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Abstract
Cutting planes from the Boolean Quadric Polytope can be used to reduce the optimality gap
of the NP-hard nonconvex quadratic program with box constraints (BoxQP). It is known
that all cuts of the Chvátal–Gomory closure of the Boolean Quadric Polytope are A-odd cycle
inequalities. We obtain a compact extended relaxation of all A-odd cycle inequalities, which
allows to optimize over the Chvátal–Gomory closure without repeated calls to separation
algorithms and has less inequalities than the formulation provided by Boros et al. (SIAM
J Discrete Math 5(2):163–177, 1992) for sparse matrices. In a computational study, we
confirm the strength of this relaxation and show that we can provide very strong bounds for
the BoxQP, even with a plain linear program. The resulting bounds are significantly stronger
than these from Bonami et al. (Math Program Comput 10(3):333–382, 2018), which arise
from separating A-odd cycle inequalities heuristically.

Keywords Nonconvex quadratic programming · Linear relaxation · Chvátal–Gomory
closure · Extended formulation

1 Introduction

Bonami et al. [3] show how to effectively solve the NP-hard nonconvex quadratic program
with box constraints, i.e.,

min
1

2
xT Qx + cT x (BoxQP)

s.t. l ≤ x ≤ u,

with Q ∈ R
n×n symmetric, via linear programming techniques. Without loss of generality

we assume l = 0 and u = 1, because we assume that l and u are finite. They first obtain a
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convex relaxation of the BoxQP with a linear objective function. This linearization induces
nonlinear constraints, which are replaced by the so-called McCormick inequalities [9]. We
denote the resulting weak linear relaxation of the BoxQP by LPM, see Sect. 2.

However, cutting planes from the Boolean Quadric Polytope can be used to turn it into a
very strong relaxation of the BoxQP. For given A ∈ Z

m×n , b ∈ Z
m , and the problem Ax ≥ b

with x ∈ Z
n , these cuts are Chvátal–Gomory cuts:

αT Ax ≥ �αT b�
for any α ∈ R

m+ with αT A ∈ Z
n . Furthermore, it is shown that all Chvátal–Gomory cuts for

the Boolean Quadric Polytope are 0− 1
2−Chvátal–Gomory cuts (i.e., α ∈ {0, 1

2 }m). Caprara
and Fischetti [7] show that separating 0 − 1

2−Chvátal–Gomory cuts is NP-hard in general.
However, Koster et al. [8] study ways to separate them effectively in practice. Fortunately
for our purposes, all 0 − 1

2−Chvátal–Gomory cuts of the Boolean Quadric Polytope are
dominated by A-odd cycle inequalities, see [3], which can be separated in polynomial time
[2].

Boros et al. [4] present a system of inequalities that describes the polyhedron given by
the linear relaxation of the Boolean Quadric Polytope with all variables together with all
0 − 1

2–Chvátal–Gomory cuts. Their formulation has O(n2) variables and contains O(n3)
inequalities in addition to the O(n2) inequalities from the linear relaxation of the Boolean
Quadric Polytope. We present an extended formulation which has also O(n2) variables but
only addsO(|E |n) inequalities, where |E | is the number of non-zeros in Q above its diagonal.
This extended formulation is much more compact for sparse matrices Q, since we have
|E | � n2 in this case.

2 Previous work and notation

This section is basically a summary of some results by Bonami et al. [3] and forms the basis
for everything novel we derive in Sect. 3. We slightly deviate from the notation adopted in
[3].

Let N denote the set {1, . . . , n} and
E := {

i j | {i, j} ⊆ N , i 	= j, Qi j 	= 0
}

be the set of undirected edges. Notice that E is well-defined since Qi j 	= 0 if and only if
Q ji 	= 0 by symmetry of Q.

A weak linear relaxation of the BoxQP can be obtained by replacing the nonlinear
constraints of an obvious convex relaxation of the BoxQP by the so-called McCormick
inequalities, see [9]. The resulting linear program is given by

min
∑

i j∈E
Qi j Xi j + 1

2

∑

i∈N
QiiYi +

∑

i∈N
ci xi (LPM)

s.t. xi ≥ Yi ≥ 2xi − 1 ∀ i ∈ N ,

Yi ≥ 0 ∀ i ∈ N ,

xi ≥ Xi j ∀ i j ∈ E,

Xi j ≥ xi + x j − 1 ∀ i j ∈ E,

Xi j ≥ 0 ∀ i j ∈ E .
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Notice that the constraint xi ≥ Xi j additionally encompasses x j ≥ Xi j when applying it to
j i = i j ∈ E . Furthermore, this relaxation is strengthened to

min
∑

i j∈E
Qi j Xi j + 1

2

∑

i∈N−
QiiYi + 1

2

∑

i∈N+
Qii x

2
i +

∑

i∈N
ci xi (QPM2 )

s.t. xi ≥ Yi ∀ i ∈ N−,

xi ≥ Xi j ∀ i j ∈ E,

Xi j ≥ xi + x j − 1 ∀ i j ∈ E,

Xi j ≥ 0 ∀ i j ∈ E,

1 ≥ xi ≥ 0 ∀ i ∈ N ,

where N+ := {i ∈ N | Qii ≥ 0} and N− := {i ∈ N | Qii < 0} partition N . Although
QPM2 has linear constraints and only its objective is quadratic, though convex, solving the
pure LPM is still much faster in general. However, QPM2 provides better lower bounds for
the BoxQP. Both relaxations can be strengthened with valid cuts from the Boolean Quadric
Polytope, i.e., with the A-odd cycle inequalities, whose derivation is presented next.

With the McCormick relaxation

BQPLP =
{
(x, X) ∈ R

n × R
|E | | min{xi , x j } ≥ Xi j ≥ max{0, xi + x j − 1}∀ i j ∈ E

}
,

the Boolean Quadric Polytope can be defined as

BQP = conv
(
BQPLP ∩

(
Z
n × Z

|E |) )
.

The inequalities of BQPLP imply box-constraints 0 ≤ xi ≤ 1 for all i ∈ N , since 0 ≤ Xi j ≤
xi and xi + x j − 1 ≤ x j for all i j ∈ E , cf. [9]. Moreover, if we combine the McCormick
inequalities Xi j ≥ 0 and Xi j ≥ xi + x j − 1, we have

2Xi j − xi − x j + 1 ≥ 0. (Ai j )

Analogously, adding up xi ≥ Xi j and x j ≥ X ji , while using i j = j i , yields

−2Xi j + xi + x j ≥ 0. (Bi j )

For inequalities (Ai j ) and (Bi j ), we define their slacks

wA
i j = 2Xi j − xi − x j + 1, (1)

wB
i j = −2Xi j + xi + x j . (2)

To obtain additional cuts for BQP, certain combinations of (Ai j )- and (Bi j )-inequalities
are useful. Let E A ⊆ E be the set of all edges i j for which we use inequality (Ai j ) and
EB ⊆ E be the set of all edges i j for which we use inequality (Bi j ). Let

N A ⊆ N : vertices incident to exactly two edges in E A,

N B ⊆ N : vertices incident to exactly two edges in EB .

We combine (Ai j )- and (Bi j )-inequalities such that |E A| is odd and E A ∪̇ EB is a simple
cycle of arbitrary parity, where ∪̇ denotes the disjoint union.

Definition 2.1 Acycle E A ∪̇ EB with E A, EB ⊆ E is called A-odd if |E A| is odd and A-even
if |E A| is even.
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Remark 2.2 Adding inequality (Ai j ) to (Bjk) eliminates variable x j .

Adding up inequalities for a simple cycle E A ∪̇ EB yields

2

⎛

⎝
∑

i j∈E A

Xi j −
∑

i j∈EB

Xi j −
∑

i∈N A

xi +
∑

i∈N B

xi

⎞

⎠ + |E A| ≥ 0.

Subtracting |E A| and dividing by 2 yields

∑

i j∈E A

Xi j −
∑

i j∈EB

Xi j −
∑

i∈N A

xi +
∑

i∈N B

xi ≥ −|E A|
2

.

In the case of |E A| odd, we can strengthen this inequality, cf. [3], to

∑

i j∈E A

Xi j −
∑

i j∈EB

Xi j −
∑

i∈N A

xi +
∑

i∈N B

xi ≥
⌈

− |E A|
2

⌉
= −|E A|

2
+ 1

2
,

which yields after another transformation

2

⎛

⎝
∑

i j∈E A

(
Xi j + 1

2

) −
∑

i j∈EB

Xi j −
∑

i∈N A

xi +
∑

i∈N B

xi

⎞

⎠ ≥ 1.

That is equivalent to
∑

i j∈E A

(
2Xi j + 1 − xi − x j

) +
∑

i j∈EB

(−2Xi j + xi + x j
) ≥ 1

and substituting by wA
i j and wB

i j yields
∑

i j∈E A

wA
i j +

∑

i j∈EB

wB
i j ≥ 1. (3)

We call inequality (3) an A-odd cycle inequality. Notice that this inequality is sometimes
just called odd cycle inequality in literature, but we want to avoid confusion with cycles of
odd cardinality. Thus, we prefix A to emphasize that |E A| must be odd and the parity of the
cycle itself is irrelevant.

3 Separation and extended formulation

The following construction is similar to the separation algorithm for the cut polytope pre-
sented by Barahona and Mahjoub [2]. Nevertheless, we give a detailed explanation on how
the separation problem for the A-odd cycle inequalities of BQP can be solved, since our
extended formulation depends on the separation technique. Let G = (VG , EG) be the simple
graph with VG = N and EG = E .

Consider the digraph F = (VF , AF ) with vertex set VF = {0, 1} and arc set AF ={
(0, 0), (0, 1), (1, 0), (1, 1)

}
. The categorical graph product H = (VG×F , AG×F ) of G and

F is given by the vertex set VG×F = N ×{0, 1} and the arc set AG×F = {
((i, r), ( j, s))|i j ∈

EG and (r , s) ∈ AF
}
.

Let us mention that, as for every arc ((i, r), ( j, s)) in H the anti-parallel arc (( j, s), (i, r))
is present too, the separation algorithm would also work with an undirected graph instead
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Fig. 1 The categorical graph product of an edge i j and F

of F , that has two vertices connected by an edge and a loop at both vertices. However, this
does not make a difference to our extended formulation (if, for example, some variable fi j
is involved for edge i j , then it simultaneously produces an inequality for variable f j i ). Also,
directed edges are better suited for network-flow formulations such as (A-OC), which will
be defined later.

Now we assign arc variable wA
i j to the arcs ((i, r), ( j, 1− r)) ∈ AG×F and wB

i j to the arcs
((i, r), ( j, r)) ∈ AG×F for all r ∈ {0, 1}. Figure 1 shows the structure of H for a single edge
i j ∈ EG .

Whenever we use an (Ai j )-inequality for an edge i j ∈ EG , an arc with arc variable wA
i j

in the product graph H is used and the second index of a vertex in H changes from 0 to 1 or
from 1 to 0. Otherwise, using a (Bi j )-inequality for an edge i j ∈ EG corresponds to an arc
with arc variable wB

i j in H and the second index does not change.

Theorem 3.1 For fixed (x̄, X̄), the separation problem for the A-odd cycle inequalities of
BQP can be solved by computing the weight of a shortest path from (i, 0) to (i, 1) in H for
every i ∈ N. If every and hence the shortest of these paths has w̄-weight at least 1, then
(x̄, X̄) does not violate any A-odd cycle inequality.

Theorem 3.1 follows directly from Lemmas 3.3–3.5, that we state after the following
definition.

Definition 3.2 A u–v-path/walk in G together with an assignment of arc variables, either
wA
i j or wB

i j , to every edge i j of the respective path/walk is called A-odd if the total number

of assigned arc variables wA
i j is odd. If the total number is even, the u–v-path/walk is called

A-even.

Lemma 3.3 Let u, v ∈ VG and r , s ∈ {0, 1}. Every (u, r)–(v, s)-walk in H corresponds to
an A-odd u–v-walk in G if and only if r 	= s.

Lemma 3.4 Let (x̄, X̄) be fixed. The w̄-weight of a shortest A-odd cycle in G is equal to the
w̄-weight of a shortest (i, 0)–(i, 1)-path in H among all i ∈ N.

Proof Notice first that the w̄-weight of a shortest (i, 0)–(i, 1)-path in H is equal to the w̄-
weight of a shortest (i, 1)–(i, 0)-path in H because for every arc there is an anti-parallel arc
of equal weight. Let P be a shortest (i, 0)–(i, 1)-path of all (i, 0)–(i, 1)-paths in H with
i ∈ N . If the first index of all vertices except (i, 0) and (i, 1), which serve as start and end
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point, on P is different, then there is nothing to show. Otherwise, if for some j both vertices
( j, 0) and ( j, 1) lie on P , the w̄-weight of the subpath between ( j, 0) and ( j, 1) cannot
exceed the w̄-weight of P as we do not have negative arc weights. Conversely, the subpath
between ( j, 0) and ( j, 1) cannot have less w̄-weight than P by the assumption of P being
one of the shortest of all (i, 0)–(i, 1)-paths in H with i ∈ N . Without loss of generality we
can replace P by a w̄-shortest ( j, 0)–( j, 1)-path with fewer arcs. Successively, we end up in
the first case. 
�
Lemma 3.5 Given (x̄, X̄) ∈ BQPLP . Then (x̄, X̄) violates an A-odd cycle inequality if and
only if there exists a path from (i, 0) to (i, 1) in H for some i ∈ N of w̄-weight less than 1.

Proof Let E A ∪̇ EB be the edge set of a simple cycle C in G whose A-odd cycle inequality
is violated by (x̄, X̄). Then

∑

i j∈E A

w̄A
i j +

∑

i j∈EB

w̄B
i j < 1

by inequality (3) and because |E A| is odd, there exists a path from (i, 0) to (i, 1), and one
from (i, 1) to (i, 0), in H for all i ∈ C that add up the same w̄A

i j and w̄B
i j as given above.

Thus, the weight of this path is less than 1.
For the converse, consider a path from (i, 0) to (i, 1) in H with weight less than 1.

Analogously, there exists an A-odd cycle in G of equal weight. 
�
Theorem 3.1 allows us to solve the separation problem for the A-odd cycle inequalities of

BQP with a linear program. Ahuja et al. [1, Chapter 9.4] find a shortest s–t-path by solving
a minimum cost flow problem, i.e., by sending one unit of flow from vertex s to vertex t
through the network. We apply their technique of using duality to our graph H and consider
for fixed i ∈ N the linear program

max fi0i1 (A-OC)

s.t. fi0i0 = 0,

fi0 js ≤ fi0kt + w̄A
k j ∀ k j ∈ E, s, t ∈ {0, 1}, s 	= t,

fi0 js ≤ fi0kt + w̄B
k j ∀ k j ∈ E, s, t ∈ {0, 1}, s = t,

where the f -variables are indexed by two vertices in H , hence fis j t is shorthand for f(i,s),( j,t)
and relates to a lower bound for the weight of paths from (i, s) to ( j, t). Moreover, (i, 0)
serves as the start vertex and (i, 1) as the target vertex of a path. Notice that we partition the
inequalities into two types. Both of them bound the variables fi0 js , and hence the weight of
a shortest (i, 0)–( j, s)-path in H , from above by the weight of any (i, 0)–( j, s)-path in H
where the last arc is fixed. The first type of inequalities ensures that the last arc on the path
has arc weight w̄A

k j = 2X̄k j − x̄k − x̄ j + 1 whenever s 	= t in order to arrive at vertex ( j, s),
i.e., when the last inequality on the path is an (Akj )-inequality. For s = t , that is, if the last
inequality is a (Bkj )-inequality, we have to use arcs with arc weight w̄B

k j = −2X̄k j + x̄k + x̄ j .
Thus, the above linear program increases variable fi0i1 until it is equal to the weight of a
shortest (i, 0)–(i, 1)-path in H and therefore it does not exceed the weight of any (i, 0)–
(i, 1)-path in H . Obviously, this is also true for every variable fi0 js if vertex ( j, s) is part of
a shortest (i, 0)–(i, 1)-path.

If the objective value of a solution of this linear program is greater or equal than 1 for
every i ∈ N , then (x̄, X̄) fulfills all A-odd cycle inequalities of BQP.
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Using this idea, we obtain the following compact extended formulation that enforces all
A-odd cycle inequalities. Notice that x and X as well as w are now variables in contrast to
the separation linear program (A-OC).

Theorem 3.6 The linear system

firir = 0 ∀ i ∈ N , r ∈ {0, 1}, (4)

fir js ≤ firkt + wA
k j ∀ k j ∈ E, i ∈ N , r , s, t ∈ {0, 1}, s 	= t, (5)

fir js ≤ firkt + wB
k j ∀ k j ∈ E, i ∈ N , r , s, t ∈ {0, 1}, s = t, (6)

fi0i1 ≥ 1 ∀ i ∈ N , (7)

together with Eqs. (1) and (2) is an extended formulation of the (potentially exponentially
many) A-odd cycle inequalities of BQP and therefore provides a relaxation for BQP.

Proof Let (x̄, X̄) ∈ BQPLP . Then the weights w̄A and w̄B are explicitly given by equations
(1) and (2).

We first show that if inequalities (3) are fulfilled by (x̄, X̄), then for every pair (i, r) and
( j, s) in VG×F there exists f̄ir js such that (x̄, X̄ , f̄ ) is feasible for inequalities (4)–(7). Define
f̄ir js as the weight of a shortest (i, r)–( j, s)-path in H if such a path exists. Otherwise, assign
a large value to f̄ir js . Inequalities (4) are obviously fulfilled, as shortest paths from a vertex
to itself have weight 0 in digraphs where all arc weights are nonnegative. Inequalities (5)
and (6) express that the weight of a shortest (i, r)–( j, s)-path cannot exceed the weight of
an (i, r)–( j, s)-path where the last arc is fixed, which is always true. Finally, Lemma 3.5
ensures that inequalities (7) are fulfilled.

Conversely, let (x̄, X̄ , f̄ ) be feasible for inequalities (4)–(7). Then f̄ir ir = 0 for every
i ∈ N and r ∈ {0, 1} by Eq. (4), which is equal to the weight of a shortest path from vertex
(i, r) in H to itself. Consider the case (k, t) = (i, r) in inequalities (5) and (6). For every
i j ∈ E , variables fir js are bounded from above by arc variables wA

i j if r 	= s. Moreover,

variables fir js are bounded from above by arc variables wB
i j if r = s. Taking those cases for

inequalities (5) and (6) into account, where (k, t) 	= (i, r), every variable fir js is bounded
from above by the weight of a shortest path from (i, r) to ( j, s) in H . Thus, for every vertex
pair (i, r) and ( j, s) in H , the value f̄ir js is lower or equal than the weight of a shortest
path from (i, r) to ( j, s) in H . Since f̄i0i1 is lower or equal than the weight of a shortest
(i, 0)–(i, 1)-path in H and f̄i0i1 ≥ 1 for i ∈ N , every shortest (i, 0)–(i, 1)-path in H has
weight at least 1. This holds for every i ∈ N and therefore all A-odd cycle inequalities (3)
are fulfilled by (x̄, X̄), see Lemma 3.5. 
�
Remark 3.7 The extended A-odd cycle formulation in Theorem 3.6 requires 4n2 additional
variables f , whereas the wA- and wB -defining equations can be replaced by their definition
in terms of x and X . In total, 16|E |n+n inequalities are added. Notice that firir for all i ∈ N
and r ∈ {0, 1} are just constant numbers and every edge k j ∈ E produces two inequalities
for fixed i ∈ N and r , s, t ∈ {0, 1}.

The extended formulation of Boros et al. [4] includes four different inequalities for every
subset {i, j, k} of three different vertices of N , that all involve variables Xi j , Xik , and X jk ,
independent of the sparsity of Q. Each of these triangle inequalities is equivalent to one
A-odd cycle inequality for a cycle of length three in a complete graph and vice versa. The
number of inequalities (5) and (6) in our extended formulation depends on the cardinality
of N and E . The latter represents the density of Q and hence our formulation is much more
compact if Q is sparse.
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Table 1 Average optimality gap for small instances (n ∈ {20, 30, 40})
Density gap(zM) gap(zM2 ) gap(z◦M) gap(z◦M2 ) gap(z•M) gap(z•M2 )

Sparse 28.02 27.11 3.20 0.56 0.69 0.30

Medium 38.15 37.24 5.20 1.20 1.37 0.61

Dense 44.43 43.50 7.37 1.44 1.44 –

The time limit is exceeded when solving QP•
M2 for dense instances with n = 40

4 Numerical experiments

In a computational study, Bonami et al. [3] add 0− 1
2−Chvátal–Gomory cuts heuristically to

the basic relaxations LPM and QPM2 in CPLEX. They apply this method to the 99 BoxQP
test instances of Nemhauser and Vandenbussche [11], Burer and Vandenbussche [6], and
Burer [5]. Our contribution is to compute the bounds that arise from exact A-odd cycle
separation for the pure linear program LPM. To this end, we add the extended relaxation
from Theorem 3.6 to the constraint set of LPM and solve the resulting LP with CPLEX v.
12.8.0.0 on the same benchmark set. The computation takes a few seconds on an 8-core Intel
Core i7-6700 CPU machine running at 3.40 GHz for each of the smaller instances, whereas
a few minutes of running time where consumed when solving the larger ones. The largest
instances required up to two hours of running time, but our focus here is more on the strength
of the relaxation than on raw speed.

Adding the extended relaxation from Theorem 3.6 to QPM2 gives a convex quadratic
program with a large number of variables and inequalities. Although we could by far not
solve all of these QPs in reasonable running time, we compute the solutions for a subset of
all test instances, i.e., all instances where n ≤ 40 whose density is not too high. Even for
some of these small instances, the computation took several hours.

The optimality gap is defined as

gap(z) :=
∣∣∣∣
zBoxQP − z

z

∣∣∣∣ × 100,

where zBoxQP is the optimal objective value of the BoxQP and z is the optimal objective value
of the considered relaxation.

We denote the bounds arising from LPM and QPM2 , respectively, by zM and zM2 . The
notation LP◦

M is used when 0 − 1
2−Chvátal–Gomory cuts are added heuristically to LPM

via CPLEX (see [3]) and LP•
M is used for LPM strengthened with all inequalities (4)–(7)

together with Eqs. (1) and (2). We define QP◦
M2 and QP

•
M2 analogously. The bounds arising

from optimal solutions of LP◦
M, LP•

M, QP◦
M2 , and QP•

M2 are denoted by z◦M, z•M, z◦M2 ,
and z•M2 , respectively.

Let d be the percentage of non-zeros in Q. An instance is called sparse,medium, or dense,
if d ≤ 40%, 40% < d ≤ 60%, or d > 60%, respectively. Moreover, we divide these classes
further into small (n ∈ {20, 30, 40}), medium (n ∈ {50, 60, 70}), large (n ∈ {80, 90}), and
jumbo (n ∈ {100, 125}).

The set of small test instances contains 6 sparse, 9medium, and 27 dense instances. Table 1
shows how much of the optimality gap of LPM and QPM2 is closed by the A-odd cycle
inequalities when adding them heuristically and when separating all of them.

The average optimality gap left by LPM, QPM2 , LP◦
M, QP◦

M2 , and LP•
M, respectively,

for all instances with n ≥ 50 is visualized in Figs. 2 and 3. We obtain that the pure linear
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Fig. 2 Average optimality gap for medium and large instances

Fig. 3 Average optimality gap for jumbo instances
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relaxation LPM together with all or at least some A-odd cycle inequalities closes by far
more of the optimality gap than the quadratic relaxation QPM2 without the A-odd cycle
inequalities, regardless of the choice of the size n or the density d . Moreover, the impact
of the A-odd cycle inequalities increases when decreasing the density of Q. Especially on
sparse instances, the relaxation LP•

M is much stronger than LP◦
M. Furthermore, LP•

M is on
average stronger than QP◦

M2 , except for dense instance, where the difference regarding the
optimality gap is very small. For all test instances, bounds and optimality gaps are listed in
the appendix.

5 Conclusion

We showed how to construct a tight compact extended relaxation for nonconvex QP with
box constraints by enforcing the A-odd cycle inequalities for the Boolean Quadric Polytope.
Therefore, we avoid runningmultiple rounds of a separation algorithm.On a large benchmark
set, our computational results illustrate how efficient it is to strengthen the weak linear
relaxation LPM. Since our strengthened relaxation remains linear, it is applicable in practice.
We think that our extended formulation might be most useful in problems that have a small
quadratic programming substructurewithin larger structures, so that the quadratic subproblem
can be strengthened in one step.
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Appendix A. Numerical results

Table 2 extends Table 9 in [3] by adding the bounds z•M and z•M2 that arise from exact
separation. Notice that the bounds z•M2 are at least as strong as the bounds z•M. However,
computing z•M2 was only possible in reasonable time for instances with n ∈ {20, 30} and for
half of the instances with n = 40.

The first number in the name of the test instance is equal to n, i.e., the number of variables
of the BoxQP. The second number expresses the percentage of non-zeros in Q and the third
number enumerates different test instances that have the same parameters.

In Table 3, we list the optimality gap for every relaxation LPM, QPM2 , LP◦
M, QP◦

M2 ,
LP•

M, and QP•
M2 based on Table 2, except for those QP•

M2 that were not solved.

Table 2 Bounds for BoxQP relaxations

Name (spar. . .) zM zM2 z◦M z◦M2 z•M z•M2 zBoxQP

020-100-1 −1066.00 −1038.38 −776.00 −706.89 −706.50 −706.50 −706.50

020-100-2 −1289.00 −1258.38 −951.50 −868.32 −880.25 −867.14 −856.50

020-100-3 −1168.50 −1142.00 −877.00 −772.13 −772.00 −772.00 −772.00

030-060-1 −1454.75 −1430.00 −761.50 −725.11 −730.06 −714.21 −706.00

030-060-2 −1699.50 −1668.25 −1449.00 −1379.18 −1385.50 −1379.18 −1377.17

030-060-3 −2047.00 −2006.50 −1388.00 −1315.19 −1323.56 −1305.97 −1293.50

030-070-1 −1569.00 −1547.25 −738.24 −704.17 −703.86 −688.50 −654.00

030-070-2 −1940.25 −1888.25 −1461.00 −1318.22 −1321.75 −1315.82 −1313.00

030-070-3 −2302.75 −2251.12 −1784.50 −1677.21 −1695.00 −1677.00 −1657.40

030-080-1 −2107.50 −2072.00 −1030.85 −987.81 −988.93 −967.73 −952.73

030-080-2 −2178.25 −2158.12 −1627.50 −1597.00 −1597.00 −1597.00 −1597.00

030-080-3 −2403.50 −2376.25 −1870.00 −1809.78 −1813.50 −1809.78 −1809.78

030-090-1 −2423.50 −2385.12 −1371.00 −1298.70 −1296.50 −1296.50 −1296.50

030-090-2 −2667.00 −2622.75 −1607.00 −1474.93 −1478.00 −1470.64 −1466.84

030-090-3 −2538.25 −2499.38 −1585.00 −1494.88 −1494.00 −1494.00 −1494.00

030-100-1 −2602.00 −2541.50 −1391.50 −1242.51 −1235.38 −1227.38 −1227.12

030-100-2 −2729.25 −2698.88 −1350.00 −1270.51 −1260.50 −1260.50 −1260.50

030-100-3 −2751.75 −2703.75 −1640.00 −1526.60 −1541.50 −1524.07 −1511.05

040-030-1 −1088.00 −1067.00 −853.00 −839.50 −839.50 −839.50 −839.50

040-030-2 −1635.00 −1617.75 −1461.00 −1429.36 −1431.50 −1429.36 −1429.00

040-030-3 −1303.25 −1297.12 −1110.50 −1086.00 −1086.00 −1086.00 −1086.00

040-040-1 −1606.25 −1575.50 −883.57 −857.50 −856.82 −847.93 −837.00

040-040-2 −1920.75 −1895.75 −1500.00 −1428.79 −1428.00 −1428.00 −1428.00

040-040-3 −2039.75 −2017.25 −1211.45 −1184.06 −1193.00 −1179.26 −1173.50

040-050-1 −2146.25 −2120.88 −1209.50 −1159.72 −1157.00 −1154.73 −1154.50

040-050-2 −2357.25 −2334.88 −1493.50 −1439.17 −1435.50 −1432.04 −1430.98

040-050-3 −2616.00 −2603.00 −1672.50 −1653.63 −1658.00 −1653.63 −1653.63

040-060-1 −2872.00 −2817.88 −1451.23 −1392.62 −1390.40 −1365.00 −1322.67
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Table 2 continued

Name (spar. . .) zM zM2 z◦M z◦M2 z•M z•M2 zBoxQP

040-060-2 −2917.50 −2872.62 −2106.00 −2010.40 −2014.00 −2006.03 −2004.23

040-060-3 −3434.00 −3386.12 −2566.50 −2454.65 −2454.50 −2454.50 −2454.50

040-070-1 −3144.00 −3070.12 −1757.00 −1611.33 −1605.00 – −1605.00

040-070-2 −3369.25 −3323.00 −1940.50 −1871.20 −1867.50 – −1867.50

040-070-3 −3760.25 −3724.50 −2527.00 −2441.81 −2444.00 – −2436.50

040-080-1 −3846.50 −3788.62 −2000.00 −1844.24 −1838.50 – −1838.50

040-080-2 −3833.00 −3775.38 −2078.00 −1964.38 −1952.50 – −1952.50

040-080-3 −4361.50 −4311.12 −2666.63 −2556.93 −2561.50 – −2545.50

040-090-1 −4376.75 −4325.50 −2253.00 −2145.50 −2135.50 – −2135.50

040-090-2 −4357.75 −4304.38 −2278.50 −2148.73 −2123.29 – −2113.00

040-090-3 −4516.75 −4453.38 −2664.50 −2550.19 −2540.00 – −2535.00

040-100-1 −5009.75 −4932.12 −2687.50 −2489.87 −2487.50 – −2476.38

040-100-2 −4902.75 −4855.25 −2189.17 −2145.04 −2146.25 – −2102.50

040-100-3 −5075.75 −5017.25 −2237.58 −2166.61 −2192.17 – −1866.07

050-030-1 −1858.25 −1837.75 −1359.00 −1324.82 −1324.50 – −1324.50

050-030-2 −2334.00 −2324.62 −1695.00 −1669.28 −1669.00 – −1668.00

050-030-3 −2107.25 −2093.75 −1498.50 −1456.21 −1461.00 – −1453.61

050-040-1 −2632.00 −2580.62 −1490.50 −1415.59 −1411.00 – −1411.00

050-040-2 −2923.25 −2891.88 −1832.50 −1749.01 −1753.50 – −1745.76

050-040-3 −3273.50 −3236.00 −2186.00 −2096.04 −2094.50 – −2094.50

050-050-1 −3536.00 −3506.25 −1450.99 −1415.71 −1409.72 – −1198.41

050-050-2 −3500.50 −3467.12 −1855.04 −1806.44 −1776.81 – −1776.00

050-050-3 −4119.75 −4052.12 −2293.88 −2151.14 −2138.34 – −2106.10

060-020-1 −1757.25 −1745.50 −1223.50 −1212.00 −1212.00 – −1212.00

060-020-2 −2238.25 −2230.00 −1925.50 −1925.50 −1925.50 – −1925.50

060-020-3 −2098.75 −2081.00 −1518.00 −1483.42 −1483.00 – −1483.00

070-025-1 −3832.75 −3788.88 −2615.50 −2553.18 −2545.00 – −2538.91

070-025-2 −3248.00 −3232.88 −1935.00 −1895.01 −1888.50 – −1888.00

070-025-3 −4167.25 −4148.38 −2880.00 −2819.92 −2819.25 – −2812.28

070-050-1 −7210.75 −7151.12 −3462.90 −3411.63 −3356.00 – −3252.50

070-050-2 −6620.00 −6573.88 −3409.56 −3341.97 −3296.00 – −3296.00

070-050-3 −7522.00 −7473.88 −4419.50 −4308.40 −4306.50 – −4306.50

070-075-1 −11,647.75 −11,578.12 −5089.09 −5010.60 −5003.67 – −4655.50

070-075-2 −10,884.75 −10,793.38 −4583.49 −4469.11 −4504.92 – −3865.15

070-075-3 −11,262.25 −11,162.38 −4944.31 −4826.89 −4862.75 – −4329.40

080-025-1 −4840.75 −4829.12 −3195.00 −3157.23 −3157.00 – −3157.00

080-025-2 −4378.50 −4351.00 −2432.78 −2383.57 −2361.62 – −2312.34

080-025-3 −5130.25 −5102.88 −3156.00 −3108.04 −3101.00 – −3090.88

080-050-1 −9783.25 −9696.62 −4154.85 −4042.38 −4025.80 – −3448.10

080-050-2 −9270.00 −9205.50 −4595.53 −4498.70 −4450.50 – −4449.20

080-050-3 −10,029.75 −9967.25 −5216.82 −5044.25 −4961.27 – −4886.00
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Table 2 continued

Name (spar. . .) zM zM2 z◦M z◦M2 z•M z•M2 zBoxQP

080-075-1 −15,250.75 −15,154.75 −6683.91 −6579.91 −6601.92 – −5896.00

080-075-2 −14,246.50 −14,146.62 −6058.35 −5945.51 −5953.17 – −5341.00

080-075-3 −14,961.50 −14,860.88 −6776.83 −6652.30 −6584.00 – −5980.50

090-025-1 −6171.50 −6135.25 −3526.12 −3469.80 −3423.78 – −3372.50

090-025-2 −6015.00 −5978.38 −3668.68 −3588.62 −3550.65 – −3500.29

090-025-3 −6698.25 −6681.88 −4367.98 −4341.99 −4299.00 – −4299.00

090-050-1 −12,584.00 −12,522.38 −5611.51 −5547.69 −5468.90 – −5152.00

090-050-2 −11,920.50 −11,,851.38 −5573.10 −5514.60 −5404.36 – −5386.50

090-050-3 −12,514.00 −12452.50 −6439.11 −6345.88 −6230.59 – −6151.00

090-075-1 −19054.25 −18,944.50 −8016.93 −7899.63 −7944.92 – −6267.45

090-075-2 −18,245.50 −18,132.50 −7406.32 −7290.15 −7334.75 – −5647.50

090-075-3 −18,929.50 −18,823.50 −7974.10 −7866.58 −7908.50 – −6450.00

100-025-1 −7660.75 −7611.38 −4255.79 −4177.38 −4116.48 – −4027.50

100-025-2 −7338.50 −7303.12 −4002.76 −3975.38 −3906.07 – −3892.56

100-025-3 −7942.25 −7894.75 −4581.40 −4504.17 −4459.25 – −4453.50

100-050-1 −15,415.75 −15,341.75 −6474.28 −6407.46 −6366.84 – −5490.00

100-050-2 −14,920.50 −14,814.62 −6665.38 −6573.51 −6504.93 – −5866.00

100-050-3 −15,564.25 −15,480.12 −7179.24 −7080.22 −7031.72 – −6485.00

100-075-1 −23,387.50 −23,277.12 −9645.89 −9504.28 −9551.75 – −7384.20

100-075-2 −22,440.00 −22,307.00 −8927.68 −8768.39 −8826.42 – −6755.50

100-075-3 −23,243.50 −23,109.62 −9692.79 −9553.26 −9614.25 – −7554.00

125-025-1 −12,251.00 −12,184.75 −6244.26 −6164.92 −6118.03 – −5572.00

125-025-2 −12,732.00 −12,662.62 −6596.36 −6462.89 −6401.29 – −6156.06

125-025-3 −12,650.75 −12,627.50 −7055.47 −7019.67 −6923.00 – −6815.50

125-050-1 −24,993.00 −24,880.25 −11,030.48 −10,879.26 −10,879.42 – −9308.38

125-050-2 −24,810.50 −24,669.38 −10,388.46 −10,215.57 −10,273.75 – −8395.00

125-050-3 −24,424.50 −24,308.00 −10,126.01 −9999.21 −10,032.50 – −8343.91

125-075-1 −38,202.00 −38,058.12 −16,181.85 −16,009.38 −16,053.67 – −12,330.00

125-075-2 −37,466.75 −37,341.38 −15,158.92 −15,025.72 −15,088.58 – −10,382.47

125-075-3 −36,202.25 −36,033.00 −14,002.17 −13,857.12 −13,917.67 – −9635.50

All values in columns zM, zM2 , z◦M, z◦M2 , and zBoxQP were taken from the computational study of Bonami
et al. [3]

Table 3 Gap for BoxQP relaxations

Name (spar. . .) gap(zM) gap(zM2 ) gap(z◦M) gap(z◦M2 ) gap(z•M) gap(z•M2 )

020-100-1 33.72 31.96 8.96 0.06 0.00 0.00

020-100-2 33.55 31.94 9.98 1.36 2.70 1.23

020-100-3 33.93 32.40 11.97 0.02 0.00 0.00

030-060-1 51.47 50.63 7.29 2.64 3.30 1.15

030-060-2 18.97 17.45 4.96 0.15 0.60 0.15

030-060-3 36.81 35.53 6.81 1.65 2.27 0.95
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Table 3 continued

Name (spar. . .) gap(zM) gap(zM2 ) gap(z◦M) gap(z◦M2 ) gap(z•M) gap(z•M2 )

030-070-1 58.32 57.73 11.41 7.12 7.08 5.01

030-070-2 32.33 30.46 10.13 0.40 0.66 0.21

030-070-3 28.03 26.37 7.12 1.18 2.22 1.17

030-080-1 54.79 54.02 7.58 3.55 3.66 1.55

030-080-2 26.68 26.00 1.87 0.00 0.00 0.00

030-080-3 24.70 23.84 3.22 0.00 0.21 0.00

030-090-1 46.50 45.64 5.43 0.17 0.00 0.00

030-090-2 45.00 44.07 8.72 0.55 0.76 0.26

030-090-3 41.14 40.23 5.74 0.06 0.00 0.00

030-100-1 52.84 51.72 11.81 1.24 0.67 0.02

030-100-2 53.82 53.30 6.63 0.79 0.00 0.00

030-100-3 45.09 44.11 7.86 1.02 1.98 0.85

040-030-1 22.84 21.32 1.58 0.00 0.00 0.00

040-030-2 12.60 11.67 2.19 0.03 0.17 0.03

040-030-3 16.67 16.28 2.21 0.00 0.00 0.00

040-040-1 47.89 46.87 5.27 2.39 2.31 1.29

040-040-2 25.65 24.67 4.80 0.06 0.00 0.00

040-040-3 42.47 41.83 3.13 0.89 1.63 0.49

040-050-1 46.21 45.57 4.55 0.45 0.22 0.02

040-050-2 39.29 38.71 4.19 0.57 0.31 0.07

040-050-3 36.79 36.47 1.13 0.00 0.26 0.00

040-060-1 53.95 53.06 8.86 5.02 4.87 3.10

040-060-2 31.30 30.23 4.83 0.31 0.49 0.09

040-060-3 28.52 27.51 4.36 0.01 0.00 0.00

040-070-1 48.95 47.72 8.65 0.39 0.00 –

040-070-2 44.57 43.80 3.76 0.20 0.00 –

040-070-3 35.20 34.58 3.58 0.22 0.31 –

040-080-1 52.20 51.47 8.08 0.31 0.00 –

040-080-2 49.06 48.28 6.04 0.60 0.00 –

040-080-3 41.64 40.96 4.54 0.45 0.62 –

040-090-1 51.21 50.63 5.22 0.47 0.00 –

040-090-2 51.51 50.91 7.26 1.66 0.48 –

040-090-3 43.88 43.08 4.86 0.60 0.20 –

040-100-1 50.57 49.79 7.86 0.54 0.45 –

040-100-2 57.12 56.70 3.96 1.98 2.04 –

040-100-3 63.24 62.81 16.60 13.87 14.88 –

050-030-1 28.72 27.93 2.54 0.02 0.00 –

050-030-2 28.53 28.25 1.59 0.08 0.06 –

050-030-3 31.02 30.57 3.00 0.18 0.51 –

050-040-1 46.39 45.32 5.33 0.32 0.00 –

050-040-2 40.28 39.63 4.73 0.19 0.44 –

050-040-3 36.02 35.28 4.19 0.07 0.00 –
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Table 3 continued

Name (spar. . .) gap(zM) gap(zM2 ) gap(z◦M) gap(z◦M2 ) gap(z•M) gap(z•M2 )

050-050-1 66.11 65.82 17.41 15.35 14.99 –

050-050-2 49.26 48.78 4.26 1.69 0.05 –

050-050-3 48.88 48.02 8.19 2.09 1.51 –

060-020-1 31.03 30.56 0.94 0.00 0.00 –

060-020-2 13.97 13.65 0.00 0.00 0.00 –

060-020-3 29.34 28.74 2.31 0.03 0.00 –

070-025-1 33.76 32.99 2.93 0.56 0.24 –

070-025-2 41.87 41.60 2.43 0.37 0.03 –

070-025-3 32.51 32.21 2.35 0.27 0.25 –

070-050-1 54.89 54.52 6.08 4.66 3.08 –

070-050-2 50.21 49.86 3.33 1.38 0.00 –

070-050-3 42.75 42.38 2.56 0.04 0.00 –

070-075-1 60.03 59.79 8.52 7.09 6.96 –

070-075-2 64.49 64.19 15.67 13.51 14.20 –

070-075-3 61.56 61.21 12.44 10.31 10.97 –

080-025-1 34.78 34.63 1.19 0.01 0.00 –

080-025-2 47.19 46.85 4.95 2.99 2.09 –

080-025-3 39.75 39.43 2.06 0.55 0.33 –

080-050-1 64.76 64.44 17.01 14.70 14.35 –

080-050-2 52.00 51.67 3.18 1.10 0.03 –

080-050-3 51.28 50.98 6.34 3.14 1.52 –

080-075-1 61.34 61.09 11.79 10.39 10.69 –

080-075-2 62.51 62.25 11.84 10.17 10.28 –

080-075-3 60.03 59.76 11.75 10.1 9.17 –

090-025-1 45.35 45.03 4.36 2.80 1.50 –

090-025-2 41.81 41.45 4.59 2.46 1.42 –

090-025-3 35.82 35.66 1.58 0.99 0.00 –

090-050-1 59.06 58.86 8.19 7.13 5.79 –

090-050-2 54.81 54.55 3.35 2.32 0.33 –

090-050-3 50.85 50.60 4.47 3.07 1.28 –

090-075-1 67.11 66.92 21.82 20.66 21.11 –

090-075-2 69.05 68.85 23.75 22.53 23.00 –

090-075-3 65.93 65.73 19.11 18.01 18.44 –

100-025-1 47.43 47.09 5.36 3.59 2.16 –

100-025-2 46.96 46.70 2.75 2.08 0.35 –

100-025-3 43.93 43.59 2.79 1.12 0.13 –

100-050-1 64.39 64.22 15.2 14.32 13.77 –

100-050-2 60.68 60.40 11.99 10.76 9.82 –

100-050-3 58.33 58.11 9.67 8.41 7.78 –
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Table 3 continued

Name (spar. . .) gap(zM) gap(zM2 ) gap(z◦M) gap(z◦M2 ) gap(z•M) gap(z•M2 )

100-075-1 68.43 68.28 23.45 22.31 22.69 –

100-075-2 69.90 69.72 24.33 22.96 23.46 –

100-075-3 67.50 67.31 22.07 20.93 21.43 –

125-025-1 54.52 54.27 10.77 9.62 8.92 –

125-025-2 51.65 51.38 6.67 4.75 3.83 –

125-025-3 46.13 46.03 3.40 2.91 1.55 –

125-050-1 62.76 62.59 15.61 14.44 14.44 –

125-050-2 66.16 65.97 19.19 17.82 18.29 –

125-050-3 65.84 65.67 17.60 16.55 16.83 –

125-075-1 67.72 67.60 23.80 22.98 23.20 –

125-075-2 72.29 72.20 31.51 30.90 31.19 –

125-075-3 73.38 73.26 31.19 30.47 30.77 –
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