, 1s and t0 ‰ xku Ď H

such that Hpxk, tkq “ 0 for any k and }xk} Ñ 8. It follows from Hpxk, tkq “ 0 that

p1 ´ tkqg8pxkq ` tkgpxkq “
ΠKptkq

`

rp1 ´ tkqg8pxkq ` tkgpxkqs ´ rp1 ´ tkqF8pxkq ` tkF pxkqs
˘

,

which means that p1 ´ tkqg8pxkq ` tkgpxkq P Kptkq Ď C and

@

p1 ´ tkqF8pxkq ` tkF pxkq, z ´ rp1 ´ tkqg8pxkq ` tkgpxkqs
D

ě 0 (5.21)

holds for any z P Kptkq. Since ḡpxq ` q P C as }x} Ñ 8 and C is a convex cone, it follows
that p1 ´ tkqrḡpxkq ` qs P C for all k. Furthermore, we have that for any k,

gpxkq “ p1 ´ tkqrḡpxkq ` qs ` p1 ´ tkqg8pxkq ` tkgpxkq P C,

which, together with g´1pCq Ď C, implies that xk P C. Thus we have that F pxkq “ fpxkq
and F8pxkq “ f8pxkq for all k. Thereby, (5.21) can be written as

@

p1 ´ tkqf8pxkq ` tkfpxkq, z ´ rp1 ´ tkqg8pxkq ` tkgpxkqs
D

ě 0, @ z P Kptkq.
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Noting that for any u P K8 and (fixed) gpx0q P K, tkgpx0q ` }xk}δ2u P Kptkq holds for all
k. Then, by choosing z “ tkgpx0q ` }xk}δ2u and dividing the above relation by }xk}δ1`δ2 ,
we get that

Bp1 ´ tkqf8pxkq ` tkfpxkq
}xk}δ1 , u ´ p1 ´ tkqg8pxkq ` tkgpxkq ´ tkgpx0q

}xk}δ2

F

ě 0 (5.22)

holds for any u P K8 and all k. Since ttku and t xk

}xk}
u are bounded, we can assume that

lim
kÑ8

tk “ t and lim
kÑ8

xk

}xk} “ x.

Then, let k Ñ 8 in (5.22), we have that

xf8pxq, u ´ g8pxqy ě 0, @ u P K8. (5.23)

In the following, we show that g8pxq P K8. Noting that p1´tkqg8pxkq`tkgpxkq P Kptkq “
tkK ` K8 for all k, if tk “ 0 for infinitely many k, then we can find a subsequence txk1u
of txku such that tk1 “ 0, thus we can easily get that

g8pxq “ lim
k1Ñ8

p1 ´ tk1qg8pxk1q ` tk1gpxk1q
}xk1}δ2 P K8.

Otherwise, there must exist infinitely many k such that tk ą 0, then we can find a
subsequence txk1u of txku such that tk1 ą 0. Since p1 ´ tk1qg8pxk1q ` tk1gpxk1q P Kptk1q “
tk1K ` K8 “ tk1K, each p1 ´ tk1qg8pxk1q ` tk1gpxk1q can be written as p1 ´ tk1qg8pxk1q `
tk1gpxk1q “ tk1yk

1

with yk
1 P K. Noting that yk

1 P K and }xk
1

}
t
k1

Ñ 8 as k1 Ñ 8, then by

the definition of the recession cone, we have that

g8pxq “ lim
k1Ñ8

p1 ´ tk1qg8pxk1q ` tk1gpxk1q
}xk1}δ2

“ lim
k1Ñ8

tk1yk
1

}xk1}δ2 “ lim
k1Ñ8

yk
1

}xk1}δ2{tk1

P K8.

Therefore, both cases imply that g8pxq P K8. This, together with (5.23), implies that
0 ‰ x P SOLpf8, g8, K8q. This is a contradiction! Thereby, Z is uniformly bounded.

Now, let Ω be a bounded open set in H , which contains Z, then, 0 R HpBΩ, tq for any
t P r0, 1s. By the homotopy invariance principle of the degree, we have that,

degpHpx, 1q,Ω, 0q “ degpHpx, 0q,Ω, 0q “ ind
`

pF8, g8qnatK8pxq, 0
˘

‰ 0.

Hence, from Lemma 2.5, we obtain that SOLpf, g,Kq is nonempty. In addition, it follows
that SOLpf, g,Kq is bounded from the boundedness of Z which contains SOLpf, g,Kq.
Moreover, the closeness of SOLpf, g,Kq is obvious. Therefore, SOLpf, g,Kq is nonempty
and compact.
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Remark 5.6. When gpxq “ g8pxq “ x, WHGVIpf, g,Kq and WHGCPpf, g,K8q reduce
to WHVIpf,Kq and WHCPpf,K8q, respectively. In this case, it is obvious that g´1pCq “
C and ḡpxq ` q “ 0 P C for any x. Thus, Theorem 5.6 can reduce to [10, Theorem 4.1].

Corollary 5.3. Suppose that all the conditions in Theorem 5.6 are satisfied. If ad-
ditionally f is strictly monotone with respect to g on KpK8q, then, WHGVIpf, g,Kq
(WHGCPpf, g,K8q) has a unique solution.

Second, we establish a Karamardian-type theorem for the WHGVI, which is a gener-
alization of the one in [10]. Two uniqueness results are also given.

Theorem 5.7. Given a nonempty closed subset K of C with K8 being pointed, and two
weakly homogeneous mappings f : C Ñ H and g : H Ñ H defined by (2.3) with degrees
δ1 ą 0 and δ2 ą 0, respectively. Let F and F8 be any given continuous extensions of
f8 ` f̄ ´ f̄p0q and f8, respectively. Suppose that g satisfies g´1pCq Ď C and ḡpxq ` q P C

as }x} Ñ 8, and there exists a vector d P intppK8q˚q such that one of the following
conditions holds:

(a) SOLpf8, g8, K8q “ t0u “SOLpf8 ` f̄ ´ f̄p0q `d, g,K8q and there exists a nonempty
bounded open set Ω satisfying

distpF pxq, gpxqq ă distpd, BppK8q˚qq, @x P Ω (5.24)

such that degpgpxq,Ω, 0q ‰ 0.

(b) SOLpf8, g8, K8q “ t0u “SOLpf8 ` d, g8, K8q and there exists a nonempty bounded
open set Ω satisfying

distpF8pxq, g8pxqq ă distpd, BppK8q˚qq, @x P Ω (5.25)

such that degpg8pxq,Ω, 0q ‰ 0.

Then, WHGVIpf, g,Kq and WHGCPpf, g,K8q have nonempty compact solution sets.

Proof. By Theorem 5.6, we only need to show indppF8, g8qnatK8pxq, 0q ‰ 0 under the con-
dition paq or pbq.

Case 1: Suppose that paq holds. We consider the following homotopy mapping:

Hpx, tq :“rp1 ´ tqg8pxq ` tgpxqs´
ΠK8trp1 ´ tqg8pxq ` tgpxqs ´ rp1 ´ tqF8pxq ` tF pxq ` tdsu.

Then,

Hpx, 1q “ gpxq ´ ΠK8rgpxq ´ pF pxq ` dqs and Hpx, 0q “ g8pxq ´ ΠK8rg8pxq ´ F8pxqs.
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Denote the set of zeros of Hpx, tq by:

Z :“ tx P H | Hpx, tq “ 0 for some t P r0, 1su.

By a similar method to the proof of Theorem 5.6, we can obtain that Z is uniformly
bounded, thus SOLpf, g,Kq is bounded. Let Ω1 be a bounded open set in H , which
contains Z, then, 0 R HpBΩ1, tq for any t P r0, 1s. Furthermore, by the homotopy invariance
principle of the degree, we have that,

ind
`

pF8, g8qnatK8pxq, 0
˘

“ degpHpx, 0q,Ω1, 0q “ degpHpx, 1q,Ω1, 0q. (5.26)

It follows from condition paq that rF pxq ` ds ´ gpxq is concluded in some neighbourhood
of d in pK8q˚ for any x P Ω. Thus for any x P Ω,

Hpx, 1q “ gpxq ´ ΠK8 p´rpF pxq ` dq ´ gpxqsq “ gpxq ´ 0 “ gpxq.

Thus degpHpx, 1q,Ω, 0q “degpgpxq,Ω, 0q ‰ 0. Furthermore, by condition paq,

degpHpx, 1q,Ω1, 0q “ indpHpx, 1q, 0q “ degpHpx, 1q,Ω, 0q ‰ 0.

Therefore, by (5.26), we get that indppF8, g8qnatK8pxq, 0q ‰ 0. Hence, from Lemma 2.5,
we obtain that SOLpf, g,Kq is nonempty. Above, we have shown that SOLpf, g,Kq
is nonempty and bounded. It is easy to see that SOLpf, g,Kq is closed. Therefore,
SOLpf, g,Kq is nonempty and compact.

Case 2: Suppose that pbq holds. By a similar technique as the one in Case 1, it is not
difficult to obtain that SOLpf, g,Kq is nonempty and compact.

Thus, either paq or pbq implies that WHGVIpf, g,Kq has a nonempty compact solution
set.

Remark 5.7. When gpxq “ g8pxq “ x, WHGVIpf, g,Kq and WHGCPpf, g,K8q reduce
to WHVIpf,Kq and WHCPpf,K8q, respectively. In this case, it is obvious that g´1pCq “
C, ḡpxq ` q “ 0 P C for any x, and degpgpxq,Ω, 0q “ 1 “degpg8pxq,Ω, 0q for any small
open neighbourhood of 0. Thus, it is not difficult to see that Theorem 5.7 can reduce to
Theorem 5.1 in [10] when WHGVIpf, g,Kq reduces to WHVIpf,Kq.

Corollary 5.4. Suppose that all the conditions in Theorem 5.7 are satisfied. If ad-
ditionally f is strictly monotone with respect to g on KpK8q, then, WHGVIpf, g,Kq
(WHGCPpf, g,K8q) has a unique solution.

In the same way as in Theorem 2.3 in [33], we can obtain the following result for
WHGCPs.
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Lemma 5.7. Let f : Rn
` Ñ R

n and g : Rn Ñ R
n be two weakly homogeneous mappings

defined by (2.3) with g´1pKq Ď R
n
`. Suppose that f has P -property with respect to g on

R
n
`, that is,

max
iPrns

rfipxq ´ fipyqsrgipxq ´ gipyqs ą 0, @ gpxq, gpyq P R
n
` and x ‰ y.

Then, WHGCPpf, g, Cq has no more than one solution.

Remark 5.8. Suppose that H “ R
n and K “ C “ R

n
`. If the condition that f is

strictly monotone with respect to g on KpK8q in Corollaries 5.3 and 5.4 is replaced by the
condition that f has P -property with respect to g on K, then the corresponding WHGCP
has a unique solution.

As is known to us, the condition which is described by topological degree is difficult to
check directly, in general. Thus, we give the following result where the degree-theoretical
conditions are replaced by other properties of mappings.

Theorem 5.8. Given a nonempty closed subset K of C with K8 being pointed, and two
weakly homogeneous mappings f : C Ñ H and g : H Ñ H defined by (2.3) with degrees
δ1 ą 0 and δ2 ą 0, respectively. Let F and F8 be any given continuous extensions
of f8 ` f̄ ´ f̄p0q and f8, respectively. Suppose that g satisfies that g´1pCq Ď C and
ḡpxq ` q P C as }x} Ñ 8, and there exists a vector d P intppK8q˚q such that one of the
following conditions holds:

(a) SOLpf8, g8, K8q “ t0u “SOLpf8`f̄´f̄p0q`d, g,K8q and g is an injective mapping
satisfying there exists an x˚ such that gpx˚q “ 0 and

distpF pxq, gpxqq ă distpd, BppK8q˚qq as x Ñ x˚;

(b) SOLpf8, g8, K8q “ t0u “SOLpf8 ` d, g8, K8q and g8 is an injective mapping.

Then, WHGVIpf, g,Kq and WHGCPpf, g,K8q have nonempty compact solution sets.
Furthermore, if additionally f is strictly monotone with respect to g on KpK8q, then
WHGVIpf, g,Kq (WHGCPpf, g,K8q) has a unique solution.

Proof. First, we show that condition paq can imply condition paq of Theorem 5.7. If there
exists some x˚ such that gpx˚q “ 0 and distpF pxq, gpxqq ădistpd, BppK8q˚qq as x Ñ x˚,
then choosing Ω being an open neighborhood of x˚ such that (5.24) holds for any x P Ω,
we can obtain that degpgpxq,Ω, 0q ‰ 0 by the condition that g is injective.

Second, we show that condition pbq can imply condition pbq of Theorem 5.7. Since
f8p0q “ g8p0q “ 0, we have that distpF8pxq, g8pxqq Ñ 0 as x Ñ 0. Thus choosing Ω
being an small enough open neighborhood of 0 such that (5.25) holds for any x P Ω, we
can obtain that degpg8pxq,Ω, 0q ‰ 0 by the condition that g8 is an injective mapping.
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Remark 5.9. (i) Suppose that gp0q “ 0, then the conditions described by the distance
inequalities in paq of Theorems 5.7 and 5.8 hold naturally.

(ii) If f is strictly monotone with respective to g on H , then the condition that g is
an injective mapping in paq of Theorem 5.8 holds naturally.

It can be easily seen that the uniqueness result in Theorem 5.8 was obtained from
a Karamardian-type theorem, and the uniqueness result in Theorem 4.4 was derived by
using the exceptionally family of elements. Next, we show that the conditions of these two
theorems cannot be contained each other, which can be seen from the following examples.

Example 5.5. Let H “ R
3, C “ tpx1, x2, x3qT P R

3 | x3 ě 0u, and K “ tpx1, x2, x3qT
P R

3 | x1 “ x2 ě 3, x3 “ π3u. Consider WHGVIpf, g,Kq, where f : C Ñ H and
g : H Ñ H are defined as follows:

fpxq “

¨

˝

x3

1
` x1 sin x3 ` 1

x3

2
` x2 sin x3 ` 1

x3

3

˛

‚ and gpxq “

¨

˝

x3

1
` sinp´π

2
¨ x1q ` 1

x3

2
` sinp´π

2
¨ x2q ` 1

x3

3

˛

‚.

It is easy to check that f and g are weakly homogeneous mappings with degrees
3, g´1pKq Ď C, K8 “ tpx1, x2, x3qT P R

3 | x1 “ x2 ě 0, x3 “ 0u, and pK8q˚ “
tpx1, x2, x3qT P R

3 | x1 ` x2 ě 0u. Below, we show that for WHGVIpf, g,Kq in Example
5.5, all of the conditions in Theorem 5.8 hold, but at least one of the conditions in Theorem
4.4 is not satisfied. We also show that this WHGVI has a unique solution, which conforms
the result of Theorem 5.8.

Part I. We show that all the conditions in Theorem 5.8 hold for WHGVIpf, g,Kq in
Example 5.5.

• It is not difficult to obtain that g´1pCq Ď C and ḡpxq ` q P C as }x} Ñ 8 by
rḡpxq ` qs3 “ 0 for any x P R

3.

• Obviously, g8 is an injective mapping on R
3. Next, we discuss the uniqueness of solu-

tions to the corresponding WHGCPpf8, g8, K8q andWHGCPpf8`d, g8, K8q with
d P intppK8q˚q, respectively. Suppose x̄ P SOLpf8, g8, K8q, it follows from g8px̄q P
K8 and f8px̄q P pK8q˚ that x̄1 “ x̄2 ě 0, which, together with xf8px̄q, g8px̄qy “
x̄6

1
` x̄6

2
“ 0, implies that x̄1 “ x̄2 “ 0, i.e., SOLpf8, g8, K8q “ t0u. Similarly, if

x̄ P SOLpf8 ` d, g8, K8q, then it follows from g8px̄q P K8 and f8px̄q ` d P pK8q˚

that x̄2 “ x̄1 ě 0, which, together with

xf8px̄q ` d, g8px̄qy “ x̄6

1
` d1x̄

3

1
` x̄6

2
` d2x̄

3

2
“ 2x̄6

1
` pd1 ` d2qx̄3

1
“ 0

and d1 ` d2 ą 0 (from d P intppK8q˚q) shows that x̄1 “ x̄2 “ 0, i.e., SOLpf8 `
d, g8, K8q “ t0u. Thereby, the condition pbq in Theorem 5.8 holds.
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• For any gpxq, gpyq P K and x ‰ y, we have x3 “ y3 “ π, x1 ě 1, y1 ě 1, x2 ě 1, y2 ě 1
and there exists an index i P t1, 2u such that xi ‰ yi. Now, we discuss the strict
monotonicity of the mapping hpxq “ x3 ` sinp´π

2
¨ xq where 1 ď x P R. Since

rx3 ` sinp´π

2
¨ xqs1 “ 3x2 ´ π

2
cosp´π

2
¨ xq ą 3 ´ π

2
ą 0,

when x ě 1, hpxq ą hpyq if x ą y ě 1. Thus, for any x ě 1, y ě 1, and x ‰ y, we
can obtain that

px ´ yqrhpxq ´ hpyqs “ px ´ yqrx3 ` sinp´π

2
¨ xq ´ y3 ´ sinp´π

2
¨ yqs ą 0.

Furthermore, we have that for any gpxq, gpyq P K and x ‰ y,

rfpxq ´ fpyqsTrgpxq ´ gpyqs “
ř

2

i“1
px3

i ´ y3i qrx3

i ` sinp´π
2

¨ xiq ´ y3i ´ sinp´π
2

¨ yiqs ą 0.

Thereby, f is strictly monotone with respect to g on K.

Combining the above three cases, we obtain that all the conditions in Theorem 5.8 hold
for WHGVIpf, g,Kq in Example 5.5.

Part II. Since gp0q “ p1, 1, 0qT “ gpzq where z “ p1, 1, 0qT, g is not an injective
mapping on H “ R

3, i.e., at least one of the conditions in Theorem 4.4 is not satisfied for
WHGVIpf, g,Kq in Example 5.5.

Part III. We are going to show that WHGVIpf, g,Kq has a unique solution. Consid-
ering WHGVIpf, g,Kq is to find x “ px1, x2, x3qT such that

gpxq P K and

¨

˝

x3

1
` x1 sin x3 ` 1

x3

2
` x2 sin x3 ` 1

x3

3

˛

‚

T¨

˝

y1 ´ rx3

1
` sinp´π

2
¨ x1q ` 1s

y2 ´ rx3

2
` sinp´π

2
¨ x2q ` 1s

y3 ´ x3

3

˛

‚ě 0 (5.27)

for all y1 ě 3, y2 ě 3 and y3 “ π3. It follows from gpxq P K that x1 ě 1, x2 ě 1 and
x3 “ π, thus (5.27) can be rewritten as

2
ÿ

i“1

px3

i ` 1qpyi ´ x3

i ´ sinp´π

2
¨ xiq ´ 1q ě 0, @y1 ě 3, y2 ě 3 and y3 “ π3.

Suppose that x˚ is a solution of WHGVIpf, g,Kq. Then by taking y “ p3, 3, π3qT, we have
2
ÿ

i“1

rpx˚
i q3 ` 1sr2 ´ px˚

i q3 ´ sinp´π

2
¨ x˚

i qs ě 0. (5.28)

Since gpx˚q P K, we have that x˚
3

“ π, x˚
i ě 1 and px˚

i q3 ` sinp´π
2

¨ x˚
i q ě 2 for any

i P t1, 2u, which together with (5.28) implies that px˚
i q3 ` sinp´π

2
¨ x˚

i q “ 2 for any
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i P t1, 2u. Furthermore, noting that hpxq “ x3 ` sinp´π
2

¨ xq is strictly increasing on
tx P R | x ě 1u and (5.27) holds when x˚

3
“ π and px˚

i q3 ` sinp´π
2

¨ x˚
i q “ 2 for any

i P t1, 2u, thus WHGVIpf, g,Kq in Example 5.5 has a unique solution.

At the end of this section, we use Example 4.3 to illustrate the case that all of the
conditions in Theorem 4.4 are satisfied, but at least one of the conditions in Theorem 5.8 is
not satisfied. Actually, from the analysis of Example 4.3 given in the above section, we have
already known that all the conditions in Theorem 4.4 are satisfied for WHGVIpf, g,Kq in
Example 4.3. However, since

g´1pCq “
 

pc1, 0qT | c1 ě 3
?

´2
(

,

it is easy to see that g´1pCq is not contained in C. Thus, the condition g´1pCq Ď C in
Theorem 5.8 does not hold for WHGVIpf, g,Kq in Example 4.3.

From the above two examples, it can be seen that Theorem 4.4 and Theorem 5.8 are
two different results, which analyze the properties of solutions to WHGVIpf, g,Kq from
two different aspects.

6 Uniqueness derived under the exceptional regular-

ity condition

In Section 5, we have obtained a Karamardian-type theorem for the WHGVI, which can
reduce to the one established by Gowda and Sossa [10] for the WHVI. To the best of our
knowledge, the Karamardian-type theorem achieved by [10] can cover a lot of existing
results obtained recently in TCPs, PCPs, TVIs and PVIs. However, we note that there
are some papers which study the properties of solution sets of VIs and CPs by using the
exceptional regularity of the involved mappings (see [26, 44, 45]). It is not clear whether
or not the exceptional regularity of the involved mappings can lead to new results on
the nonemptiness and compactness of solution sets and/or the uniqueness of solutions
of WHVIs (or even WHGVIs)? Below, we answer the aforementioned question with an
exceptional regularity condition expressed by (6.29) and some additional conditions.

Theorem 6.9. Given a nonempty closed subset K in C with pK8q˚ being pointed, and
two weakly homogeneous mappings f : C Ñ H and g : H Ñ H defined by (2.3) with
degrees δ1 ą 0 and δ2 ą 0, respectively. Suppose that g´1pCq Ď C and ḡpxq ` q P C for
any x P H satisfying }x} “ 1, and one of the following conditions holds:

(i) there exists no px, tq P pHzt0uq ˆ R` such that

g8pxq P K8, f8pxq ` tx P pK8q˚ and xf8pxq ` tx, g8pxqy “ 0, (6.29)

27



and there exists a vector d P intpK8q such that

SOLpx, g8 ` d,K8q “ t0u “ SOLpx, g8, K8q; (6.30)

(ii) there exists no px, tq P pHzt0uq ˆ R` such that (6.29) holds, and there exists a vector
d P intpK8q such that

SOLpx, g ` d,K8q “ t0u “ SOLpx, g,K8q.

Then, WHGVIpf, g,Kq and WHGCPpf, g,K8q have nonempty compact solution sets.

Proof. First, we show that the result holds under condition (i). Since (6.29) implies that
SOLpf8, g8, K8q “ t0u, we only need to prove indppF8, g8qnatK8pxq, 0q ‰ 0 where F8 is
any given continuous extensions of f8 from Theorem 5.6. For this purpose, we construct
the following homotopy mapping:

Hpx, tq :“ rp1 ´ tqF8pxq ` txs ´ ΠpK8q˚trp1 ´ tqF8pxq ` txs ´ pg8pxq ` tdqu.

Denote Z :“ tx P H | Hpx, tq “ 0 for some t P r0, 1su. We show that Z is uniformly
bounded. For the sake of contradiction, we assume that Z is not uniformly bounded.
Then, we can find sequences ttku Ď r0, 1s and txku Ď H with ||xk|| Ñ 8 as k Ñ 8 such
that Hpxk, tkq “ 0 for any k. It follows from Hpxk, tkq “ 0 that

p1 ´ tkqF8pxkq ` tkx
k “ ΠpK8q˚trp1 ´ tkqF8pxkq ` tkx

ks ´ rg8pxkq ` tkdsu,

which, together with pK8q˚ is a cone, implies that
"

p1 ´ tkqF8pxkq ` tkx
k P pK8q˚, g8pxkq ` tkd P K8,

and xg8pxkq ` tkd, rp1 ´ tkqF8pxkq ` tkx
ksy “ 0.

(6.31)

Without loss of generality, we assume that δ1 ą 1 (the proofs of case of δ1 ď 1 can adopt

similar procedure as the following), limkÑ8 tk “ t and limkÑ8
xk

}xk}
“ x by the boundedness

of sequences ttku and t xk

}xk}
u.

(I) If t ‰ 1, then 1 ´ t ą 0. Dividing the equality in (6.31) by }xk}δ1`δ2 , we obtain that
B

g8pxkq ` tkd

}xk}δ2 ,
p1 ´ tkqF8pxkq ` tkx

k

}xk}δ1

F

“ 0. (6.32)

Furthermore, since δ1 ą 1, by letting k Ñ 8 in (6.32), we have that xg8pxq, p1 ´
tqF8pxqy “ 0. Noting that }x} “ 1, then ḡpxq ` q P C and gpxq “ g8pxq ` ḡpxq ` q P
C, which implies that x P C by the condition g´1pCq Ď C, and then, F8pxq “ f8pxq.
Thus, we can obtain

xg8pxq, p1 ´ tqf8pxqy “ 0. (6.33)
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Moreover, it is easy to see that

#

g8pxq “ limkÑ8
g8pxkq`tkd

}xk}δ2
P K8, and

p1 ´ tqf8pxq “ p1´tkqf8pxkq`tkx
k

}xk}δ1
P pK8q˚.

(6.34)

Let y “ δ1

?
1 ´ t ¨ x, then y ‰ 0; and it follows (6.33) and (6.34) that

f8pyq “ p1 ´ tqf8pxq P pK8q˚, g8pyq “ p1 ´ tq
δ2

δ1 g8pxq P K8,

and
xg8pyq, F8pyqy “ 0.

This is a contradiction to (6.29)!

(II) If t “ 1, then dividing the equality of (6.31) by ||xk||δ2`1, we obtain that

B

g8pxkq ` tkd

}xk}δ2 ,
p1 ´ tkqF8pxkq ` tkx

k

}xk}

F

“ 0,

i.e.,

B

g8pxkq ` tkd

}xk}δ2 ,
p1 ´ tkq}xk}δ1´1F8pxkq

}xk}δ1 ` tkx
k

}xk}

F

“ 0. (6.35)

Furthermore, we consider the following three cases.

‚ If limkÑ8p1 ´ tkq}xk}δ1´1 “ `8, noting limkÑ8
p1´tkq}xk}δ1´1

}xk}δ1´1 “ 0, then there

exists some N P p0, δ1 ´ 1q and c ą 0 such that

lim
kÑ8

p1 ´ tkq}xk}δ1´1

}xk}N “ c.

In addition, it follows from (6.35) that

B

g8pxkq ` tkd

||xk||δ2 ,
p1 ´ tkq}xk}δ1´1F8pxkq

}xk}δ1 ¨ }xk}N ` tkx
k

||xk||N`1

F

“ 0.

Noting that F8pxq “ f8pxq, then, letting k Ñ 8, we have that

xg8pxq, cf8pxqy “ 0, (6.36)

and hence, follow the steps in (I), we can obtain that (6.36) is a contradiction
to (6.29)!
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‚ If limkÑ8p1 ´ tkq}xk}δ1´1 “ 0, then letting k Ñ 8 in (6.35), we have that

xg8pxq, xy “ 0. (6.37)

Moreover, it is easy to see that g8pxq P K8 and

x “ lim
kÑ8

rp1 ´ tkq}xk}δ1´1F8pxkq
}xk}δ1 ` tkx

k

}xk}s

“ lim
kÑ8

p1 ´ tkqF8pxkq ` tkx
k

}xk} P pK8q˚,

thus 0 ‰ x P SOLpx, g8, K8q, which contradicts the second equality in (6.30)!

‚ If limkÑ8p1 ´ tkq}xk}δ1´1 “ c pc ą 0q, then letting k Ñ 8 in (6.35), we have
xg8pxq, cF8pxq ` xy “ 0, which, together with F8pxq “ f8pxq, implies that

xg8pxq, cf8pxq ` xy “ 0. (6.38)

Moreover, we can easily obtain that g8pxq P K8 and

cf8pxq ` x “ lim
kÑ8

p1 ´ tkqF8pxkq ` tkx
k

}xk} P pK8q˚. (6.39)

Since c ą 0, it follows from (6.38) and (6.39) that

g8pxq P K8, f8pxq ` 1

c
x P pK8q˚ and xg8pxq, f8pxq ` 1

c
xy “ 0,

which is a contradiction to (6.29)!

Thereby, by combining (I) with (II), we have that Z is uniformly bounded.

Now, let Ω1 be a bounded open set in H , which contains Z, we have that 0 R HpBΩ1, tq
for any t P r0, 1s. By the homotopy invariance principle of the degree, we have that,

ind
`

pF8, g8qnatK8pxq, 0
˘

“ degpHpx, 0q,Ω1, 0q “ degpHpx, 1q,Ω1, 0q. (6.40)

Noting that when x is close to 0, it holds that x´rg8pxq`ds is close to ´d. In addition,
since ΠpK8q˚p´dq “ 0 by d P intpK8q, when x is close to 0, we have Hpx, 1q “ x ´ 0 “ x,
which means that degpHpx, 1q,Ω1

, 0q “ 1 where Ω
1

is a small open neighborhood of 0.
Therefore,

degpHpx, 1q,Ω, 0q “ indpHpx, 1q, 0q “ degpHpx, 1q,Ω1

, 0q “ 1

from the first equality in (6.30). Furthermore, from (6.40), indppF8, g8qnatK8pxq, 0q “ 1.

Second, by constructing the homotopy mapping by

Hpx, tq :“ rp1 ´ tqF8pxq ` txs ´ ΠpK8q˚trp1 ´ tqF8pxq ` txs ´ pgpxq ` tdqu
and repeating the above procedure, we can obtain that indppF8, g8qnatK8pxq, 0q “ 1 when
(ii) holds. This completes the proof.
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Remark 6.10. (i) Suppose that gp0q “ 0, then the conditions described by the distance
inequalities in paq of Theorems 5.7 and 5.8 hold naturally.

(ii) If f is strictly monotone with respective to g on H , then the condition that g is
an injective mapping in paq of Theorem 5.8 holds naturally.

Remark 6.11. (i) When gpxq “ x, it is obvious that g´1pCq Ď C and ḡpxq ` q P C for
any x P H satisfying }x} “ 1, and the condition given in (6.30) vanishes.

(ii) In Theorem 5.7, an essential condition is that K8 is pointed; while Theorem 6.9
requires that pK8q˚ is pointed. As there are a lot of cases that K8 is pointed but pK8q˚

is not, or pK8q˚ is pointed but K8 is not, Theorem 5.7 and Theorem 6.9 are two different
results which are complements to each other.

(iii) Here, we recall that a tensor A P R
rm,ns is said to have the R-property (see [7])

if SOLpAxm´1, x,Rn
`q “ t0u “SOLpAxm´1 ` d, x,Rn

`q for some d ą 0; and it is called an
ER-tensor (see [40]) if there exists no px, tq P pRn

`zt0uq ˆR` such that pAxm´1qi ` txi “ 0
if xi ą 0, and pAxm´1qi ě 0 if xi “ 0. When the considered problems reduce to PCPs,
Theorem 5.7 reduces to Theorem 5.1 in [7]; while Theorem 6.9 reduces to Theorem 3.1
in [25] with the involved leading tensors being ER-tensors.

(iv) Let d “ p1, ¨ ¨ ¨ , 1qT in the definition of the R-property, that is, if there exists no
px, tq P pRn

`zt0uq ˆ R` such that pAxm´1qi ` t “ 0 if xi ą 0, and pAxm´1qi ` t ě 0 if
xi “ 0, then, A is called an R-tensor (see [38]). When the considered problems reduce to
TCPs, Theorem 5.7 and Theorem 6.9 reduce to [40, Theorem 4.1] and [40, Theorem 4.2],
respectively.

Corollary 6.5. Suppose that all the conditions in Theorem 6.9 are satisfied. If ad-
ditionally f is strictly monotone with respect to g on KpK8q, then WHGVIpf, g,Kq
(WHGCPpf, g,K8qq has a unique solution.

Below, we construct an example satisfying all the conditions in Theorem 6.9.

Example 6.6. Let H “ C “ R
2 and K “ tps, tqT | s ě 1, t ě 0u. Here, we consider

WHGVIpf, g,Kq, where f : C Ñ H and g : H Ñ H are defined as follows:

fpxq “
ˆ

x5

1
` x1 ` 1

x5

2
` x2 ` 1

˙

and gpxq “
ˆ

x3

1
` x1

x3

2

˙

.

Obviously, g´1pKq Ď C and K8 “ pK8q˚ “ R
2

`. Below, we show that all the
conditions in Theorem 6.9 are satisfied, and hence, WHGVIpf, g,Kq in Example 6.6 has
a unique solution.

• It is not difficult to obtain that g´1pCq Ď C and ḡpxq ` q P C for any x P R
2.
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• Since g8 “ px3

1
, x3

2
qT and intpK8q “ R

2

`` ‰ H, then, obviously, for any d P intpK8q,

SOLpx, g8 ` d,K8q “ t0u“ SOLpx, g8, K8q.

• It is easy to see that SOLpf8 ` tx, g8, K8q “ t0u for any t ě 0.

• Besides, f is strictly monotone with respect to g on K.

Thus, by combining the above four cases, all the conditions in Theorem 6.9 hold, and hence,
WHGVIpf, g,Kq in Example 6.6 has a unique solution. In fact, it can be proved that x˚ “
px˚

1
, 0qT is the unique solution to WHGVIpf, g,Kq, where x˚

1
satisfying px˚

1
q3 `x˚

1
´ 1 “ 0.

7 Subcases of WHGVIs

The WHGVI is a wide class of problems. When we restrict the set K and/or mappings
g and f to some special cases, we can obtain the corresponding uniquely solvable results
of these problems. Actually, the results we obtain in Sections 4, 5 and 6 can all reduce to
the following subcases and get some nice results. In the following, we will not list all of
these results, and only compare some of these results with the existing results.

7.1 Reducing to special VIs

In this subsection, we consider several VIs which are subclasses of WHGVIs, including
WHVIs (i.e., weakly homogeneous variational inequalities), PGVIs (i.e., generalized poly-
nomial variational inequalities), and PVIs (i.e., polynomial variational inequalities).

I. WHVIs. Let gpxq “ x, then, WHGVIpf, g,Kq reduces to the WHVI, denoted
by WHVIpf,Kq, which was studied by Gowda and Sossa [10] and Ma et al. [29]. When
reducing Theorem 5.7 fromWHGVIs to WHVIs, we know that a relevant result is Theorem
5.1 in [10], which requires that K8 is pointed. When reducing Theorem 6.9 from WHGVIs
to WHVIs, we can obtain the following result:

Corollary 7.6. Given a nonempty closed subset K in C with pK8q˚ being pointed and a
weakly homogeneous mapping f : C Ñ H defined by (2.3) with degree δ ą 0. Suppose that
there exists no px, tq P pHzt0uq ˆ R` such that

x P K8, f8pxq ` tx P pK8q˚ and xf8pxq ` tx, xy “ 0.

Then, WHVIpf, g,Kq and WHCPpf, g,K8q have nonempty compact solution sets.

In addition, when reducing Theorem 4.5 from WHGVIs to WHVIs, we can easily
obtain the following result:
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Corollary 7.7. Let K be a nonempty closed convex set in C. Suppose that f is a weakly
homogeneous mapping defined by (2.3). If there exists some θ P K such that xfpxq ´
fpθq, x ´ θy ě 0 holds for any x P K and xf8pxq, xy ‰ 0 for any x P B

Ş

K8, then,
WHVIpf,Kq has a nonempty compact solution set.

Though many results on the nonemptiness and compactness of solution sets of WHVIs
have been obtained by [10] and [29], we claim that Corollaries 7.6 and 7.7 are new. Next,
we only compare Corollary 7.7 with the main result in [29].

From (2.3) we know that a weakly homogeneous mapping f can be expressed as the
following:

fpxq “ f8pxq ` f̄pxq ` p “ f8pxq ` f̄pxq ´ f̄p0q ` p ` f̄p0q.
Denote f̃pxq :“ f8pxq ` f̄pxq ´ f̄p0q and p̃ :“ p ` f̄p0q, then f̃8 “ f8 and f̃p0q “ 0.
More recently, [29] investigated the nonemptiness and compactness of the solution set of
WHVIpf̃ , K, p̃q. Although the expressions of WHVIpf̃ , K, p̃q in [29] and WHVIpf,Kq in
this paper are different, there is a one-to-one correspondence between their solutions. The
following is the main result in [29].

Theorem 7.10. ( [29]) Let K be a nonempty closed convex set in C, f̃ : C Ñ H be
a weakly homogeneous mapping with degree γ, and p̃ P H. Suppose that the following
conditions hold:

(i) f̃ is η-copositive on K, that is, there exists a vector η P H such that xf̃pxq ´ η, xy ě 0
holds for all x P K; and

(ii) there exists a vector x̂ P K such that xfpxq, x̂y ď 0 for all x P K; and

(iii) let S :“ SOLpf̃8, K8, 0q, where SOLpf̃8, K8, 0q denotes the solution set of the
WHVIpf̃8, K8, 0q, and p̃ ` η P intpS˚q.

Then, WHVIpf̃ , K, p̃q has a nonempty compact solution set.

In the following, we use two examples to illustrate that the conditions in Corollary 7.7
are different from the conditions in Theorem 7.10.

Example 7.7. Let H “ C “ R
2 and K “ tps, tqT | s ě ´1, t ě 0u. We consider

WHVIpf,Kq, where fpxq “ px3

1
´ x2

1
, x3

2
` x2qT is a weakly homogeneous mapping with

degree 3 from R
2 to R

2.

We show that, for Example 7.7, all the conditions in Corollary 7.7 are satisfied, but at
least one of the conditions in Theorem 7.10 is not satisfied.

33



From Example 7.7, it is easy to see that θ “ p1, 0qT P K and for any x P K,

xfpxq ´ fpθq, x ´ θy “ x2

1
px1 ´ 1q2 ` x2

2
px2

2
` 1q ě 0.

Besides, it is also obvious that xf8pxq, xy “ x4

1
` x4

2
‰ 0 for any x ‰ 0. Thus, f satisfies

all the conditions in Corollary 7.7. However, f “ f̃ is not η-copositive on K. Suppose on
the contrary that there exists a vector η “ pη1, η2qT P R

2 such that xfpxq ´η, xy ě 0 holds
for all x P K. Then,

ˆ

x3

1
´ x2

1
´ η1

x3

2
` x2 ´ η2

˙ˆ

x1

x2

˙

ě 0, @x1 ě ´1, x2 ě 0.

Let x2 “ 0, then, we have px3

1
´ x2

1
´ η1qx1 ě 0. Now we consider three cases:

• if η1 ě 0, for x1 P p0, 1q we have x3

1
´ x2

1
´ η1 ă 0, thus px3

1
´ x2

1
´ η1qx1 ă 0;

• if η1 P p´1, 0q, let x1 “ η1{10 ă 0, then we have

x3

1
´ x2

1
´ η1 “ η3

1

1000
´ η2

1

100
´ η1 “ η1

1000
pη2

1
´ 10η1 ´ 1000q ą 0,

thus px3

1
´ x2

1
´ q1qx1 ă 0;

• if η1 ď ´1, for x1 P p´1{2, 0q we have x3

1
´ x2

1
´ η1 ą 0, thus px3

1
´ x2

1
´ η1qx1 ă 0.

Therefore, f is not η-copositive on K. This indicates that at least one of the conditions
in Theorem 7.10 is not satisfied.

Example 7.8. Let H “ R
2, C “ R

2

` and K “ tps1, t1qT | s1 ě 0, t1 P r0, 2πsu. We consider
WHVIpf,Kq, where fpxq “ px1 ` sin x1 `1, sin x2 `2qT is a weakly homogeneous mapping
with degree 1 from R

2

` to R
2.

We show that, for Example 7.8, all the conditions in Theorem 7.10 are satisfied, but
at least one of the conditions in Corollary 7.7 is not satisfied.

From Example 7.8 it is easy to see that f̃pxq “ px1`sin x1, sin x2qT and p̃ “ p “ p1, 2qT.
Let η “ p´1,´1qT, then for any x P K we have

xf̃pxq ´ η, xy “ x2

1
` x1p1 ` sin x1q ` x2p1 ` sin x2q ě 0.

Thus, f̃ is η-copositive on K. Let x̂ “ p0, 0qT P K, then, xfpxq, x̂y ď 0 holds for any
x P K. Besides, since f̃8pxq “ px1, 0qT, we have S :“ SOLpf̃8, K8, 0q “ tp0, 0qTu and
S˚ “ R

2. Furthermore, we have p̃ ` η “ p1, 2qT ` p´1,´1qT “ p0, 1qT P intpS˚q. Thus,
the three conditions in Theorem 7.10 hold. However, we cannot find a vector θ P K such
that xfpxq ´ fpθq, x ´ θy ě 0 holds for any x P K. Suppose on the contrary there exists
such a vector θ “ pθ1, θ2qT P K. Here, we consider two cases:
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• Suppose that θ1 ě 0 and θ2 P r0, πs. Let x1 “ θ1, then, there exists x2 ą θ2 which
satisfies sin x2 ă sin θ2, and hence,

xfpxq ´ fpθq, x ´ θy “ psin x2 ´ sin θ2qpx2 ´ θ2q ă 0;

• Suppose that θ1 ě 0 and θ2 P pπ, 2πs. Let x1 “ θ1, then, there exists x2 ă θ2 which
satisfies sin x2 ą sin θ2, and hence,

xfpxq ´ fpθq, x ´ θy “ psin x2 ´ sin θ2qpx2 ´ θ2q ă 0.

Thus, there does not exist a vector θ P K such that xfpxq ´ fpθq, x´ θy ě 0 holds for any
x P K. This means that, for Example 7.8, at lest one of the conditions in Corollary 7.7 is
not satisfied.

Remark 7.12. It should be noted that, in both [10] and [29], the authors do not investigate
the uniqueness of solutions to WHVIpf,Kq. However, the uniqueness results in Sections
4, 5 and 6 can all reduce to WHVIs. Thus, our uniqueness results in effect enrich the
diversity of the results in WHVIs.

II. PGVIs. Let H “ R
n, and f and g be two polynomials defined by (3.14) from

R
n to R

n, then, the WHGVI reduces to the PGVIs studied by Wang et al. [39], which is
denoted by GPVIpf, g,Kq.

Reducing from WHGVIs to GPVIs, by Theorem 4.3, we immediately obtain the fol-
lowing result.

Corollary 7.8. Let K be a nonempty closed convex set in R
n, f, g : Rn Ñ R

n be two
polynomials defined by (3.14), and Ωx̂

r :“ tx P H | }gpxq} ă ru where r ą }ΠKpx̂q} for any
given x̂ P H. Suppose that degpgp¨q,Ωx̂

r ,ΠKpx̂qq is defined and nonzero, and the following
conditions hold:

(i) f is strictly monotone with respect to g on K; and

(ii) xf8pxq, g8pxqy ‰ 0 for any x P B
Ş

R.

Then, GPVIpf, g,Kq has a unique solution.

Corollary 7.8 is a corrected version of Theorem 2 in [39], since a restricted condition for
the mapping g (such as the degree condition in Theorem 4.3) was unnoticed in Theorem
2 in [39].

Remark 7.13. We can obtain several uniquely solvable results from those in Sections 4,
5 and 6 when WHGVIs reduce to WHVIs.
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III. PVIs. Let H “ R
n, gpxq “ x and f be a polynomial defined by (3.14), then,

WHGVIpf, g,Kq reduces to the PVI studied by Hieu [16]. We denote it by PVIpf,Kq.
From Theorems 4.3, 5.7, 6.9, we can obtain some results for PVIs, in which the result
reducing from Theorem 5.7 is exactly Theorem 5.1 in [10].

Corollary 7.9. Given a nonempty closed convex subset K of R
n and a polynomial f

defined by (3.14). Suppose that f is strictly monotone on K and xf8pxq, xy ‰ 0 for any
x P B

Ş

K8. Then, PVIpf,Kq has a unique solution.

Corollary 7.10. Given a nonempty closed convex subset K of R
n with pK8q˚ being

pointed and a polynomial f defined by (3.14). Suppose that there exists no px, tq P
pRnzt0uq ˆ R` such that

x P K8, f8pxq ` tx P pK8q˚ and xf8pxq ` tx, xy “ 0.

Then, PVIpf,Kq has a nonempty compact solution set. Furthermore, if additionally f is
strictly monotone on K, then, PVIpf,Kq has a unique solution.

Remark 7.14. In [16], the author gives a result on the existence and uniqueness of so-
lutions to PVIpf,Kq under the condition that 0 P K and some additional conditions.
However, Corollaries 7.9 and 7.10 do not require such a condition. Thus, when reducing
from WHGVIs to PVIs, these corollaries enrich the theoretical results of the existence and
uniqueness to solutions to PVIs.

When fpxq “ Axm´1 ` q, where A P R
rm,ns and q P R

n, PVIpf,Kq further be-
comes the tensor variational inequality, denoted by TVIpA, K, qq, investigated in [41]. For
TVIpA, K, qq we have the following result from Theorem 4.3.

Corollary 7.11. Given a nonempty closed convex subset K of Rn and A P R
rm,ns. Suppose

that Axm´1 is strictly monotone on K, and xAxm´1, xy ‰ 0 for any x P B
Ş

K8. Then,
TVIpA, K, qq has a unique solution for any given q P R

n.

If we further require that 0 P K, then, it is easy to see that under the assumption that
Axm´1 is strictly monotone on K, xAxm´1, xy ‰ 0 for any x P B

Ş

K8 is of course true.
It is worth noting that this result is exactly Theorem 4.3 in [41].

7.2 Reducing to CPs

It is well-known that the CP is a subcase of the VI. Thus, in this subsection, we con-
sider some cases of CPs which are subclasses of WHGVIs, including WHCPs (i.e., weakly
homogeneous complementarity problems), PGCPs (i.e., generalized polynomial comple-
mentarity problems), and PCPs (i.e., polynomial complementarity problems).
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I. WHCPs. Let C be a cone in R
n and gpxq “ x, then, the WHGVI reduces to

the WHCP, denoted by WHCPpf, Cq. It is well-known that there is a uniqueness result
in [22] for the conic complementarity problem. In the case of WHCPs, such a result states
the uniqueness of solutions to WHCPpf, Cq with the involved mapping f : C Ñ H being
strongly C-copositive on C, i.e., there exists a scalar k ą 0 such that, for all x P C,
we have xx, fpxq ´ fp0qy ě k}x}2. According to the similar analysis in Propositions 3.2
and 3.3, obviously, many weakly homogeneous mappings do not satisfy the strongly C-
copositive property. Therefore, the uniqueness result in [22] cannot be directly applied
to WHCPs in many cases. Below, we present some uniqueness results by reducing the
relevant results from WHGVIs to WHCPs.

First, when reducing from WHGVIs to WHGCPs, we can obtain the following results
by using some results in Section 5.

Theorem 7.11. Let C be pointed, and f : C Ñ H and g : H Ñ H be two weakly homo-
geneous mappings defined by (2.3) with degrees δ1 ą 0 and δ2 ą 0, respectively. Assume
that gp0q “ 0. If g is an injective mapping with g´1pCq Ď C and SOLpf8, g8, Cq “ t0u,
then the following results are equivalent:

(a) WHGCPpf ` ξ, g, Cq has a unique solution for any ξ P H;

(b) WHGCPpf ` ξ, g, Cq has at most one solution for any ξ P H.

Proof. First, we show that the result paq holds if the result pbq holds. It is obvious that 0
is a solution to WHGCPpf8 ` f̄ ´ f̄p0q ` d, g, Cq where d P intpC˚q. Let

F pxq “ fpxq ` ξ “ f8pxq ` f̄pxq ` p ` ξ,

then
F8pxq ` F̄ pxq ´ F̄ p0q “ f8pxq ` f̄pxq ´ f̄p0q.

Thus, from pbq and the arbitrary of ξ, 0 is the unique solution to WHGCPpF8 `F̄ ´F̄ p0q`
d, g, Cq. According to Theorem 5.8, we can obtain the uniqueness of WHGCPpf `ξ, g, Cq.

Second, it is apparent that the result pbq holds if the result paq holds.

Remark 7.15. (i) When the WHGCP reduces to the WHCP, the conditions about g

in Theorem 7.11 naturally hold, and the resulting conclusion for the WHCP is exactly
Theorem 7.1 in [10]. Thus, Theorem 7.11 is an extension of the uniqueness result obtained
in [10, Theorem 7.1].

(ii) It follows from Lemma 2.4 that WHCPpf, Cq has at most one solution when f is
strictly monotone with respect to g on C. This and Theorem 7.11 will lead an existence
and uniqueness result of WHCPpf, Cq.

(iii) We can obtain several uniquely solvable results from those in Sections 4, 5 and 6
when WHGVIs reduce to WHCPs.
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Besides, in [29], the authors also studied the properties of solution sets of WHCPs and
obtained a nonemptiness and compactness result in [29, Corollary 6.1] by reducing [29,
Theorem 3.1] (see Theorem 7.10 in this paper) from WHVIs to WHCPs. To obtain the
nonemptiness and compactness of solution sets to WHCPs, we can also reduce the relevant
result in Corollary 7.7 from WHVIs to WHCPs and get a nonemptiness and compactness
result for WHCPs.

Corollary 7.12. Given a weakly homogeneous mapping f : C Ñ H defined by (2.3).
If there exists some θ P C such that xfpxq ´ fpθq, x ´ θy ě 0 holds for any x P C and
xf8pxq, xy ‰ 0 for any x P B

Ş

C, then, WHCPpf, Cq has a nonempty compact solution
set.

Similar to Examples 7.7 and 7.8, it is easy to construct examples to show that the
result we obtain here is a different result from the one given by [29].

II. PGCPs. Let H “ R
n, C be a cone in R

n, and f, g be two polynomials defined by
(3.14), then, the WHGVI reduces to the PGCP studied by Ling et al [26]. We denote it
by GPCPpf, g, Cq. From Theorem 4.3 we can directly obtain the uniqueness result:

Corollary 7.13. Let C be a nonempty closed convex cone in R
n, f, g : Rn Ñ R

n be two
polynomials defined by (3.14), and Ωx̂

r :“ tx P H | }gpxq} ă ru where r ą }ΠCpx̂q} for any
given x̂ P H. Suppose that degpgp¨q,Ωx̂

r ,ΠCpx̂qq is defined and nonzero, and the following
conditions hold:

(i) f is strictly monotone with respect to g on C; and

(ii) xf8pxq, g8pxqy ‰ 0 for any x P B
Ş

R.

Then, GPCPpf, g, Cq has a unique solution.

More recently, in [45], the authors also considered the GPCP and discussed the unique-
ness of solutions to such a class of problems. One of the main result about the uniqueness
given by [45, Theorem 4.8] needs to find a vector d P intpCqŞ intpC˚q. The following
example shows that all the conditions of Corollary 7.13 are true, however, we may not
find such a vector d.

Example 7.9. Let H “ R
n and C “ tpt, 2tqT | t P Ru be a cone. Here, we consider

GPCPpf, g, Cq, where f, g : Rn Ñ R
n are defined as follows: fpxq “ px3

1
` 1, x3

2
` 1qT and

gpxq “ px1 ` 1, x2qT.

From Example 7.9 it is easy to see that:

• g is a bijective mapping on R
2, thus, the degree condition about g in Corollary 7.13

holds;
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• xf8, g8y “ x4

1
` x4

2
‰ 0 whenever x ‰ 0;

• for any x “ px1, 2x1qT P C and y “ py1, 2y1qT P C with x ‰ y, we have

xfpxq ´ fpyq, gpxq ´ gpyqy “ 17px3

1
´ y3

1
qpx1 ´ y1q ą 0.

Thus, all the conditions in Corollary 7.13 hold. However, C˚ “ tp0, 0qTu leads to the fact
that intpC˚q is empty. Then, at least one condition of Theorem 4.8 in [45] is not satisfied.

It is noticeable that Theorem 5.7 reduces to Theorem 4.8 in [45] when the WHGCP
reduces to the GPCP. Thus, Example 7.9 can also be used to verify that the uniqueness
result given in Sections 4 and 5 are different from each other even reducing to GPCPs.

III. PCPs. Let H “ R
n, C “ R

n
`, gpxq “ x, and f be a polynomial defined by

(3.14), then, WHGVIs reduce to PCPs studied by [7]. We denote it by PCPpfq. In [7],
the author obtained a series of good results about the nonemptiness and compactness of
solution sets to PCPs. A uniqueness result was also obtained in [7, Theorem 6.1]. When
the WHCP reduces to the PCP, Theorem 7.11 reduces to Theorem 6.1 in [7].

Besides, [25] investigated the nonemptiness and compact of the solution set, the unique-
ness of solutions, and the error bounds of PCPs with the help of the structured tensors,
where they gave a uniqueness result under the assumption that the involved mapping f

is an m-uniform P -function (i.e., there exists a constant c ą 0 such that max1ďiďnrxi ´
yisrfipxq ´ fipyqs ě c}x ´ y}m holds for any x, y P R

n
`).

Notice that when gpxq “ x and f is a polynomial in WHGVIpf, g,Kq, the exceptional
regularity condition expressed by (6.29) reduces to the condition that the leading tensor
of f is an ER-tensor. When WHGVIs reduce to PCPs, from Theorem 6.9 we can obtain
the following result.

Corollary 7.14. Let f : Rn Ñ R
n be a polynomial defined by (3.14). Suppose that Ap1q

is an ER-tensor and f has P -property on R
n
`. Then PCPpfq has a unique solution.

Remark 7.16. (i) In Theorem 3.1 in [25], the authors proved that if Ap1q is an ER-tensor,
then the solution set of PCPpfq is nonempty. This, together with Lemma 5.7, implies that
the result in Corollary 7.14 holds.

(ii) Since each of the condition that f has P -property and the condition that Ap1q in
f is an ER-tensor is weaker than the condition that f is an m-uniform P -function, it
is sure that the first two conditions together are not stronger than the third condition.
Therefore, Lemma 3.4 in [25] can be seen as a corollary of Corollary 7.14.

If fpxq “ Axm´1 ` q for all x P R
n, where A P R

rm,ns and q P R
n, then, PCPpfq

reduces to the TCP. Like the TVI is an important subclass of the PVI, the TCP is a vital
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subcase of the PCP, which has attracted wide attention in recent years, and many papers
consider the uniqueness of solutions to TCPs. When WHGVIs reduce to TCPs, Theorem
5.8 reduces to Theorem 3.7 in [27], which is derived based on Theorem 4.1 in [1].

8 Conclusion

In this paper, with the help of the degree theory and the properties of weakly homoge-
neous mappings, we obtained several results on the unique solvability of WHGVIs, which
were derived by making use of the exceptional family of elements for a pair of mappings,
Karamardian-type theorems, and the exceptional regularity, respectively. In our main
results, one of the main conditions is the strict monotonicity, which is weaker than the
classical condition of strong monotonicity. Since the WHGVI provides a unified model for
several classes of special VIs and CPs studied in recent years, this paper can be regarded
as a unified treatment of the unique solvability of these subclasses in the sense that our
conclusions can either reduce to known conclusions or give some new conclusions for these
problems.

Up to now, the research on VIs and CPs with weakly homogeneous mappings mainly
focuses on the nonemptiness and compactness of solution sets, and the unique solvability.
One of the future issues is to study the theory of error bounds and the stability of solutions.
Another future research topic is how to design efficient algorithms to solve these problems.
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