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Abstract
Every continuously differentiable function can be represented as a difference between a
convex function and an additively separable convex function. We show that a DC function
with this structure can be optimized using the rectangular algorithm for separable nonconvex
optimization, and develop a revision to this algorithm for practical use. We also report some
numerical results which indicate the effectiveness of the revision.

Keywords Global optimization · DC optimization · Branch-and-bound · Rectangular
algorithm · ω-subdivision

1 Introduction

TheDC optimization includesmost optimization problems arising in a variety of applications
because every continuously twice differentiable function is a DC function, represented as a
Difference of two Convex functions on any compact convex set. In fact, for such a class
of function f : R

n → R and a convex set � ⊂ R
n , it is shown in [6,14] that g(x) =

f (x) + ρ‖x‖2 is convex if ρ ≥ −(1/2)min
{
yT∇2 f (x)y | x ∈ �, ‖y‖ = 1

}
, and therefore

f is decomposable into a DC function:

f (x) = g(x) − ρ‖x‖2. (1)

To solve this optimization problem of high generality, Tuy proposed a conical algorithm for
global optimization in 1987 [13], and Tao and Hoai-An published in 1997 the so-called DCA
(DC Algorithm) based on local optimization [12]. Since the 2000s, various studies with DC
functions have been conducted mainly in the field of machine learning, and accordingly local
optimization algorithms such as DCA have also been widely used there (see e.g., [1,7,16]).
In contrast to this, any of global optimization algorithms, including the conical algorithm,
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have not yet reached the stage of practical application, though discussed in detail in textbooks
[9,10,15].

In general, it is not easy to detect a DC representation suitable for each algorithm, such as
the conical algorithmandDCA, fromagiven continuous function.However, even a simpleDC
representation like (1) has the noteworthy feature that the subtrahend is additively separable.
In this paper, we show that aDC functionwith the same structure can be globally optimized on
a bounded polyhedron using the rectangular algorithm [3], a branch-and-bound algorithm for
separable nonconvex optimization problems. Since the algorithm requires solving a sequence
of convex minimization problems, we revise it so that the convex minimization procedure
can be warm-started for efficient processing.

The organization of this paper is as follows. In Section 2, after formalizing the problem
setting, we illustrate how the rectangular algorithm behaves on this problem. In Section 3, in
order towarm-start the convexminimization procedure,we further relax the convex relaxation
solved in the bounding process. We also show that the branching process can be carried out
withω-subdivision using the optimal solution of themodified convex relaxation. In Section 4,
we summarize the algorithm and analyze its convergence. Finally, in Section 5, we report
the numerical results, which indicate that the revised rectangular algorithm is promising for
practical application in some fields.

2 DC optimization and the rectangular algorithm

Let g be a convex function from R
n to R, and h1, . . . , hn strictly convex functions from R

to R. The problem considered in this paper is a DC optimization problem of the form:
∣∣∣∣∣∣∣

minimize f (x) = g(x) −
n∑

j=1

h j (x j )

subject to Ax ≤ b,

(2)

where A ∈ R
m×n and b ∈ R

m . Let us denote the feasible set by

D = {x ∈ R
n | Ax ≤ b}.

We assume that D is a bounded polyhedron with a nonempty interior and contained in the
effective domain of g. Let

s1j = min{x j | x ∈ D}, t1j = max{x j | x ∈ D}, j = 1, . . . , n.

For each j , we have s1j < t1j , and assume that the interval [s1j , t1j ] lies in the effective domain
of h j . We can locate a globally optimal solution of (2) by almost directly applying the
rectangular algorithm designed for separable nonconvex optimization [3], as is illustrated
below.

2.1 Behavior of the rectangular algorithm on (2)

Let M1 = [s1, t1] = ∏n
j=1[s1j , t1j ]. In the rectangular algorithm, M1 is subdivided into a

number of subrectangles Mi , i ∈ I , such that

M1 =
⋂

i∈I
Mi , int(Mi )

⋂
int(M�) = ∅ if i 
= �,

123



Journal of Global Optimization (2022) 83:187–200 189

where int( · ) represents the set of interior points. Let M = [s, t] = Mi for an arbitrary
i ∈ I . If D ∩ M = ∅, then M contains no optimal solution of (2) and is discarded from
consideration. Otherwise, bounding is performed to see if an optimal solution of (2) is given
by a subproblem

(P)

∣∣∣∣
minimize f (x)
subject to x ∈ D ∩ M .

Since this is essentially the same problem as (2), we cannot solve (P) directly. Instead, (P) is
approximated into a convexminimization problem by replacing h j ’s involved in the objective
function f with linear functions:

cMj (x) = h j (t j ) − h j (s j )

t j − s j
(x − s j ) + h j (s j ), j = 1, . . . , n. (3)

Thus a convex relaxation of (P) is constructed as follows:

(R)

∣∣∣∣∣∣∣

minimize f M (x) = g(x) −
n∑

j=1

cMj (x j )

subject to x ∈ D ∩ M .

We can apply any one of the standard optimization algorithms to (R) (see e.g., [2]) and obtain
an optimal solution, denoted ωM .

From the definition of cMj , it is easy to see that c
M
j (x) = h j (x) if x ∈ {s j , t j }. Furthermore,

from the strict convexity of h j , we have the following.

Proposition 2.1 For each j , it holds that

cMj (x) > h j (x) if and only if x ∈ (s j , t j ).

Proof The ‘if’ part follows immediately from the definition of strict convexity of h j . To
show the ‘only if’ part, assume that cMj (u) > h j (u) for some u ≤ s j . Choosing v ∈ (s j , t j )
arbitrarily, let

d(x) = h j (v) − h j (u)

v − u
(x − u) + h j (u).

Then we have d(u) = h j (u) < cMj (u), and d(v) = h j (v) < cMj (v). Since both cMj and d

are linear, d(x) < cMj (x) holds for any x ∈ (u, v). As noticed above, u cannot agree with

s j , and hence s j lies in (u, v). Nevertheless, we have d(s j ) < cMj (s j ) = h j (s j ), which

contradicts the convexity of h j . Therefore, cMj (x) ≤ h j (x) holds if x ≤ s j . Similarly, we

have cMj (x) ≤ h j (x) for any x ≥ t j . �

We see from Proposition 2.1 that

f M (x) ≤ f (x) if x ∈ M,

where the equality holds if x lies on a vertex of M , while

f M (x) ≥ f (x) if x /∈ int(M).

Therefore, the optimal value f M (ωM ) of (R) is a lower bound for the subproblem (P). If
f M (ωM ) ≥ f (x∗) holds for the incumbent x∗, the best known feasible solution of (2), then
M contains no feasible solution better than x∗ and is excluded from further consideration.
Otherwise, branching is performed and M is subdivided for further examination.
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How to subdivide M greatly affects the convergence of the algorithm. It is naturally
guaranteed with an exhaustive subdivision rule such as bisection, but the algorithm also
converges under the ω-subdivision rule given below.
ω-subdivision

1◦ Choose k ∈ argmax{cMj (ωM
j ) − h j (ω

M
j ) | j = 1, . . . , n}.

2◦ Divide M = [s, t] into M− = [s, t′] and M+ = [s′, t], where

s′
j =

{
ωM
k if j = k

s j otherwise,
t ′j =

{
ωM
k if j = k

t j otherwise.

Whatever the subdivision rule is, if the algorithm does not terminate, it generates a sequence
of nested rectangles:

M1 ⊃ M2 ⊃ · · · ⊃ Mi ⊃ · · · . (4)

Let f i and ωi denote the objective function and the optimal solution, respectively, of (R)
defined for M = Mi . Under the ω-subdivision rule, we have the following result, the proof
of which is almost the same as for separable concave minimization (see e.g., 7.1.6 in [15]).

Proposition 2.2 If the sequence (4) is generated according to ω-subdivision, there exists a
subsequence K of {1, 2, . . . } such that f (ωi ) − f i (ωi ) → 0 as i ∈ K → ∞.

The rectangular algorithm repeats updating the incumbent x∗ while alternating the above
branching and bounding processes. If we select the rectangle M with the smallest f M (ωM )

to subdivide in the branching process, Proposition 2.2 guarantees that every accumulation
point of the sequence {ωi } is an optimal solution of (2). To terminate the algorithm in a finite
amount of time, M is discarded usually if the following pruning criterion is satisfied for a
prescribed tolerance ε ∈ (0, 1):

f (x∗) − f M (ωM ) ≤ ε.

3 Revision of the rectangular algorithm

The rectangular algorithm presented in the preceding section requires solving the convex
relaxation (R) iteratively. To solve the target problem (2) with sufficient accuracy, we have to
solve tens of thousands of convex minimization problems even for a small scale instance, as
will be seen in Section 5. Solving them one by one from scratch would take a huge amount
of time and ruin the potential of the rectangular algorithm. In this section, to avoid such a
case, we discuss a ‘warm-start’ which allows a convex minimization algorithm to solve the
current relaxation with the solution of the last solved relaxation as the initial solution.

3.1 Relaxation of the convex relaxation (R)

Let ω′ denote the solution to the last solved relaxation. After obtainingω′, which rectangle to
select next for bounding depends on the rule of searching the branching tree, and the rectangle
M defining the current relaxation (R) is not guaranteed to contain ω′. In the numerical
experiments reported in Section 5, the Frank-Wolfe algorithm [4] was used to solve (R). If
ω′ is feasible for (R), the algorithm uses ω′ as the initial solution, but otherwise, it requires
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preprocessing to find a feasible solution. In order to save this effort, we propose to relax (R)
further into the following, so that ω′ is feasible for the current relaxation without fail:

(R)

∣∣∣∣∣∣∣

minimize f M (x) = g(x) −
n∑

j=1

cMj (x j )

subject to x ∈ D.

Since the feasible set is the same as (2), this problem is assumed to have an optimal solution,
denoted ωM . The lower bound f M (ωM ) provided by (R) is obviously somewhat inferior to
f M (ωM ). This weakness is, however, offset by the advantage thatω′ can be used as the initial
solution for a convex minimization algorithm of the type generating a sequence of feasible
solutions. In addition to the benefit of warm-start, when D has some favorable structure
like a graph, (R) might be solved efficiently without damaging that structure. What seems
to be problematic is that ωM is not always a point in M . If ωM /∈ M , the ω-subdivision
rule described in the preceding section might fail to subdivide the rectangle M . As is shown
below, such a concern is unnecessary.

Let us try to apply the ω-subdivision rule to M at ωM . In step 1◦, an index k is chosen
from argmax{cMj (ωM

j ) − h j (ω
M
j ) | j = 1, . . . , n}. If cMk (ωM

k ) − hk(ωM
k ) > 0, then we see

from Proposition 2.1 that ωM
k lies in the relative interior of [sk, tk]. According to step 2◦, the

rectangleM is divided by cutting the interval [sk , tk] atωM
k . However, if cMk (ωM

k )−hk(ωM
k ) ≤

0, then [sk, tk] cannot be cut at ωM
k because ωM

k /∈ (sk, tk). In that case, the rectangle M
contains no feasible solution better than ωM . In fact, we have

cMj (ωM
j ) − h j (ω

M
j ) ≤ cMk (ωM

k ) − hk(ω
M
k ) ≤ 0, j = 1, . . . , n,

which implies that

f (ωM ) = g(ωM ) −
n∑

j=1

h j (ω
M
j ) ≤ g(ωM ) −

n∑

j=1

cMj (ωM
j ) = f M (ωM ).

Even if D ∩ M 
= ∅, the following chain of inequalities holds:

f (ωM ) ≤ f M (ωM ) ≤ f M (ωM ) ≤ f (x), ∀x ∈ D ∩ M .

We can therefore remove M from further consideration. In either case, ωM is a feasible
solution of (2), and so the incumbent x∗ can be updated with ωM if f (ωM ) < f (x∗).

3.2 Revised rectangular algorithm

The revised rectangular algorithm we propose can be summarized as follows.

123



192 Journal of Global Optimization (2022) 83:187–200

As for the rule of selecting M from the listL , which is not specified in the branching process
of this description, we can adopt any one of the rules commonly used in ordinary branch-
and-bound algorithms, e.g., the best-bound rule that selects the M with the smallest βM , the
depth-first rule that selects the last generated M , and so forth. If the algorithm terminates,
then x∗ is output as an ε-optimal solution of the problem (2), which satisfies

f (x∗) − f (x) ≤ ε, ∀x ∈ D.

The idea of removing constraints to the rectangle M from the relaxation is also adopted
in Soland [11] for separable concave minimization. If the convex function g is absent from
the objective function, (R) is a linear program and some vertex of the feasible set D provides
an optimal solution. Soland has exploited the finiteness of the vertices to show the finite
convergence of his rectangular algorithm. However, once g exists as a nonlinear function,
there is no guarantee that the optimal solution ωM of (R) lies on a vertex of D. In general,
when the tolerance ε is set to zero, the algorithm does not terminate and generates an infinite
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sequence of nested rectangles inL . Let us observe the behavior of this sequence in the next
section, and analyze the convergence of revised_rectangular.

4 Convergence of the revised rectangular algorithm

Suppose that the algorithm revised_rectangular generates a sequence of nested rectangles:

M1 ⊃ M2 ⊃ · · · ⊃ Mi ⊃ · · · . (5)

To simplify notation, we omit ‘M’ from the superscript ‘Mi ’ such asωMi

j . Since the sequence

(5) is infinite, max{cij (ωi
j ) − h j (ω

i
j ) | j = 1, . . . , n} mast be positive for every i . The

rectangle Mi is divided by cutting some interval [sik, t ik] at its interior point ωi
k into Mi− and

Mi+, either of which is Mi+1. There are only n candidates for the index k, and so at least
one of them, say 1 without loss of generality, is chosen infinitely many times in the course
of generating (5). Let K be the subsequence of {1, 2, . . . } such that 1 ∈ argmax{cij (ωi

j ) −
h j (ω

i
j ) | j = 1, . . . , n} for every i ∈ K .

Lemma 4.1 The sequences {si1 | i ∈ K } and {t i1 | i ∈ K } converge to some s01 and t01 ,
respectively, either of which is the limit of each convergent subsequence of {ωi

1 | i ∈ K }.
Proof Since {si1 | i ∈ K } is monotonically nondecreasing and bounded from above by t11 , it
is a convergent sequence and has the limit s01 . Similarly, {t i1 | i ∈ K } has the limit t01 . For
simplicity, renumber the indices in K so that i = 1, 2, . . . . Then ωi

1 coincides with either
si+1
1 or t i+1

1 . Since si+1
1 → s01 and t i+1

1 → t01 as i → ∞, each convergent subsequence of
{ωi

1 | i ∈ K } has the limit in {s01 , t01 }. �

Under the ω-subdivision rule, while si1 < t i1 holds for every i , we might have s01 = t01 . In

that case, {ωi
1 | i ∈ K } also converges to ω0

1 = s01 = t01 , and y = ci1(x) tends to a tangent line
of the graph {(x, y) | y = h1(x)} at

(
ω0
1, h1(ω

0
1)

)
. To see this, let λi = (

ω0
1 − si1

)
/
(
t i1 − si1

)

for each i ∈ K . Then we have

ci1(x) =
(

(1 − λi )
h1(t i1) − h1(ω0

1)

t i1 − ω0
1

+ λi
h1(ω0

1) − h1(si1)

ω0
1 − si1

)

(x − si1) + h1(s
i
1).

Since λi ∈ (0, 1) for every i ∈ K , we can assume λi → λ0 ∈ [0, 1] as i ∈ K → ∞,
by passing to a subsequence if necessary. Therefore, the sequence {ci1 | i ∈ K } converges
pointwise on R to

c01(x) = (
(1 − λ0)h′+(ω0

1) + λ0h′−(ω0
1)

)
(x − ω0

1) + h1(ω
0
1),

where h′+ and h′− are the right and left derivative functions of h1. The subdifferential of h1
at ω0

1 is given by [h′−(ω0
1), h

′+(ω0
1)], to which the coefficient

(
(1 − λ0)h′−(ω0

1) + λ0h′+(ω0
1)

)

of c01 belongs.

Lemma 4.2 The difference ci1(ω
i
1) − h1(ωi

1) vanishes as i ∈ K → ∞.

Proof Wemay assume ωi
1 − si1 → 0 as i ∈ K → ∞. Even assuming ωi

1 − t i1 → 0, the result
is the same. If s01 < t01 , then we have

ci1(ω
i
1) − h1(ω

i
1) = h1(t i1) − h1(si1)

t i1 − si1
(ωi

1 − si1) +
(
h1(s

i
1) − h1(ω

i
1)

)
→ 0, as i ∈ K → ∞.
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If s01 = t01 , then {ci1 | i ∈ K } converges to c01 pointwise, as seen above, and again we have
ci1(ω

i
1) − h1(ωi

1) → 0 as i ∈ K → ∞. �


Now, we are ready to prove the convergence of revised_rectangular.

Theorem 4.3 Concerning the convergence of the algorithm revised_rectangular, the follow-
ing results hold:

(a) If ε > 0, then revised_rectangular terminates in a finite number of iterations and returns
an ε-optimal solution x∗ of (2).

(b) If ε = 0 and revised_rectangular terminates, then x∗ is an optimal solution of (2).
(c) Even if revised_rectangular does not terminate, if the best-bound rule is applied to the

branching process, then every accumulation point of the sequence {ωi } is an optimal
solution of (2).

Proof Since (b) is obvious, let us prove (a) and (c).
(a) Assume that revised_rectangular does not terminate and generates the sequence of
nested rectangles (5). By passing to a subsequence of K , we can assume that {ωi | i ∈ K }
converges to some ω0 ∈ D, and so cij (ω

i
j )− h j (ω

i
j ) → δ j ∈ R for every j , as i ∈ K → ∞.

Then we have

α − β i ≤ f (ωi ) − f i (ωi ) =
n∑

j=1

(
cij (ω

i
j ) − h j (ω

i
j )

)
→

n∑

j=1

δ j , as i ∈ K → ∞.

However, for each i ∈ K , we have

ci1(ω
i
1) − h1(ω

i
1) ≥ cij (ω

i
j ) − h j (ω

i
j ), j = 1, . . . , n,

which implies δ j ≤ 0 for every j by Lemma 4.2, and hence
∑n

j=1 δ j ≤ 0. This is a
contradiction because the list L should be empty after finitely many iterations, and the
algorithm should terminate.
(c) Let x ∈ D be any feasible solution of (2). Also let M denote the rectangle to which x
belongs when Mi is selected in the branching process according to the best-bound rule. Then
we have the following for each i ∈ K :

f (x) ≥ βM ≥ β i = f i (ωi ).

Since f i (ωi ) → f (ω0) − ∑n
j=1 δ j as i ∈ K → ∞, we have

f (x) ≥ f (ω0) −
n∑

j=1

δ j ≥ f (ω0),

by noting
∑n

j=1 δ j ≤ 0. Thus, ω0 is an optimal solution by the arbitrariness of x ∈ D. �


5 Computational experiments

So far, we have assumed that the objective function f involves n univariate functions h j ’s,
but in fact some of them can be missing. For example, if f (x) = g(x) − ∑p

j=1 h j (x j ) for
p ≤ n − 1, we only need to linearize p strictly convex functions, and obtain a lower bound
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when s j ≤ x j ≤ t j , j = 1, . . . , p, from a convex minimization problem:
∣∣∣∣∣∣∣

minimize f M (x) = g(x) −
p∑

j=1

cMj (x j )

subject to x ∈ D, s j ≤ x j ≤ t j , j = 1, . . . , p,

where cMj is defined in the same way as in (3). This relaxation corresponds to (R), and if
s j ≤ x j ≤ t j , j = 1, . . . , p, are dropped from the constraint, it corresponds to our proposed
relaxation (R). In the branching process, we can subdivide the rectangle M = ∏p

j=1[s j , t j ]
in the p-dimensional space, instead of the n-dimensional whole space. Therefore, if p is
small, even a large-scale problem might be solved in a realistic computational time.

To confirm the above, we randomly generated quadratic optimization problems of the
following form, and solved them using the algorithm revised_rectangular:

∣∣∣∣∣
minimization f (x) = 1

2
xTQx + θcTx

subject to Ax ≤ e, x ≥ 0,
(6)

where θ is a positive parameter, and e ∈ R
m is the all-ones vector. All entries of the last row

of A ∈ R
m×n were set to 1/n to make the feasible set bounded. The remaining components

of A were randomly generated in the interval [−0.5, 1.0] so that the percentages of zeros
and negative numbers were about 20% and 10%, respectively. As regard to Q ∈ R

n×n , the
tridiagonal components of the pth principal submatrix were random numbers in [−1.0, 1.0],
and the other components were all set to zero. Also the components of c ∈ R

n were random
numbers in [−1.0, 1.0]. The DC representation of f was given as follows:

g(x) = f (x) + h(x), h(x) = 1

2

p∑

i=1

p∑

j=1

|qi j |x2i ,

where qi j is the (i, j)-component of Q. We also solved the following concave minimization
problem derived from (6):

∣∣∣∣
minimization −h(x) + θcTx
subject to Ax ≤ e, x ≥ 0.

(7)

With slight modification to solve (6) and (7), we coded revised_rectangular in GNU
Octave 4.0.0 [5], a numerical computing environment, and tested it on one core of Intel
Core i7 (3.70GHz). As the procedure for solving the convex relaxation, we used the Frank-
Wolfe algorithm, which was also coded from scratch in Octave. In the branching process, we
adopted the depth-first rule, and in the bounding process, we replaced the pruning operation
P ← {M ∈ P ∪ T | α − βM > ε} with

P ← {M ∈ P ∪ T | α − βM > ε|α|},
where ε was set to 10−5, in order to prevent the convergence from being affected by the
magnitude of the optimal value. For the purpose of comparison, we also coded the usual
rectangular algorithm, which uses (R) as the convex relaxation, and refer to this code as
usual_rectangular. It should be noted that usual_rectangular behaves exactly the same way
as the standard algorithm in textbooks [9,10,15] for separable concaveminimization problems
like (7). Using these two program codes, we solved ten instances of (6) and (7) for each set
of parameters m, n, p, θ , and measured their average performances.
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Fig. 1 Number of solved relaxations when (m, n, θ) = (20, 100, 5.0)

Fig. 2 CPU time (in seconds) when (m, n, θ) = (20, 100, 5.0)
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Fig. 3 Number of solved relaxations when (m, n, p) = (20, 100, 50)

Fig. 4 CPU time (in seconds) when (m, n, p) = (20, 100, 50)
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5.1 Numerical results

Figure 1 shows the change in the average number of convex relaxations solved in each code
to process one instance when (m, n, θ) = (20, 100, 5.0), and the number p of nonlinear
variables was increased by 10 from 20 to 80. The solid lines are the results for (6), and
the dashed lines are the results for (7). There is little difference in the behavior between
revised_rectangular and usual_rectangular for (6), and in both codes the number of solved
relaxations increases exponentiallywith respect to p. Figure 2 shows the change in the average
CPU time (in seconds) required by each code under the same conditions. We can see from
this figure that revised_rectangular is fairly improved over usual_rectangular in terms of
time efficiency. This indicates that the Frank-Wolfe algorithmwas successfully warm-started
as intended in Section 3.1. Also, comparing the solid and dashed lines, we see that (6) can
be solved in two or three times the computational time taken to solve a separable concave
minimization problem of the same scale using the standard algorithm. Figures 3 and 4 show
the average behavior of both codes when p was fixed at 50 and the weight θ of the linear
term in the objective function was increased from 1.0 to 10.0. Again, there is no difference
in the number of relaxations solved in both codes for (6), but the CPU time tends to be less
for revised_rectangular than for usual_rectangular, especially when θ is large.

The numerical results on larger-scale instances of (6) are summarized in Table 1, where
the column labeled ‘#’ lists the average number of solved relaxations and the column labeled
’time’ the average CPU time (in seconds) when (m, n, p) ranged up to (60, 200, 100)
with θ fixed at 5.0. Values in parentheses represent the standard deviation. As the prob-
lem size increases, the number of relaxations needed for revised_rectangular increases
slightly faster than for usual_rectangular. However, for any size, revised_rectangular
requires only about half the CPU time taken by usual_rectangular, and solves an instance of
(m, n, p) = (60, 200, 100) in less than ten minutes on average. Although this problem size
might not be so large for DCA and heuristics, the output solution of revised_rectangular is
assured with any desired accuracy, which would make it a promising algorithm for applica-
tions demanding rigorous accuracy.

5.2 Comparison with a general global optimization algorithm

Lastly, let us discuss a little about the comparison of revised_rectangular with other global
optimization algorithms. To our knowledge, with the exception of revised_rectangular
and usual_rectangular, no algorithm has yet been proposed aimed at globally optimiz-
ing DC functions with a separable subtrahend. For this reason, we tried to compare
revised_rectangularwith a global optimization algorithm for general DC optimization prob-
lems. Among such algorithms, typical ones that often appear in textbooks are the conical
algorithm and the simplicial algorithm, the latter of which we chose to implement in Octave.

The simplicial algorithm first proposed in [8] is a kind of branch-and-bound algorithm,
which performs branching by subdividing a simplex enclosing the feasible set D into sub-
simplices. In contrast to our approach, the minuend term g of the objective function f is
linearized and the resulting concave underestimator is used to obtain a lower bound for f
over each subsimplex. The convergence is guaranteed by any exhaustive subdivision rule,
e.g., bisection which we adopted. In addition to relaxing the tolerance ε for pruning to 10−2,
we also set each subsimplex to be pruned if its longest edge is less than 10% of the initial
simplex. Despite those loose settings, the performance of the simplicial algorithm for prob-
lem (6) was considerably poor, and it could only solve small instances involving up to four
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Table 1 Comparison between revised_rectangular and usual_rectangular when θ = 5.0

m × n p = 0.3n p = 0.4n p = 0.5n

# Time # Time # Time

40 × 100 Revised 329.6 0.500 1019 1.600 7854 14.27

(192.9) (0.500) (1320) (1.600) (1.072 × 104) (20.46)

Usual 318.6 1.000 945.8 3.500 7169.0 33.93

(202.2) (0.633) (1207) (5.035) (9802) (54.56)

40 × 150 Revised 358.8 0.600 2001 2.900 1.323 × 104 36.40

(259.6) (0.490) (1989) (3.618) (1.721 × 104) (65.43)

Usual 353.2 1.400 1689 8.200 9329 69.19

(244.7) (0.917) (1480) (7.972) (1.086 × 104) (98.00)

60 × 150 Revised 4317 12.50 5586 11.40 3.508 × 104 179.6

(9570) (32.52) (5413) (15.61) (3.979 × 104) (305.3)

Usual 3891 29.50 4648 33.20 2.636 × 104 307.5

(8965) (72.99) (4347) (35.97) (2.944 × 104) (418.4)

60 × 200 Revised 1194 2.900 1.655 × 104 54.61 8.043 × 104 544.92

(760.5) (1.700) (1.441 × 104) (67.74) (6.903 × 104) (597.4)

Usual 1279 9.600 1.249 × 104 153.8 4.917 × 104 863.9

(821.1) (5.783) (1.208 × 104) (194.2) (4.053 × 104) (827.9)

Table 2 Comparison with the simplicial algorithm when θ = 5.0

rmm × n p = 2 p = 3 p = 4

# Time # Time # Time

Revised 0.600 0.003 0.800 0.004 2.800 0.005

(1.600) (0.002) (3.816) (0.002) (5.936) (0.002)

10 × 25 Usual 0.600 0.003 1.400 0.004 2.800 0.006

(1.281) (0.002) (3.105) (0.002) (3.816) (0.003)

Simplicial 1640 0.783 5.593 × 104 25.27 1.583 × 106 704.5

(1939) (0.825) (4.546 × 104) (19.00) (1.231 × 106) (514.0)

nonlinear variables. As shown in Table 2, both revised_rectangular and usual_rectangular
are incomparably superior to the simplicial algorithm in average performance, even though
their settings were the same as before. However, the performance of the simplicial algorithm
is expected to improve by strengthening the lower bound. In that case, the utility of the
simplicial algorithm would be significantly enhanced because it does not require any extra
structure for the objective function. Next time, we will report on a revision to the simplicial
algorithm elsewhere.
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