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Abstract
The primary goal of this paper is to study a nonlinear complementarity system (NCS, for
short) with a nonlinear and nonhomogeneous partial differential operator and mixed bound-
ary conditions, and a simultaneous distributed-boundary optimal control problem governed
by (NCS), respectively. First, we formulate the weak formulation of (NCS) to a mixed vari-
ational inequality with double obstacle constraints (MVI, for short), and prove the existence
and uniqueness of solution to (MVI). Then, a power penalty method is applied to (NCS) for
introducing an approximating mixed variational inequality without constraints (AMVI, for
short). After that, a convergence result that the unique solution of (MVI) can be approached
by the unique solution of (AMVI) when a penalty parameter tends to infinity, is established.
Moreover, we explore the solvability of the simultaneous distributed-boundary optimal con-
trol problem described by (MVI), and consider a family of approximating optimal control
problems driven by (AMVI). Finally, we provide a result on asymptotic behavior of optimal
controls, system states and minimal values to approximating optimal control problems.
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1 Introduction

Let � ⊂ R
N , N > 2, be a bounded domain such that its boundary � := ∂� is Lips-

chitz continuous and � is divided into three disjoint measurable parts �1, �2 and �3 with
meas(�1) > 0, i.e., � = �1 ∪ �2 ∪ �3 and �i ∩ � j = ∅ for i, j = 1, . . . , 3 with i �= j . It
should be pointed out that in our setting the parts �2 and �3 can be empty, i.e., �1 could be
the whole boundary �1 = �. Let 1 < p < +∞ and let ν be the outward unit normal at the
boundary �. Given functions a : � ×R

N → R
N , g : � ×R → R, f : � → R, b : �2 → R

and φ : �3 × R → R, this paper is devoted to investigate the following nonlinear comple-
mentarity system involving a nonlinear and nonhomogeneous partial differential operator
and mixed boundary conditions:

Problem 1 Find a pair of functions u : � → R and μ : � → R such that

Z(x) = − div a(x,∇u) + g(x, u) − f (x) + μ(x) in �, (1.1)

μ(x) ≥ 0, u(x) − u∗(x) ≤ 0, μ(x)
(
u(x) − u∗(x)

) = 0 in �, (1.2)

Z(x) ≥ 0, u∗(x) − u(x) ≤ 0, Z(x) (u∗(x) − u(x)) = 0 in �, (1.3)

u = 0 on �1, (1.4)

− ∂u

∂νa
= b(x) on �2, (1.5)

− ∂u

∂νa
∈ ∂φ(x, u(x)) on �3, (1.6)

where ∂φ(x, u(x)) is the convex subdifferential operator of the convex function s �→ φ(x, s),
and

∂u

∂νa
:= (a(x,∇u), ν)RN .

The distinguishing feature of a complementarity problem (CP, for short) is the set of com-
plementarity conditions. Each of these conditions requires that the product of two or more
nonnegative/nonpositive quantities should be zero (here, each quantity is either a decision
variable, or a function of the decision variables). Because, on the one hand, complementarity
conditions can model various complicated natural phenomena and engineering problems,
for example, mechanics problems with Signorini contact conditions and semipermeablity
problems; on the other hand, complementarity conditions are exactly formulated to the opti-
mality conditions for numerous linear/nonlinear optimization problems involving equalities
and inequalities constraints. Therefore, it has attracted more and more scholars’ attention to
the development of both theoretical and applications aspects of problems involving comple-
mentarity conditions. Amongst the results we mention: Bai-Migórski-Zeng [1] introduced
a new fuzzy vector complementarity problem and a generalized fuzzy vector variational
inequality, respectively, and then they applied the Knaster-Kuratowski-Mazurkiewicz princi-
ple to prove the existence of solutions to the fuzzy vector complementarity problem and fuzzy
vector variational inequality. Ramadurai-Ukkusuri-Zhao-Pang [35] formulated the dynamic
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equilibrium conditions for a single bottleneck model with heterogeneous commuters as a
linear complementarity problem, and presented theoretical proofs for solution existence and
uniqueness, as well as numerical results to the single bottleneck model. By introducing a new
concept of upper Z -mapping, which generalizes the well-known concept of the single-valued
Z -mapping and involves the diagonalmultivaluedmappings, Konnov [13] established several
existence and uniqueness results to a generalized mixed complementarity problem (MCP, for
short) with box constraints and multivalued cost mapping, and proposed an extension of the
Jacobi algorithm to (MCP). Peng-Liu [33] made use of the efficiency of the filter technique to
present a new derivative-free algorithm for a class of nonlinear complementarity problems,
and obtained a global convergence result under the monotonicity assumption. For more
details concerning complementarity problems and complementarity conditions, the reader is
welcome to consult Zeng-Yao [40], Huang-Fang [11], Huang-Yang-Chan [12], Schaible-Yao
[36], Tang-Huang [37], Konnov [14], Wang-Zhang [39], Liu-Migórski-Nguyen-Zeng [17],
and Zhou-Wang-Yang [47].

Apart from their obvious importance in the theory of partial differential equations, obstacle
problems have a natural theoretical interest in stochastic control. Additionally, they can be
found in physics, biology, and mathematical finance. One of the most well-known financial
challenges is establishing the arbitrage-free price of American-style options. Concerning
the mathematical analysis of obstacle problems, we refer to the recent contribution of Zeng-
Rǎdulescu-Winkert [46] considered a complicated elliptic differential inclusion problemwith
a double phase differential operator, an implicit obstacle condition, a nonlinear convection
and multivalued mixed boundary value conditions, they employed the Kakutani-Ky Fan
fixed point theorem for multivalued operators along with the theory of nonsmooth analysis
and variational methods for pseudomonotone operators to examine the nonemptiness and
compactness of solution set to the double phase implicit obstacle problem. Via using Kluge’s
fixed point theorem for the set-valued selectionmap and theMinty approach,Migórski-Khan-
Zeng [24] developed a general regularization framework to provide an existence result of an
identification inverse problem in a complicatedmixed elliptic boundary value problemwith p-
Laplace operator, an implicit obstacle, and a nonmonotone multivalued boundary condition.
Feng-Han-Huang [9] utilized a fully non-conforming virtual element method to a fourth-
order obstacle problem for the Kirchhoff-Love plate, and under certain solution regularity
assumptions, they also derived the optimal order error estimates in the discrete energy norm.
For further results concerning problems with obstacle effect, we refer to the works of Liu-
Yang-Zeng [16],Wang-Han-Cheng [38], Mermri-Han [21], Zeng-Bai-Gasiński-Winkert [42,
43], Peng [34], Liu-Motreanu-Zeng [20],Migórski-Khan-Zeng [23], andGasiński-Migórski-
Ochal [10].

Distributed and boundary optimal control of partial differential equations is an expanding
and vibrant branch of applied mathematics and modern control theory that has found numer-
ous applications. Because distributed and boundary optimal control problem can be a useful
and power mathematical tool to solve numerous comprehensive practical problems arising in
chemical reactions, signal process, and communications and transportation. Therefore, the
research of distributed optimal control problems has attracted more and more researchers’
attention. For the last more than fifty years, the development of both theoretical and applica-
tions aspects of problems involving distributed and boundary optimal control grew rapidly.
We mention some works on the topic of distributed and boundary optimal control prob-
lems. Under the �-convergence of objective functionals, the parabolic G-convergence of
operators in the state equations, and the Kuratowski convergence of control constraint sets,
Migórski [22] established a convergence result for an optimal control problem govern by a
nonlinear parabolic equation. By utilizing the notation of PG and G convergences as well as
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Filippov-Gronwall principle, Papageorgiou-Rădulescu-Repovš [32] considered a nonlinear
optimal control problem governed by a nonlinear evolution inclusion and depending on a
parameter λ, and established the Hadamard well-posedness and continuity properties of the
optimal multifunction. By exploring the relative compactness, continuity, and convergence
in the Kuratowski sense of solution mapping for a new kind of differential variational-
hemivariational inequalities, Zeng-Migórski-Liu [44] proved existence of a solution to the
optimal control problem driven by a differential variational-hemivariational inequality in
infinite Banach spaces, and studied sensitivity of a perturbed problem with multiparame-
ters corresponding to the differential variational-hemivariational inequality. For more details
concerning the research of distributed and boundary optimal control problems, the reader
is welcome to consult Denkowski-Migórski [6], Papageorgiou-Rǎdulescu-Repovš [30, 31],
Boukrouche-Tarzia [2–4],Migórski-Ochal [25], Zeng-Migórski-Khan [45], Li-Liu [15], Liu-
Li-Motreanu [18], and Papageorgiou [27–29].

Indeed, it should be mentioned that if �2 = �3 = ∅ (i.e., �1 = �) and a is independent of
the variable x , thenProblem1becomes the complementarity problemwithDirichlet boundary
condition which has been studied recently by Duan-Wang-Zhou [8]. More precisely, when a
satisfies the hypotheses H(a′) (which requires that a is strongly monotone, see Remark 15)
and inequality 2 ≤ N < p is satisfied, Duan-Wang-Zhou [8] obtained an existence theorem
and a convergence result (see Theorems 4.1 and 4.2 of Duan-Wang-Zhou [8]). However,
the strong monotonicity of a and inequality 2 ≤ N < p lead to inapplicability in a lot of
problems. Naturally, a question arises that how to drop these strict assumptions. Actually,
this is one of the motivation of this paper. The main contribution of this paper is fourfold.
The first aim of this paper is to prove the existence and uniqueness of weak solution to
Problem 1, i.e., the unique solvability of Problem 2 (see in Sect. 2), in which our method
is based on an existence result for mixed variational inequalities (see Theorem 3.2 of Liu-
Migórski-Zeng [19]). Under general assumptions (a is not strongly monotone with respect
to the second variable and 1 < p < +∞ is satisfied), the second goal is to employ a power
penalty method to introduce a family of approximating problems without constrains (see
Problem 9) and to establish a convergence result that the unique solution of Problem 2 can be
approached by the approximating mixed variational inequality, Problem 9, when a penalty
parameter tends to infinity. More particularly, our result, Corollary 14, extends Theorems
4.1 and 4.2 of Duan-Wang-Zhou [8]. Whereas, the third contribution of this paper is to
investigate a nonlinear simultaneous distributed-boundary optimal control problem governed
by Problem 2 and to deliver an existence theorem to the simultaneous distributed-boundary
optimal control problem. Moreover, we introduce an optimal control problem driven by the
approximating problem, Problem 9, rather than Problem 2. Spontaneously, it requires us to
answer directly the challenging question whether we can establish the asymptotic behavior of
optimal controls, system states andminimal values for the optimal control problem described
by Problem 9, when the penalty parameter tends to infinity. Therefore, our last intention is
to examine the significant result on asymptotic behavior of optimal controls, system states
and minimal values for optimal control problem driven by Problem 9.

The rest of the paper is organized as follows. Section 2 is devoted to recall some useful and
important preliminaries, and to derive the weak variational formulation of Problem 1, which
is exactly formulated by a mixed variational inequality with double obstacle constraints,
namely, Problem 2. In Sect. 3, we prove the unique solvability of Problem 2, and employ a
power penalty method to introduce a family of approximating problems without constraints
(see Problem 9). In the meanwhile, a significant convergence result that the unique solution
of Problem 9 converges strongly to the unique solution of Problem 2 when penalty parameter
λ tends to infinity. Finally, in Sect. 4, we introduce two nonlinear simultaneous distributed-
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boundary optimal control problems governed by Problem 2 and Problem 9, respectively,
prove the existence of solutions to these optimal control problems, and explore the asymptotic
behavior of the optimal controls, system states andminimal values to optimal control problem
driven by Problem 9.

2 Mathematical prerequisites

The section is devoted to review some basic notation, definitions and the necessary prelimi-
nary material, which will be used in next sections. More details can be found, for instance,
in [7, 26, 41].

Let (Y , ‖ · ‖Y ) be a Banach space and Y ∗ stand for the dual space to Y . We denote by
〈·, ·〉 the duality bracket for the pair of Y ∗ and Y . Everywhere below, the symbols

w−→
and → represent the weak and strong convergences, respectively. We say that a mapping
F : Y → Y ∗ is

(i) Monotone, if
〈Fu − Fv, u − v〉 ≥ 0 for all u, v ∈ Y .

(ii) Strictly monotone, if

〈Fu − Fv, u − v〉 > 0 for all u, v ∈ Y with u �= v.

(iii) Of type (S)+ (or F satisfies (S+)–property), if for any sequence {un} ⊂ Y with un
w−→ u

in Y as n → ∞ for some u ∈ Y and lim sup
n→∞

〈Fun, un − u〉 ≤ 0, then the sequence {un}
converges strongly to u in Y .

(iv) Coercive, if

lim‖v‖Y→∞
〈Fv, v〉
‖v‖Y = +∞.

Recall that a function ϕ : Y → R := R ∪ {+∞} is called to be proper, convex and lower
semicontinuous, if the following conditions are satisfied:

• D(ϕ) := {u ∈ Y | ϕ(u) < +∞} �= ∅;
• for any u, v ∈ Y and t ∈ (0, 1), it holds ϕ(tu + (1 − t)v) ≤ tϕ(u) + (1 − t)ϕ(v);
• lim infn→∞ ϕ(un) ≥ ϕ(u) where the sequence {un}n∈N ⊂ Y is such that un → u as

n → ∞ for some u ∈ Y .

Suppose that the map ϕ is convex. An element x∗ ∈ Y ∗ is called a subgradient of ϕ at u ∈ Y ,

if

〈x∗, v − u〉 ≤ ϕ(v) − ϕ(u) for all v ∈ Y . (2.1)

The set of all elements x∗ ∈ Y ∗ which satisfy (2.1) is called the convex subdifferential of ϕ

at u and is denoted by ∂ϕ(u).
Let � be a bounded domain in R

N and let 1 ≤ r < ∞. For any subset D of �, in what
follows, we denote by Lr (D) := Lr (D;R) the usual Lebesgue spaces endowed with the
norm ‖ · ‖r ,D , that is,

‖u‖r ,D :=
(∫

D
|u|r dx

) 1
r

for all u ∈ Lr (D).
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We set Lr (D)+ := {u ∈ Lr (D) | u(x) ≥ 0 for a.e. x ∈ D}. Moreover, W 1,r (�) stands for
the Sobolev space endowed with the norm ‖ · ‖1,r ,�, namely,

‖u‖1,r ,� := ‖u‖r ,� + ‖∇u‖r ,� for all u ∈ W 1,r (�).

For any 1 < r < ∞ we denote by r ′ the conjugate exponent of r , that is, 1
r + 1

r ′ = 1.
In the sequel, we denote by r∗ and r∗ the critical exponents to r in the domain and on the
boundary, respectively, given by

r∗ =
{

Nr
N−r if r < N ,

+∞ if r ≥ N ,
and r∗ =

{
(N−1)r
N−r if r < N ,

+∞ if r ≥ N ,
(2.2)

respectively.
Since Problem 1 contains mixed boundary value conditions, we are now in a position to

introduce a closed subspace V of W 1,p(�) defined by

V := {u ∈ W 1,p(�) | u = 0 on�1},
which is also a reflexive Banach space. For the sake of convenience, in what follows, we
denote by ‖ ·‖V the norm of V , that is, ‖u‖V = ‖u‖1,p,� for all u ∈ V , and by V ∗ we denote
the dual space of V . Besides, we consider a subset K of V defined by

K := {u ∈ V | u∗(x) ≤ u(x) ≤ u∗(x) in �}, (2.3)

where u∗, u∗ : � → R are two obstacles given in Problem 1.
We end the section to deliver the weak variational formulation of Problem 1. Assume that

(u, μ) are smooth functions such that (1.1)–(1.6) are satisfied. Let v ∈ K be arbitrary. We
multiply (1.1) by v − u and use Green’s formula to obtain

∫

�

Z(x)(v(x) − u(x)) dx =
∫

�

a(x,∇u) · ∇(v − u) dx −
∫

�

∂u

∂νa
(v(x) − u(x)) d�

+
∫

�

[g(x, u) − f (x) + μ(x)] (v(x) − u(x)) dx . (2.4)

Recall that v ∈ K (i.e., u∗ ≤ v ≤ u∗ for a.e. x ∈ �), it follows from (1.2) that
∫

�

μ(x)(v(x) − u(x)) dx =
∫

�

μ(x)(u∗(x) − u(x)) dx

+
∫

�

μ(x)(v(x) − u∗(x)) dx ≤ 0. (2.5)

Using (1.3), it yields
∫

�

Z(x)(v(x) − u(x)) dx =
∫

�

Z(x)(u∗(x) − u(x)) dx

+
∫

�

Z(x)(v(x) − u∗(x)) dx ≥ 0. (2.6)

Noting that
∫

�

∂u

∂νa
(v(x) − u(x)) d� =

∫

�1

∂u

∂νa
(v(x) − u(x)) d� +

∫

�2

∂u

∂νa
(v(x) − u(x)) d�

+
∫

�3

∂u

∂νa
(v(x) − u(x)) d�,
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utilizing boundary conditions (1.4)–(1.6) derives

−
∫

�

∂u

∂νa
(v(x) − u(x)) d�

≤
∫

�2

b(x)(v(x) − u(x)) d� +
∫

�3

φ(x, v(x)) d�

−
∫

�3

φ(x, u(x)) d�, (2.7)

where we have used the definition of convex subgradient. Inserting (2.5)–(2.7) into (2.4), we
have

∫

�

a(x,∇u) · ∇(v − u) dx +
∫

�

g(x, u(x))(v(x) − u(x)) dx

+
∫

�3

φ(x, v(x)) d� −
∫

�3

φ(x, u(x)) d�

≥
∫

�

f (x)(v(x) − u(x)) dx −
∫

�2

b(x)(v(x) − u(x)) d�.

We are now in a position to deliver the variational formulation of complementarity system,
Problem 1, as follows, which is exactly a mixed variational inequality with double obstacle
effect:

Problem 2 Find function u ∈ K such that
∫

�

a(x,∇u) · ∇(v − u) dx +
∫

�

g(x, u(x))(v(x) − u(x)) dx

+
∫

�3

φ(x, v(x)) d� −
∫

�3

φ(x, u(x)) d�

≥
∫

�

f (x)(v(x) − u(x)) dx −
∫

�2

b(x)(v(x) − u(x)) d� (2.8)

for all v ∈ K.

3 Existence and convergence to nonlinear complementarity problems

In this section, we are going to prove the existence and uniqueness of weak solution to
Problem 1, i.e., the unique solvability of Problem 2, and apply a power penalty approxima-
tion technique to introduce a family of approximating mixed variational inequalities without
constraints (i.e., without double obstacles effect). Also, we shall establish a strong conver-
gence result which reveals that the unique solution of Problem 2 can be approached by the
approximating mixed variational inequalities when the penalty parameter λ tends to infinity.

To this end, we first impose the following assumptions on the data of Problem 2.
Assume that ϑ ∈ C1(0,∞) is any function such that

0 < a1 ≤ ϑ ′(t)t
ϑ(t)

≤ a2 and a3t
p−1 ≤ ϑ(t) ≤ a4(t

q−1 + t p−1) for all t > 0 (3.1)

with some constants a1, a2, a3, a4 > 0 and 1 < q < p < +∞. In what follows, we assume
that the nonlinear and nonhomogeneous operator a : � × R

N → R
N satisfies the following

conditions:
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H(a): a : � × R
N → R

N is such that a(x, ξ) = a0 (x, |ξ |) ξ with a0 ∈ C(� × [0,+∞))

for all ξ ∈ R
N and with a0(x, t) > 0 for all x ∈ � and for all t > 0 and

(i) a0 ∈ C1(� × (0,+∞)), t �→ a0(x, t)t is strictly increasing on (0,+∞) with
limt→0+ a0(x, t)t → 0 for all x ∈ �, and

lim
t→0+

a′
0(x, t)t

a0(x, t)
= c > −1

for all x ∈ �;
(ii) There exists a constant a5 > 0 such that

|∇ξa(x, ξ)| ≤ a5
ϑ(|ξ |)

|ξ | for all x ∈ � and for all ξ ∈ R
N\{0};

(iii) For all x ∈ �, for every ξ ∈ R
N\{0} and for all y ∈ R

N , the following inequality holds

∇ξa(x, ξ)y · y ≥ ϑ(|ξ |)
|ξ | |y|2.

H(g): The function g : � × R → R is such that

(i) For all s ∈ R, the function x �→ g(x, s) is measurable in �;
(ii) For a.e. x ∈ �, the function s �→ g(x, s) is continuous and nondecreasing such that

|g(x, s)| ≤ αg(x) + βg|s|
p
q′
1

for all s ∈ R and a.e. x ∈ �, where βg > 0, αg ∈ Lq ′
1(�) and 1 < q1 < p∗ with p∗

being the critical exponent of p in the domain (see (2.2) with r = p);
(iii) There exist ag > 0 and bg ∈ L1(�) such that

g(x, s)s ≥ ag|s|ς + bg(x),

for all s ∈ R and for a.e. x ∈ �, where p ≤ ς < p∗.

H(φ): φ : �3 × R → R is such that

(i) For all s ∈ R, the function x �→ φ(x, s) is measurable on �3;
(ii) For a.e. x ∈ �3, s �→ φ(x, s) is convex and lower semicontinuous;
(iii) For each u ∈ L p∗(�3) the function x �→ φ(x, u(x)) belongs to L1(�3), where p∗ is the

critical exponent of p on the boundary (see (2.2) with r = p).

H(0): f ∈ L p′
(�), b ∈ L p′

(�2) and u∗, u∗ ∈ L1(�) are such that

u∗(x) ≤ 0 ≤ u∗(x) for a.e. x ∈ �.

Remark 3 It follows from hypothesis H(g)(ii) that the function s �→ g(x, s) is monotone,
i.e.,

(g(x, s1) − g(x, s2))(s1 − s2) ≥ 0 for all s1, s2 ∈ R and a.e. x ∈ �.

Let p ≤ ς < p∗ be such that ς ≤ p− p
q1

+1 for some p < q1 < p∗ and κ ∈ Lς ′
(�). Then,

the function

g(x, s) = |s|ς−2s + κ(x) for all s ∈ R and a.e. x ∈ �

satisfies H(g).
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Let 1 < δ ≤ p∗ and ω ∈ L∞+ (�3). Then, the function φ : �3 ×R → R reads assumptions
H(φ)

φ(x, s) :=
{

ω(x)|s| if |s| ≤ 1,
ω(x)|s|δ if |s| > 1,

for a.e.x ∈ �3.

In fact, there are a plenty of functions which satisfy hypotheses H(a). Here, we give
below several particular interesting examples of the function a, see Zeng-Liu-Migórski [41]
for more details.

Example 4 The following maps satisfy properties stated in hypothesis H(a), in which we
drop the dependence on x just for simplicity.

(i) Ifa(ξ) = |ξ |p−2ξ for all ξ ∈ R
N with1 < p < ∞, thenoperatoru(x) �→ div(a(∇u(x)))

is the well-known p-Laplacian differential operator, i.e.,

div(a(∇u(x))) = �pu(x) := div(|∇u(x)|p−2∇u(x))

for all u ∈ W 1,p(�).
(ii) If a(ξ) = |ξ |p−2ξ + |ξ |q−2ξ for all ξ ∈ R

N with 1 < q < p < ∞, then operator
u(x) �→ div(a(∇u(x))) is the (p, q)-Laplacian differential operator, namely,

div(a(∇u(x))) = �pu(x) + �qu(x)

for all u ∈ W 1,p(�).

(iii) If a(ξ) = (1 + |ξ |2) p−2
2 ξ for all ξ ∈ R

N with 1 < p < ∞, then operator u(x) �→
div(a(∇u(x))) is the generalized p-mean curvature differential operator, that is,

div(a(∇u(x))) = div
(
(1 + |∇u(x)|) p−2

2 ∇u(x)
)

for all u ∈ W 1,p(�).

(iv) If a(ξ) = |ξ |p−2
(
1 + 1

1+|ξ |p
)

ξ for all ξ ∈ R
N with 1 < p < ∞, then operator

u(x) �→ div(a(∇u(x))) corresponds the following differential operator, thus,

div(a(∇u(x))) = �pu(x) + div

( |∇u(x)|p−2∇u(x)

1 + |∇u(x)|p
)

for all u ∈ W 1,p(�).
(v) If a(ξ) = (|ξ |p−2 + ln(1 + |ξ |2)) ξ for all ξ ∈ R

N with 1 < p < ∞, then the operator
u(x) �→ div(a(∇u(x))) corresponds the following differential operator, i.e.,

div(a(∇u(x))) = �pu(x) + div
(
ln(1 + |∇u(x)|2)∇u(x)

)

for all u ∈ W 1,p(�).

We now recall the following crucial properties of the operator a, whose proof can be found
in [41, Lemma 3].

Lemma 5 If hypotheses H(a) are satisfied, then we have

(i) a ∈ C(�×R
N ,RN )∩C1

(
� × (RN \ {0}),RN

)
and for all x ∈ � the map ξ �→ a(x, ξ)

is continuous, strictly monotone, and so maximal monotone as well;
(ii) There exists a constant a6 > 0 such that

|a(x, ξ)| ≤ a6(1 + |ξ |p−1) for all ξ ∈ R
N and x ∈ �;
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(iii) It holds

a(x, ξ) · ξ ≥ a3
p − 1

|ξ |p for all x ∈ � and for all ξ ∈ R
N ,

where a3 is given in (3.1).

Furthermore, let us consider the nonlinear operator A : V → V ∗ defined by

〈Au, v〉 :=
∫

�

a(x,∇u) · ∇v dx (3.2)

for all u, v ∈ V .

Lemma 6 Assume that hypotheses H(a) are fulfilled. Then, A defined in (3.2) is continuous,
and bounded (i.e., A maps bounded subsets in V to bounded subsets in V ∗), strictly monotone
(hence maximal monotone too) and of type (S)+, i.e.,

ifun
w−→ u in V and lim supn→∞〈Aun, un − u〉 ≤ 0,

entail un → u in V .

The existence and uniqueness of solution to Problem 2 is stated by the following theorem.

Theorem 7 Assume that H(a), H(g), H(φ) and H(0) are satisfied. Then, Problem 2 has a
unique solution.

Proof Let us consider the functions G : V → R and ϕ : V → R defined by

〈G(u), v〉 :=
∫

�

g(x, u(x))v(x) dx, (3.3)

ϕ(u) :=
∫

�3

φ(x, u(x)) d� (3.4)

for all v, u ∈ V . Using the notation above, Problem 2 can be rewritten equivalently to the
following mixed variational inequality of first kind: find u ∈ K such that

〈Au + G(u) − f + b, v − u〉 + ϕ(v) − ϕ(u) ≥ 0 (3.5)

for all v ∈ K .
By the definition of ϕ and hypotheses H(φ), we can use a standard way to prove that

ϕ is a convex and l.s.c. function. From Lemma 6 and hypothesis H(g)(ii), we infer that
A + G : V → V ∗ is continuous and strictly monotone. Using condition H(g)(ii), one has

‖g(·, u)‖q ′
1

q ′
1,�

=
∫

�

|g(x, u(x))|q ′
1 dx

≤
∫

�

(
αg(x) + βg|u(x)|

p
q′
1

)q ′
1

dx

≤2q
′
1−1

∫

�

αg(x)
q ′
1 + β

q ′
1

g |u(x)|p dx

=2q
′
1−1

(
‖αg‖q

′
1

q ′
1,�

+ β
q ′
1

g ‖u‖p
p,�

)
,

where we have applied the elementary inequality (c + d)t ≤ 2t−1(ct + dt ) for all c, d ≥ 0
and t ≥ 1. The latter combined with Lemma 6 implies that A + G : V → V ∗ is a bounded
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mapping. Moreover, we assert that A + G : V → V ∗ is coercive. For any u ∈ V , owing to
0 ∈ K , we employing Lemma 5(iii) and hypothesis H(g)(iii) to find

〈Au + Gu, u〉 ≥ a3
p − 1

‖∇u‖p
p,� +

∫

�

ag|u(x)|ς + bg(x) dx

≥
{

a3
p−1‖∇u‖p

p,� + ag‖u‖p
p,� − ‖bg‖1,� if ς = p,

a3
p−1‖∇u‖p

p,� + ‖u‖p
p,� − ‖bg‖1,� − m0 if ς > p,

for somem0 > 0, where we have used Young inequality for the case ς > p. Hence, we have

lim
u∈K ,‖u‖V →+∞

〈Au + Gu, u〉
‖u‖V = +∞,

i.e., A + G : V → V ∗ is coercive.
Therefore, all conditions of Theorem 3.2 of Liu-Migórski-Zeng [19] are verified. Utilizing

this theorem, we conclude that Problem 2 has at least one solution. Remembering that A+G
is strictly monotone, we, however, can use a standard procedure to prove the uniqueness of
Problem 2. ��

In what follows, let δ ≥ 1, r = 1 + 1
δ
and s = δ + 1, and ε > 0 be fixed. This means

that 1
r + 1

s = 1. Also, let us introduce the functions ω : � × R → R and ω0 : � × R → R

defined by

ω(x, t) := |(t − u∗(x))−| p−1
p + (t − u∗(x))

p−1
p

+ and

ω0(x, t) := (t − u∗(x))− + (t − u∗(x))+

for all t ∈ R and a.e. x ∈ �, where the symbols (·)+ and (·)− are defined by

(t)+ := max{t, 0} and (t)− := min{t, 0} for all t ∈ R.

In the meantime, we consider the function θε : L1(�) → L p′
(�) given by

θε(u) = (|ω(·, u(·))| + ε)
1
δ χ(ω0(·, u(·))) − ε

1
δ (3.6)

for all u ∈ L1(�), here the function χ : R → R is the sign function, namely,

χ(t) :=
{
1 if t ≥ 0,
−1 otherwise.

The following lemma turns out that for each ε > 0 the function θε is well-defined,
continuous and monotone.

Lemma 8 Let u∗, u∗ ∈ L1(�) be such that u∗(x) ≤ 0 ≤ u∗(x) for a.e. x ∈ �, and ε be
arbitrary fixed. Then, θε given in (3.6) is well-defined, continuous andmonotone, and satisfies
the following equality

Ker(θε) = K , (3.7)

that is, θε(u) = 0 if and only if u ∈ K, where Ker(θε) stands for the kernel of θε .
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Proof For any u ∈ L1(�), we have

‖θε(u)‖p′
p′,� =

∫

�

(
(|ω(·, u(·))| + ε)

1
δ χ(ω(·, u(·))) − ε

1
δ

)p′
dx

≤ 2p
′−1

∫

�

(|ω(·, u(·))| + ε)
p′
δ + ε

p′
δ dx

≤ 2p
′−1ε

p′
δ |�| + 2p

′−1+ p′−1
δ

∫

�

(
|ω(·, u(·))|p′ + ε p′) 1

δ
dx

≤ 2p
′−1ε

p′
δ |�| + 2p

′−1+ p′−1
δ

∫

�

[
2p

′−1 (|u(x) − u∗(x)| + |u(x) − u∗(x)|) + ε p′] 1
δ
dx

< +∞,

where the last inequality is obtained via using Young inequality for the case δ > 1 and |�|
stands for the Lebesgue measure of �. Therefore, θε is well-defined and bounded.

For any u, v ∈ L1(�), without any loss of generality, we may assume that

u(x) ≤ v(x) for a.e. x ∈ �.

Since the conclusion is still valid for the domain {x ∈ � | u(x) > v(x)}. Noting that

� := �1(u) ∪ �2(u) ∪ �3(u) with �i (u) ∩ � j (u) = ∅ for i, j = 1, 2, 3 with i �= j,

where �1(u), �2(u) and �3(u) are defined by

�1(u) := {x ∈ � | u(x) > u∗(x)},
�2(u) := {x ∈ � | u∗(x) ≤ u(x) ≤ u∗(x)},
�3(u) := {x ∈ � | u∗(x) > u(x)},

respectively. If x ∈ �1(u), then we have ω(x, u(x)) = (u(x) − u∗(x))
p−1
p ≤ (v(x) −

u∗(x))
p−1
p = ω(x, v(x)), χ(ω0(x, u(x))) = χ(ω0(x, v(x))) = 1 and

(
(|ω(·, u(x))| + ε)

1
δ χ(ω0(x, u(x))) − (|ω(·, v(x))| + ε)

1
δ χ(ω0(x, v(x)))

)
(u(x) − v(x))

=
((

(u(x) − u∗(x))
p−1
p + ε

) 1
δ −

(
(v(x) − u∗(x))

p−1
p + ε

) 1
δ

)

(u(x) − v(x))

≥ 0

for a.e. x ∈ �1(u). When x ∈ �2(u), then we have ω0(x, u(x)) = 0 and
(
(|ω(·, u(x))| + ε)

1
δ χ(ω0(x, u(x))) − (|ω(·, v(x))| + ε)

1
δ χ(ω0(x, v(x)))

)
(u(x) − v(x))

=

⎧
⎪⎪⎨

⎪⎪⎩

(
ε

1
δ − ε

1
δ

)
(u(x) − v(x)) = 0 if v(x) ≤ u∗(x)

(

ε
1
δ −

(
(v(x) − u∗(x))

p−1
p + ε

) 1
δ

)

(u(x) − v(x)) if v(x) > u∗(x)

≥ 0
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for a.e. x ∈ �2(u). While x ∈ �3(u), then we have ω(x, u(x)) = (u∗(x) − u(x))
p−1
p ,

χ(ω0(x, u(x))) = −1 and
(
(|ω(·, u(x))| + ε)

1
δ χ(ω0(x, u(x))) − (|ω(·, v(x))| + ε)

1
δ χ(ω0(x, v(x)))

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

−
(

(u∗(x) − u(x))
p−1
p + ε

) 1
δ +

(
(u∗(x) − v(x))

p−1
p + ε

) 1
δ

)

if v(x) < u∗(x),

−
(

(u∗(x) − u(x))
p−1
p + ε

) 1
δ − ε

1
δ if u∗(x) ≤ v(x) ≤ u∗(x),

(

−
(

(u∗(x) − u(x))
p−1
p + ε

) 1
δ −

(
(v(x) − u∗(x))

p−1
p + ε

) 1
δ

)

if v(x) > u∗(x).

Hence,
(
(|ω(·, u(x))| + ε)

1
δ χ(ω0(x, u(x))) − (|ω(·, v(x))| + ε)

1
δ χ(ω0(x, v(x)))

)
(u(x) − v(x)) ≥ 0

for a.e. x ∈ �. From the analysis above, it yields
∫

�

(θε(u) − θε(v)) (u(x) − v(x)) dx ≥ 0,

i.e., θε is monotone. Whereas the continuity of θε is a direct consequence of the continuity
of (·)+ and |(·)−|.

Letu ∈ K be arbitrary. Then,wehaveω(x, u(x)) = 0 andχ(ω0(x, u(x))) = 1 for a.e. x ∈
�. Hence, θε(u) = 0. Conversely, if θε(u) = 0, then (|ω(x, u(x))| + ε)

1
δ χ(ω0(x, u(x))) =

ε
1
δ for a.e. x ∈ �. This means that χ(ω0(x, u(x))) = 1 and ω(x, u(x)) = 0 for a.e. x ∈ �.

So, we have u∗(x) ≤ u(x) ≤ u∗(x) for all a.e. x ∈ �, thus, u ∈ K . ��
For any λ > 0, we introduce the following approximating problem involving the power

penalty function θε corresponding to Problem 2.

Problem 9 Find function uλ ∈ V such that
∫

�

a(x,∇uλ) · ∇(v − uλ) dx +
∫

�

(g(x, uλ(x)) + λθε(uλ(x))) (v(x) − uλ(x)) dx

+
∫

�3

φ(x, v(x)) d� −
∫

�3

φ(x, uλ(x)) d�

≥
∫

�

f (x)(v(x) − uλ(x)) dx −
∫

�2

b(x)(v(x) − uλ(x)) d�

for all v ∈ V .

We deliver the second result of this section by the following theorem which shows that
Problem 9 has unique solution uλ and uλ converges strongly to the unique solution u0 of
Problem 2 in V as λ → ∞.

Theorem 10 Assume that H(a), H(g), H(φ) and H(0) are satisfied. Then, we have

(i) For each λ > 0, Problem 9 has a unique solution uλ ∈ V .
(ii) Let sequence {λn} ⊂ (0,+∞) be such that λn → ∞ as n → ∞. Then the unique

solution of Problem 9 corresponding to λn converges strongly to the unique solution u0
of Problem 2 in V as n → ∞.
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Proof (i) The desired conclusion can be obtained directly by using Lemma 8 and Theorem 7.
(ii) Let sequence {λn} ⊂ (0,+∞) be such that λn → ∞ as n → ∞ and let un ∈ V be the
unique solution of Problem 9 corresponding to λn , i.e., for every n ∈ N, we have

∫

�

a(x,∇un) · ∇(v − un) dx +
∫

�

(g(x, un(x)) + λnθε(un(x))) (v(x) − un(x)) dx

+
∫

�3

φ(x, v(x)) d� −
∫

�3

φ(x, un(x)) d�

≥
∫

�

f (x)(v(x) − un(x)) dx −
∫

�2

b(x)(v(x) − un(x)) d� (3.8)

for all v ∈ V .
We claim that solution sequence {un} is bounded in V . Taking v = 0 into (3.8), we have

∫

�

a(x,∇un) · ∇un dx +
∫

�

g(x, un(x))un(x) dx

≤ λn

∫

�

θε(un(x))(−un(x)) dx +
∫

�3

φ(x, 0) d� −
∫

�3

φ(x, un(x)) d�

+
∫

�

f (x)un(x) dx −
∫

�2

b(x)un(x) d�. (3.9)

Recall that θε is monotone, θε(u) = 0 for all u ∈ K and 0 ∈ K , so, one has
∫

�

θε(un(x))(−un(x)) dx =
∫

�

(θε(un(x)) − θε(0)) (−un(x)) dx ≤ 0. (3.10)

Since ϕ defined in (3.4) is convex and l.s.c., so, from Brézis [5, Proposition 1.10], there are
two constants αϕ, βϕ ≥ 0 such that

ϕ(v) ≥ −αϕ‖v‖V − βϕ for all v ∈ V . (3.11)

Besides, by virtue of hypothesis H(g)(iii) and Lemma 5(iii), it yields

〈Aun + Gun, un〉 ≥
∫

�

a(x,∇un) · ∇un + g(x, un(x))un(x) dx

≥ a3
p − 1

‖∇un‖p
p,� +

∫

�

ag|un(x)|ς + bg(x) dx

≥
{

a3
p−1‖∇un‖p

p,� + ag‖un‖p
p,� − ‖bg‖1,� if ς = p,

a3
p−1‖∇un‖p

p,� + ‖un‖p
p,� − ‖bg‖1,� − m1 if ς > p,

(3.12)

for some m1 > 0, where we have used the Young inequality for the case ς > p. Inserting
(3.10), (3.11) and (3.12) into (3.9), we can use Hölder inequality to get

‖ f ‖p′,�‖un‖p,� + ‖b‖p′,�2‖un‖p,� +
∫

�3

φ(x, 0) d� + βϕ

≥
{

a3
p−1‖∇un‖p

p,� + ag‖un‖p
p,� − ‖bg‖1,� − αϕ‖un‖V if ς = p,

a3
p−1‖∇un‖p

p,� + ‖un‖p
p,� − ‖bg‖1,� − m1 − αϕ‖un‖V if ς > p.

(3.13)

This implies directly that solution sequence {un} is bounded in V . Passing to a subsequence
if necessary, we may assume that

un
w−→ u in Vasn → ∞ (3.14)
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for some u ∈ V .
We are going to show that u ∈ K . From (3.8), we have

∫

�

θε(un(x))(un(x) − v(x)) dx

≤ 1

λn

[ ∫

�

a(x,∇un) · ∇(v − un) dx +
∫

�

g(x, un(x))(v(x) − un(x)) dx

+
∫

�3

φ(x, v(x)) d� −
∫

�3

φ(x, un(x)) d� −
∫

�

f (x)(v(x) − un(x)) dx

+
∫

�2

b(x)(v(x) − un(x)) d�

]

≤ 1

λn
m2(v),

for somem2(v) > 0 which relies on v but independent of n (due to the boundedness of {un}).
Letting n → ∞ to the inequality above and applying Lebesgue dominated convergence
theorem, it gives

∫

�

θε(u(x))(u(x) − v(x)) dx = lim
n→∞

∫

�

θε(un(x))(un(x) − v(x)) dx ≤ 0,

where we have used the compactness of the embedding from V into L p(�). The arbitrariness
of v ∈ V deduces that θε(u) = 0. This combined with Lemma 8 implies that u ∈ K .

Moreover, we shall prove that un converges strongly to u in V . Inserting v = u into (3.8)
and using the fact that θε(u) = 0, it yields

∫

�

a(x,∇un) · ∇(un − u) dx

≤
∫

�

(g(x, un(x)) + λnθε(un(x))) (u(x) − un(x)) dx

+
∫

�3

φ(x, u(x)) d� −
∫

�3

φ(x, un(x)) d�

−
∫

�

f (x)(u(x) − un(x)) dx +
∫

�2

b(x)(u(x) − un(x)) d�

≤
∫

�

g(x, un(x))(un(x) − u(x)) dx +
∫

�3

φ(x, u(x)) d� −
∫

�3

φ(x, un(x)) d�

−
∫

�

f (x)(u(x) − un(x)) dx +
∫

�2

b(x)(u(x) − un(x)) d�.

Passing to the upper limit as n → ∞ to the inequality above and using the compactness of
embeddings of V to Lς (�) and of V to L p(�2), it gives
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lim sup
n→∞

∫

�

a(x,∇un) · ∇(un − u) dx

≤ lim sup
n→∞

∫

�

g(x, un(x))(u(x) − un(x)) dx

+
∫

�3

φ(x, u(x)) d� − lim inf
n→∞

∫

�3

φ(x, un(x)) d�

− lim
n→∞

∫

�

f (x)(u(x) − un(x)) dx + lim
n→∞

∫

�2

b(x)(u(x) − un(x)) d� ≤ 0,

where we have applied the weak lower semicontinuity of ϕ. The latter together with Lemma 6
implies that un → u in V as n → ∞.

Furthermore, we verify that u is the unique solution of Problem 2. Letw ∈ K be arbitrary.
We insert v = w into (3.8), use the fact θε(w) = 0 and the monotonicity of θε to confess that

∫

�

a(x,∇un) · ∇(w − un) dx +
∫

�

g(x, un(x))(w(x) − un(x)) dx

+
∫

�3

φ(x, w(x)) d� −
∫

�3

φ(x, un(x)) d�

≥
∫

�

f (x)(w(x) − un(x)) dx −
∫

�2

b(x)(w(x) − un(x)) d�.

Letting lim supn→∞ to the inequality above, it finds

∫

�

a(x,∇u) · ∇(w − u) dx +
∫

�

g(x, u(x))(w(x) − u(x)) dx

+
∫

�3

φ(x, w(x)) d� −
∫

�3

φ(x, u(x)) d�

≥ lim sup
n→∞

[ ∫

�

a(x,∇un) · ∇(w − un) dx +
∫

�

g(x, un(x))(w(x) − un(x)) dx

+
∫

�3

φ(x, w(x)) d� −
∫

�3

φ(x, un(x)) d�

]

≥ lim sup
n→∞

[∫

�

f (x)(w(x) − un(x)) dx −
∫

�2

b(x)(w(x) − un(x)) d�

]

=
∫

�

f (x)(w(x) − u(x)) dx −
∫

�2

b(x)(w(x) − u(x)) d�.

Because w ∈ K is arbitrary, so, we conclude that u is the unique solution of Problem 2,
namely, u = u0.

Keeping inmind that {un} is bounded and every convergent subsequence of {un} converges
to the same limit u0. Therefore, we conclude that the whole sequence {un} converges strongly
to u0 in V . ��

Particularly, if�2 = �3 = ∅, i.e.,�1 = �, then Problem 1 reduces the following nonlinear
complementarity problem with Dirichlet boundary condition:
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Problem 11 Find a pair functions u : � → R and μ : � → R such that

Z(x) = − div a(x,∇u) + g(x, u) − f (x) + μ(x) in �,

μ(x) ≥ 0, u(x) − u∗(x) ≤ 0, μ(x)
(
u(x) − u∗(x)

) = 0 in �,

Z(x) ≥ 0, u∗(x) − u(x) ≤ 0, Z(x) (u∗(x) − u(x)) = 0 in �,

u = 0 on �.

Then, the corresponding weak variational formulation of Problem 11 is written by the
following inequality:

Problem 12 Find function u ∈ K such that
∫

�

a(x,∇u) · ∇(v − u) dx +
∫

�

g(x, u(x))(v(x) − u(x)) dx ≥
∫

�

f (x)(v(x) − u(x)) dx

for all v ∈ K.

Likewise, we introduce the approximating problem of Problem 11 by using the power penalty
method (see (3.6)) as follows:

Problem 13 Find function uλ ∈ V such that
∫

�

a(x,∇uλ) · ∇(v − uλ) dx +
∫

�

(g(x, uλ(x)) + λθε(uλ(x))) (v(x) − uλ(x)) dx

≥
∫

�

f (x)(v(x) − uλ(x)) dx

for all v ∈ V .

So, we have the following corollary.

Corollary 14 Assume that H(a) and H(g) are satisfied. If, f ∈ L p′
(�), then, we have

(i) Problem 12 has a unique solution u0 ∈ K.
(ii) For each λ > 0, Problem 13 has a unique solution uλ ∈ V .
(iii) Let sequence {λn} ⊂ (0,+∞) be such that λn → ∞ as n → ∞. Then the unique

solution of Problem 13 corresponding to λn converges strongly to the unique solution u0
of Problem 12 in V as n → ∞.

Remark 15 Indeed, Problems 11, 12 and 13 have been studied by Duan-Wang-Zhou [8],
recently, when function a is assumed to be independent of x and to satisfy the following
stronger conditions:
H(a′): a : RN → R

N is such that

(i) a : RN → R
N is continuous with a(0) = 0 and satisfies the inequality

(a(ξ) − a(η)) · (ξ − η) ≥ ma |ξ − η|p (3.15)

for all ξ, η ∈ R
N , where ma > 0 and 2 ≤ N < p < +∞;

(ii) |a(ξ)| ≤ αa |ξ |p−1 for all ξ ∈ R
N with some αa > 0.

It is obvious that our result, Corollary 14, extends Theorems 4.1 and 4.2 of Duan-Wang-
Zhou [8].
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4 Simultaneous distributed-boundary optimal control problems

The main contribution of this section is twofold. The first goal of this section is to investigate
the existence of an optimal solution to a nonlinear simultaneous distributed-boundary optimal
control problem, Problem 16, driven by the nonlinear complementarity system, Problem 1.
More precisely, the control variable to optimal control problem is the vector ( f , b) in which
f is internal energy within � and b is the boundary data on �2. The second intention of
this paper is to consider a perturbated optimal control problem governed by Problem 9,
(see Problem 19) corresponding to Problem 16, and to explore the asymptotic behavior of
optimal solutions (i.e., control-state pairs) and of minimal values for perturbated optimal
control problem, Problem 19.

The simultaneous distributed and Neumann boundary optimal control problem is formu-
lated by the following nonlinear optimization problem:

Problem 16 Find ( f ∗, b∗) ∈ � := L p′
(�) × L p′

(�2) such that

L(S( f ∗, b∗), f ∗, b∗) = inf
( f ,b)∈�

L(S( f , b), f , b), (4.1)

where L : V × � → R is a given cost functional and S : � → K is the solution mapping of
Problem 2, i.e., S( f , b) = u f ,b here u f ,b is the unique solution of Problem 2 corresponding
to ( f , b) ∈ �.

In order to establish the existence of optimal solutions to optimal control problems, we
suppose that the cost function L : V × � → R satisfies the following conditions:
H(L): L : V × � → R is bounded from below such that

(i) For every ( f , b) ∈ � the function V � u �→ L(u, f , b) ∈ R is continuous;
(ii) The inequality holds

lim inf
n→∞ L(un, fn, bn) ≥ L(u, f , b)

whether sequences {un} ⊂ V and {( fn, bn)} ⊂ � are such that un → u in V and
( fn, bn)

w−→ ( f , b) in � as n → ∞ for some u ∈ V and ( f , b) ∈ �;
(iii) There exists a coercive function ρ : � → R, i.e., ρ( f , b) → +∞ as ‖ f ‖p′,� +

‖b‖p′,�2 → +∞, satisfying

L(u, f , b) ≥ ρ( f , b) for all u ∈ V and ( f , b) ∈ �.

Example 17 The following function as a concrete example for cost functional satisfies
hypotheses H(L)

L(u, f , b) = 1

p
‖∇un − z‖p

p,� + 1

p′ ‖ f ‖p′
p′,� + 1

p′ ‖b‖
p′
p′,� for all u ∈ V and ( f , b) ∈ �,

where z ∈ L p(�;RN ) is the known observed or measured datum.

The existence theorem to Problem 16 is provided as follows.

Theorem 18 Suppose that H(a), H(g), H(φ) and H(L) are fulfilled. Then, Problem 16
admits an optimal solution.

Proof It follows from hypotheses H(L) that L is bounded from below, i.e., there exists a
constant mL ∈ R such that

L(u, f , b) ≥ mL for all u ∈ V and( f , b) ∈ �.
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Let sequence {( fn, bn)} ⊂ � be a minimizing sequence of problem (4.1), namely,

δ0 := inf
( f ,b)∈�

L(S( f , b), f , b) = lim
n→∞ L(un, fn, bn), (4.2)

where un := S( fn, bn), thus,
∫

�

a(x,∇un) · ∇(v − un) dx +
∫

�

g(x, un(x))(v(x) − un(x)) dx

+
∫

�3

φ(x, v(x)) d� −
∫

�3

φ(x, un(x)) d�

≥
∫

�

fn(x)(v(x) − un(x)) dx −
∫

�2

bn(x)(v(x) − un(x)) d� (4.3)

for all v ∈ K .
By virtue of H(L)(iii), we have

δ0 ≥ lim inf
n→∞ ρ( fn, bn).

This indicates that sequence {( fn, bn)} is bounded in �. Without any loss of generality, we
are able to find ( f ∗, b∗) ∈ � such that

( fn, bn)
w−→ ( f ∗, b∗) in� as n → ∞. (4.4)

Arguing as in the proof of Theorem 10(ii) (see (3.13)), we have

‖ fn‖p′,�‖un‖p,� + ‖bn‖p′,�2‖un‖p,� +
∫

�3

φ(x, 0) d� + βϕ

≥
{

a3
p−1‖∇un‖p

p,� + ag‖un‖p
p,� − ‖bg‖1,� − αϕ‖un‖V if ς = p,

a3
p−1‖∇un‖p

p,� + ‖un‖p
p,� − ‖bg‖1,� − m3 − αϕ‖un‖V if ς > p,

with some m3 > 0. This, obviously, reveals that the sequence {un} is bounded in V . Passing
to a subsequence if necessary, we may assume that

un
w−→ ũ in V as n → ∞

for some ũ ∈ K (due to the closedness and convexity of K ). Putting v = ũ into (4.3) and
passing to the upper limit as n → ∞, it gives

lim sup
n→∞

∫

�

a(x,∇un) · ∇(un − ũ) dx ≤ 0,

where we have used the compactness of the embeddings of V to Lς (�) and of V to L p(�2).
Using the inequality above and Lemma 6, we conclude that un → ũ in V . Passing to the
upper limit as n → ∞ for (4.3), it deduces that ũ = S( f ∗, b∗).

From (4.2), we use H(L)(ii) to find

δ0 = inf
( f ,b)∈�

L(S( f , b), f , b) = lim
n→∞ L(un, fn, bn)

= lim inf
n→∞ L(un, fn, bn)

≥L (̃u, f ∗, b∗) = L(S( f ∗, b∗), f ∗, b∗)
≥ inf

( f ,b)∈�
L(S( f , b), f , b).

This means that ( f ∗, b∗) ∈ � is a solution of Problem 16. ��
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For any λ > 0, let us move our attention to consider the following perturbated optimal
control problem:

Problem 19 Find ( f ∗
λ , b∗

λ) ∈ � := L p′
(�) × L p′

(�2) such that

L(Sλ( f
∗
λ , b∗

λ), f ∗
λ , b∗

λ) = inf
( f ,b)∈�

L(Sλ( f , b), f , b), (4.5)

where Sλ : � → K is the solution mapping of Problem 9, i.e., Sλ( f , b) = u f ,b here u f ,b is
the unique solution of Problem 9 corresponding to ( f , b) ∈ � and λ > 0.

The second contribution of this paper is to provide the following theorem which contains
the existence of solutions to Problem 19, and the asymptotic behavior of optimal controls,
system states as well as minimal values to Problem 19.

Theorem 20 Assume that H(a), H(g), H(φ) and H(L) are satisfied. Then, we have

(i) For each λ > 0, Problem 19 has at least one solution.
(ii) Let sequence {λn} be such that λn → ∞ as n → ∞. For any solution sequence of state-

control {(un, fn, bn)} of Problem 19 with un = Sλn ( fn, bn), there exists a subsequence
of {(un, fn, bn)}, still denoted by the same way, such that

⎧
⎨

⎩

Sλn ( fn, bn) = un → u = S( f , b) in V ,

( fn, bn)
w−→ ( f , b) in�

L(un, fn, bn) → L(u, f , b),
as n → ∞, (4.6)

where ( f , b) ∈ � is a solution of Problem 16.

Proof (i) The assertion is a consequence of Theorem 18.
(ii) Let sequence {λn} be such that λn → ∞ as n → ∞, and let {(un, fn, bn)} be a solution
sequence of state-control of Problem 19 with un = Sλn ( fn, bn) and λ = λn . Then, for each
n ∈ N, we have

∫

�

a(x,∇un) · ∇(v − un) dx +
∫

�

(g(x, un(x)) + λnθε(un(x))) (v(x) − un(x)) dx

+
∫

�3

φ(x, v(x)) d� −
∫

�3

φ(x, un(x)) d�

≥
∫

�

fn(x)(v(x) − un(x)) dx −
∫

�2

bn(x)(v(x) − un(x)) d� (4.7)

for all v ∈ V . Let ( f ∗, g∗) ∈ � be a solution of Problem 16. Hence, one has

L(Sλn ( fn, bn), fn, bn) ≤ L(Sλn ( f
∗, b∗), f ∗, b∗). (4.8)

It follows from Theorem 10(ii) that Sλn ( f
∗, b∗) → S( f ∗, b∗) in V as n → ∞. Employing

the continuity of u �→ L(u, f , b), we get

lim
n→∞ L(Sλn ( f

∗, b∗), f ∗, b∗) = L(S( f ∗, b∗), f ∗, b∗). (4.9)

Taking into account (4.8), (4.9) and hypothesis H(L)(iii), it yields

lim inf
n→∞ ρ( fn, bn) ≤ lim

n→∞ L(Sλn ( fn, bn), fn, bn)

≤ lim
n→∞ L(Sλn ( f

∗, b∗), f ∗, b∗)

= L(S( f ∗, b∗), f ∗, b∗).
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Therefore, we can observe that sequence {( fn, bn)} is bounded in �. Without any loss of
generality, we may assume that

( fn, bn)
w−→ ( f̃ , b̃) in� asn → ∞ (4.10)

for some ( f̃ , b̃) ∈ �.
Inserting v = 0 into the inequality (4.7) and using the fact that θε(0) = 0, so, a simple

calculating gives

‖ fn‖p′,�‖un‖p,� + ‖bn‖p′,�2‖un‖p,� +
∫

�3

φ(x, 0) d� + βϕ

≥
{

a3
p−1‖∇un‖p

p,� + ag‖un‖p
p,� − ‖bg‖1,� − αϕ‖un‖V if ς = p,

a3
p−1‖∇un‖p

p,� + ‖un‖p
p,� − ‖bg‖1,� − m4 − αϕ‖un‖V if ς > p,

for some m4 > 0. This turns out that {un} is bounded in V . Passing to a subsequence if
necessary, we may assume that

un
w−→ ũ in V as n → ∞

for some ũ ∈ V . From (4.7), we have
∫

�

θε(̃u(x))(v(x) − ũ(x)) dx = lim
n→∞

∫

�

θε(un(x))(v(x) − un(x)) dx ≤ 1

λn
m5(v) = 0

for some m5(v) > 0 which relies on v but independent of n (owing to the boundedness of
{un}). So, it is true that θε(̃u) = 0, i.e., ũ ∈ K (see Lemma 8).

Putting v = ũ ∈ K into (4.7) and passing to the upper limit as n → ∞, we infer

lim sup
n→∞

∫

�

a(x,∇un) · ∇(un − ũ) dx ≤ 0.

Whereas, applying Lemma 6, it concludes that un → ũ in V as n → ∞. For any w ∈ K ,
we insert v = w into (4.7), use the fact θε(w) = 0, and pass to the upper limit as n → ∞
for the resulting inequality that

∫

�

a(x,∇ũ) · ∇(w − ũ) dx +
∫

�

g(x, ũ(x))(w(x) − ũ(x)) dx

+
∫

�3

φ(x, w(x)) d� −
∫

�3

φ(x, ũ(x)) d�

≥
∫

�

f̃ (x)(w(x) − ũ(x)) dx −
∫

�2

b̃(x)(w(x) − ũ(x)) d�

for all w ∈ K . This means that ũ = S( f̃ , b̃).
Passing to the lower limit as n → ∞ for inequality (4.8) and using (4.9), we have

L(S( f ∗, b∗), f ∗, b∗) ≥ lim
n→∞ L(Sλn ( f

∗, b∗), f ∗, b∗)

≥ lim inf
n→∞ L(Sλn ( fn, bn), fn, bn)

≥L(S( f̃ , b̃), f̃ , b̃)

≥ inf
( f ,b)∈�

L(S( f , b), f , b).

Recall that ( f ∗, b∗) ∈ � is a solution of Problem 16, so, we conclude that ( f̃ , b̃) ∈ � is also
a solution of Problem 16. Consequently, we can observe that
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⎧
⎨

⎩

Sλn ( fn, bn) = un → u = S( f̃ , b̃) in V ,

( fn, bn)
w−→ ( f̃ , b̃) in�

L(un, fn, bn) → L (̃u, f̃ , b̃),
as n → ∞.

This completes the proof of the theorem. ��
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