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Conical averagedness and convergence analysis

of fixed point algorithms
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Abstract

We study a conical extension of averaged nonexpansive operators and the role it plays in
convergence analysis of fixed point algorithms. Various properties of conically averaged operators
are systematically investigated, in particular, the stability under relaxations, convex combina-
tions and compositions. We derive conical averagedness properties of resolvents of generalized
monotone operators. These properties are then utilized in order to analyze the convergence of the
proximal point algorithm, the forward-backward algorithm, and the adaptive Douglas–Rachford
algorithm. Our study unifies, improves and casts new light on recent studies of these topics.

AMS Subject Classifications: Primary: 47H10, 49M27; Secondary: 65K05, 65K10.

Keywords: Adaptive Douglas–Rachford algorithm, cocoercivity, conically averaged operator, forward-

backward algorithm, proximal point algorithm, strong monotonicity, weak monotonicity.

1. Introduction

Averaged nonexpansive operators, originally introduced in [1], are well known to be useful in conver-
gence analysis of various fixed point algorithms, see [2, 4, 8, 10, 20, 26] and the references therein. In
particular, iterative sequences generated by several fixed point algorithms can be expressed in terms
of Krasnosel’skĭı–Mann iterations [21, 23], the convergence of which relies upon an averagedness
property. Although frequently understood in the single-valued setting, some averaged nonexpan-
sive properties can also be explored in the set-valued framework. For instance, the notion of union
averaged nonexpansive operators has been recently studied in [13] with applications to the local
convergence of proximal algorithms; see also [30].

Each averaged operator is an under-relaxation of some nonexpansive operator. We demonstrate
that over-relaxations of nonexpansive operators also arise naturally in several situations. In our
study, we consider conically averaged operators and provide a framework that unifies both types of
relaxations for nonexpansive operators. We then show that this class of operators plays a signifi-
cant role in convergence analysis of several fixed point algorithms, in particular, the proximal point
algorithm, the forward–backward algorithm, and the adaptive Douglas–Rachford (DR) algorithm.
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The proximal point algorithm was introduced by Martinet [24] and further developed by Rock-
afellar [29] for finding a zero of a maximally monotone operator. This was followed by other early
studies such as [6]. Since then, the proximal point algorithm turned into an indispensable tool of
optimization, both in theory and in applications. In fact, several iterative optimization algorithms
can be reformulated as special cases of the proximal point algorithm, see, for example, [15] and
references therein. On the other hand, the forward-backward algorithm was first proposed by Lions
and Mercier [22] and Passty [27] for finding a zero of the sum of two maximally monotone operators.
This splitting idea can be traced back to the projected gradient method [18]. Another well-known
splitting algorithm is the DR algorithm, initially studied by Douglas and Rachford [14] in the set-
ting of linear operators and was later generalized for maximally monotone operators by Lions and
Mercier, also in [22]. It is worth mentioning that both the forward-backward and the DR algorithms
reduce to the proximal point algorithm in the case where one operator is zero. Recently, the so-
called adaptive DR algorithm has been proposed in [11] to deal with scenarios that lack classical
monotonicity.

The main objectives of our study are as follows.

(i) We systematically study the conical averagedness property and prove that it is stable under
relaxations, convex combinations and compositions. In order to establish these properties, we
extend known results from [2, Section 4.5] and [10, Section 2] for nonexpansive and averaged
operators. In particular, under suitable conditions, in Theorem 2.7 we show that compositions
of scaled conically averaged operators are also conically averaged. Furthermore, we show that
relaxed resolvents of generalized monotone operators either belong to or directly linked to the
class of conically averaged operators.

(ii) Under generalized monotonicity assumptions, we provide convergence analysis by means of
conical averagedness, in particular, in Theorem 4.2 for the relaxed proximal point algorithm,
in Theorem 4.3 for the relaxed forward-backward algorithm, in Theorems 5.4 and 5.7 for the
adaptive DR algorithm. We emphasize that these splitting algorithms incorporate several
operators, some of which may not be averaged due to the lack of classical monotonicity. Nev-
ertheless, we prove that their compositions are, in fact, conically averaged. Consequently,
we derive convergence and rate of asymptotic regularity. This approach sheds light on the
structures of these algorithms and yields simple and transparent convergence proofs. An ap-
plication to the strongly-weakly convex optimization problem is included in Theorem 5.12.
Our analysis improves several contemporary results on this topic, e.g., [2, Proposition 26.1],
[11, Theorems 4.5 and 5.4], and [19, Theorems 4.4 and 4.6].

The remainder of this paper is organized as follows. In Section 2 we present conically averaged
operators as well as several interesting properties which are useful for our analysis. In Section 3 we
study relaxed resolvents of generalized monotone operators in relation with their conical averagedness
properties. In Sections 4 and 5 we provide our main results regarding conical averagedness of opera-
tors associated with the previously mentioned algorithms, which, in turn, lead to their convergence
and rate of asymptotic regularity.

We will employ standard notations that generally follow [2]. Throughout, X is a real Hilbert
space with inner product 〈·, ·〉 and induced norm ‖ · ‖. The set of nonnegative integers is denoted by
N, the set of real numbers by R, the set of nonnegative real numbers by R+ := {x ∈ R

∣∣ x ≥ 0}, and
the set of the positive real numbers by R++ := {x ∈ R

∣∣ x > 0}. We use the notation A : X ⇒ X
to indicate that A is a set-valued operator on X and the notation A : X → X to indicate that
A is a single-valued operator on X. We denote the domain of the mapping A : X ⇒ X by
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dom A := {x ∈ X
∣∣ Ax 6= ∅}, its set of zeros by zer A := {x ∈ X

∣∣ 0 ∈ Ax}, and its set of fixed
points by Fix A := {x ∈ X

∣∣ x ∈ Ax}. Id denotes the identity mapping.

We will often use the following identity. For every σ, τ ∈ R and s, t ∈ X,

‖σs + τt‖2 = σ(σ + τ)‖s‖2 + τ(σ + τ)‖t‖2 − στ‖s − t‖2; (1)

moreover, if σ + τ 6= 0, then

σ‖s‖2 + τ‖t‖2 =
1

σ + τ
‖σs + τt‖2 +

στ

σ + τ
‖s − t‖2. (2)

2. Conically averaged operators

We recall that the mapping T : X → X is nonexpansive if it is Lipschitz continuous with constant 1
on its domain, i.e.,

∀x, y ∈ dom T, ‖T x − T y‖ ≤ ‖x − y‖. (3)

T is said to be θ-averaged if θ ∈ ]0, 1[ and T = (1 − θ) Id +θN for some nonexpansive operator
N : X → X, see, e.g., [2, Definition 4.33]. We now extend this concept to allow for θ ∈ R++.

Definition 2.1 (conically averaged operator). We say that an operator T : X → X is conically
averaged with constant θ ∈ R++, or conically θ-averaged, if there exists a nonexpansive operator
N : X → X such that

T = (1 − θ) Id +θN. (4)

Let T be conically θ-averaged. Then T is nonexpansive when θ = 1, and T is θ-averaged when
θ ∈ ]0, 1[. As one would expect, conically averaged operators also possess properties similar to
averaged operators. Indeed, we now present several properties which generalize similar properties
from [2, 10], see also [3] for a related development where conically averaged operators were referred
to as conically nonexpansive operators.

Proposition 2.2. Let T : X → X, θ ∈ R++, and λ ∈ R++. Then the following assertions are
equivalent:

(i) T is conically θ-averaged.

(ii) (1 − λ) Id +λT is conically λθ-averaged.

(iii) For all x, y ∈ dom T ,

‖T x − T y‖2 ≤ ‖x − y‖2 − 1 − θ

θ
‖(Id −T )x − (Id −T )y‖2. (5)

(iv) For all x, y ∈ dom T ,

‖T x − T y‖2 + (1 − 2θ)‖x − y‖2 ≤ 2(1 − θ) 〈x − y, T x − T y〉 . (6)

Proof. Set N := (1 − 1/θ) Id +(1/θ)T . Then T = (1 − θ) Id +θN and (1 − λ) Id +λT = (1 −
λθ) Id +λθN . By definition,

T is conically θ-averaged ⇐⇒ N is nonexpansive (7a)

⇐⇒ (1 − λ) Id +λT is conically λθ-averaged, (7b)
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which implies the equivalence between (i) and (ii).

Next, we note that Id −N = (Id −T )/θ and dom T = dom N =: D. Now, by employing (1), for
all x, y ∈ D

‖T x − T y‖2 = ‖(1 − θ)(x − y) + θ(Nx − Ny)‖2 (8a)

= (1 − θ)‖x − y‖2 + θ‖Nx − Ny‖2 − θ(1 − θ)‖(Id −N)x − (Id −N)y‖2 (8b)

= ‖x − y‖2 − 1 − θ

θ
‖(Id −T )x − (Id −T )y‖2 + θ(‖Nx − Ny‖2 − ‖x − y‖2). (8c)

Consequently, we see that

T is conically θ-averaged (9a)

⇐⇒ N is nonexpansive (9b)

⇐⇒ ∀x, y ∈ D, ‖Nx − Ny‖ ≤ ‖x − y‖ (9c)

⇐⇒ ∀x, y ∈ D, ‖T x − T y‖2 ≤ ‖x − y‖2 − 1 − θ

θ
‖(Id −T )x − (Id −T )y‖2 (9d)

⇐⇒ ∀x, y ∈ D, ‖T x − T y‖2 + (1 − 2θ)‖x − y‖2 ≤ 2(1 − θ) 〈x − y, T x − T y〉 , (9e)

and we get the equivalence between (i), (iii), and (iv). The proof is complete. �

In view of Proposition 2.2, we see that T is 1/2-averaged if and only if, for all x, y ∈ dom T

‖T x − T y‖2 ≤ ‖x − y‖2 − ‖(Id −T )x − (Id −T )y‖2, (10)

in which case T is said to be firmly nonexpansive (see also [17, Proposition 11.2]).

Proposition 2.3. Let T : X → X and λ ∈ R++. Then T is firmly nonexpansive if and only if
Id −λT is conically λ/2-averaged.

Proof. Set N := 2T −Id. Then T = (1/2) Id +(1/2)N is firmly nonexpansive ⇐⇒ N is nonexpansive
⇐⇒ Id −λT = (1 − λ/2) Id +(λ/2)(−N) is conically λ/2-averaged. �

The following results reiterate and extend similar facts regarding nonexpansive and averaged
operators from [2, Section 4.5] and [10, Section 2].

Proposition 2.4 (convex combination of conically averaged operators). Let I be a finite
index set. For each i ∈ I let Ti : X → X be conically θi-averaged. Let {wi}i∈I ⊆ R++,

∑
i∈I ωi = 1.

Then
∑

i∈I ωiTi is conically θ-averaged where θ :=
∑

i∈I ωiθi.

Proof. For each i ∈ I, there exists a nonexpansive operator Ni such that Ti = (1 − θi) Id +θiNi. It
follows that ∑

i∈I

ωiTi =
∑

i∈I

ωi(1 − θi) Id +
∑

i∈I

ωiθiNi = (1 − θ) Id +θ
∑

i∈I

ωiθi

θ
Ni. (11)

Since, by [2, Proposition 4.9(i)],
∑

i∈I
ωiθi

θ Ni is nonexpansive, the proof is complete. �

Proposition 2.5 (composition of two conically averaged operators). Let T1 : X → X and
T2 : X → X be conically θ1-averaged and conically θ2-averaged, respectively. Suppose that either
θ1 = θ2 = 1 or θ1θ2 < 1. Let ω ∈ Rr {0} and set

T :=
( 1

ω
T2

)
(ωT1) and θ :=

{
1 if θ1 = θ2 = 1,
θ1+θ2−2θ1θ2

1−θ1θ2
if θ1θ2 < 1.

(12)

Then T is conically θ-averaged. Moreover,
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(i) θ = 1 if and only if θ1 = 1 or θ2 = 1.

(ii) θ < 1 if and only if θ1 < 1 and θ2 < 1.

Proof. Let x, y ∈ dom T2(ωT1). By applying Proposition 2.2 to T2 and then to T1, we obtain

∥∥∥( 1
ω T2)(ωT1)x − ( 1

ω T2)(ωT1)y
∥∥∥

2
=

1

ω2
‖T2(ωT1x) − T2(ωT1y)‖2 (13a)

≤ 1

ω2

(
‖ωT1x − ωT1y‖2 − 1 − θ2

θ2
‖(Id −T2)(ωT1x) − (Id −T2)(ωT1y)‖2

)
(13b)

= ‖T1x − T1y‖2 − 1 − θ2

θ2

∥∥∥
(
T1 − ( 1

ω T2)(ωT1)
)
x −

(
T1 − ( 1

ω T2)(ωT1)
)
y

∥∥∥
2

(13c)

≤ ‖x − y‖2 − 1 − θ1

θ1
‖(Id −T1)x − (Id −T1)y‖2

− 1 − θ2

θ2

∥∥∥
(
T1 − ( 1

ω T2)(ωT1)
)
x −

(
T1 − ( 1

ω T2)(ωT1)
)
y

∥∥∥. (13d)

Case 1: If θ1 = θ2 = 1, then (13) implies that ( 1
ω T2)(ωT1) is nonexpansive, i.e., conically

1-averaged.

Case 2: If θ1θ2 < 1, then
1

θ1
+

1

θ2
≥ 2√

θ1θ2
> 2, (14)

which implies
1 − θ1

θ1
+

1 − θ2

θ2
> 0. (15)

By setting s := (Id −T1)x − (Id −T1)y and t :=
(
T1 − ( 1

ω T2)(ωT1)
)
x −

(
T1 − ( 1

ω T2)(ωT1)
)
y and by

employing (2) and (15) we see that

1 − θ1

θ1
‖s‖2 +

1 − θ2

θ2
‖t‖2 =

1−θ1

θ1

1−θ2

θ2

1−θ1

θ1
+ 1−θ2

θ2

‖s + t‖2 +
1

1−θ1

θ1
+ 1−θ2

θ2

∥∥∥∥
1 − θ1

θ1
s − 1 − θ2

θ2
t

∥∥∥∥
2

(16a)

≥
1−θ1

θ1

1−θ2

θ2

1−θ1

θ1
+ 1−θ2

θ2

∥∥∥
(

Id −( 1
ω T2)(ωT1)

)
x −

(
Id −( 1

ω T2)(ωT1)
)
y

∥∥∥
2

(16b)

=
(1 − θ1)(1 − θ2)

θ1 + θ2 − 2θ1θ2

∥∥∥
(

Id −( 1
ω T2)(ωT1)

)
x −

(
Id −( 1

ω T2)(ωT1)
)
y

∥∥∥
2

(16c)

=
1 − θ

θ

∥∥∥
(

Id −( 1
ω T2)(ωT1)

)
x −

(
Id −( 1

ω T2)(ωT1)
)
y

∥∥∥
2
, (16d)

where

θ :=
θ1 + θ2 − 2θ1θ2

1 − θ1θ2
> 0. (17)

By recalling (13) and Proposition 2.2(i)&(iii), we conclude that ( 1
ω T2)(ωT1) is conically θ-averaged.

(i): From (17) it follows that

θ = 1 ⇐⇒ θ1 + θ2 − 2θ1θ2 = 1 − θ1θ2 ⇐⇒ (1 − θ1)(1 − θ2) = 0. (18)

Consequently, by recalling the definition of θ, we conclude that θ = 1 if and only θ1 = 1 or θ2 = 1.

(ii): It follows from our assumption and the definition of θ that

θ < 1 ⇐⇒ θ1θ2 < 1 and θ1 + θ2 − 2θ1θ2 < 1 − θ1θ2 (19a)
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⇐⇒ θ1θ2 < 1 and (1 − θ1)(1 − θ2) > 0 (19b)

⇐⇒ θ1 < 1 and θ2 < 1 (19c)

which concludes the proof. �

It will be of convenience in our applications to include an equivalent reformulation of Propo-
sition 2.5. The following result generalizes [2, Propsition 4.44] and also recaptures [16, Proposi-
tion 3.12], in which the composition of an averaged operator and a so-called negatively averaged
operator was considered.

Corollary 2.6. Let T1, T2 : X → X, ω1, ω2 ∈ R r {0}, and θ1, θ2 ∈ R++. Suppose that ω1T1 and
ω2T2 are conically θ1-averaged and conically θ2-averaged, respectively, where either θ1 = θ2 = 1 or
θ1θ2 < 1. Then ω1ω2T2T1 and ω1ω2T1T2 are both conically θ-averaged, where

θ :=

{
1 if θ1 = θ2 = 1,
θ1+θ2−2θ1θ2

1−θ1θ2
if θ1θ2 < 1.

(20)

Proof. We note that ω1ω2T2T1 = ω1(ω2T2)
( 1

ω1
(ω1T1)

)
and ω1ω2T1T2 = ω2(ω1T1)

( 1
ω2

(ω2T2)
)
. Conse-

quently, the proof follows from Proposition 2.5. �

The following theorem extends [2, Proposition 4.9(i) and Proposition 4.46] beyond the composi-
tion of conically averaged operators by incorporating scalar multiplications of the operators.

Theorem 2.7 (composition of conically averaged operators). Let m ≥ 2 be an integer. For
each i ∈ I := {1, . . . , m} let Ti : X → X be conically θi-averaged. Let {ωi}i∈I ⊆ R, ω1ω2 · · · ωm = 1.
Set

T :=
(
ωmTm

)(
ωm−1Tm−1

)
· · ·

(
ω1T1

)
. (21)

Then

(i) If maxi∈I θi ≤ 1, then T is nonexpansive.

(ii) If θi 6= 1 for each i ∈ I and

∀k ∈ {2, . . . , m}, θk < 1 +
1

∑k−1
i=1

θi

1−θi

, (22)

then T is conically θ-averaged where

θ :=
1

1 + 1∑
i∈I

θi
1−θi

. (23)

(iii) If maxi∈I θi < 1, then T is θ-averaged where θ < 1 is given by (23).

Proof. (i): The proof follows from Proposition 2.5 by induction on m.

(ii): We prove by induction on m. The case where m = 2 is a straightforward conclusion from
Proposition 2.5. Now, suppose that the statement is true for m − 1. For each i ∈ {1, . . . , m} let Ti

be a conically θi-averaged mapping such that

∀k ∈ {2, . . . , m}, θk < 1 +
1

∑k−1
i=1

θi

1−θi

. (24)
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Let {ωi}i∈I ⊆ R, ω1ω2 · · · ωm = 1. We prove that the operator

T =
(
ωmTm

)(
ωm−1Tm−1

)
· · ·

(
ω1T1

)
(25)

is conically θ-averaged with θ given by (23).

Since the statement is true for m − 1 conically averaged operators, we have

T ∗ :=
(
ωmωm−1Tm−1

)(
ωm−2Tm−2

)
· · ·

(
ω1T1

)
(26)

is θ∗-averaged where

θ∗ :=
1

1 + 1∑m−1

i=1

θi
1−θi

. (27)

By letting k = m in(24), we see that

θm <
1

θ∗
. (28)

We now apply Proposition 2.5 to two operators T ∗ and Tm in order to conclude that T =
(ωmTm)

(
1

ωm
T ∗

)
is conically θ0-averaged where

θ0 :=
θ∗ + θm − 2θ∗θm

1 − θ∗θm
. (29)

It follows that

θ0

1 − θ0
=

θ∗

1 − θ∗
+

θm

1 − θm
=

m−1∑

i=1

θi

1 − θi
+

θm

1 − θm
=

m∑

i=1

θi

1 − θi
(30)

Consequently,

θ0 =
1

1 + 1∑m

i=1

θi
1−θi

= θ. (31)

which concludes the proof in the case k = m.

(iii): For each i ∈ I, since θi < 1, then θi

1−θi
> 0. Consequently,

∀k ∈ {2, . . . , m}, θk < 1 < 1 +
1

∑k−1
i=1

θi

1−θi

, (32)

in particular, we see that (22) is satisfied. The conclusion now follows by employing (ii). �

Corollary 2.8. Let m ≥ 2 be an integer. For each i ∈ I := {1, . . . , m} let Ti : X → X and
ωi ∈ Rr {0} be such that ωiTi conically θi-averaged. Set

T :=
(
ωmωm−1 · · · ω1

)(
TmTm−1 · · · T1

)
. (33)

Then

(i) If maxi∈I θi ≤ 1, then T is nonexpansive.

(ii) If θi 6= 1 for each i ∈ I and

∀k ∈ {2, . . . , m}, θk < 1 +
1

∑k−1
i=1

θi

1−θi

, (34)

then T is conically θ-averaged where

θ :=
1

1 + 1∑
i∈I

θi
1−θi

. (35)
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(iii) If maxi∈I θi < 1, then T is θ-averaged where θ < 1 is given by (35).

Proof. The proof follows by observing that

T =
(
(ω1ω2 · · · ωm−1)(ωmTm)

) (
1

ωm−1
(ωm−1Tm−1)

)
· · ·

(
1

ω1
(ω1T1)

)
(36)

and by applying Theorem 2.7 to operators ω1T1, ω2T2, . . . , ωm−1Tm−1, ωmTm and scalars 1
ω1

, 1
ω2

,

. . . , 1
ωm−1

, ω1 · · · ωm−1. �

We conclude this section by employing Fejér monotonicity in order to prove the convergence of
sequences generated by an averaged/conically averaged operator. Recall that a sequence (xn)n∈N is
said to be Fejér monotone with respect to a nonempty subset C of X if

∀c ∈ C, ∀n ∈ N, ‖xn+1 − c‖ ≤ ‖xn − c‖. (37)

The following result somewhat extends [2, Theorem 5.15], see also [5, 28]. We include a proof for
convenience.

Proposition 2.9 (Krasnosel’skĭı–Mann iterations). Let T be a conically θ-averaged operator
with full domain and Fix T 6= ∅. Let x0 ∈ X. For each n ∈ N set

xn+1 = (1 − λn)xn + λnT xn, (38)

where (λn)n∈N is a sequence in [0, 1/θ] such that
∑+∞

n=0 λn(1 − θλn) = +∞. Then

(i) (xn)n∈N is Fejér monotone with respect to Fix T .

(ii) (xn − T xn)n∈N converges strongly to 0.

(iii) (xn)n∈N converges weakly to a point in Fix T .

(iv) If lim infn→+∞ λn(1 − θλn) > 0, then ‖xn − T xn‖ = o(1/
√

n).

Proof. Since T is conically θ-averaged with full domain, then T = (1 − θ) Id +θN for some nonex-
pansive operator N : X → X. Consequently, Id −T = θ(Id −N), Fix T = Fix N , and

∀n ∈ N, xn+1 = (1 − θλn)xn + θλnNxn. (39)

(i): For all y ∈ Fix N and all n ∈ N, by employing (1) and the nonexpansiveness of N we obtain

‖xn+1 − y‖2 = ‖(1 − θλn)(xn − y) + θλn(Nxn − y)‖2 (40a)

= (1 − θλn)‖xn − y‖2 + θλn‖Nxn − Ny‖2 − θλn(1 − θλn)‖xn − Nxn‖2 (40b)

≤ ‖xn − y‖2 − θλn(1 − θλn)‖xn − Nxn‖2 (40c)

Since λn(1 − θλn) ≥ 0 for all n, (xn)n∈N is Fejér monotone with respect to Fix N = Fix T .

(ii): By telescoping (40) over n ∈ N,

θ
+∞∑

n=0

λn(1 − θλn)‖xn − Nxn‖2 ≤ ‖x0 − y‖2 < +∞. (41)

Since
∑+∞

n=0 λn(1 − θλn) = +∞, it follows that

lim inf
n→+∞

‖xn − Nxn‖ = 0. (42)
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Moreover, since xn+1 = (1 − θλn)xn + θλnNxn and since N is nonexpansive,

‖xn+1 − Nxn+1‖ = ‖(1 − θλn)(xn − Nxn) + (Nxn − Nxn+1)‖ (43a)

≤ (1 − θλn)‖xn − Nxn‖ + ‖Nxn − Nxn+1‖ (43b)

≤ (1 − θλn)‖xn − Nxn‖ + ‖xn − xn+1‖ (43c)

= ‖xn − Nxn‖. (43d)

We see that
(
‖xn − Nxn‖

)
n∈N

is decreasing and bounded below by 0, hence it converges. Conse-
quently, (42) implies that

xn − T xn = θ(xn − Nxn) → 0 as n → +∞. (44)

(iii): Let x∗ be a weak cluster point of (xn)n∈N, that is, there exists a subsequence (xkn
)n∈N such

that xkn
⇀ x∗. By combining (44) and [2, Corollary 4.28], x∗ ∈ Fix N . In turn, [2, Theorem 5.5]

implies that (xn)n∈N converges weakly to a point in Fix N = Fix T .

(iv): It follows from lim infn→+∞ λn(1 − θλn) > 0 and (41) that
∑+∞

n=0 ‖xn − Nxn‖2 < +∞,
which, when combined with (43), implies that

n

2
‖xn − Nxn‖2 ≤

n∑

k=⌊n/2⌋

‖xk − Nxk‖2 → 0 as n → +∞, (45)

where ⌊n/2⌋ is the largest integer majorized by n/2. Therefore, ‖xn − T xn‖ = θ‖xn − Nxn‖ =
o(1/

√
n) as n → +∞. �

Corollary 2.10 (convergence of averaged operators). Let T be a θ-averaged operator with full
domain and Fix T 6= ∅. Let (xn)n∈N be a sequence generated by T . Then (xn)n∈N converges weakly
to a point in Fix T and the rate of asymptotic regularity of T is o(1/

√
n), i.e., ‖xn −T xn‖ = o(1/

√
n)

as n → +∞.

Proof. We employ Proposition 2.9 with θ < 1 and λn = 1 for all n ∈ N. �

3. Generalized monotonicity

We recall the following standard notations. Let A : X ⇒ X. The graph of A is the set
gra A := {(x, u) ∈ X × X

∣∣ u ∈ Ax} and the inverse of A, denoted by A−1, is the operator with
graph gra A−1 := {(u, x) ∈ X × X

∣∣ u ∈ Ax}. The resolvent of A is the mapping defined by

JA := (Id +A)−1 (46)

and the relaxed resolvent of A with parameter λ ∈ R+ is the mapping defined by

Jλ
A := (1 − λ) Id +λJA. (47)

The mapping RA := 2JA − Id is the reflected resolvent of A.

Let α ∈ R. We recall that A is α-monotone (see, for example, [11]) if

∀(x, u), (y, v) ∈ gra A, 〈x − y, u − v〉 ≥ α‖x − y‖2 (48)

and α-comonotone (see, for example, [3]) if

∀(x, u), (y, v) ∈ gra A, 〈x − y, u − v〉 ≥ α‖u − v‖2. (49)
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We say that A is maximally α-monotone (respectively, maximally α-comonotone) if it is α-monotone
(respectively, α-comonotone) and there is no α-monotone (respectively, α-comonotone) operator
B : X ⇒ X such that gra A is properly contained in gra B.

We note that both 0-monotonicity and 0-comonotonicity simply mean monotonicity. If α >
0, then α-monotonicity is actually α-strong monotonicity in [2, Definition 22.1(iv)], while α-
comonotonicity coincides with α-cocoercivity [2, Definition 4.10]. If α < 0, then α-monotonicity
and α-comonotonicity are respectively α-hypomonotonicity and α-cohypomonotonicity in [9, Defini-
tion 2.2]. Additionally, α-monotonicity with α < 0 is also referred to as weak monotonicity in [11,
Section 3]. We refer the reader to [2, 7] for more discussions on maximal monotonicity and some of
its variants.

Remark 3.1. Several properties are immediate from the definitions.

(i) A is α-comonotone if and only if A−1 is α-monotone.

(ii) A is maximally α-comonotone if and only if A−1 is maximally α-monotone.

(iii) If A is α-comonotone with α ≥ 0, then A is also monotone.

(iv) If A is α-comonotone with α > 0, then A is single-valued and 1/α-Lipschitz continuous.

In the case where α ≥ 0, the following characterizations of maximal α-monotonicity and maximal
α-comonotonicity hold.

Proposition 3.2 (maximal α-monotonicity and α-comonotonicity). Let A : X ⇒ X and
α ∈ R+. Then

(i) A is maximally α-monotone if and only if A is α-monotone and maximally monotone.

(ii) A is maximally α-comonotone if and only if A is α-comonotone and maximally monotone.

Proof. (i): See [11, Proposition 3.5(i)].

(ii): A is maximally α-comonotone ⇐⇒ A−1 is maximally α-monotone ⇐⇒ A−1 is α-monotone
and maximally monotone (by (i)) ⇐⇒ A is α-comonotone and maximally monotone. �

We now collect several useful properties of relaxed resolvents of α-monotone and α-comonotone
operators. Some parts of the following results are available in [2, 3, 11, 12]. For convenience, these
results are included here as well as their proofs. In particular, we will show that if an operator is
either α-monotone or α-comonotone, then its relaxed resolvent is, to a certain extent, related to
a conically averaged operator. These results play a crucial role in convergence analysis of several
iterative algorithms. We begin our discussion with the following auxiliary properties.

Proposition 3.3. Let A : X → X and α, λ ∈ R++. Then the following assertions are equivalent:

(i) A is α-comonotone (i.e., α-cocoercive).

(ii) αA is firmly nonexpansive.

(iii) Id −λA is conically λ
2α -averaged.

Proof. The equivalence between (i) and (ii) follows, e.g., from [2, Remark 4.34(iv)]. The equivalence
between (ii) and (iii) follows from Proposition 2.3 by observing that Id −λA = Id − λ

α(αA). �
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Proposition 3.4 (single-valuedness and full domain). Let A : X ⇒ X be α-monotone and let
γ ∈ R++ such that 1 + γα > 0. Then

(i) JγA is (at most) single-valued.

(ii) dom JγA = X if and only if A is maximally α-monotone.

Proof. See [11, Proposition 3.4]. �

Proposition 3.5 (relaxed resolvents of α-monotone operators). Let A : X ⇒ X be α-
monotone and let γ ∈ R++ be such that 1 + γα > 0. Set R := (1 − λ) Id +λJγA where λ ∈ ]1, +∞[.
Then

(i) JγA is (1 + γα)-comonotone. Consequently, (1 + γα)JγA is firmly nonexpansive.

(ii) 1
1−λR is conically λ

2(λ−1)(1+γα) -averaged.

Proof. (i): By Proposition 3.4(i) JγA is single-valued, and, by [11, Lemma 3.3], it is (1 + γα)-
cocoercive, i.e., (1 + γα)-comonotone. Since 1 + γα > 0, Proposition 3.3 implies that (1 + γα)JγA is
firmly nonexpansive.

(ii): Since (1 + γα)JγA is firmly nonexpansive, Proposition 2.3 implies that

1

1 − λ
R = Id +

λ

1 − λ
JγA = Id − λ

(λ − 1)(1 + γα)
(1 + γα)JγA (50)

is conically λ
2(λ−1)(1+γα) -averaged. �

Lemma 3.6 (resolvents of α-comonotone operators). Let A : X ⇒ X and γ ∈ R++. Then A
is α-comonotone if and only if for all (x, a), (y, b) ∈ gra JγA,

(γ + 2α) 〈x − y, a − b〉 ≥ α‖x − y‖2 + (γ + α)‖a − b‖2. (51)

Consequently, if A is α-comonotone and JγA is single-valued, then, for all x, y ∈ dom JγA,

(γ + 2α) 〈x − y, JγAx − JγAy〉 ≥ α‖x − y‖2 + (γ + α)‖JγAx − JγAy‖2. (52)

Proof. Let (a, u), (b, v) ∈ gra A and set x := a + γu and y := b + γv. Then

〈a − b, u − v〉 ≥ α‖u − v‖2 (53a)

⇐⇒ γ 〈a − b, γu − γv〉 ≥ α‖γu − γv‖2 (53b)

⇐⇒ γ 〈a − b, (x − y) − (a − b)〉 ≥ α‖(x − y) − (a − b)‖2 (53c)

⇐⇒ γ 〈x − y, a − b〉 − γ‖a − b‖2 ≥ α
(
‖x − y‖2 + ‖a − b‖2 − 2 〈x − y, a − b〉

)
(53d)

⇐⇒ (γ + 2α) 〈x − y, a − b〉 ≥ α‖x − y‖2 + (γ + α)‖a − b‖2 (53e)

which completes the proof. �

Proposition 3.7 (single-valuedness and full domain). Let A : X ⇒ X be α-comonotone and
let γ ∈ R++ be such that γ + α > 0. Then

(i) JγA is (at most) single-valued.
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(ii) dom JγA = X if and only if A is maximally α-comonotone.

Proof. (i): This follows from (51) in Lemma 3.6 and the fact that γ + α > 0.

(ii): Since A is α-comonotone, A′ := A−1 − α Id is monotone. For x ∈ X,

a ∈ (Id −JγA)x ⇐⇒ x ∈ (x − a) + γA(x − a) (54a)

⇐⇒ x − a ∈ A−1
(

a

γ

)
= (α Id +A′)

(
a

γ

)
(54b)

⇐⇒ x ∈ (γ + α)

(
Id +

1

γ + α
A′

) (
a

γ

)
(54c)

⇐⇒ a ∈ γ

(
Id +

1

γ + α
A′

)−1 (
x

γ + α

)
. (54d)

Therefore,

Id −JγA = γJ 1
γ+α

A′

(
1

γ + α
Id

)
. (55)

We conclude that dom JγA = X if and only if dom J 1
γ+α

A′ = X, which is equivalent to A′ being

maximally monotone (see [2, Theorem 21.1 and Proposition 20.22]). The proof follows by observing
that the maximal monotonicity of A′ is equivalent to the maximal α-comonotonicity of A. �

The following result is an extension of [2, Proposition 23.14].

Proposition 3.8 (relaxed resolvents of α-comonotone operators). Let A : X ⇒ X be α-
comonotone and let γ ∈ R++ be such that γ + α > 0. Set R := (1 − λ) Id +λJγA with λ ∈ R++.
Then

(i) JγA is conically γ
2(γ+α) -averaged.

(ii) R is conically λγ
2(γ+α) -averaged.

Proof. Proposition 3.7(i) implies that JγA is single-valued. Consequently, Lemma 3.6 implies that,
for all x, y ∈ dom JγA,

(γ + 2α) 〈x − y, JγAx − JγAy〉 ≥ α‖x − y‖2 + (γ + α)‖JγAx − JγAy‖2 (56)

which is equivalent to

2

(
1 − γ

2(γ + α)

)
〈x − y, JγAx − JγAy〉 ≥

(
1 − γ

γ + α

)
‖x − y‖2 + ‖JγAx − JγAy‖2. (57)

Proposition 2.2(i)&(iv) now implies that JγA is conically γ
2(γ+α) -averaged. In turn, Proposi-

tion 2.2(i)&(ii) implies that R is conically λγ
2(γ+α) -averaged. �

We will now address the connection between conical averagedness and several fixed point algo-
rithms including the forward-backward algorithm and the adaptive Douglas–Rachford algorithm.

4. Relaxed forward-backward algorithm

Let A : X ⇒ X, B : X → X. We consider the problem

find x ∈ X such that 0 ∈ Ax + Bx. (58)
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Let γ ∈ R++ and κ ∈ R++. Set x0 ∈ X. The relaxed forward-backward (rFB) algorithm for problem
(58) generates a sequence (xn)n∈N via

∀n ∈ N, xn+1 ∈ TFBxn where TFB := (1 − κ) Id +κJγA(Id −γB). (59)

In the case where κ = 1, the rFB algorithm is the well-studied forward-backward algorithm, see, e.g.,
[2, Section 26.5].

When one considers an iterative fixed point algorithm in order to solve a problem, the relations
between the fixed points of that algorithm and the solutions of the problem under consideration is
crucial. The following well-known result, see, e.g., [2, Proposition 26.1(iv)(a)], asserts that the fixed
points of the forward-backward algorithm are, in fact, solutions of problem (58). For completeness,
we include a proof as well.

Lemma 4.1. With the settings of (58)–(59),

Fix TFB = Fix
(
JγA(Id −γB)

)
= zer(A + B). (60)

Proof. We note that Id −TFB = κ
(

Id −JγA(Id −γB)
)
. Consequently, Fix TFB = Fix

(
JγA(Id −γB)

)
.

It follows that x ∈ Fix
(
JγA(Id −γB)

)
⇐⇒ x ∈ JγA(x − γBx) ⇐⇒ x − γBx ∈ x + γAx ⇐⇒

0 ∈ Ax + Bx. �

In the case where B = 0, problem (58) reduces to finding a zero of the operator A : X ⇒ X, i.e.,

find x ∈ X such that 0 ∈ Ax (61)

and the corresponding rFB algorithm reduces to the relaxed proximal point algorithm of the form

∀n ∈ N, xn+1 ∈ TPPxn where TPP := (1 − κ) Id +κJγA. (62)

In this case, Lemma 4.1 implies that

Fix TPP = Fix JγA = zer A. (63)

The following results are the main results of this section. We provide the averagedness of TPP and
TFB as well as the convergence of the corresponding algorithms in cases where A is not necessarily
monotone. Classical results for monotone operators can be found, for example, in [2, Example 23.40
and Proposition 26.1(iv)(d)].

Theorem 4.2 (relaxed proximal point algorithm). Suppose that A is maximally α-comonotone
with α ∈ R and that γ > max{0, −α}. Then TPP is conically κ

κ∗ -averaged and has full domain, where

κ∗ := 2(γ+α)
γ . Moreover, if zer A 6= ∅ and κ < κ∗, then every sequence (xn)n∈N generated by TPP

converges weakly to a point in zer A and the rate of asymptotic regularity of TPP is o(1/
√

n).

Proof. As γ + α > 0, employing Proposition 3.7, we see that JγA and hence TPP are single-valued
and have full domain. By Proposition 3.8(ii), TPP is conically θ-averaged, where

θ :=
κγ

2(γ + α)
=

κ

κ∗
. (64)

The proof follows from Corollary 2.10 and (63). �

Theorem 4.3 (relaxed forward-backward algorithm). Suppose that A is maximally α-
comonotone with α ∈ R, that B is β-comonotone with β ∈ R++ (i.e., β-cocoercive), and that
either
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(i) α + β = 0 and γ = 2β; or

(ii) α + β > 0 and max{0, 2β − 2
√

β(α + β)} < γ < 2β + 2
√

β(α + β).

Then TFB is conically κ
κ∗ -averaged and has full domain, where

κ∗ :=





1 if α + β = 0,
4(γ+α)β−γ2

2γ(α+β) if α + β > 0.
(65)

Moreover, if zer(A + B) 6= ∅ and κ < κ∗, then every sequence (xn)n∈N generated by TFB converges
weakly to a point in zer(A + B) and the rate of asymptotic regularity of TFB is o(1/

√
n).

Proof. On the one hand, (i) implies that γ + α = 2β − β = β > 0 and γ = 2(γ + α) = 2β. On
the other hand, (ii) is equivalent to γ2 < 4(γ + α)β, which implies that γ + α > 0 (since β > 0)
and κ∗ > 0 (since γ > 0). Now, since A is maximally α-comonotone, Proposition 3.7 implies that
JγA is single-valued and has full domain, and so does TFB. By Proposition 3.8(i), JγA is conically
θ1-averaged, where

θ1 :=
γ

2(γ + α)
. (66)

Next, since B is β-comonotone, Proposition 3.3 implies that Id −γB is conically θ2-averaged, where

θ2 :=
γ

2β
. (67)

We observe that if (i) holds, then θ1 = θ2 = 1 and 1
κ∗ = 1; if (ii) holds, then θ1θ2 < 1 and

1

κ∗
=

2γ(α + β)

4(γ + α)β − γ2
=

θ1 + θ2 − 2θ2θ2

1 − θ1θ2
. (68)

In view of Proposition 2.5, JγA(Id −γB) is conically 1
κ∗ -averaged, and by Proposition 2.2(i)&(ii),

TFB is conically κ
κ∗ -averaged. The proof then follows from Corollary 2.10 and Lemma 4.1. �

Corollary 4.4. Suppose that A is maximally monotone, that B is β-comonotone with β ∈ R++

(i.e., β-cocoercive), and that γ ∈ ]0, 4β[. Then TFB is conically κ
κ∗ -averaged and has full domain,

where κ∗ := 4β−γ
2β . Moreover, if zer(A + B) 6= ∅ and κ < κ∗, then every sequence (xn)n∈N generated

by TFB converges weakly to a point in zer(A + B) and the rate of asymptotic regularity of TFB is
o(1/

√
n).

Proof. Since A is maximally 0-comonotone, we apply Theorem 4.3(ii) with α = 0. �

Remark 4.5 (range of parameter γ). We recall that classical convergence analysis for the
forward-backward algorithm requires that γ ∈ ]0, 2β[, see, for example, [2, Proposition 26.1(iv)(d)
and Theorems 26.14(i)]. Corollary 4.4 improves upon that by only requiring γ ∈ ]0, 4β[.

5. Adaptive Douglas–Rachford algorithm

We focus on problem (58) where A : X ⇒ X and B : X ⇒ X. We set (γ, δ) ∈ R
2
++ and (λ, µ, κ) ∈

R
3
++. The adaptive DR operator, introduced and studied in [11], is defined by

T := TA,B := (1 − κ) Id +κR2R1 (69)
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where
R1 := (1 − λ) Id +λJγA and R2 := (1 − µ) Id +µJδB . (70)

Set x0 ∈ X. Then the adaptive DR (aDR) algorithm for problem (58) generates a sequence (xn)n∈N,
also called a DR sequence, by letting

∀n ∈ N, xn+1 ∈ T xn. (71)

Naturally, we refer to the case where δ = γ > 0 and λ = µ = 2 as the classical DR algorithm (or
simply DR).

Unlike in the case of the forward-backward counterpart, the fixed points of the adaptive DR
algorithm, in general, do not directly solve (58). Nevertheless, by choosing compatible parameters,
we show that the images of the fixed points under the resolvent are, in fact, solutions. To this end,
similarly to [11, Section 4], we assume that

(λ − 1)(µ − 1) = 1 and δ = γ(λ − 1), (72)

equivalently,

λ = 1 +
δ

γ
and µ = 1 +

γ

δ
(73)

which clearly holds for the classical DR algorithm. Our settings are justified by the following fact.

Fact 5.1 (fixed points of the aDR operator). Suppose that (73) holds. Then Fix T 6= ∅ if and
only if zer(A + B) 6= ∅. Moreover, if JγA is single-valued, then

JγA(Fix T ) = zer(A + B). (74)

Proof. See [11, Lemma 4.1(iii)]. �

In view of Fact 5.1 we focus on the convergence of the adaptive DR algorithm to a fixed point
of the operator T under condition (73). In turn, such convergence can be guaranteed by the aver-
agedness as we show in the following result.

Proposition 5.2 (convergence of the aDR algorithm via averagedness). Suppose that T
is θ-averaged and has full domain, that zer(A + B) 6= ∅, and that (73) holds. Then the rate of
assymptotic regularity of T is o(1/

√
n) and every sequence (xn)n∈N generated by T converges weakly

to a point x ∈ Fix T . Moreover, if JγA is single-valued, then JγAx ∈ zer(A + B).

Proof. Since zer(A + B) 6= ∅, Fact 5.1 implies that Fix T 6= ∅. Now, by Corollary 2.10, the rate
of asymptotic regularity of T is o(1/

√
n) and every sequence (xn)n∈N generated by T converges

weakly to a point x ∈ Fix T . Moreover, if JγA is single-valued, then Fact 5.1 implies that JγAx ∈
zer(A + B). �

Motivated by these observations, we focus on the averagedness of the adaptive DR operator.
To this end, we look for compatible parameters γ, δ, λ, µ, κ. In fact, it is enough to determine only
γ, δ, κ > 0 which, in turn, determine λ, µ via (73).

5.1. The case of α-comonotone and β-comonotone operators

We consider the adaptive DR operators for two comonotone operators. In particular, we derive
convergence by employing conical averagedness. To this end, we will make use of the following
lemma.
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Lemma 5.3 (existence of parameters). Let α, β ∈ R be such that α + β ≥ 0, and let γ, δ ∈ R++.
Set

γ0 :=

{
0 if α ≥ 0,

2β − 2
√

β(α + β) if α < 0.
(75)

and set ∆ := (γ + α)(α + β). Then γ0 ≥ max{0, −α} and the following assertions are equivalent:

(i) (γ + δ)2 ≤ 4(γ + α)(δ + β).

(ii) γ > γ0 and γ + 2α − 2
√

∆ ≤ δ ≤ γ + 2α + 2
√

∆.

Consequently, if α + β = 0, then (i) and (ii) are equivalent to γ > max{0, −2α} and δ = γ + 2γ; if
α + β > 0, then there always exist γ, δ ∈ R++ such that

γ > γ0 and max{0, γ + 2α − 2
√

∆} < δ < γ + 2α + 2
√

∆, (76)

in which case, all inequalities in (i) and (ii) are strict. Moreover, if (i) or (ii) holds, then γ + α > 0
and δ + β > 0.

Proof. If α ≥ 0, then γ0 = 0 = max{0, −α}. If α < 0, then β > α + β ≥ 0 and

γ0 = 2β − 2
√

β(α + β) = (
√

β −
√

α + β)2 − α ≥ −α = max{0, −α}. (77)

Next, it is clear that

(γ + δ)2 ≤ 4(γ + α)(δ + β) (78a)

⇐⇒ δ2 − 2(γ + 2α)δ + γ2 − 4(γ + α)β ≤ 0 (78b)

⇐⇒ ∆ = (γ + α)(α + β) ≥ 0 and γ + 2α − 2
√

∆ ≤ δ ≤ γ + 2α + 2
√

∆. (78c)

In addition, since γ0 ≥ {0, −α} and α + β ≥ 0, we have ∆ ≥ 0 as soon as γ > γ0. By combining this
with (78), we see that (ii) implies (i).

We now assume (i). Then, by (78), ∆ ≥ 0 and γ + 2α − 2
√

∆ ≤ δ ≤ γ + 2α + 2
√

∆. Since δ > 0,
it follows that γ + 2α + 2

√
∆ > 0. To show (ii), it suffices to show that γ > γ0. We distinguish

between the following cases.

Case 1: α + β = 0. Then γ0 = max{0, −2α}, ∆ = 0, and

γ + 2α + 2
√

∆ > 0 ⇐⇒ γ + 2α > 0, (79)

which implies that γ > γ0 = max{0, −2α}.

Case 2: α + β > 0. Since ∆ ≥ 0, then γ + α ≥ 0. If α ≥ 0, then γ0 = 0, so γ > γ0. Now, assume
that α < 0. Then β > α + β ≥ 0 and

γ + 2α + 2
√

∆ > 0 ⇐⇒ (
√

γ + α +
√

α + β)2 > β (80a)

⇐⇒ √
γ + α >

√
β −

√
α + β (80b)

⇐⇒ γ + α > (
√

β −
√

α + β)2 (80c)

⇐⇒ γ > γ0 = 2β − 2
√

β(α + β). (80d)

This completes the proof of the equivalence between (i) and (ii). On the other hand, if we set γ > γ0,
then by (80), there exists δ such that max{0, γ + 2α − 2

√
∆} < δ < γ + 2α + 2

√
∆, which leads to

strict inequalities in (i) and (ii).

Finally, since (i) and (ii) are equivalent, if one of them holds, then γ > γ0 ≥ max{0, −α}, so
γ + α > 0, which, when combined with (i), implies δ + β > 0. �
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Theorem 5.4 (aDR for α-comonotone and β-comonotone operators). Suppose that A and
B are maximally α-comonotone and β-comonotone, respectively. Set λ, µ as in (73), and suppose
that either

(i) α + β = 0, γ > max{0, −2α}, δ = γ + 2α, and κ∗ := 1; or

(ii) α + β > 0 and κ∗ := 4(γ+α)(δ+β)−(γ+δ)2

2(γ+δ)(α+β) > 0.

Then the adaptive DR operators TA,B and TB,A are conically κ
κ∗ -averaged and have full domain.

Moreover, if zer(A + B) 6= ∅ and κ < κ∗, then, for any (T, C) ∈ {(TA,B , γA), (TB,A, δB)}, every
sequence (xn)n∈N generated by T converges weakly to a point x ∈ Fix T with JCx ∈ zer(A + B) and
the rate of asymptotic regularity of T is o(1/

√
n).

Proof. We first observe that in (i), the existence of γ, δ ∈ R++ is clear, while in (ii) it follows from
Lemma 5.3 which asserts the existence of γ, δ ∈ R++ such that

(γ + δ)2 < 4(γ + α)(δ + β). (81)

Also, Lemma 5.3 implies that γ + α > 0 and δ + β > 0 in both cases (i) and (ii). By employing
Proposition 3.7, JγA, JδB and, hence, TA,B and TB,A are single-valued and have full domain.

Next, Proposition 3.8 implies that R1 and R2 are conically θ1-averaged and θ2-averaged, respec-
tively, where

θ1 :=
λγ

2(γ + α)
=

γ + δ

2(γ + α)
and θ2 :=

µδ

2(δ + β)
=

γ + δ

2(δ + β)
. (82)

Now, if (i) holds, then θ1 = θ2 = 1 and 1
κ∗ = 1; if (ii) holds, then θ1θ2 < 1 and

1

κ∗
=

2(γ + δ)(α + β)

4(γ + α)(δ + β) − (γ + δ)2
=

θ1 + θ2 − 2θ1θ2

1 − θ1θ2
. (83)

Thus, Corollary 2.6 implies that R1R2 and R2R1 are conically 1
κ∗ -averaged. By invoking Proposi-

tion 2.2(i)&(ii), we conclude that TA,B and TB,A are conically κ
κ∗ -averaged. Finally, due to Proposi-

tion 5.2, the proof is complete. �

Corollary 5.5 (DR for α-comonotone and β-comonotone operators). Suppose that A and
B are maximally α-comonotone and β-comonotone, respectively, that γ = δ ∈ R++ and λ = µ = 2.
Suppose further that either

(i) α = β = 0 and κ∗ := 1; or

(ii) α + β > 0 and κ∗ := γ + αβ
α+β > 0.

Then the adaptive DR operators TA,B and TB,A are conically κ
κ∗ -averaged and have full domain.

Moreover, if zer(A + B) 6= ∅ and κ < κ∗, then, for any (T, C) ∈ {(TA,B , γA), (TB,A, δB)}, every
sequence (xn)n∈N generated by T converges weakly to a point x ∈ Fix T with JCx ∈ zer(A + B) and
the rate of asymptotic regularity of T is o(1/

√
n).

Proof. We invoke Theorem 5.4 with γ = δ and λ = µ = 2. �

17



5.2. The case of α- and β-monotone operators

Convergence of the adaptive DR algorithm for α-monotone and β-monotone operators was provided
in [11, Section 4]. In this section we revisit some of these results by employing conical averaged-
ness. In comparison to [11], our new results (see Theorem 5.7) extend the admissible range for the
parameters γ, δ, λ, µ, and κ, which guarantees the averagedness of T .

Similarly to Lemma 5.3, we begin our discussion with the existence of parameters.

Lemma 5.6 (existence of parameters). Let α, β ∈ R be such that α + β ≥ 0, and let γ, δ ∈ R++.
Set γ0 as in (75) and set ∆ := γ(1 + γα)(α + β). Then the following assertions are equivalent:

(i) (γ + δ)2 ≤ 4γδ(1 + γα)(1 + δβ).

(ii) 1
γ > γ0 and 1

γ (1 + 2γα − 2
√

∆) ≤ 1
δ ≤ 1

γ (1 + 2γα + 2
√

∆).

Consequently, if α+β = 0, then (i) and (ii) are equivalent to 1+2γα > 0 and δ = γ
1+2γα ; if α+β > 0,

then there always exist γ, δ ∈ R++ such that

1

γ
> γ0 and max

{
0,

1

γ
(1 + 2γα − 2

√
∆)

}
<

1

δ
<

1

γ
(1 + 2γα + 2

√
∆), (84)

in which case, all inequalities in (i) and (ii) are strict. Moreover, if (i) or (ii) holds, then 1 + γα > 0
and 1 + δβ > 0.

Proof. We note that (i) is equivalent to

(
1

γ
+

1

δ

)2

≤ 4

(
1

γ
+ α

) (
1

δ
+ β

)
, (85)

while the last two inequalities in (ii) can be written in the form

1

γ
+ 2α − 2

√(
1

γ
+ α

)
(α + β) ≤ 1

δ
≤ 1

γ
+ 2α + 2

√(
1

γ
+ α

)
(α + β). (86)

The proof is complete by invoking Lemma 5.3 with 1
γ and 1

δ . �

Theorem 5.7 (aDR for α-monotone and β-monotone operators). Suppose that A and B are
maximally α-monotone and β-monotone, respectively, that λ, µ are set by (73), and that either

(i) α + β = 0, 1 + 2γα > 0, δ = γ
1+2γα , and κ∗ := 1; or

(ii) α + β > 0 and κ∗ := 4γδ(1+γα)(1+δβ)−(γ+δ)2

2γδ(γ+δ)(α+β) > 0.

Then the adaptive DR operators TA,B and TB,A are conically κ
κ∗ -averaged and have full domain.

Moreover, if zer(A + B) 6= ∅ and κ < κ∗, then, for any (T, C) ∈ {(TA,B , γA), (TB,A, δB)}, every
sequence (xn)n∈N generated by T converges weakly to a point x ∈ Fix T with JCx ∈ zer(A + B) and
the rate of asymptotic regularity of T is o(1/

√
n).

Proof. The existence of γ, δ ∈ R++ in (i) is clear while in (ii) it follows from the existence of
γ, δ ∈ R++ such that

(γ + δ)2 < 4γδ(1 + γα)(1 + δβ) (87)
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due to Lemma 5.6. Furthermore, in both cases (i) and (ii), Lemma 5.6 implies that 1 + γα > 0
and 1 + δβ > 0. On the one hand, by Proposition 3.4, JγA, JδB and, hence, TA,B and TB,A are
single-valued and have full domain. On the other hand, Proposition 3.5 implies that 1

1−λR1 and
1

1−µR2 are conically θ1-averaged and conically θ2-averaged, respectively, where

θ1 :=
λ

2(λ − 1)(1 + γα)
=

γ + δ

2δ(1 + γα)
and θ2 :=

µ

2(µ − 1)(1 + δβ)
=

γ + δ

2γ(1 + δβ)
. (88)

Next, we observe that if (i) holds, then θ1 = θ2 = 1 and 1 = 1
κ∗ ; if (ii) holds, then θ1θ2 < 1 and

θ1 + θ2 − 2θ1θ2

1 − θ1θ2
=

1
θ1

+ 1
θ2

− 2
1

θ1θ2
− 1

=
2γδ(γ + δ)(α + β)

4γδ(1 + γα)(1 + δβ) − (γ + δ)2
=

1

κ∗
. (89)

By applying Corollary 2.6 to 1
1−λR1 and 1

1−µR2, we conclude that R2R1 = 1
(1−λ)(1−µ) R2R1 and

R1R2 = 1
(1−λ)(1−µ) R1R2 are conically 1

κ∗ -averaged. By invoking Proposition 2.2(i)&(ii), TA,B =

(1 − κ) Id +κR2R1 and TB,A = (1 − κ) Id +κR1R2 are conically κ
κ∗ -averaged. Finally, by recalling

Proposition 5.2, the proof is complete. �

Theorem 5.7 sheds new light on the convergence analysis of the adaptive DR algorithm for
two generalized monotone operators [11, Section 4]. More specifically, Theorem 5.7(i) recovers
the convergence of the classical DR algorithm for two maximally monotone operators, see, e.g.,
[22]. Although Theorem 5.7(i) is the case α + β = 0 in [11, Theorem 4.5], our current alternative
proof employs conical averagedness and applies concurrently to both adaptive DR operators TA,B

and TB,A. In addition, Theorem 5.7(ii) presents an improvement for [11, Theorem 4.5(i)] on the
parameter range, as shown in the following remark.

Remark 5.8 (aDR for the case α + β > 0). Theorem 5.7(ii) readily implies and extends [11,
Theorem 4.5(i)] in terms of parameter ranges. Indeed, in order to obtain convergence of the adaptive
DR algorithm in the case where α + β > 0, in Theorem 5.7(ii) it is only required that

0 < κ < κ∗, (90)

while the assumptions of [11, Theorem 4.5(i)] are equivalent to the more restrictive conditions

1 + 2γα > 0 and 0 < κ < 1 ≤ κ∗. (91)

In order to verify (91), we first claim that

κ∗ ≥ 1 ⇐⇒ 1 − 2γβ

γ
≤ 1

δ
≤ 1 + 2γα

γ
⇐⇒ µ ∈ [2 − 2γβ, 2 + 2γα] . (92)

Since α + β > 0, it follows that

κ∗ ≥ 1 ⇐⇒ 2γδ(γ + δ)(α + β) ≤ 4γδ(1 + γα)(1 + δβ) − (γ + δ)2 (93a)

⇐⇒ (1 + 2γα − 2γβ − 4γ2αβ)δ2 − 2γ(1 + γα − γβ)δ + γ2 ≤ 0 (93b)

⇐⇒ (1 + 2γα − 2γβ − 4γ2αβ) − 2(1 + γα − γβ)
γ

δ
+

γ2

δ2
≤ 0 (93c)

⇐⇒ 1 − 2γβ ≤ γ

δ
≤ 1 + 2γα. (93d)

Since µ = 1 + γ
δ , we arrive at (92).
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In the case where α + β > 0, we recall that [11, Theorem 4.5(i)] requires (γ, δ, λ, µ) ∈ R
2
++ ×

]1, +∞[2 such that

1 + 2γα > 0, (94a)

µ ∈ [2 − 2γβ, 2 + 2γα] , (94b)

(λ − 1)(µ − 1) = 1, δ = (λ − 1)γ. (94c)

and κ ∈ ]0, 1[. We note that (94c) is equivalent to (73), and that (94b) is equivalent to κ∗ ≥ 1 due
to (92). Therefore, the assumptions of [11, Theorem 4.5(i)] for the case α + β > 0 can be rewritten
as (91).

The following corollary recovers the main convergence result in [11, Theorem 4.5(ii)].

Corollary 5.9 (DR for α-monotone and β-monotone operators). Suppose that A and B are
maximally α-monotone and β-monotone, respectively, that γ = δ ∈ R++ and λ = µ = 2, and that
either

(i) α = β = 0 and κ∗ := 1; or

(ii) α + β > 0 and κ∗ := 1 + γ αβ
α+β > 0.

Then the DR operators TA,B and TB,A are conically κ
κ∗ -averaged and have full domain. Moreover,

if zer(A + B) 6= ∅ and κ < κ∗, then, for any (T, C) ∈ {(TA,B , γA), (TB,A, δB)}, every sequence
(xn)n∈N generated by T converges weakly to a point x ∈ Fix T with JCx ∈ zer(A + B) and the rate
of asymptotic regularity of T is o(1/

√
n).

Proof. We employ Theorem 5.7 with γ = δ and λ = µ = 2. �

Remark 5.10 (DR for the case α + β > 0). In the classical setup, the DR operator is defined
as a strict convex combination of Id and R2R1 (or R1R2), i.e., κ ∈ ]0, 1[. In Corollary 5.9, suppose
that both operators A and B are strongly monotone (α > 0 and β > 0), then the upper bound for
κ is κ∗ = 1 + γ αβ

α+β > 1 which implies that κ can be chosen to be larger than 1 and the DR still
converges. On the other hand, if either A or B is weakly monotone (i.e., α < 0 or β < 0), then
κ∗ < 1, which means that one needs to further restrict κ than the standard range ]0, 1[ in order to
obtain the convergence.

For the remainder of this section we consider the adaptive DR algorithm for the problem of
minimizing the sum of two functions. Let f : X → ]−∞, +∞]. Then f is proper if dom f :=
{x ∈ X

∣∣ f(x) < +∞} 6= ∅, and lower semicontinuous if ∀x ∈ dom f , f(x) ≤ lim infz→x f(z). Set
α ∈ R. The function f is α-convex (see [31, Definition 4.1]) if ∀x, y ∈ dom f , ∀κ ∈ ]0, 1[,

f((1 − κ)x + κy) +
α

2
κ(1 − κ)‖x − y‖2 ≤ (1 − κ)f(x) + κf(y). (95)

If (95) holds with α = 0, then we say that f is convex, α > 0, then we say that f is strongly convex,
α < 0, then we say that f is weakly convex. The proximity operator of a proper function f with
parameter γ ∈ R++ is the mapping Proxγf : X ⇒ X defined by

∀x ∈ X, Proxγf (x) := argmin
z∈X

(
f(z) +

1

2γ
‖z − x‖2

)
. (96)

20



Finally, we consider the (α, β)-convex minimization problem of the form

min
x∈X

(
f(x) + g(x)

)
, (97)

where f and g are α-convex and β-convex functions, respectively. This problem arises in several
important applications, see, for example, [19]. The adaptive DR algorithm for problem (97) incor-
porates the operators

Tf,g := (1 − κ) Id +κRgRf and Tg,f := (1 − κ) Id +κRf Rg, (98)

where
Rf := (1 − λ) Id +λ Proxγf and Rg := (1 − µ) Id +µ Proxδg . (99)

We continue our analysis in order to show that the relations between the proximal operators, the
resolvents of the subdifferentials and the problem of finding zeros of the sum of the operators are
useful in producing a solution of the minimization problem. To this end we recall that the Fréchet
subdifferential of f at x is defined by

∂̂f(x) :=

{
u ∈ X

∣∣∣ lim inf
z→x

f(z) − f(x) − 〈u, z − x〉
‖z − x‖ ≥ 0

}
. (100)

For additional details on various subdifferentials and related properties, we refer the reader to the
monograph [25].

Lemma 5.11 (proximity operators of α-convex functions). Let f : X → ]−∞, +∞] be a
proper, lower semicontinuous and α-convex function. Let γ ∈ R++ be such that 1 + γα > 0. Then

(i) ∂̂f is maximally α-monotone.

(ii) Proxγf = J
γ∂̂f

is single-valued and has full domain.

Proof. See [11, Lemma 5.2]. �

Theorem 5.12 (aDR for (α, β)-convex minimization). Let f : X → ]−∞, +∞] and g : X →
]−∞, +∞] be proper and lower semicontinuous. Suppose that f and g are α-convex and β-convex,
respectively, that λ, µ are set by (73), and that either

(i) α + β = 0, 1 + 2γα > 0, δ = γ
1+2γα , κ∗ := 1; or

(ii) α + β > 0, κ∗ := 4γδ(1+γα)(1+δβ)−(γ+δ)2

2γδ(γ+δ)(α+β) > 0.

Then the adaptive DR operators Tf,g and Tg,f are conically κ
κ∗ -averaged and have full domain.

Moreover, if zer(∂̂f + ∂̂g) 6= ∅ and κ < κ∗, then, for any (T, h) ∈ {(Tf,g, γf), (Tg,f , δg)}, every

sequence (xn)n∈N generated by T converges weakly to a point x ∈ Fix T with Proxh(x) ∈ zer(∂̂f +
∂̂g) ⊆ argmin(f + g) and the rate of asymptotic regularity of T is o(1/

√
n).

Proof. Similarly to the proof of Theorem 5.7, our assumptions imply that 1+γα > 0 and 1+δβ > 0.
Now, Lemma 5.11 implies that ∂̂f and ∂̂g are maximally α-monotone and β-monotone, respectively,
where Proxγf = J

γ∂̂f
and Proxγg = J

γ∂̂g
. We also have from [11, Lemma 5.3] that zer(∂̂f + ∂̂g) ⊆

argmin(f + g). The conclusion then follows by applying Theorem 5.7 to A = ∂̂f and B = ∂̂g. �
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As a consequence, we retrieve [11, Theorem 5.4(ii)] which, in turn, unifies and extends [19,
Theorems 4.4 and 4.6] to the Hilbert space setting.

Corollary 5.13 (DR for (α, β)-convex minimization). Let f : X → ]−∞, +∞] and g : X →
]−∞, +∞] be proper and lower semicontinuous. Suppose that f and g are α-convex and β-convex,
respectively, that γ = δ ∈ R++, λ = µ = 2, and that either

(i) α = β = 0, κ∗ := 1; or

(ii) α + β > 0, κ∗ := 1 + γ αβ
α+β > 0.

Then the DR operators Tf,g and Tg,f are conically κ
κ∗ -averaged and have full domain. Moreover, if

zer(∂̂f + ∂̂g) 6= ∅ and κ < κ∗, then, for any (T, h) ∈ {(Tf,g, γf), (Tg,f , δg)}, every sequence (xn)n∈N

generated by T converges weakly to a point x ∈ Fix T with Proxh(x) ∈ zer(∂̂f + ∂̂g) ⊆ argmin(f + g)
and the rate of asymptotic regularity of T is o(1/

√
n).

Proof. Apply Theorem 5.12 with γ = δ and λ = µ = 2. �
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