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Abstract

We study the exactness of the semidefinite programming (SDP) relaxation of quadratically
constrained quadratic programs (QCQPs). With the aggregate sparsity matrix from the data
matrices of a QCQP with n variables, the rank and positive semidefiniteness of the matrix
are examined. We prove that if the rank of the aggregate sparsity matrix is not less than
n − 1 and the matrix remains positive semidefinite after replacing some off-diagonal nonzero
elements with zeros, then the standard SDP relaxation provides an exact optimal solution
for the QCQP under feasibility assumptions. In particular, we demonstrate that QCQPs with
forest-structured aggregate sparsity matrix, such as the tridiagonal or arrow-type matrix, satisfy
the exactness condition on the rank. The exactness is attained by considering the feasibility of
the dual SDP relaxation, the strong duality of SDPs, and a sequence of QCQPs with perturbed
objective functions, under the assumption that the feasible region is compact. We generalize
our result for a wider class of QCQPs by applying simultaneous tridiagonalization on the
data matrices. Moreover, simultaneous tridiagonalization is applied to a matrix pencil so that
QCQPs with two constraints can be solved exactly by the SDP relaxation.

Key words. Quadratically constrained quadratic programs, exact semidefinite relaxations,
forest graph, the rank of aggregated sparsity matrix.

AMS Classification. 90C20, 90C22, 90C25, 90C26.

1 Introduction

We consider a quadratically constrained quadratic program (QCQP):

minimize xTQ0x+ 2q0
Tx

subject to xTQpx+ 2qp
Tx ≤ bp, p = 1, . . . ,m,

(1)
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whereQp ∈ S
n, qp ∈ R

n, and bp ∈ R for p = 0, 1, . . . ,m are problem data and x ∈ R
n is the variable.

Nonconvex QCQPs of the form (1) arise from a wide range of applications, for instance, sensor
network localization problems [5], quadratic assignment problems [17, 25], equally deployment
problems [26, 27], and optimal power flow problems [6, 19, 35]. As some NP-hard problems can
be reformulated by QCQPs, they are known to be NP-hard in general. Nonconvex QCQPs are
approximately solved with tractable convex relaxations such as semidefinite programming (SDP)
relaxations.

SDP relaxations of QCQPs are regarded as a powerful convex relaxation that provides tight
lower bounds for (1) [22]. Both theoretical and computational aspects of SDP relaxations [2, 4, 6,
7, 15, 22, 31, 32, 33, 35] have been extensively studied. For QCQPs in the form of (1), by letting
X = xxT and relaxing it to X − xxT � O, we have the standard SDP relaxation as

minimize Q0 •X + 2q0
Tx

subject to Qp •X + 2qp
Tx ≤ bp, p = 1, . . . ,m,

X � xxT,

(2)

whereQp•X denotes the Frobenius inner product ofQp withX, andX � xxT denotes thatX−xxT

is positive semidefinite. Computational studies on the SDP relaxation (2) for an approximate lower
bound of (1) have been focused on improving the computational efficiency of solution methods.
Primal-dual interior-point methods or bundle’s methods are some of widely used computational
methods to solve large-sized SDP relaxations [33]. In particular, the aggregate sparsity of data
matrices has been successfully used to reduce the size of the SDP relaxation when imploying
primal-dual interior-point methods [9, 16, 21]. Recently, more efficient algorithms based on the
first-order methods, for instance, SDPNAL+ [34] and BBCPOP [11], have been introduced for
large-scale QCQPs.

For the theoretical study on the SDP relaxation, the rank of the SDP solution plays an impor-
tant role. As the feasible set of the SDP relaxation is larger than that of the original QCQP in
general, an approximate solution to nonconvex QCQP (1) is usually obtained by solving the SDP
relaxation (2). The rank of the SDP solution can be determined after or prior to solving (2). If
the rank of the computed SDP solution is one, or the matrix [1, (x∗)T;x∗,X∗] is rank-1, then the
SDP relaxation is called exact. With the rank-1 SDP solution, x∗ satisfying X∗ = x∗x∗T recovers
the relaxed constraint. For some class of QCQPs, however, the rank of the SDP solution is known
prior to solving (2). QCQPs with nonpositive off-diagonal data matrices were known to be solved
exactly by the SDP relaxation in [6, 15, 19]. In particular, the exactness of the SDP relaxation
for QCQPs with complex variables associated with connected and acyclic graphs was studied in
[6] where some sign properties of Qp (p = 1, . . . ,m) were assumed. Low rank SDP solutions and
the upper bounds for the rank of the SDP solution were also studied by Pataki [23], Laurent and
Vavitsiotis [18], and Madani et al. [20].

Recently, Burer and Ye in [7] proposed a method to determine the rank of SDP solutions for
some class of QCQPs prior to solving the SDP relaxation. For diagonal QCQPs with diagonal
Q0, Q1, . . . , Qm, they showed that the rank of SDP solutions is bounded above by n− f +1, where
the feasibility number f is determined by considering the systems for j = 1, . . . , n:

Q0 •X + [q0]jxj = −1,

Qi •X + [qi]jxj ≤ 0, ∀i = 1, . . . ,m,

X: diagonal, Xkk ≥ 0, ∀k 6= j.
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More precisely, f = | {j | the above system with j is feasible, 1 ≤ j ≤ n } |. Some exactness condi-
tions for the diagonal QCQPs were provided by analyzing the case where the upper bound n−f+1
equals one, and their result was extended to random or non-random QCQPs. More recently, Wang
and Kilinç-Karzan [32] analyzed the faces of the convex Lagrangian multipliers Γ of the SDP re-
laxation for a QCQP. They stablished conditions for which the exact SDP relaxation holds and,
in particular, it includes the result of [7] for diagonal QCQPs.

Special classes of QCQPs that admit the exact SDP relaxation has also been studied. For
instance, the Generalized Trust-Region Subproblem (GTRS) that minimizes a quadratic objec-
tive over a quadratic constraint is such a class. The GTRS is, in fact, a QCQP (1) with only
one constraint (m = 1). It generalizes the classical Trust-Region Subproblem (TRS) in which a
quadratic objective is minimized over a Euclidean ball. Since the objective of the TRS is allowed
to be nonconvex, the TRS is nonlinear and nonconvex; however, its SDP relaxation is always
exact. The GTRS shares nice properties with the TRS. In fact, under the Slater’s condition due
to the S-lemma [24], the GTRS admits an exact SDP relaxation. Generalized eigenvalue problems
are closely related to the GTRS. Adachi and Nakatsukasa in [1] developed an eigenvalue-based
algorithm for the GTRS. Recently, Wang and Kilinç-Karzan [31] analyzed the convex hull of a
nonconvex feasible set using the generalized eigenvalue of a matrix pencil Q0 − λQ1 which is also
used in subsection 4.2 of this paper.

The main purpose of this paper is to present sufficient conditions for the SDP relaxation to
be exact for some classes of QCQPs, considering the aggregate sparsity matrix of data matrices
Q0, Q1, . . . , Qm. We assume that the aggregate sparsity matrix is positive semidefinite in addition
to mild feasibility assumptions. We show that if (i) the rank of the aggregate sparsity matrix is
not less than n−1 for any nonzero values of the matrix and (ii) the positive semidefiniteness of the
matrix is maintained even when some of off-diagonal elements of the matrix become zeros; then
the SDP relaxation of the QCQPs is exact. The aggregate sparsity matrices satisfying (i) and (ii)
focused in this paper are the matrices associated to forest-structured graphs such as tridiagonal and
arrow-type matrix. We call QCQPs (1) forest-structured QCQPs, tridiagonal QCQPs, or arrow-
type QCQPs if the indices of maximal cliques obtained from the aggregate sparsity matrix form a
“forest”, a tridiagonal matrix, or an arrow-type matrix, respectively, sometimes with permutation.
These classes of QCQPs admit the exact SDP relaxation under some assumptions on the feasible set
of QCQPs. We also extend our results on tridiagonal QCQPs to general QCQPs via simultaneous
tridiagonalization.

The aggregate sparsity matrix from the data matrices of QCQPs in this paper is employed
to examine the rank of the SDP dual solution, while it has been mostly studied for improving
computational efficiency of solving the SDP relaxation [9, 16, 21, 28]. Moreover, our results show
that the exact SDP relaxation can be proved for forest-structured QCQPs, regardless of signs of
data matrices [6, 15, 30]. Note that Bose et al. [6] also considered connected and acyclic graphs
associated with the aggregate sparsity matrices. For the classes of forest-structured QCQPs,
including tridiagonal or arrow-type QCQPs, the second-order cone relaxation also provides the
exact optimal solution [15]. We also note that the exactness conditions by Burer and Ye [7] cannot
be used for determining the exactness of the SDP relaxation for tridiagonal QCQPs since diagonal
QCQPs in [7] is a special case of tridiagonal QCQPs.

For tridiagonal QCQPs, we consider at most n − 1 systems corresponding to the elements of
the positive semidefinite variable matrix in the dual SDP relaxation, which is described as (Fkℓ)
in section 3. Each system consists of constraints in the dual SDP relaxation of (2) with qp = 0
for p = 0, 1, . . . ,m and the constraint that an element of the positive semidefinite variable matrix
should be zero. If the system has no solutions for all (k, ℓ) ∈ {(i, i + 1) | i = 1, . . . , n − 1}, then
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we show that the SDP relaxation is exact. More precisely, our condition on the exactness is that
the system (Fkℓ) is not feasible for all (k, ℓ) ∈ {(i, i + 1) | i = 1, . . . , n − 1}. Since the number of
elements in {(i, i + 1) | i = 1, . . . , n − 1} is n − 1, we can determine whether the SDP relaxation
of a given tridiagonal QCQP is exact by considering at most n− 1 systems. The exactness of the
SDP relaxation for other forest-structured QCQPs can be discussed similarly.

To prove the exactness of the SDP relaxation with our sufficient conditions for a forest-
structured QCQP, the rank property on the aggregated sparsity matrix in Lemma 2.2 and the
perturbation technique in Lemma 3.3 are utilized. We need to estimate a lower bound for the
rank of the dual SDP as in Burer and Ye’s work [7]. The main idea there was to estimate the
upper bound for the rank of a SDP solution (x∗,X∗) by the lower bound for the rank for a dual
solution y∗ of the dual SDP. The strong duality of SDP and the Sylvester’s inequality on the rank
were used in [7]. In this work, a lower bound for the rank is estimated using the lower bound for
the rank n− 1 for a forest-structured QCQP with n variables and nonzero off-diagonal elements.

We also investigate the exactness of the SDP relaxation for non-tridiagonal QCQPs by apply-
ing our results on tridiagonal QCQPs. For instance, most GTRS’s are not tridiagonal QCQPs.
However, the exactness of the SDP relaxation for the GTRS was known by the S-lemma [24] under
the Slater’s conditions. We demonstrate that the GTRS has the exact SDP relaxation without
replying on the S-lemma. More precisely, we show the exactness of the SDP relaxation for the
GTRS by our result on tridiagonal QCQPs. To apply the results on tridiagonal QCQPs, the
GTRS should be transformed to the tridiagonal QCQP. We improve the simultaneous tridiago-
nalization technique proposed in [29] so that all tridiagonal QCQPs constructed from the GTRS
always satisfy the conditions for the exact SDP relaxation. Similarly, the exactness of other classes
of QCQPs can be analyzed by the method presented in this paper.

The rest of this paper is organized as follows. In section 2, we review related works on the exact
SDP relaxation of QCQPs, and present some background materials for the subsequent discussion.
Some basic properties on tridiagonal matrices are also summarized to discuss on tridiagonal QC-
QPs. Sections 3 and 4 include the main results of this paper. In section 3, the main results for
forest-structured QCQPs are described, and sufficient conditions for the exactness are also pro-
posed. A perturbation technique used in the proofs for these conditions is also shown. In section
4, we first describe the simultaneous tridiagonalization technique. Then, the conditions presented
in section 3 are applied to non-tridiagonal QCQPs. We also present an alternative proof on the
exactness of Generalized Trust-Region Subproblem in section 4. Finally, we conclude in section 5.

2 Preliminaries

We start by introducing notation and symbols used in this paper.

2.1 Notation and symbols

• R
n and S

n denote the n-dimensional Euclidean space, the space of n × n symmetric matri-
ces, respectively. The notation M � O and M ≻ O mean that the matrix M is positive
semidefinite and positive definite, respectively.

• 0n ∈ R
n denotes the zero vector of length n. In ∈ R

n×n denotes the n× n identity matrix.

• For M,N ∈ S
n, M • N denotes the Frobenius inner product of M and N , i.e., M • N :=

tr(MTN) =
∑

i,j MijNij .
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• For M ∈ S
n, ‖M‖max denotes the maximum norm of M , i.e., ‖M‖max = max1≤i,j≤n |Mij |.

• [n] is a shorthand notation for {i ∈ N | 1 ≤ i ≤ n}.

• MIJ denotes the submatrix of M constructed by collecting the rows of M indexed by I ⊂ [n]
and the columns of M indexed by J ⊂ [n]. We use MI for MII .

Let M = [mij] ∈ S
n for 1 ≤ i, j ≤ n. We use [mij ] to denote a matrix M ∈ S

n whose (i, j)-th
element is mij and also use [Q0]ij to denote the (i, j)-th element of a matrix Q0 ∈ S

n.

Definition 2.1. A finite set {a1, . . . , an} ⊂ R is called sign-definite with respect to R if its members
are either all nonnegative or all nonpositive, i.e., aiaj ≥ 0 for any i, j ∈ [n].

For example, the set {0, 100, 0, 2} is sign-definite while sets {0, 100, 0,−2} and {−1, 1} are not
sign-definite.

2.2 Tridiagonal matrices

A matrix M = [mij ] ∈ S
n is called tridiagonal if all elements mij are zero for i, j ∈ [n] satisfying

|i−j| ≥ 2. We use d(n) and od(n) to represent the index sets for the main diagonal and off-diagonal
elements of n× n matrices, respectively, i.e.,

d(n) :={(i, i) | i = 1, . . . , n},

od(n) :={(i, i + 1) | i = 1, . . . , n− 1}.

Since M ∈ S
n, od(n) contains only the indices for the upper triangular elements.

We discuss a method to estimate a lower bound on the rank of tridiagonal matrices. For general
matrices, this estimation is generally hard. In the case of a diagonal matrix, we know that its rank
equals the number of nonzero elements on its main diagonal. For a tridiagonal matrix, we can
show that its rank can be bounded from below by the number of off-diagonal nonzero elements.
The following lemma is immediately obtained from the result of [12].

Lemma 2.2. Let M ∈ S
n be a tridiagonal matrix. If all the superdiagonal elements of M are

nonzeros, then rankM ≥ n− 1.

For symmetric positive semidefinite matrices Sn ∋ M � O, it is difficult to determine whether
the positive semidefiniteness is maintained after replacing some of off-diagonal elements with zeros.
However, in the case of positive semidefinite tridiagonal matrices, we show in the following lemma
that they remain to be positive semidefinite even if some of off-diagonal elements are replaced by
zeros.

Lemma 2.3. Let M = [mij ] ∈ S
n be a positive semidefinite and tridiagonal matrix. For a subset

E ⊂ od(n), let L = [ℓij ] ∈ S
n be the tridiagonal matrix constructed by replacing the matrix elements

of M indexed by E with zeros, i.e.,

ℓij :=

{
0 if (i, j) ∈ E or (j, i) ∈ E,

mij otherwise.

Then, L � O.
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Proof. We use induction on the size of the set E. Let us first consider the case |E| = 1. Then, E
has one element (i, i+ 1) ∈ E for some i. For any I ⊂ [n], we have the following two cases:

(a) If i 6∈ I or i+ 1 6∈ I, the principal LI does not have (i, i+ 1)-th and (i+ 1, i)-th elements of
M , therefore

det (LI) = det(MI) ≥ 0.

(b) If i ∈ I and i+1 ∈ I, the principal LI has (i, i+1)-th and (i+1, i)-th elements of M replaced
by zeros. Since the submatrix LI is a block diagonal matrix with two blocks,

det (LI) = det
(
LI∩{1,...,i}

)
det

(
LI∩{i+1,...,n}

)

= det
(
MI∩{1,...,i}

)
det

(
MI∩{i+1,...,n}

)

≥ 0,

where the last inequality follows from the fact that all the principal minors of M are non-
negative.

Since all the principal minors of L are nonnegative, L � O follows.

Suppose the result is true for |E| = k − 1, and consider the case |E| = k. The set E can be
divided into two sets: F := {(j, j+1)} and E \F . Let N ∈ S

n be a tridiagonal matrix constructed
by replacing the (j, j +1) and (j+1, j) elements of M with zeros. Then, from the case mentioned
above, N � O holds. Since |E \ F | = k − 1, by the induction hypothesis, we have L � O.

In our proof of Lemma 2.3, the nonnegativeness of all the principal minors of L was shown
based on the fact that they are given by the product of at most two principal minors of M .
The nonnegativeness can be also shown by a representation of the determinant of the tridiagonal
matrix. More details can be found in Corollary 2.2 of [8].

2.3 Aggregate sparsity matrix and forest-structured QCQPs

In Lemma 2.2, the rank of tridiagonal matrices is discussed without taking the positive semidefi-
niteness into account. As the rank of positive semidefinite matrices plays a crucial role to extend
the result in Lemma 2.2 to more general matrices, we briefly introduce the aggregate sparsity ma-
trix and discuss the relation between the aggregate sparsity matrix and forest-structured QCQPs.

To construct the aggregate sparsity matrix from the SDP relaxation (2), we define an aggregate
sparsity graph G(V , E) as a graph with the set of vertices V = [n] and the set of edges

E = {(i, j) ∈ V × V | [Qp]ij 6= 0 for some p ∈ {0} ∪ [m]} . (3)

The sparsity encoded in E is called the aggregate sparsity pattern. The aggregate sparsity matrix
R ∈ S

n corresponding to G(V , E) is defined as

Rij =

{
∗ if (i, j) ∈ E ,
0 otherwise,

where ∗ is an arbitrary nonzero real number.

A graph is called a forest if it has no cycles in the upper triangular part E∩{(i, j) ∈ V × V | i < j}.
A connected forest is called a tree. We also call QCQPs (1) as forest-structured QCQPs if their

6



aggregated sparsity graphs G(V , E) are forests. Thus, the graph G(V , E) obtained from forest-
structured QCQPs consists of one or more trees. Obviously, the tridiagonal QCQP is a subclass
of forest-structured QCQP.

For a given symmetric matrix M = [mij ] ∈ S
n, a sparsity structure graph G(V , E) can also be

defined as an graph with the set of vertices V = [n] and the set of edges

E = {(i, j) ∈ V × V | mij 6= 0} .

We call symmetric matrices M ∈ S
n as forest-structured matrices if their sparsity structure graphs

have no cycles. For G(V , E) corresponding to a QCQP, the sparsity structure graph of Qp is a
subgraph of G(V , E) for any p ∈ {0} ∪ [m]. As a result, all the matrices Qp (p ∈ {0} ∪ [m]) in
forest-structured QCQPs must be forest-structured matrices.

We consider the following index sets in the subsequent discussion for the forest-structured
matrices and QCQPs:

d(n) :={(i, i) | i = 1, . . . , n}

od(n) :={(i, j) ∈ E | i < j},

where (i, j) is the index for the nonzero element of the aggregate sparsity matrix. By an appropriate
permutation on [n], we can assume that n ∈ V is the root of a tree graph. If j corresponds to the
parent node of i in a tree graph, then it is uniquely determined for each i ∈ V\{n}.

As an immediate consequence of Corollary 3.9 of [14], we can establish that any symmetric
positive semidefinite matrix whose graph is a tree has rank at least n − 1, as described in the
following lemma. We will use this fact to estimate the rank of SDP solutions of SDP relaxations
in section 3.

Lemma 2.4. [14, Corollary 3.9] Let M ∈ S
n be a positive semidefinite and forest-structured

matrix. If the sparsity structure graph of M is connected and all the off-diagonal elements in
od(n) for M are nonzeros, then rankM ≥ n− 1.

As an example of forest-structured QCQPs, we consider an arrow-type matrix of form:

V =




v1 w1

v2 w2

. . .
...

vn−1 wn−1

w1 w2 · · · wn−1 vn




.

For the arrow-type matrix, the index sets d(n) and od(n) are given as

d(n) :={(i, i) | i = 1, . . . , n}

od(n) :={(i, n) | i = 1, . . . , n− 1}.

By Lemma 2.4, if V � O and w1, . . . , wn−1 are nonzeros, then the rank of V is at least n− 1.

Lemma 2.3 can also be extended to forest-structured matrices.

Lemma 2.5. Let M = [mij ] ∈ S
n be a positive semidefinite and forest-structured matrix. For a

subset E ⊂ od(n), let L = [ℓij ] ∈ S
n be the forest-structured matrix constructed by replacing the

matrix elements of M indexed by E with zero, i.e.,

ℓij :=

{
0 if (i, j) ∈ E or (j, i) ∈ E,

mij otherwise.

Then, L � O.
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Proof. It suffices to consider the case |E| = 1 since similar arguments to the proof of Lemma 2.3
can be applied. In this case, there exists only one element (i, j) in E. By removing the edge (i, j)
from G(V , E) of the forest-structured matrix M , a tree in G(V , E) is divided into two trees: one
with the node i, and the other with the node j. The set V is also separated into two sets: W1 ⊂ V,
the set of nodes in the component including the node i in the graph G(V , E \ {(i, j), (j, i)}), and
W2 ⊂ V, the set of other nodes. Without loss of generality, we may assume that the indices in
W1 and W2 are consecutive integers, i.e., there exists a positive number ℓ such that W1 = [ℓ] and
W2 = [n] \ [ℓ]. For any I ⊂ [n], we have the following two cases:

(a) If i 6∈ I or j 6∈ I, the principal LI does not include (i, j)-th and (j, i)-th elements of M , then

det (LI) = det(MI) ≥ 0.

(b) If i ∈ I and j ∈ I, the principal LI includes (i, j)-th and (j, i)-th elements of M , and their
values are zeros. Since the submatrix LI is a block diagonal matrix with two blocks, we have
that

det (LI) = det (LI∩W1
) det (LI∩W2

)

= det (MI∩W1
) det (MI∩W2

)

≥ 0,

where the last inequality follows from the fact that all the principal minors of M are non-
negative.

Since all the principal minors of L are nonnegative, we have L � O.

3 Exactness conditions for forest-structured QCQPs

To state our main results on the exact SDP relaxation of forest-structured QCQPs, some assump-
tions are necessary. Also, a perturbed QCQP is introduced by slightly varying the elements of
the data matrix of the objective function. We then present preliminary results on the perturbed
QCQP. By analyzing the conditions under which the SDP relaxation has a rank-1 solution, we
discuss the exact SDP relaxation for forest-structured QCQPs.

We assume the following for a given QCQP and its SDP relaxation:

Assumption 3.1.

(a) There exists a feasible point for (1).

(b) There exists ȳ ≥ 0 satisfying
∑m

p=1 ȳpQ
p ≻ O.

(c) There exists an interior feasible points for (2).

We note that these assumptions were also used for the diagonal QCQPs to establish the results
on the exact SDP relaxations in [7]. Assumption 3.1 (b) can be also represented as ȳ ≤ 0 and∑m

p=1 ȳpQ
p ≺ O. By Assumption 3.1 (a) and (b), we see that the feasible sets of (1) and (2) are
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bounded, and a solution to (1) exists. In fact, multiplying xTQpx+2qp
Tx ≤ bp by ȳp, and adding

these for p, we have

xT




m∑

p=1

ȳpQ
p


x+ 2




m∑

p=1

ȳpqp




T

x ≤ bTȳ.

Thus, all the feasible points of (1) are in the ellipsoid given by the above inequality. It also implies
that all the feasible points of (2) is bounded as:




m∑

p=1

ȳpQ
p


 •X + 2




m∑

p=1

ȳpqp




T

x ≤ bTȳ.

By Assumption 3.1 (b) and (c), the strong duality holds for the primal SDP (2).

The homogeneous form of (1) can be expressed as the following QCQP with n + 1 variables
and m+ 2 inequality constraints:

minimize zTQ̄0z

subject to zTQ̄pz ≤ bp, p = 1, . . . ,m,

zTE11z ≤ 1, − zTE11z ≤ −1,

with variable z ∈ R
n+1 where

Q̄p :=

[
0 qp

T

qp Qp

]
,

and Eij is an n× n matrix given by

[Eij ]qr =

{
1 if i = q and j = r,

0 otherwise.

We note that the homogeneous form does not include the linear terms qp
Tx for all p, and the

objective function and the constraints are in quadratic forms in the variables. By the last two
inequalities, z1 = 1 or −1. Although the homogeneous QCQP has a simpler form than the original
(1), any solution z∗ of the homogeneous QCQP recovers a solution x∗ = [z∗2/z

∗
1 , . . . , z

∗
n+1/z

∗
1 ]

T of
(1). As a result, we may assume, without loss of generality, the following condition:

Assumption 3.2.

(d) q0, q1, . . . , qm are zero vectors.

We now consider a homogeneous QCQP:

minimize xTQ0x

subject to xTQpx ≤ bp, p = 1, . . . ,m.
(4)

Then, the SDP relaxation of QCQP (4) is described as

minimize Q0 •X

subject to Qp •X ≤ bp, p = 1, . . . ,m,

X � O,

(5)
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and its dual SDP problem is:

maximize − bTy

subject to S(y) := Q0 +
m∑

p=1

ypQ
p � O,

y ≥ 0.

(6)

3.1 Perturbed QCQPs

To perturb the original QCQP (4), we let P ∈ S
n be a nonzero matrix, and let ε > 0 represent

how much perturbation is added to the objective function. When a perturbation εP is added to
the objective function of (4), we have an ε-perturbed QCQP:

minimize xT
[
Q0 + εP

]
x

subject to xTQpx ≤ bp, p = 1, . . . ,m.
(7)

The SDP relaxation of (7) can be written as:

minimize
[
Q0 + εP

]
•X

subject to Qp •X ≤ bp, p = 1, . . . ,m,

X � O.

(8)

QCQP (4) and its ε-perturbed QCQP (7) have the same feasible set since only the objective
function is perturbed. Similarly, their SDP relaxations have the same feasible set. As the feasible
sets of QCQP (4) and its SDP relaxation are bounded by Assumption 3.1, the feasible sets for the
perturbed problems (7) and (8) are also bounded. The ε-perturbed problem (7) will be used to
check whether the SDP relaxation of (4) is exact.

In the following lemma, we show that the exactness of the SDP relaxation for the original
problem (4) can be determined by that of perturbed problems (7) and (8).

Lemma 3.3. Let P 6= O be an n × n nonzero matrix, and {εt}
∞
t=1 be a sequence such that

limt→∞ εt = 0. If the SDP relaxation of the εt-perturbed problem (7) is exact for all t = 1, 2, . . .,
then the original problem (4) also has an exact SDP relaxation.

Proof. Let Γ and ∆ be the feasible sets of (4) and (5), respectively:

Γ :=
{
x ∈ R

n
∣∣Qp • (xxT) ≤ bp, p = 1, . . . ,m

}
,

∆ := {X ∈ S
n |X � O, Qp •X ≤ bp, p = 1, . . . ,m} .

Note that Γ is a closed set and both Γ and ∆ are bounded by Assumption 3.1. Thus, Γ is a
compact set in R

n. For any t ≥ 1, let xt and Xt be optimal solutions of (7) and (8) satisfying
xtxt

T = Xt, which follows from the assumption on the exactness of the relaxation of (7). As a
result, a sequence as {xt}

∞
t=1 can be defined.

Since the feasible sets of (4) and (7) are identical, we have xt ∈ Γ. From the compactness of Γ,
there exists xlim := limt→∞ xt in Γ. As Xlim := xlimxlim

T ∈ ∆ by the relationship between Γ and
∆, the rank-1 matrix Xlim is also feasible for (5).

10



To show that Xlim is an optimal solution of (5), we assume that there exists another feasible
Xopt 6= Xlim such that ν := Q0 •Xlim − Q0 •Xopt > 0. Since ∆ is bounded, there exists µ such
that ‖X‖max < µ for any X ∈ ∆, which implies ‖xxT‖max < µ for any x ∈ Γ. For a sufficiently
large t satisfying

εt <
ν

4n2µ‖P‖max
and ‖xtxt

T −Xlim‖max <
ν

2n2‖Q0‖max
,

we have

Q0 •
(
xtxt

T −Xlim

)
> −

ν

2
,

εtP • (xtxt
T) > −

ν

4
,

Q0 •Xlim = Q0 •Xopt + ν,
ν

4
> εtP •Xopt.

Consequently, adding these inequalities and the equality,

(Q0 + εtP ) • (xtxt
T) > (Q0 + εtP ) •Xopt,

which contradicts the optimality of xtxt
T in (8). The desired result follows.

Zhou et al. [35, Lemma 1] focused on a specific QCQP arising from the oprimal power flow problem,
and proved that the exactness of its SDP relaxation can be determined by the SDP relaxation of
its ε-perturbed problems. Lemma 3.3 is valid for a slightly more general case, which requires only
Assumptions 3.1 and 3.2.

3.2 Main results

We present our main results on the exactness of SDP relaxations for forest-structured QCQPs.

For any fixed indices k, ℓ ∈ [n], we define the system (Fkℓ):

y ≥ 0, S(y) � O, [S(y)]kℓ = 0, (Fkℓ)

where [S(y)]kℓ represents the (k, ℓ)-th element of S(y) defined in (6). Since k, ℓ ∈ [n], we can
construct n2 systems (Fkℓ).

If for some k̄ and ℓ̄ (1 ≤ k̄, ℓ̄ ≤ n) and for a feasible point y of (6) the system (F k̄ℓ̄) is infeasible,
then the value [S(y)]k̄ℓ̄ must be nonzero.

Theorem 3.4. Suppose (4) is a forest-structured QCQP. If (Fkℓ) have no feasible solutions for
all (k, ℓ) ∈ od(n), then the SDP relaxation (5) is exact.

To prove the main result described in Theorem 3.4, we impose a condition in Lemma 3.5 for the
exact SDP relaxation: the aggregate sparsity graph should be connected and (Fkℓ) should have no
solutions for any (k, ℓ) ∈ od(n). We note that the system (Fkℓ) must be tested for feasibility for
all (k, ℓ) ∈ od(n) in Theorem 3.4. We need additionally to examine whether the aggregate sparsity
graph is connected in Lemma 3.5. Thus, the sufficient condition presented in Theorem 3.4 can be
applied to more general QCQPs than the one in Lemma 3.5. Lemma 3.5 is followed by a proof for
Theorem 3.4 by relaxing the sufficient condition in Lemma 3.5.
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Lemma 3.5. Suppose (4) is a forest-structured QCQP and the aggregate sparsity graph G(V , E)
of its SDP relaxation defined in (3) is connected. If (Fkℓ) have no feasible solutions for all (k, ℓ) ∈
od(n), then the SDP relaxation (5) is exact.

Proof. Let X∗ be any optimal solution for (5). By Assumption 3.1, there exists an optimal solution
y∗ for (6). Since y∗ ≥ 0 and S(y∗) � O, we have S(y∗)kℓ 6= 0 for every (k, ℓ) ∈ od(n) by
the assumption. This implies that all the off-diagonal elements on od(n) of the forest-structured
matrix S(y∗) are nonzeros, thus rankS(y∗) ≥ n − 1 by Lemma 2.4. Since Assumption 3.1 (b)
and (c) hold, X∗S(y∗) = O by the strong duality. From the Sylvester’s rank inequality [3],
rankX∗ + rankS(y∗) ≤ n + rankX∗S(y∗) holds for X∗ and S(y∗). Therefore, rankX∗ ≤ n +
rankO − rankS(y∗) ≤ n+ 0− (n− 1) = 1.

Proof. (Theorem 3.4)
Let G(V , E) be the aggregate sparsity graph of the SDP relaxation defined in (3) for the forest-
structured QCQP, and let κ denote the number of connected components of G(V , E). Since G(V , E)
consists of one or more trees, we can construct a set D with κ− 1 edges such that G(V , E ∪ D) is
a tree (i.e., a connected graph with no cycles). Let P :=

∑
(i,j)∈D(Eij + Eji) be a perturbation

matrix with the n × n matrices Eij’s. With ε > 0, consider the ε-perturbed QCQP (7) with this
P . Obviously, the aggregate sparsity graph of the ε-perturbed QCQP (7) is G(V , E ∪ D). The
system (Fkℓ) that corresponds to the ε-perturbed QCQP (7) can be written as:

y ≥ 0, Q0 +
∑

(i,j)∈D

ε(Eij + Eji) +
m∑

p=1

ypQ
p � O, (9a)


Q0 +

∑

(i,j)∈D

ε(Eij +Eji)




kℓ

+

m∑

p=1

yp[Q
p]kℓ = 0. (9b)

For the exact SDP relaxation of (7), we need to show that (9) has no feasible solutions for all
(k, ℓ) ∈ od(n) ∪ D. First, suppose (k, ℓ) ∈ D. Since [Qp]kℓ = 0 (∀p = 0, 1, . . . ,m), the left hand
side of (9b) becomes

ε
∑

(i,j)∈D

[Eij + Eji]kℓ = ε > 0.

We have shown that (9b) does not hold for any y ≥ 0.

Next, we suppose (k, ℓ) ∈ od(n). Assume that (9) has a solution ŷ. Then,

ŷ ≥ 0, Q0 +
∑

(i,j)∈D

ε(Eij + Eji) +

m∑

p=1

ŷpQ
p � O, [Q0]kℓ +

m∑

p=1

ŷp[Q
p]kℓ = 0.

We now define a forest-structured matrix S ∈ S
n as:

[S]qr =





[
Q0 +

∑
(i,j)∈D ε(Eij + Eji) +

∑m
p=1 ŷpQ

p
]
qr

(q, r) 6∈ D,

0 (q, r) ∈ D.

If (q, r) 6∈ D, by definition, we have [Eij +Eji]qr = 0 for any (i, j) ∈ D. If (q, r) ∈ D, we

have
[
Q0 +

∑m
p=1 ŷpQ

p
]
qr

= 0 since [Qp]qr = 0 for any p ∈ {0} ∪ [m]. Thus, we obtain that
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S = Q0 +
∑m

p=1 ŷpQ
p. By Lemma 2.5, it follows that S � O, which implies that ŷ solves the

following system:

y ≥ 0, Q0 +

m∑

p=1

ypQ
p � O, [Q0]kℓ +

m∑

p=1

yp[Q
p]kℓ = 0. (10)

We know that the system (10), which is equivalent to (Fkℓ) for (4), has no feasible points by the
assumption. This is a contradiction. Thus, (9) has no feasible points. By Lemma 3.5, the SDP
relaxation for (7) is exact for all ε > 0.

We now take a sequence {εt}
∞
t=1 which converges to zero so that the SDP relaxation for εt-

perturbed QCQP (7) is exact for all t = 1, 2, . . .. By Lemma 3.3, we conclude that the SDP
relaxation for (4) is exact.

Theorem 3.4 can be applied to the particular case of tridiagonal QCQPs that will be discussed
in section 4.

Since |od(n)| ≤ n− 1 by definition, we must solve at most n− 1 systems in order to determine
whether the SDP relaxation of a QCQP is exact. It may be very time-consuming to solve all n− 1
systems (Fkℓ) due to the positive semidefinite constraint. To mitigate this difficulty, conditions
that do not dependent on (Fkℓ) will be discussed in Corollaries 3.6 and 3.7.

It was shown in [6, 15, 19] that QCQP (1) can be solved exactly by the SDP relaxation if the
data matrices of the QCQP is sign-definite. Using the feasibility of the system (Fkℓ), we provide
an alternative proof for the exact SDP relaxation of the QCQP (4) if the set of (i, j)-th elements
of all matrices is sign-definite for every superdiagonal index (i, j).

Corollary 3.6. Suppose (4) is a forest-structured QCQP. If the set {[Q0]kℓ, [Q
1]kℓ, . . . , [Q

m]kℓ} is
sign-definite for all (k, ℓ) ∈ od(n), then the SDP relaxation (5) is exact.

Proof. Define P := [pij] ∈ S
n where

pij :=





+1 if [Q0]ij = 0 and
∑m

p=1[Q
p]ij ≥ 0,

−1 if [Q0]ij = 0 and
∑m

p=1[Q
p]ij < 0,

0 otherwise.

Let {εt}
∞
t=0 ⊂ R be a sequence converging to 0. Consider the εt-perturbed problem (7) with the

P defined above. The corresponding system (Fkℓ) is

y ≥ 0, S(y) = Q0 + εtP +
m∑

p=1

ypQ
p � O, [S(y)]kℓ = [Q0]kℓ + εtpkℓ +

m∑

p=1

yp[Q
p]kℓ = 0.

Now we analyze the feasibility of the system for any (k, ℓ) ∈ od(n).

(a) If [Q0]kℓ 6= 0, then

[Q0]kℓ +

m∑

p=1

yp[Q
p]kℓ =

{
> 0 if [Q0]kℓ > 0,

< 0 if [Q0]kℓ < 0,

by the sign-definite assumption on the set {[Q0]kℓ, [Q
1]kℓ, . . . , [Q

m]kℓ}. We have [S(y)]kℓ 6= 0
for any y ≥ 0 from pkℓ = 0, therefore the system has no solution.
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(b) If [Q0]kℓ = 0, then for any y ≥ 0,

[Q0]kℓ +

m∑

p=1

yp[Q
p]kℓ =

{
≥ 0 if

∑m
p=1[Q

p]kℓ ≥ 0,

≤ 0 otherwise.

From

εtpkℓ =

{
ε > 0 if

∑m
p=1[Q

p]kℓ ≥ 0,

−ε < 0 otherwise,

we have [S(y)]kℓ 6= 0, which implies that the system has no solution.

As (a) and (b) cover all possible cases, the SDP relaxation of the εt-perturbed problem is exact
for any εt by Theorem 3.4, hence the original QCQP (4) is also exact by Lemma 3.3.

We will use Corollary 3.6 to prove the exact SDP relaxation for a class of QCQPs in subsection 4.2.

Next, we examine the following QCQP:

minimize xTQ0x

subject to xTQ1x = bp.
(11)

To write (11) in the form of (4), the equality constraint is converted into two inequality constraints
xTQ1x ≤ b1 and xT(−Q1)x ≤ −b1. It is clear that problem (11) is a special case of QCQP (4) with
two constraints. Since both matrices Q1 and −Q1 appear in the inequality constraints of (11),
the set {[Q0]ij , [Q

1]ij ,−[Q1]ij} is not sign-definite unless [Q1]ij = 0. As a result, Corollary 3.6
cannot be used to determine the exactness of the SDP relaxation of (4). For (11), we propose the
following exactness condition.

Corollary 3.7. Suppose (4) is a forest-structured QCQP. If for all (i, j) ∈ od(n) such that [Q1]ij 6=
0,

Q0 −
[Q0]ij
[Q1]ij

Q1 6� O,

then the SDP relaxation for (11) is exact.

Proof. Let E be the aggregate sparsity structure of the SDP relaxation defined in subsection 2.3. If
(Fkℓ) are infeasible for all (k, ℓ) ∈ od(n), then we know from Theorem 3.4 that the SDP relaxation
is exact. Thus, we analyze the feasibility of the system (Fkℓ) for each (k, ℓ) ∈ od(n). We compute
S(y) in the system as:

S(y) = Q0 + y1Q
1 + y2(−Q1), y =

[
y1
y2

]
≥ 0,

= Q0 + zQ1, z := y1 − y2 ∈ R.

Then, the system (Fkℓ) is equivalent to the following system:

Q0 + zQ1 � O, [Q0]kℓ + z[Q1]kℓ = 0. (12)

(a) If [Q1]kℓ = 0, then [Q0]kℓ 6= 0 by (k, ℓ) ∈ od(n). Since any z ∈ R does not satisfy the second
equation in (12), the system (12) is infeasible.
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(b) If [Q1]kℓ 6= 0, we assume that a solution z∗ to (12) exists. By solving the second equation in
(12) for z∗ and substituting it into the first equation, we have

Q0 −
[Q0]ij
[Q1]ij

Q1 � O,

which is a contradiction. Thus, the desired result follows.

Burer and Ye [7] proposed several methods to extend their result of diagonal QCQPs to a
general class of QCQPs with exact SDP relaxations. However, for some QCQPs, it is difficult to
show the exactness of relaxations by their conditions; for example, it is hard to prove the existence
of an exact relaxation for the generalized trust-region subproblem (see section 4).

4 Extension to a wider class of QCQPs based on simultaneous

tridiagonalization

To apply the results in section 3 to a wider class of QCQPs, we consider QCQPs where the data
matrices in (1) are not forest-structured. In this section, we suppose Assumption 3.1 (a) – (c) and
that all the matrices of a QCQP are simultaneously tridiagonalizable. In section 4.1, simultaneous
tridiagonalization is discussed in detail when m = 1 (only one quadratic constraint). Then, a
method to determine the exactness of the SDP relaxation for these QCQPs is described. In addi-
tion, we provide an alternative proof for the exactness of Generalized Trust-Region Subproblems
(GTRS).

The matrices Q0, Q1, . . . , Qm ∈ S
n are called simultaneous tridiagonalizable if there exist a

nonsingular matrix U such that UTQ0U,UTQ1U, . . . , UTQmU are tridiagonal matrices. The si-
multaneous tridiagonalization is a generalization of the simultaneous diagonalization used in [7].
By replacing U−1x with x̂, we obtain the tridiagonal QCQP equivalent to (1):

minimize x̂T
(
UTQ0U

)
x̂+ 2

(
UTq0

)T
x̂

subject to x̂T
(
UTQpU

)
x̂+ 2

(
UTqp

)T
x̂≤ bp, p = 1, . . . ,m.

(13)

The standard SDP relaxation of (13) is

minimize
(
UTQ0U

)
• X̂ + 2

(
UTq0

)T
x̂

subject to
(
UTQpU

)
• X̂ + 2

(
UTqp

)T
x̂≤ bp, p = 1, . . . ,m,

X̂ � x̂x̂T.

(14)

Obviously, if x̂ is an optimal solution of (13), then Ux̂ is an optimal solution of the original
problem (1). We notice that the SDP relaxation (2) of (1) is at least as strong as the corresponding
SDP relaxation (14) for (13). As a result, if (13) has an exact relaxation, then (1) also has an exact
relaxation. When (13) becomes a forest-structured QCQP in the homogeneous form, the exactness
conditions in section 3 can be applied to (13). We note that the exactness of the SDP relaxation
for QCQPs (1) can be determined if their data matrices are simultaneous tridiagonalizable even
when they are not forest-structured.
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4.1 Simultaneous tridiagonalization

Simultaneous tridiagonalization of multiple matrices is an extension of simultaneous diagonal-
ization, and it can be achieved by finding a nonsingular matrix that transforms all matrices to
tridiagonal matrices. Recently, Sidje [29] (See also Garvey et al. [10]) introduced conditions under
which two matrices are simultaneous tridiagonalizable.

Proposition 4.1. [29] Let K,M ∈ S
n and 0 6= γ ∈ R. Suppose that the matrix pencil K − γM

is nonsingular. Then, K and M are simultaneously tridiagonalizable.

If the data matrices are simultaneously tridiagonalizable with the nonsingular matrix U , we also
need a method to compute U . Sidje proposed a method to compute such a nonsingular matrix
U on the basis of Householder reflections. We briefly describe his method for the simultaneous
tridiagonalization, and then analyze this method to find new properties which will be used in the
proof of the GTRS.

In the beginning of the Sidje’s recursive procedure [29], the matrices are initialized as Kn := K,

Mn := M ∈ S
n. Then, an appropriate nonsingular matrix Uk =

[
1, 0k−1

T;uk, Ũ
k
]
∈ R

k×k with

nonsingular Ũk ∈ R
(k−1)×(k−1) and uk ∈ R

k−1 is chosen such that

(Uk)
T
KkUk =




ξk τk 0k−2
T

τk
0k−2

Kk−1


 , (Uk)

T
MkUk =




νk σk 0k−2
T

σk
0k−2

Mk−1


 (15)

at each step k = n, . . . , 2. Here ξk, τk, νk, σk ∈ R, and Kk−1,Mk−1 ∈ R
(k−1)×(k−1). This procedure

generates two tridiagonal matrices:

UTKnU =




ξn τn

τn ξn−1
. . .

. . .
. . . τ3
τ3 ξ2 τ2

τ2 K1




and UTMnU =




νn σn

σn νn−1
. . .

. . .
. . . σ3
σ3 ν2 σ2

σ2 M1



,

where

U := Un

[
I1

Un−1

]
· · ·

[
In−2

U2

]
.

Now, consider the step k. To have nonzero elements only on the diagonals, superdiagonals, and
subdiagonals by the operation shown in (15), Ũk should satisfy the following equation:

(
Ũk

)T (
Kk

{1},{2,...,k} +Kk
{2,...,k}uk

)
= τke1,

(
Ũk

)T (
Mk

{1},{2,...,k} +Mk
{2,...,k}uk

)
= σke1, (16)

where e1 ∈ R
k−1 and Kk

{2,...,k} means the submatrix of Kk obtained by removing the first row and

column from Kk, as mentioned in section 2.1. In his procedure, Ũk is chosen to be a Householder
reflection, and therefore, nonsingular, and the existence of uk follows imposing

(
Ũk

)T (
Kk

{1},{2,...,k} +Kk
{2,...,k}uk

)
= γ

(
Ũk

)T (
Mk

{1},{2,...,k} +Mk
{2,...,k}uk

)
(17)

for 0 6= γ ∈ R since K − γM is nonsingular. By restricting γ to be positive, we extend
Proposition 4.1.
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Lemma 4.2. Let K,M ∈ S
n and R ∋ γ > 0. Suppose that the matrix pencil K − γM is

nonsingular. Then, there exists a nonsingular matrix U ∈ S
n that simultaneously tridiagonalizes

K and M . Moreover, for any i ∈ [n − 1], the (i, i + 1)-th elements of UTKU and UTMU are
sign-definite.

Proof. Substituting (16) into (17), we obtain τk = γσk. Since γ > 0, the set {τk, σk} is sign-definite
for any k = n, . . . , 2. The variables τk and σk appear on the (1, 2), . . . , (n − 1, n)-th elements of
UTKnU and UTMnU , respectively.

If the elements on superdiagonal of all matrices can be transformed to sign-definite elements, then
we can apply Corollary 3.6 to show the exactness of the SDP relaxation, which is discussed next
in subsection 4.2.

4.2 Generalized trust-region subproblem

Consider the Generalized Trust-Region Subproblem (GTRS):

minimize xTQ0x+ 2q0
Tx

subject to xTQ1x+ 2q1
Tx ≤ b1.

(18)

The GTRS can be considered a generalization of the classical TRS that minimizes a quadratic
objective over an Euclidean ball, i.e., the GTRS with Q1 ≻ O. This fact can be seen by substituting√

Q1x as a new variable x̃, where
√

Q1 denotes the Cholesky factor of Q1, i.e., Q1 =
√

Q1
T√

Q1.
In the TRS, Q0 is not necessarily positive definite. Although the TRS is nonlinear and nonconvex,
its SDP relaxation is well-known to be exact. The GTRS shares nice properties with the TRS.
For example, by using S-lemma, it is proved that the SDP relaxation of the GTRS is always exact
under the Slater’s condition.

Since the GTRS is clearly a QCQP (1) with only one constraint (m = 1), we can also prove that
the GTRS admits an exact SDP relaxation with the exactness conditions presented in section 3.
Although the result is certainly not new, our proof shows a procedure on how to apply the exactness
conditions for tridiagonal QCQPs to wider classes of QCQPs. In fact, the proof demonstrates how
to determine the exactness of a given QCQP in practice, and it can be used to analyze the exactness
conditions for broader classes of QCQPs.

Any QCQP can be formulated in the equivalent homogeneous QCQP as in (4), thus, it is
sufficient to consider the following QCQP with an additional variable to discuss the exactness for
the GTRS (18):

minimize xTQ̄0x

subject to xTQ̄1x ≤ 0,

xTE11x = 1,

(19)

where

Q̄p :=

[
−bp qp

T

qp Qp

]
(p = 0, 1) and b0 = 0.

For simplicity, we assume that the number of variables in (19) is n. As (19) has the additional
equality constraint, the problem (19) is a QCQP with three inequality constraints, and (19) is
no longer a GTRS. In the subsequent discussion, we describe the exactness for (19) using the
simultaneous tridiagonalization. In particular, we show that the SDP relaxation of GTRS (18) is
exact as follows.
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Theorem 4.3. Suppose that GTRS (19) satisfies Assumption 3.1. Then, the SDP relaxation of
(19) is exact.

Proof. Let us first consider the case when Q̄0−γQ̄1 is nonsingular for some γ > 0. By Lemma 4.2,
we obtain a nonsingular matrix U ∈ S

n that simultaneously tridiagonalizes Q0 and Q1, and the
(i, i + 1)-th elements of UTQ̄0U and UTQ̄1U become sign-definite for any i ∈ [n − 1]. Call these
tridiagonal matrices

Rp = [rpij ] := UTQ̄pU, p = 0, 1.

For any i ∈ [n − 1], the set {r0i,i+1, r
1
i,i+1} is sign-definite. By letting y = U−1x, the homogeneous

TRS (19) can be transformed to an equivalent tridiagonal QCQP:

minimize yTR0y

subject to yTR1y ≤ 0,

yTE11y = 1.

(20)

Notice that the first row of U is [1 0n−1
T] by the construction of section 4.1. By Corollary 3.6, the

SDP relaxation of (20) is exact. As U is nonsingular, the SDP relaxation of the original problem
(19) is also exact.

Now consider the other case, i.e., there is no γ > 0 such that Q̄0 − γQ̄1 is nonsingular. We
will show that, for a fixed γ > 0 and any ε > 0, the SDP relaxation of the following ε-perturbed
problem is exact:

minimize xT
(
Q̄0 + εIn

)
x

subject to xTQ̄1x ≤ 0,

xTE11x = 1.

(21)

Then, by Lemma 3.3, the SDP relaxation of the original problem (19) is also exact. Since
det

(
Q̄0 − γQ̄1

)
= 0, Q̄0 − γQ̄1 can be diagonalized, as below:

[
Λ

On−rk

]
= PT

(
Q̄0 − γQ̄1

)
P, (22)

where rk := rank
(
Q̄0 − γQ̄1

)
, P ∈ R

n×n is an orthogonal matrix, and Λ ∈ S
rk is a diagonal matrix.

By adding perturbation with sufficiently small ε > 0 to both sides of (22),

[
Λ

On−rk

]
+ εIn = PT

(
Q̄0 − γQ̄1

)
P + εPTInP = PT

(
Q̄0 + εIn − γQ̄1

)
P,

(
Q̄0 + εIn

)
− γQ̄1 becomes nonsingular. From the first case of this proof, the SDP relaxation of

(21) must be exact.

5 Concluding remarks

We have presented sufficient conditions for the SDP relaxation of a class of QCQPs to be exact
by investigating the rank of the aggregated sparsity matrix of QCQPs. The class of QCQPs is
forest-structured QCQPs that include tridiagonal QCQPs, arrow-type QCQPs, and QCQPs with
simultaneously tridiagonalizable data matrices. The signs of data matrix elements have not been
used to determining the exactness of the SDP relaxation.
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In our proof for the main results, we have utilized the fact that any symmetric positive semidef-
inite matrix whose graph is a tree has rank at least n− 1. It is shown in [13] that for any non-tree
the minimum rank of a positive semidefinite matrix is less than n− 1.

We have also extended our results to non-tridiagonal QCQPs by improving a computing method
proposed in [29] for simultaneous tridiagonalization. The exactness of the SDP relaxation of the
GTRS can be proved by the simultaneous tridiagonalization and our results in section 3.

For a future work, we want to extend the result to a wider class of QCQPs. Algorithms for
simultaneous tridiagonalization of multiple matrices will be further studied to apply our results.
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