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Abstract. In this note we study multiple-ratio fractional 0–1 programs, a broad class of NP-hard

combinatorial optimization problems. In particular, under some relatively mild assumptions we

provide a complete characterization of the conditions, which ensure that a single-ratio function is

submodular. Then we illustrate our theoretical results with the assortment optimization and facility

location problems, and discuss practical situations that guarantee submodularity in the considered

application settings. In such cases, near-optimal solutions for multiple-ratio fractional 0–1 programs

can be found via simple greedy algorithms.

Keywords Fractional 0–1 programming, hyperbolic 0–1 programming, multiple ratios, single ratio,

submodularity, assortment optimization, facility location, greedy algorithm.

1. Introduction

We consider a multiple-ratio fractional 0–1 program given by:

max
x∈F

∑

k∈M

∑

i∈N akixi

bk0 +
∑

i∈N bkixi
, (1)

where M = {1, . . . ,m}, N = {1, . . . , n} and F := {x ∈ {0, 1}n : Dx ≤ d} for given D ∈ R
q×n and

d ∈ R
q. Problem (1) is often referred to as a multiple-ratio hyperbolic 0–1 program. Problems of

the form (1) can also be viewed as a class of set-function optimization problems that seek a subset

S of N with its indicator variable 1S ∈ R
n, where the i-th element of 1S is 1 if and only if i ∈ S.

Throughout the paper, we make the following assumptions:

A1: The denominator is strictly positive for each ratio in (1), i.e., bk0 +
∑

i∈N bkixi > 0 for all

k ∈ M and all x ∈ F .

A2: aki ≥ 0, bk0 ≥ 0 and bki > 0 for all k ∈ M and i ∈ N .
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Assumption A1 is standard in fractional optimization [10, 11, 34]. In particular, it ensures that

the objective function is well defined. Assumption A2 is not too restrictive as it naturally holds

in many application settings, see examples in [11], including those considered in this note, see Sec-

tion 4. Finally, for our results developed in this note we also require an additional relatively mild

assumption on the structure of the feasible region, F , in (1); it is formalized in Section 2.

Applications of single- and multiple-ratio fractional 0–1 programs as in (1) appear in many

diverse areas. For example, Méndez-Dı́az et al. [35] discuss an assortment optimization problem

under mixed multinomial logit choice models (MMNL). Tawarmalani et al. [49] consider a facility

location problem, where a fixed number of facilities need to be located to service customers locations

with the objective of maximizing a market share. Arora et al. [2] study a class of set covering

problems in the context of airline crew scheduling that aim at covering all flights operated by an

airline company. Furthermore, many combinatorial optimization problems can be formulated in the

form (1) including the minimum fractional spanning tree problem [13, 50], the maximum mean-cut

problem [26, 42] and the maximum clique ratio problem [45]. More application examples can be

found in the studies by [8, 18, 14], the recent survey by Borrero et al. [11] and the references therein.

Generally speaking, problem (1) is NP-hard even in the case of a single ratio [24, 40]. Moreover,

this problem is even hard to approximate, see, e.g., [40]. Also, Rusmevichientong et al. [44] show

that for the unconstrained multi-ratio problem, there is no approximation algorithm with polyno-

mial running time that has an approximation factor better than O(1/m1−δ) for any δ > 0. Other

related theoretical computational results are discussed in [40, 41].

Exact solution methods for (1) encompass mixed-integer programming reformulations [10, 18, 34],

branch and bound algorithms [49], and other enumerative methods [11, 22, 23]. However, due to

NP-hardness of (1), these methods do not scale well when the size of the problem increases.

Motivated by these computational complexity considerations, a number of studies rely on approx-

imation schemes and heuristics for solving (1). Rusmevichientong et al. [43], Mittal and Schulz

[36] and Désir et al. [16] all propose approximation algorithms for assortment optimization under

the MMNL model when the number of customer segments, m, is fixed. Amiri et al. [1] develop

a heuristic algorithm based on Lagrangian relaxation in the context of stochastic service systems.

Prokopyev et al. [41] present a GRASP-based (Greedy Randomized Adaptive Search) heuristic for

solving the cardinality constrained problems. Finally, simple greedy algorithms are also used in the

literature [19, 28]. However, it is often not well understood when such algorithms perform well.

Contributions and outline. The remainder of the note is organized as follows. In Section 2,

we overview some necessary preliminaries and formulate our model (1) in terms of set functions.
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In Section 3, we provide the main result of the note that characterizes the submodularity of a

single ratio. Submodularity is often a key property for devising approximation algorithms [20, 38]. If

the objective function can be identified as a submodular function, then simple greedy algorithms are

capable of delivering high-quality solutions. In fact, it is possible to obtain (1−e−1)-approximations

under a variety of feasible regions – independently of the number of the ratios, m, involved–, thus

improving over existing approximation methods for (1). We also discuss the connections between

submodularity and monotonicity in the context of fractional 0–1 optimization.

In Section 4, we consider our theoretical results in the context of two applications – the assortment

optimization and the p-choice facility location problems. For the assortment optimization problem,

our results suggest that submodularity is linked to a phenomenon known as cannibalization [37],

and naturally arises in several important scenarios. The results can also be applied in the case

when there is a fixed cost associated with offering a product in the assortment [4, 29], which arises,

for example, in online advertisement with costs-per-impression. For the p-choice facility location

problem [49], we show how to reformulate the original problem in a desirable form that can be then

exploited to benefit from the submodularity property. Finally, we conclude the note in Section 5.

2. Preliminaries

Notation and additional assumption.Let ak = (aki)i∈N and bk = (bki)i∈N∪{0} for all k ∈ M ,

and for given ak ∈ R
n and bk ∈ R

n+1, define

h(x; ak, bk) :=

∑

i∈N akixi

bk0 +
∑

i∈N bkixi
.

Then equation (1) can be rewritten as

max
x∈F

∑

k∈M

h(x; ak, bk). (2)

This form appears in many applications such as the retail assortment and the p-choice facility

location problems. Note that for each x ∈ {0, 1}n, there is a unique set S = {i ∈ N : xi = 1} ⊆ N ,

and conversely, each S ⊆ N corresponds to an indicator vector 1S ∈ {0, 1}n. Thus, we can rewrite

h(x; ak, bk) as a set function

h(S; ak, bk) := h(1S ; a
k, bk),

and regard F as the domain of sets, i.e., F ⊆ 2N . Thereafter, we may use the vector form and the

set form of (2) interchangeably for convenience.

We also need the following additional assumption:

A3: F is downward closed, i.e., if S ∈ F then T ∈ F for all T ⊆ S.



4

We note that many types of feasible regions considered in the literature, such as F = 2N (uncon-

strained problem), F = {S ⊆ N : |S| ≤ p} for some positive integer p (cardinality constraint) and

F =
{

S ⊆ N :
∑

i∈S wi ≤ c
}

for some weights w ≥ 0 and c ≥ 0 (capacity constraint) all satisfy

Assumption A3.

Submodularity and greedy algorithms. A set function f : 2N → R from the subsets of N

to the real numbers is submodular over F if it exhibits diminishing returns, i.e., f(S∪{i})−f(S) ≥

f(T ∪ {i}) − f(T ) for all S ⊆ T ⊆ N \ {i} such that T ∪ {i} ∈ F . Equivalently, function f is

submodular over F if

f(S ∪ {i, j}) − f(S ∪ {j}) ≤ f(S ∪ {i}) − f(S) (3)

for all S ⊆ N and i, j 6∈ S such that S ∪ {i, j} ∈ F .

The greedy algorithm, see its pseudo-code in Algorithm 1, is a popular choice for tackling mono-

tone submodular maximization problems because it is easy to implement and gives a constant-factor

approximation in many cases. When the feasible region is a matroid, the greedy algorithm pro-

duces a solution with 1/2 approximation factor; see [20]. When the feasible region is given by

a cardinality constraint, the approximation ratio can be improved to (1 − e−1); see [38]. Other

(1 − e−1)-approximation algorithms or near-optimal algorithms have also been provided for other

classes of feasible regions over the years [12, 27, 46], for example, when F is defined with a single

or multiple capacity constraints.

Algorithm 1 Greedy Algorithm for Submodular Function Maximization

Step 1. Set S := ∅.

Step 2. Set A := {ℓ ∈ N \ S : S ∪ {ℓ} ∈ F}.

Step 3. If A 6= ∅, set ℓ∗ ∈ argmaxℓ∈A f(S ∪ {ℓ}) and S := S ∪ {ℓ∗}. Go to Step 2.

Step 4. Return S.

3. Submodularity of a single ratio and its implications

3.1. A necessary and sufficient condition. In this section, we give a necessary and sufficient

condition for the submodularity of the function h(·), see Theorem 1. As a direct consequence, if

h(·; ak, bk) satisfies the condition of Theorem 1 for every k ∈ M , then it follows that the fractional

0–1 program (2) admits a constant-factor approximation algorithm. For convenience, we drop the

superscript k in ak and bk and use the notation h(·; a, b) throughout this section.

We first consider the case where b0 > 0. The key result of this note is as follows:
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Theorem 1. If b0 > 0, then function h(·; a, b) is submodular over F if and only if

h(S ∪ {i}; a, b) + h(S ∪ {j}; a, b) ≤
ai
bi

+
aj
bj

(4)

for all S ⊆ N , and i, j 6∈ S with i 6= j such that S ∪ {i} ∪ {j} ∈ F .

Proof. Recall that Assumption A2 holds. Thus, the right-hand side of (4) is well-defined. Let

S ⊆ N , let i, j 6∈ S with i 6= j satisfying S ∪ {i} ∪ {j} ∈ F , and define AS =
∑

j∈S aj and

BS = b0+
∑

j∈S bj. Observe that h(S; a, b) = AS/BS . From (3) we find that h(·; a, b) is submodular

if and only if

AS + ai + aj
BS + bi + bj

−
AS + aj
BS + bj

≤
AS + ai
BS + bi

−
AS

BS
.

Multiplying both sides by BS(BS + bi + bj), we get the equivalent condition

BS (AS + ai + aj)−BS

(

1 +
bi

BS + bj

)

(AS + aj)

≤ BS

(

1 +
bj

BS + bi

)

(AS + ai)− (BS + bi + bj)AS

⇔ aiBS − biBS
(AS + aj)

BS + bj
≤ aiBS − biAS − bjAS +

bj
BS + bi

BS(AS + ai)

⇔ aiBS − biBS
(AS + aj)

BS + bj
≤ aiBS − biAS +

bj
BS + bi

(

BSAS +BSai − (BS + bi)AS

)

⇔ aiBS − biBS
(AS + aj)

BS + bj
≤ aiBS − biAS +

bj
BS + bi

(aiBS − biAS).

Adding biAS + biBS
AS+aj
BS+bj

− aiBS to both sides, we find

biAS ≤ biBS
(AS + aj)

BS + bj
+

bj
BS + bi

(aiBS − biAS)

⇔ biAS (BS + bi) (BS + bj) ≤ biBS(AS + aj)(BS + bi) + bj(BS + bj)(aiBS − biAS)

⇔ biASB
2
S + biASBS(bi + bj) + b2i bjAS

≤ biASB
2
S + biajB

2
S +BSASb

2
i + ajb

2
iBS + aibjB

2
S + aib

2
jBS − bibjASBS − bib

2
jAS .

After rearranging and canceling out some terms in the above expression, we obtain:

2bibjASBS + b2i bjAS + bib
2
jAS ≤ B2

S(aibj + ajbi) + ajb
2
iBS + aib

2
jBS

⇔ bibjAS(bi + bj + 2BS) ≤ bibj
(

aj/bjB
2
S + aj/bjbiBS + ai/biB

2
S + ai/bibjBS

)

⇔ AS(bi + bj + 2BS) ≤ aj/bjB
2
S + aj/bjbiBS + ai/biB

2
S + ai/bibjBS

⇔ (BS + bi)(AS − aj/bjBS) + (BS + bj)(AS − ai/biBS) ≤ 0.
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Finally, dividing by (BS + bi)(BS + bj) and then adding ai/bi + aj/bj on both sides, we get

⇔

(

AS − aj/bjBS

BS + bj
+ aj/bj

)

+

(

AS − ai/biBS

BS + bi
+ ai/bi

)

≤ ai/bi + aj/bj

⇔
AS + aj
BS + bj

+
AS + ai
BS + bi

≤ ai/bi + aj/bj ,

which is precisely inequality (4). �

As we discuss next, submodularity is closely linked to monotonicity.

3.2. Monotonicity implies submodularity. The function h(·; a, b) ismonotone nondecreasing if

h(S; a, b) ≤ h(S ∪ {j}; a, b) (5)

for every set S and j 6∈ S such that S ∪ {j} ∈ F . Monotonicity is often a prerequisite for greedy

algorithms, see, e.g., [38], to guarantee a constant approximation factor. Also, it arises naturally

in many applications; see Section 4.1.1 for details. As we show next, monotonicity is a sufficient

condition for submodularity.

Proposition 1. If function h(·; a, b) is monotone nondecreasing, then h(·; a, b) is submodular.

Proof. Condition (5) is equivalent to
∑

i∈S ai

b0 +
∑

i∈S bi
≤

∑

i∈S ai + aj

b0 +
∑

i∈S bi + bj

⇔

(

1 +
bj

b0 +
∑

i∈S bi

)

∑

i∈S

ai ≤
∑

i∈S

ai + aj

⇔

∑

i∈S ai

b0 +
∑

i∈S bi
≤

aj
bj

⇔ h(S; a, b) ≤
aj
bj

(6)

for all S and j 6∈ S. Therefore, if i, j 6∈ S, then h(S ∪ {i}; a, b) ≤ ai/bi and h(S ∪ {j}; a, b) ≤ aj/bj ,

and inequality (4) follows. �

Inequality (6) needs to hold for every combination of set S and element i for the function to be

monotone. Thus, checking monotonicity can be done by verifying that

min
i∈N

ai
bi

≥ max
S∈F

h(S; a, b), (7)

and the optimization problem on the right-hand side of (7) can be solved using existing algorithms

for single-ratio fractional optimization; see [33, 42]. In fact, in some cases monotonicity can be

verified without solving an optimization problem.
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Corollary 1. Function h(·; a, b) is monotone nondecreasing (and submodular) over 2N if and only if

min
i∈N

ai
bi

≥ h(N ; a, b).

Proof. The forward direction follows directly from (7). For the backward direction, let a∗/b∗ =

mini∈N{ai/bi}, and then we find that

h(N ; a, b) ≤
a∗

b∗
⇔

∑

i∈N ai

b0 +
∑

i∈N bi
≤

a∗

b∗
⇔

∑

i∈N

(

ai
bi

−
a∗

b∗

)

bi ≤
a∗

b∗
b0.

Since ai/bi ≥ a∗/b∗, we find that
∑

i∈S(ai/bi−a∗/b∗)bi ≤ (a∗/b∗) b0 for any S ⊆ N , i.e., h(S; a, b) ≤

a∗/b∗ for any S ⊆ N . �

3.3. On non-monotone submodular functions. From Proposition 1, we know that monotonic-

ity implies submodularity. In general, as Example 1 below shows, the converse does not hold.

Example 1. Assume we have three variables, i.e., N = {1, 2, 3}, with the setting (a1, a2, a3) =

(3, 2, 1) and (b0, b1, b2, b3) = (2, 1, 1, 1). Then from Theorem 1 we can verify that h(·; a, b) is submod-

ular over 2N : since ai/bi + aj/bj ≥ 3 for any i 6= j and, for any S ⊆ N , h(S; a, b) ≤ h({1, 2}; a, b) =

5/4 ≤ 3/2, we find that inequality (4) holds. However, h({3}; a, b) = 1/3 < h({1, 2, 3}; a, b) =

6/5 < h({1, 2}; a, b) = 5/4, and monotonicity does not hold. �

Nonetheless, if h(·; a, b) is submodular, then it is in fact very close to a nondecreasing function as

shown in Proposition 2 below. In particular, if the decision variable with the smallest value ai/bi

is fixed, then the resulting function is monotone.

Assume for the remainder of this section, without loss of generality, that a1/b1 ≥ a2/b2 ≥ · · · ≥

an/bn. Define F1 := {S ∈ F : n ∈ S} and F2 := {S ∈ F : n /∈ S}.

Proposition 2. If h(·; a, b) is submodular over F , then the following holds:

(i) function h(·; a, b) is monotone nondecreasing over F1;

(ii) for any S ∈ F2 and any j 6= n such that S∪{j} ∈ F and S∪{n} ∈ F , we have h(S∪{j}; a, b) ≥

h(S; a, b).

Proof. We first prove h(·; a, b) is monotone nondecreasing over F1 by contradiction. Assume there

exists S and j 6= n such that n /∈ S and h(S∪{j, n}; a, b) < h(S∪{n}; a, b). Because h(S∪{j, n}; a, b)

is a convex combination of h(S ∪ {n}; a, b) and aj/bj , we have aj/bj < h(S ∪ {n}; a, b). Since

an/bn ≤ aj/bj , we find that an/bn < h(S ∪ {n}; a, b). Note that

h(S ∪ {n}; a, b) =

(

b0 +
∑

i∈S bi

b0 + bn +
∑

i∈S bi

)

h(S; a, b) +
bn

b0 + bn +
∑

i∈S bi

an
bn
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is a convex combination of h(S; a, b) and an/bn, and since an/bn < h(S ∪ {n}; a, b), it follows

that h(S ∪ {n}; a, b) < h(S; a, b). By submodularity, h(S ∪ {j, n}; a, b) − h(S ∪ {j}; a, b) ≤ h(S ∪

{n}; a, b) − h(S; a, b) < 0, which indicates that h(S ∪ {j, n}; a, b) < h(S ∪ {j}; a, b). Thus, an/bn <

h(S ∪ {j}; a, b). However, this implies h(S ∪ {j}; a, b) + h(S ∪ {n}; a, b) > aj/bj + an/bn, which is

a contradiction based on Theorem 1. Thus, (i) holds.

Next, we prove (ii) by contradiction. Assume there exists S and j 6= n such that n /∈ S and

h(S∪{j}; a, b) < h(S; a, b). Because h(S∪{j}; a, b) is the weighted average of aj/bj and h(S; a, b), we

have that aj/bj < h(S∪{j}; a, b) < h(S; a, b). Recall that an/bn ≤ aj/bj . Hence, an/bn < h(S; a, b),

which implies an/bn < h(S ∪ {n}; a, b) – using similar arguments as in the proof of (i). Hence,

h(S∪{j}; a, b)+h(S∪{n}; a, b) > aj/bj+an/bn, which contradicts the submodularity of h(·; a, b). �

Corollary 2. If either F = 2N or F = {S ⊆ N : |S| ≤ p} for any p ∈ {1, . . . , n − 1}, then

submodularity of h(·; a, b) over F implies that h(·; a, b) is monotone nondecreasing over F1 and F2.

Example 1 (Continued). Observe that h(·; a, b) is indeed monotone over F1, since h({3}; a, b) =

1/3, h({1, 3}; a, b) = 1, h({2, 3}; a, b) = 3/4 and h({1, 2, 3}; a, b) = 6/5. Similarly, we can verify

that h(·; a, b) is monotone over F2 since h(∅; a, b) = 0, h({1}; a, b) = 1, h({2}; a, b) = 2/3 and

h({1, 2}; a, b) = 5/4. �

3.4. On homogeneous fractional functions. In this section, we show that the assumption

b0 > 0 is indeed necessary in Theorem 1, as otherwise submodularity does not hold in most

practical situations. Proposition 3 below formalizes this statement.

Proposition 3. Assume b0 = 0. If there exists a feasible set S such that there are at least three

distinct values for ai/bi, i ∈ S, then h(·; a, b) is not submodular.

Proof. Assume without loss of generality that a1/b1 < a2/b2 < a3/b3. Then the following inequality

b1
b1 + b3

(

a3
b3

−
a1
b1

)

+
b2

b2 + b3

(

a3
b3

−
a2
b2

)

≥
b1

b1 + b2 + b3

(

a3
b3

−
a1
b1

)

+
b2

b1 + b2 + b3

(

a3
b3

−
a2
b2

)

.

holds since denominators are greater on the right-hand side. Subtracting 2 · (a3/b3) on both sides,

we find that

−
a1 + a3
b1 + b3

−
a2 + a3
b2 + b3

≥ −
a1 + a2 + a3
b1 + b2 + b3

−
a3
b3

,

which is equivalent to h({1, 3}; a, b) + h({2, 3}; a, b) ≤ h({1, 2, 3}; a, b) + h({3}; a, b), violating the

definition of submodularity. �
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4. Applications

In this section, we discuss the implications of our theoretical results in the context of the assort-

ment optimization and the p-choice facility location problems.

4.1. Assortment optimization problem. In the assortment optimization problem, a firm offers

a set of products to utility-maximizing customers. The goal of the firm is to choose an assortment of

products that maximizes its expected revenue. It is a core revenue management problem pervasive

in practice [47]. In this subsection, we mainly consider this problem under the mixed multinomial

logit model (MMNL); see, e.g., [9, 32].

Formally, let N be the set of products that can be offered to customers. Denote by ri the revenue

perceived by the firm if a customer chooses product i ∈ N . Under the MMNL model, each product

i ∈ N is associated with a random weight vki > 0, and the no-purchase option is associated with

weight vk0 > 0; these weights encode the relative preferences for the products by a customer of

type k ∈ M , i.e., set M describes market segments.

Given the preference weights vk, if assortment S ⊆ N is offered, then the probability that a

customer in k ∈ M chooses product i ∈ S is given by

q(i, S; vk) =
vki

vk0 +
∑

i∈S vki
.

The conditional expected revenue from offering assortment S ⊆ N is

r(S; vk) =
∑

i∈S

riq(i, S; v
k).

Taking the expectation over the random vector vk, we formulate the assortment optimization

problem under the MMNL model as

max
S∈F

Ev [r(S; v)] =
∑

k∈M

pkr(S; v
k), (8)

where pk is the probability of a customer to be in segment k and each realization of v can be

interpreted as the preferences associated with a given customer of customer segment. We assume

that the support of v is finite. Hence, (8) can be posed in the form of (1), where aki = pkrivki,

bki = vki and bk0 = vk0 for all k ∈ M and i ∈ N . Thus, aki/bki = pkri.

Finally, we note that pk ≥ 0 for each k ∈ M . Hence, for submodularity of the objective function

in (8) it is sufficient to consider the single-ratio functions r(·; vk), k ∈ M . Therefore, in our

discussion below when applying the results of Theorem 1 and Corollary 1 (with ratio ai/bi), the

multiplier pk can be dropped from consideration.
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4.1.1. Cannibalization and submodularity. Intuitively, in retail assortment problems, monotonicity

of the revenue function implies that there is limited cannibalization, i.e., the introduction of a new

product i (when feasible) always increases the expected revenue perceived by the firm – despite

that the revenue obtained from previously offered products in S might decrease slightly. To be

more specific, this limited cannibalization phenomenon arises in online advertising: the probability

that a given customer clicks on an ad is often quite low, and the advertiser usually profits from

offering more ads within the limited number of spots on the webpage.

Let rmin = mini∈N ri and rmax = maxi∈N ri. By Proposition 1 and Corollary 1, we obtain the

following results in terms of revenue functions immediately.

Corollary 3. If function r(·; v) is monotone nondecreasing, then r(·; v) is submodular.

Corollary 4. Function r(·; v) is monotone nondecreasing (and submodular) over 2N if and only if

rmin ≥ r(N ; v).

4.1.2. Revenue spread, no-purchase probability and submodularity. When the revenues r of all prod-

ucts are identical, assortment optimization problems are known to be submodular maximization

problems [4, 15]. Intuitively, one would expect that if the revenues are sufficiently close (but not

identical), then submodularity should be preserved. Proposition 4 formalizes this intuition: if the

gap between the largest and the smallest revenues is bounded above by the odds of no-purchase,

then the function is nondecreasing and submodular.

Proposition 4. If
rmax − rmin

rmin
≤ min

S∈F

1− q(S; v)

q(S; v)
, (9)

then r(·; v) is nondecreasing and submodular, where rmax and rmin are the largest and smallest

revenues, respectively, and q(S; v) =
∑

i∈S q(i, S; v) is the probability that an item is purchased.

Proof. Equation (9) can be rewritten as rmaxq(S; v) ≤ rmin for all S ∈ F . Since for any S and

i 6∈ S it follows that r(S; v) ≤ rmaxq(S; v) ≤ rmin ≤ ri, we find that (6) is satisfied and the function

r(·; v) is monotone submodular. �

Proposition 4 provides us with additional intuition on the industries in which the expected

revenues are submodular functions of the assortment offered. In the online advertisement, where

the revenues obtained from clicks are usually similar and the odds of no-purchase are high, we would

expected to obtain submodular revenue functions. In a monopoly, the firm offering the assortment

would have a large flexibility in setting prices (resulting in a large revenue spread) and the odds of

no-purchase would be low (due to the lack of competing alternatives), resulting in a revenue function
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that is not submodular. In contrast, in a competitive market, the odds of no-purchase would be

larger and firms have little or no control over prices (and if the values ri are interpreted as profits

instead of revenues, the spread would typically be low), resulting in submodular revenue functions.

From Proposition 4 we also gain insights on the differences between revenue management in the

airline and hospitality industries, two industries that are often treated as equivalent in the literature

[48]. In the hospitality industries, no-purchase odds can be high as shown by the relatively low

occupancy rates – 66.1% in the US [25] in 2018; in addition, revenue differences between products are

often due to ancillary charges (e.g., breakfast, non-refundable, long stay), which account for a small

portion of the baseline price for a room. In such circumstances we would expect revenue functions

to be submodular and simple greedy heuristics to perform well. In contrast, in the airline industries

no-purchase odds are often smaller – the load factor was 86.1% in the US in 2018 [21] –, and air

fares can change dramatically depending on the conditions. Thus, in the airline industry we would

expect to encounter non-submodular revenue functions, and simple heuristics may be inadequate.

4.1.3. On the greedy algorithm and revenue-ordered assortments. Revenue-ordered assortments are

optimal for unconstrained assortment optimization under the MNL model, and tend to perform well

in practice [47]. Berbeglia and Joret [7] study the revenue-ordered assortments under the general

discrete choice model and prove performance guarantees.

Proposition 5 (Berbeglia and Joret [7]). Revenue-ordered assortments are a 1

1+log
(

rmax

rmin

) -approxi-

mation for the unconstrained assortment optimization problem under the MMNL choice model,

where rmax and rmin are the largest and smallest revenues, respectively.

Thus, the quality of revenue-ordered assortments depend on the ratio rmax/rmin; in particular,

if rmax/rmin = 1, then the revenue-ordered assortments strategy delivers an optimal solution, and

the guarantee degrades as the value of the ratio increases.

From Proposition 4, we can also obtain guarantees depending on the ratio rmax/rmin. Define:

α(S) = max
k∈M

q(S; vk) = max
k∈M

∑

i∈S

q(i, S; vk) (10)

as the maximum probability that a customer from any segment purchases an item when assortment

S is offered.

Proposition 6. If F = {S : |S| ≤ p} for some positive integer p and rmax/rmin ≤ 1 + 1−α(S)
α(S) for

all S ∈ F , then Algorithm 1 delivers a (1 − 1/e)-optimal solution for the assortment optimization

problem under the MMNL choice model.
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Unlike Proposition 5, we impose a condition on the ratio rmax/rmin in Proposition 6; however,

if such condition is satisfied, then we obtain an approximation guarantee of (1 − 1/e) ≈ 0.63 for

the more general assortment optimization problem under a cardinality constraint.

Finally, we also point out that Rusmevichientong et al. [44] prove that if customers are value

conscious, i.e., v1 ≤ v2 ≤ . . . ≤ vn and r1v1 ≥ r2v2 ≥ . . . ≥ rnvn for all realizations of v, then the

revenue ordered assortments are optimal for the unconstrained and cardinality constrained cases. It

is easy to check that in this case the solutions obtained from the greedy algorithm correspond pre-

cisely with the revenue ordered assortments. Thus, Algorithm 1 delivers optimal solutions as well.

4.2. p-choice facility location problem. Facility location problems deal with deciding where to

locate facilities across a finite set of feasible points, taking into account the needs of customers to

be served in such a way that a given economic index is optimized [6]. Submodularity often arises

in facility location problems; see [3, 17, 30, 39]. In this subsection, we consider a particular class

of facility location problems with a fractional 0–1 objective function, referred to as the p-choice

facility location problem, which is considered in [49]. In the p-choice facility location problem, a

decision-maker has to decide where to locate p facilities in n possible locations to service m demand

points, in order to maximize the market share.

Formally, let dk > 0 be the demand at customer location k ∈ M = {1, . . . ,m}, and vki > 0 be

the utility of location i to customers at k. Let S ⊆ N := {1, . . . , n}, |S| = p, be the set of facilities

chosen by the decision-maker. It is assumed that the market share provided by facility j ∈ S with

respect to demand point k is given by:

dk
vkj

∑

i∈S vki
.

Let wi > 0 be some weight parameter that represents the importance of locating facility in location

i ∈ N . Then the problem of determining the set of facility locations S that maximizes the weighted

market share can be formulated as:

max
|S|=p

∑

i∈S

wi

∑

k∈M

dk
vki

∑

i∈S vki
,

which can be reorganized as

max
|S|=p

∑

k∈M

dk

∑

i∈S vkiwi
∑

i∈S vki
. (11)

Clearly, the model in (11) can be formulated as a fractional 0–1 program given by (1).

Note that from Proposition 3, the objective function in (11) is, in general, not submodular since

it is homogeneous. Nonetheless, exploiting the equality constraint, we can convert the objective
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function to a non-homogeneous one. Define vkmin = δ · mini∈N{vki} for some fixed δ ∈ (0, 1). For

any feasible solution S, where |S| = p, we also have that:

∑

i∈S

vki =
∑

i∈S

vkmin +
∑

i∈S

(vki − vkmin) = pvkmin +
∑

i∈S

(vki − vkmin).

As a result, (11) can be equivalently stated as:

max
|S|=p

∑

k∈M

dk

∑

i∈S vkiwi

pvkmin +
∑

i∈S(vki − vkmin)
, (12)

where vki − vkmin > 0 and vkmin > 0 for all i ∈ N and k ∈ M by our construction procedure.

Recall our discussion on the links between monotonicity and submodularity in Section 3.2. Ap-

plying inequality (7), we find that a given ratio k in the objective function of (12) is monotone

nondecreasing over set F := {S ⊆ N : |S| ≤ p} if

min
i∈N

vkiwi

vki − vkmin

≥ max
|S|≤p

∑

i∈S vkiwi

pvkmin +
∑

i∈S(vki − vkmin)
. (13)

Hence, if (13) holds for all ratios k ∈ M , then the feasibility set in (12) can be relaxed to |S| ≤ p.

Consequently, Assumption A3 is satisfied and (12) reduces to the maximization problem of a

submodular function by Proposition 1.

The right-hand side of (13) can be interpreted as the best average revenue weighted by market

share, or simply the best total revenue that can be obtained from customer segment k. The intuition

for (13) to hold in the p-choice facility location problem is rather similar to our observations in the

assortment optimization problem. Indeed, it is easy to verify, for example, that if all locations have

the same utilities and weights, i.e., vki = vk and wi = w for all i ∈ N and some vk and w, then

(13) holds. Moreover, from (13) we obtain the following sufficient condition.

Proposition 7. Let wmax and wmin be the maximum and minimum weights, and let vkmax be the

maximum utility associated with customer segment k. If

wmin

wmax
+ 1 ≥

vkmax

vkmin

, (14)

then the revenue of customer segment k is submodular.

Proof. Observe that since wi ≥ wmin and vki
vki−vk

min

≥ vkmax

vkmax−vk
min

, we find that

vkiwi

vki − vkmin

≥
vkmax

vkmax − vkmin

wmin.

Moreover, we also find that

max
|S|≤p

∑

i∈S vkiwi

pvkmin +
∑

i∈S(vki − vkmin)
≤ max

|S|≤p

wmax
∑

i∈S vki

pvkmin

≤
wmaxv

k
max

vkmin

.
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After rearranging terms corresponding to the sufficient condition

vkmax

vkmax − vkmin

wmin ≥
wmaxv

k
max

vkmin

,

we obtain precisely (14). �

Simply speaking, if the considered facility locations are sufficiently similar with respect to their

utilities, i.e., vkmax

vk
min

≈ 1, then ratios in (12) are submodular. Submodularity may be preserved for

larger spread of utilities, provided that the weights are sufficiently close. If all the considered facility

locations are sufficiently similar with respect to their utilities and weights, then (11) can be reduced

to maximizing a submodular function; consequently, high-quality solutions can be obtained by a

greedy approach, e.g., Algorithm 1.

4.3. On minimization problems. In this note we focus on identifying submodularity in maxi-

mization problems, in which case greedy algorithms can be used to obtain near optimal solutions.

However, submodularity can be exploited in minimization problems as well. Indeed, the epigraph

of a submodular set function is described by its Lovász extension [31], which can be used to im-

prove mixed-integer programming formulations via cutting planes. Moreover, even if a given ratio

is not submodular, the results presented in this paper can be used to decompose any ratio into

two components such that one of which is submodular (and strengthening can be done using the

submodular component); see, e.g., [5].

5. Conclusion

In this note we explore submodularity of the objective function for a broad class of fractional

0–1 programs with multiple-ratios. Under some mild assumptions, we derive the necessary and

sufficient condition for a single ratio of two linear functions to be submodular. Therefore, if the

derived condition holds for every considered single-ratio function, then simple greedy algorithms

can be used to deliver good quality solutions for multiple-ratio fractional 0–1 programs. Finally, we

also illustrate applicability of our results in the context of the assortment optimization and facility

location problems.
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