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Abstract

The online optimization problem with non-convex loss functions over
a closed convex set, coupled with a set of inequality (possibly non-
convex) constraints is a challenging online learning problem. A proximal
method of multipliers with quadratic approximations (named as OPMM)
is presented to solve this online non-convex optimization with long
term constraints. Regrets of the violation of Karush-Kuhn-Tucker con-
ditions of OPMM for solving online non-convex optimization problems
are analyzed. Under mild conditions, it is shown that this algorithm
exhibits O(T−1/8) Lagrangian gradient violation regret, O(T−1/8)
constraint violation regret and O(T−1/4) complementarity residual
regret if parameters in the algorithm are properly chosen, where T

denotes the number of time periods. For the case that the objec-
tive is a convex quadratic function, we demonstrate that the regret
of the objective reduction can be established even the feasible set
is non-convex. For the case when the constraint functions are con-
vex, if the solution of the subproblem in OPMM is obtained by
solving its dual, OPMM is proved to be an implementable projec-
tion method for solving the online non-convex optimization problem.
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1 Introduction

In recent years, a number of efficient algorithms have been developed for online
optimization. Convexity of the loss functions and the constraint sets has played
a central role in the development of many of these algorithms. In this paper, we
consider a more general setting, where the sequence of loss functions encoun-
tered by the learner could be non-convex and the constraint set is defined by
a set of (possibly non-convex) inequalities. Such a setting has various appli-
cations in machine learning [1–3], especially in adversarial training [4] and
training of Generative Adversarial Networks (GANs) [5].

Most of the existing works about online optimization have focused on con-
vex loss functions. A number of computationally efficient approaches have been
proposed for regret minimization in this setting. Among them the famous ones
include Follow-the-leader [6], Follow-the-Regularized-Leader [7, 8], Exponenti-
ated Online Gradient [9], Online Mirror Descent, Perceptron [10] and Winnow
[11]. There are also a lot of publications concerning algorithms for online con-
vex optimization, see [12, Chapter 7], [13, Chapter 21], and survey papers
[14, 15] and references cited in these two papers.

However, when the loss functions are non-convex or the constraint sets are
non-convex, minimizing the regret is computationally prohibitive. In the last
years, there have been several papers about learning with non-convex losses
over simple convex constraint sets. A few heuristic algorithms have been pro-
posed in [16, 17] without establishing the regret bounds. In [18], the regret
of online projection gradient method for a restricted class of loss functions is
analyzed. The notion of local regret and the regret of online gradient method
for a class of continuously differentiable non-convex loss functions are pre-
sented in [19]. DC (difference of convex functions) programming and DCA
method for online learning problems with non-convex loss functions are inves-
tigated in [20]. In [21], a recursive exponential weighted algorithm that attains
a regret of O(T−1/2) for non-convex Lipschitz continuous loss functions is
proposed. It is shown in [22] that the classical Follow-the-Perturbed-Leader
(FTPL) algorithm achieves O(T−1/3) regret for general non-convex losses
which are Lipschitz continuous. Moreover, in [23], it is proved that FTPL
achieves optimal regret rate O(T−1/2) for the problem of online learning with
non-convex losses. An online cubic-regularized Newton method for non-convex
online optimization is studied in [24].

In this paper, we consider a more complicated non-convex online optimiza-
tion problem, which has a complex constraint set defined by

Φ = {x ∈ C : gi(x) ≤ 0, i = 1, . . . , p}. (1)
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Here, C ⊂ R
n is a nonempty convex compact set with diameter D0 :=

supx,x′∈C ‖x − x′‖ and gi : R
n → R, i = 1, . . . , p are continuous (possibly

non-convex) functions.
In order to alleviate the computational challenge of the projection ΠΦ(·)

with Φ defined by (1), in [25] the authors considered to relax the constraints
gi(x) ≤ 0 to be long term constraints. That is, the decision xt is not required

to satisfy gi(xt) ≤ 0 at each round, but only require that
∑T

t=1 gi(x
t) ≤ 0.

There are some recent works related to online convex optimization with long
term constraints. In [25], a gradient based algorithm is designed to achieve
O(T−1/2) regret bound and O(T−1/4) violation of constraints for an online
optimization problem whose constraint set is defined by a set of inequalities of
smooth convex functions. In [26, 27] new algorithms are developed to improve
the performance in comparison with [25]. However, for non-convex online opti-
mization problems with non-convex loss functions and constraint sets of the
form (1), the research has been very limited until recently.

At round t, we consider the following non-convex optimization problem

min
x∈C

ft(x)

s.t. g(x) ≤ 0,
(2)

where g(x) := (g1(x), . . . , gp(x))
T . Since Problem (2) is non-convex, it is

unrealistic to analyze the regrets in both objective reduction and constraint
violation. Just like the offline non-convex optimization, it is natural to consider
the Karush-Kuhn-Tucker (KKT) conditions which are given by

0 ∈ ∇xL
t(x, λ) +NC(x),

0 ≥ g(x) ⊥ λ ≥ 0,
(3)

where Lt(x, λ) = ft(x) + λT g(x) and NC(x) is the normal cone of C at x.
Conditions (3) are equivalent to the following equalities:

dist
(
0,∇xL

t(x, λ) +NC(x)
)
= 0,

λ− [λ+ g(x)]+ = 0,
(4)

where [·]+ := max{0, ·}. Therefore, it is reasonable to consider the regret of
violation for the equalities in (4).

In this paper, we extend the proximal method of multipliers, a classical
algorithm proposed in [28] to solve convex programming, for online non-
convex optimization problem, and analyze its regret bounds for KKT violation
consisting of Lagrangian residual, constraint violation and complementarity
residual. Let qti(x), i = 0, 1, . . . , p be the quadratic approximations of ft and
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gi, i = 1, . . . , p at xt, respectively, defined by

qt0(x) := ft(x
t) + 〈∇ft(xt), x− xt〉+ 1

2 〈Θt
0(x − xt), x− xt〉 ,

qti(x) := gi(x
t) + 〈∇gi(xt), x− xt〉+ 1

2 〈Θt
i(x− xt), x− xt〉 , i = 1, . . . , p,

where Θt
0 ∈ S

n and Θt
i ∈ S

n are properly selected symmetric n × n matrices.
The corresponding augmented Lagrangian function is defined by

Ltσ(x, λ) := qt0(x) +
1

2σ

[
p∑

i=1

[λi + σqti(x)]
2
+ − ‖λ‖2

]
(5)

for (x, λ) ∈ R
n × R

p and σ > 0. At each round t, we let xt+1 be the optimal
solution of the following problem

min
x∈C
Ltσ(x, λt) +

α

2
‖x− xt‖2,

and update the multipliers by λt+1
i = [λti + σqti(x

t+1)]+, i = 1, . . . , p, where
α > 0 is some parameter. Let qt(x) := (qt1(x), . . . , q

t
p(x))

T , then λt+1 = [λt +
σqt(xt+1)]+. In detail, the online proximal method of multipliers (OPMM)
with quadratic approximations for the non-convex online optimization problem
with constraint set (1) can be described in Algorithm 1.

Algorithm 1: An online proximal method of multipliers (OPMM)
with quadratic approximations.

Input: λ1 = 0, x1 ∈ C, σ > 0 and α > 0, receive a cost function f1(·).
1 for t← 1 to T do

2 Choose Θt
0 ∈ S

n and Θt
i ∈ S

n, i = 1, . . . , p such that qt0(·) and qti(·)
are proper quadratic approximations of ft(·) and gi(·) at xt,
respectively.

3 Compute

xt+1 = argmin
x∈C

{
Ltσ(x, λt) +

α

2
‖x− xt‖2

}
. (6)

4 Update

λt+1
i = [λti + σqti(x

t+1)]+, i = 1, . . . , p.

5 Receive a cost function ft+1(·).

The main results of this paper can be summarized as follows.
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• When we choose σ = T−1/4 and α = T 1/4, under mild assumptions,
there exists wt+1 ∈ NC(x

t+1) for any t = 1, . . . , T such that the regret of
Lagrangian residual is

∥∥∥∥∥
1

T

T∑

t=1

[
∇ft+1(x

t+1) +

p∑

i=1

λt+1
i ∇gi(xt+1) + wt+1

]∥∥∥∥∥ ≤ O(T
−1/8),

the regret of constraint violation is

1

T

T∑

t=1

gi(x
t) ≤ O(T−1/8), i = 1, . . . , p,

and the regret of complementarity residual is

1

T

T∑

t=1

‖λt+1 − [λt+1 + σg(xt+1)]+‖ ≤ O(T−1/4).

• For the case that the objective function ft is convex quadratic, if σ = T−1/2

and α = T 1/2, the regret of objective reduction is

1

T

T∑

t=1

ft(x
t)− inf

z∈Φ

1

T

T∑

t=1

ft(z) ≤ O(T−1/2).

• For the case that g1, . . . , gp are convex functions, if the solution of the
subproblem in OPMM is obtained by solving the dual of the subproblem,
OPMM can be reformulated as an implementable projection method.

The remaining parts of this paper are organized as follows. In Section 2,
we develop properties of OPMM, which play a key role in the regret analysis
of OPMM. In Section 3, we establish regret bounds of Lagrangian residual,
constraint violation and complementarity residual of OPMM for Problem (2).
In Section 4, for the convex constraint set, OPMM is explained as an imple-
mentable projection method for solving the online optimization problem with
long term constraints. We draw a conclusion in Section 5.

2 Auxiliary Properties of OPMM

In this section, we focus on establishing a variety of auxiliary properties of
OPMM under some reasonable assumptions. We begin by introducing two
classes of assumptions, in which the first class is about the structure of Problem
(2) and the second class is to ensure that the quadratic approximations qti(x),
i = 0, 1, . . . , p are well-defined.
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Assumption A1 There exist constants κf > 0, κg > 0 and νg > 0 such that for all
x, x′ ∈ C and i = 1, . . . , p,

|ft(x)− ft(x
′)| ≤ κf ‖x− x′‖, |gi(x)− gi(x

′)| ≤ κg‖x− x′‖,
and ‖g(x)‖ ≤ νg .

Assumption A2 The functions ft and gi, i = 1, . . . , p are continuously differen-
tiable over C. There exist constants Lf > 0 and Lg > 0 such that for all x, x′ ∈ C
and i = 1, . . . , p,

‖∇ft(x)−∇ft(x′)‖ ≤ Lf ‖x− x′‖, ‖∇gi(x)−∇gi(x′)‖ ≤ Lg‖x− x′‖.

Assumption A3 The Slater condition holds, that is, there exist a constant ε0 > 0
and a vector x̂ ∈ C such that

gi(x̂) ≤ −ε0, i = 1, . . . , p.

Note that the set C is bounded, if Assumption A2 holds true, we have that
Assumption A1 is satisfied. Indeed, if Assumption A2 holds, it follows that
g(x), ∇ft(x) and ∇gi(x) are bounded over C, and hence ft(x) and gi(x) are
Lipschitz continuous. From Assumption A3 and ‖g(x)‖ ≤ νg in Assumption
A1 it follows that νg ≥ ‖g(x̂)‖ ≥

√
pε0, which implicitly implies that νg ≥ ε0.

Assumption B1 The matrix Θt
0 is positively semidefinite.

Assumption B2 It holds that qti (x) ≤ gi(x), i = 1, . . . , p for all x ∈ C.

Assumption B3 There exists a constant κq > 0 such that ‖Θt
i‖ ≤ κq for i =

0, 1, . . . , p.

Assumption B4 The augmented Lagrangian function Lt
σ(·, λt) is convex.

Roughly speaking, the role of Assumptions B1–B4 is to let the functions qti
be conservatively convex approximations to ft and gi, i = 1, . . . , p, respectively,
and let the subproblem (6) in OPMM be easily solvable. We remark that
Assumption B4 is satisfied if all matrices Θt

i, i = 0, 1, . . . , p are positively
semidefinite.

Lemma 1 Let Assumptions A1, B3 be satisfied. Then, for i = 1, . . . , p,

T∑

t=1

gi(x
t) ≤ 1

σ
λT+1
i + γκ2gT +

[
1

4γ
+
κq
2

] T∑

t=1

‖xt+1 − xt‖2,

where γ > 0 is an arbitrary scalar.
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Proof From the relation λt+1
i = [λti+σq

t
i(x

t+1)]+ and the fact that [a]+ ≥ a for any
scalar a, we have

λt+1
i ≥ λti + σ

(
gi(x

t) + 〈∇gi(xt), xt+1 − xt〉+ 1
2

〈
Θt

i(x
t+1 − xt), xt+1 − xt

〉)

≥ λti + σ
(
gi(x

t)− ‖∇gi(xt)‖‖xt+1 − xt‖ − 1
2‖Θ

t
i‖‖xt+1 − xt‖2

)
,

which, together with Assumptions A1, B3, implies for any γ > 0 that

1

σ
(λt+1

i − λti) ≥ gi(x
t)− γκ2g −

(
1

4γ
+
κq
2

)
‖xt+1 − xt‖2.

Summing up the above inequality from t = 1 to T , rearranging terms and noticing
that λ1 = 0, we derive the claim. �

In order to obtain a bound of
∑T

t=1 gi(x
t) in Lemma 1, we need to estimate

an upper bound of
∑T

t=1 ‖xt+1 − xt‖2, which is given in the following lemma.

Lemma 2 Let Assumptions A1, B1, B2 be satisfied. Then, for any α > 0,

T∑

t=1

‖xt+1 − xt‖2 ≤ 4

α

[
T

α
κ2f + νg

T∑

t=1

‖λt‖+ σ

2
ν2gT

]

.

Proof In view of (6), it follows from Assumption B2 that

〈∇ft(xt), xt+1 − xt〉+ 1
2

〈
Θt

0(x
t+1 − xt), xt+1 − xt

〉
+ 1

2σ ‖λ
t+1‖2 + α

2 ‖x
t+1 − xt‖2

≤ 1
2σ

∑p
i=1[λ

t
i + σqti(x

t)]2+ ≤ 1
2σ

∑p
i=1[λ

t
i + σgi(x

t)]2+ ≤ 1
2σ ‖λ

t + σg(xt)‖2,
which, together with Assumption A1 and B1, implies that

α
4 ‖x

t+1 − xt‖2

≤ 〈∇ft(xt), xt − xt+1〉 − α
4 ‖x

t+1 − xt‖2 − 1
2

〈
Θt

0(x
t+1 − xt), xt+1 − xt

〉

+ 1
2σ [‖λ

t‖2 − ‖λt+1‖2] + 〈λt, g(xt)〉+ σ
2 ‖g(x

t)‖2

≤
(
〈∇ft(xt), xt − xt+1〉 − α

4 ‖x
t+1 − xt‖2

)
+ 1

2σ [‖λ
t‖2 − ‖λt+1‖2] + νg‖λt‖+ σ

2 ν
2
g

≤ 1
ακ

2
f + 1

2σ [‖λ
t‖2 − ‖λt+1‖2] + νg‖λt‖+ σ

2 ν
2
g .

The claim is obtained by summing up the above inequality from t = 1 to T , rear-
ranging terms and noticing that λ1 = 0. �

Combining Lemma 1 and Lemma 2, we obtain the following result which
plays an important role in estimating the constraint violation regret.

Proposition 3 Let Assumptions A1, B1, B2, B3 be satisfied. Then, for any scalar
γ > 0, the following results hold:

T∑

t=1

gi(x
t) ≤ 1

σ
λT+1
i + γκ2gT +

1

α

[
1

γ
+ 2κq

][
κ2f
α
T + νg

T∑

t=1

‖λt‖+ σ

2
ν2gT

]

.
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We next focus our attention on examining the bound of Lagrangian
multiplier λt.

Lemma 4 Let Assumptions A1, B3 be satisfied. Then

‖λt‖ − σβ0 ≤ ‖λt+1‖ ≤ ‖λt‖+ σβ0,

where

β0 :=

[
νg +

√
p

(
κgD0 +

1

2
κqD

2
0

)]
. (7)

Proof It follows from the nonexpansion property of [·]+, Assumption A1 and
Assumption B3 that

‖λt+1 − λt‖ = ‖[λt + σqt(xt+1)]+ − [λt]+‖ ≤ σ‖qt(xt+1)‖

≤ σ‖g(xt)‖+ σ‖qt(xt+1)− g(xt)‖

≤ σνg + σ

(∑p
i=1

(
‖∇gi(xt)‖‖xt+1 − xt‖+ 1

2‖Θ
t
i‖‖xt+1 − xt‖2

)2
)1/2

≤ σνg + σ

(∑p
i=1

(
κgD0 + 1

2κqD
2
0

)2
)1/2

≤ σ
[
νg +

√
p
(
κgD0 + 1

2κqD
2
0

)]
,

which completes the proof. �

Lemma 5 Let Assumptions A1, A3, B1, B2, B3, B4 be satisfied. Let s > 0 be an
arbitrary integer and

ϑ(σ, α, s) :=
ε0σs

2
+ β0σ(s− 1) +

αD2
0

ε0s
+

(
2κfD0 + κqD

2
0

)

ε0
+
σν2g
ε0

. (8)

Then, it follows that
|‖λt+1‖ − ‖λt‖| ≤ σβ0, (9)

where β0 is defined by (7). Moreover, if ‖λt‖ ≥ ϑ(σ, α, s), it holds that

‖λt+s‖ − ‖λt‖ ≤ −sσε0
2
. (10)

Proof Inequality (9) follows directly from Lemma 4. It remains to prove

‖λt+s‖ − ‖λt‖ ≤ −sσε0
2

under the condition that ‖λt‖ ≥ ϑ(σ, α, s).
In the sequel, for given positive integer s, we suppose that ‖λt‖ ≥ ϑ(σ, α, s). For

any l ∈ {t, t+ 1, . . . , t+ s− 1}, under Assumption B4, it follows from (6), i.e.,

xl+1 = argmin
x∈C

{
Ll
σ(x, λ

l) +
α

2
‖x− xl‖2

}
,
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and its optimality conditions that xl+1 is also a minimizer of Ll
σ(x, λ

l) + α
2 [‖x −

xl‖2 − ‖x− xl+1‖2] over C. Therefore,

〈∇fl(xl), xl+1 − xl〉+ 1
2

〈
Θl

0(x
l+1 − xl), xl+1 − xl

〉
+ 1

2σ ‖λ
l+1‖2 + α

2 ‖x
l+1 − xl‖2

≤ 〈∇fl(xl), x̂− xl〉+ 1
2

〈
Θl

0(x̂− xl), x̂− xl
〉
+ 1

2σ ‖[λ
l + σql(x̂)]+‖2

+α
2

[
‖x̂− xl‖2 − ‖x̂− xl+1‖2

]

≤ 〈∇fl(xl), x̂− xl〉+ 1
2

〈
Θl

0(x̂− xl), x̂− xl
〉
+ 1

2σ ‖[λ
l + σg(x̂)]+‖2

+α
2

[
‖x̂− xl‖2 − ‖x̂− xl+1‖2

]

≤ 〈∇fl(xl), x̂− xl〉+ 1
2

〈
Θl

0(x̂− xl), x̂− xl
〉
+ 1

2σ ‖λ
l‖2 + 〈λl, g(x̂)〉+ σ

2 ‖g(x̂)‖
2

+α
2

[
‖x̂− xl‖2 − ‖x̂− xl+1‖2

]
,

in which x̂ is given in Assumption A3 and the second inequality above is obtained
from Assumption B2. Reorganizing terms and using Assumptions A1, B1, B3, we
obtain

1
2σ

[
‖λl+1‖2 − ‖λl‖2

]

≤ 〈∇fl(xl), x̂− xl+1〉+ 1
2

〈
Θl

0(x̂− xl), x̂− xl
〉
+ 〈λl, g(x̂)〉+ σ

2 ‖g(x̂)‖
2

+α
2

[
‖x̂− xl‖2 − ‖x̂− xl+1‖2

]

≤ κfD0 + 1
2κqD

2
0 + 〈λl, g(x̂)〉+ σ

2 ν
2
g + α

2

[
‖x̂− xl‖2 − ‖x̂− xl+1‖2

]
.

(11)

Noting that for l ∈ {t, t+ 1, . . . , t+ s− 1}, one has from Assumption A3 that

〈λl, g(x̂)〉 =
p∑

j=1

λljgj(x̂) ≤ −ε0
p∑

j=1

λlj ≤ −ε0‖λl‖. (12)

Thus, making a summation of (11) over {t, t+1, . . . , t+ s−1}, noticing (12) and the
fact that ‖λt+l‖ ≥ ‖λt‖ − σβ0l, we obtain

1
2σ

[
‖λt+s‖2 − ‖λt‖2

]

≤
(
κfD0 + 1

2κqD
2
0

)
s+ σ

2 ν
2
gs+

∑t+s−1
l=t 〈λl, g(x̂)〉+ α

2

[(
‖x̂− xt‖2 − ‖x̂− xt+s‖2

)]

≤
(
κfD0 + 1

2κqD
2
0

)
s+ σ

2 ν
2
gs− ε0

∑s−1
l=0 ‖λt+l‖+ α

2D
2
0

≤
(
κfD0 + 1

2κqD
2
0

)
s+ σ

2 ν
2
gs+

α
2D

2
0 − ε0

∑s−1
l=0

[
‖λt‖ − σβ0l

]

≤
(
κfD0 + 1

2κqD
2
0

)
s+ σ

2 ν
2
gs+

α
2D

2
0 + ε0σβ0

s(s−1)
2 − ε0s‖λt‖,
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which, together with ‖λt‖ ≥ ϑ(σ,α, s), further implies that

‖λt+s‖2

≤ ‖λt‖2 + 2σ
(
κfD0 + 1

2κqD
2
0

)
s+ σ2ν2gs+ ασD2

0 + ε0σ
2β0s(s− 1) − 2ε0σs‖λt‖

=
(
‖λt‖ − ε0σ

2 s
)2 − 3ε20σ

2

4 s2 + ε0σsϑ(σ, α, s)− ε0σs‖λt‖

≤
(
‖λt‖ − ε0σ

2 s
)2
.

Noticing that ‖λt‖ ≥ ϑ(σ, α, s) ≥ ε0σ
2 s, we have ‖λt+s‖ ≤ ‖λt‖− ε0σ

2 s. The proof is
completed. �

The following lemma is a simple variation of [29, Lemma 5], which shall be
used to deal with KKT violation regret of OPMM. The proof is provided in
Appendix A.

Lemma 6 Let {Zt} be a sequence with Z0 = 0. Suppose there exist an integer
t0 > 0, real constants θ > 0, δmax > 0 and 0 < ζ ≤ δmax such that |Zt+1−Zt| ≤ δmax

and
Zt+t0 − Zt ≤ −t0ζ, if Zt ≥ θ (13)

hold for all t ∈ {1, 2, . . .}. Then,

Zt ≤ θ + t0δmax + t0
4δ2max

ζ
log

[
8δ2max

ζ2

]
,∀t ∈ {1, 2, . . .}. (14)

If we take θ = ϑ(σ, α, s), δmax = σβ0, ζ = σ
2 ε0 and t0 = s, we can observe

from β0 ≥ νg ≥ ε0 and Lemma 5 that the conditions in Lemma 6 are satisfied
in terms of ‖λt‖. For convenience, let us introduce

ψ(σ, α, s) := ϑ(σ, α, s) +

[
β0 +

8β2
0

ε0
log

32β2
0

ε20

]
σs.

We can verify that the right-hand side of (14) equals exactly to ψ(σ, α, s), that
is,

θ + t0δmax + t0
4δ2max

ζ
log

[
8δ2max

ζ2

]
= ψ(σ, α, s).

Therefore, from Lemma 5 and Lemma 6 we directly derive the following useful
result.

Proposition 7 Let Assumptions A1, A3, B1, B2, B3, B4 be satisfied. Then, for any
arbitrary integer s > 0, the following inequality holds

‖λt‖ ≤ ψ(σ, α, s).
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Finally, if we define

κ0 =
(2κfD0+κqD

2
0)

ε0
, κ1 =

D2
0

ε0
, κ2 =

ν2
g

ε0
− β0,

κ3 =
[
2β0 +

ε0
2 +

8β2
0

ε0
log

32β2
0

ε2
0

]
,

(15)

then ψ(σ, α, s) can be rewritten as

ψ(σ, α, s) = κ0 + κ1
α

s
+ κ2σ + κ3σs.

3 Regret Analysis of OPMM

In this section, we establish the regret bounds of the proposed algorithm.
In particular, we focus on estimating the following three regrets: regret of
Lagrangian residual, regret of constraint violation and regret of complemen-
tarity residual. The following proposition establishes an upper bound of the
so-called Lagrangian residual.

Proposition 8 Let Assumptions A1, A2, B3 be satisfied. Then, there exists a vector
wt+1 ∈ NC(x

t+1) such that
∥∥∥∥∥

T∑

t=1

Ht

∥∥∥∥∥ ≤ 2κf +
κ2q
2β
T+

(1 + p)β

2

T∑

t=1

‖xt+1−xt‖2+ (Lg + κq)
2

2β

T∑

t=1

‖λt+1‖2+αD0,

(16)
where β > 0 is an arbitrary scalar and

Ht := ∇ft+1(x
t+1) +

p∑

i=1

λt+1
i ∇gi(xt+1) + wt+1.

Proof It follows from the optimality conditions of (6) that

0 ∈ ∇qt0(xt+1) + J qt(xt+1)Tλt+1 + α(xt+1 − xt) +NC(x
t+1).

Equivalently, from the definitions of qt0 and qt, there exists wt+1 ∈ NC(x
t+1) such

that

0 = ∇ft(xt)+Θt
0(x

t+1−xt)+
p∑

i=1

λt+1
i [∇gi(xt)+Θt

i(x
t+1−xt)]+α(xt+1−xt)+wt+1.

(17)
In view of definitions of qti , i = 0, 1, . . . , p and Ht, we may rewrite (17) as

0 = Ht + [∇ft(xt)−∇ft+1(x
t+1)] +

∑p
i=1 λ

t+1
i (∇gi(xt)−∇gi(xt+1))

+Θt
0(x

t+1 − xt) +
∑p

i=1 λ
t+1
i Θt

i(x
t+1 − xt) + α(xt+1 − xt).
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Making a summation, we obtain

−∑T
t=1 Ht

= [∇f1(x1)−∇fT+1(x
T+1)] +

∑T
t=1

[∑p
i=1 λ

t+1
i (∇gi(xt)−∇gi(xt+1))

]

+
∑T

t=1 Θ
t
0(x

t+1 − xt) +
∑T

t=1

[∑p
i=1 λ

t+1
i Θt

i(x
t+1 − xt)

]
+ α(xT+1 − x1).

Therefore, it follows from Assumptions A1, A2, B3 that
∥∥∥
∑T

t=1 Ht

∥∥∥

≤ [‖∇f1(x1)‖+ ‖∇fT+1(x
T+1)‖] +∑T

t=1

[∑p
i=1 λ

t+1
i ‖∇gi(xt)−∇gi(xt+1)‖

]

+
∑T

t=1 ‖Θt
0‖‖xt+1 − xt‖+∑T

t=1

[∑p
i=1 λ

t+1
i ‖Θt

i‖‖xt+1 − xt‖
]
+ αD0

≤ 2κf + κq
∑T

t=1 ‖xt+1 − xt‖+ (Lg + κq)
∑T

t=1

[∑p
i=1 λ

t+1
i ‖xt+1 − xt‖

]
+ αD0

≤ 2κf +
κ2
q

2βT + β
2

∑T
t=1 ‖xt+1 − xt‖2 +

(Lg+κq)
2

2β

∑T
t=1 ‖λt+1‖2

+ pβ
2

∑T
t=1 ‖xt+1 − xt‖2 + αD0

= 2κf +
κ2
q

2βT +
(1+p)β

2

∑T
t=1 ‖xt+1 − xt‖2 +

(Lg+κq)
2

2β

∑T
t=1 ‖λt+1‖2 + αD0,

which proves (16). �

Combining the results in Proposition 3, Proposition 7 and Proposition 8,
we present the main theorem of this section.

Theorem 9 Let Assumptions A1, A2, A3, B1, B2, B3, B4 be satisfied. Then, for
σ = T−1/4 and α = T 1/4, the following assertions hold.

(i) There exists a vector wt+1 ∈ NC(x
t+1) such that the regret of Lagrangian

residual is bounded by

∥∥∥∥∥
1

T

T∑

t=1

[
∇ft+1(x

t+1) +

p∑

i=1

λt+1
i ∇gi(xt+1) + wt+1

]∥∥∥∥∥ ≤ ̺0T
−1/8+o(T−1/8),

where

̺0 =
κ2
q

2 + 2(1 + p)νg(κ0 + κ1 + κ3) +
(Lg+κq)

2

2 (κ0 + κ1 + κ3)
2.

(ii) The regret of constraint violation is

1

T

T∑

t=1

gi(x
t) ≤ (νg(κ0 + κ1 + κ3) + κ2g)T

−1/8 + o(T−1/8).
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(iii) The regret of complementarity residual is

1

T

T∑

t=1

‖λt+1 − [λt+1 + σg(xt+1)]+‖ ≤ β0T−1/4 + o(T−1/4).

Proof It follows from Proposition 7 that

‖λt‖ ≤ ψ(σ, α, s) = κ0 + κ1
α

s
+ κ2σ + κ3σs,

where κ0, κ1, κ2, κ3 are defined by (15). For σ = T−1/4 and α = T 1/4, we take

s = T 1/4 and hence
‖λt‖ ≤ κ0 + κ1 + κ3 + κ2T

−1/4. (18)

Combining the results in Proposition 8 and Lemma 2, we have
∥∥∥ 1
T

∑T
t=1 Ht

∥∥∥ ≤ 2κf

T +
κ2
q

2β +
2(1+p)β

αT

[
T
ακ

2
f + νg

∑T
t=1 ‖λt‖+ σ

2 ν
2
gT

]

+
(Lg+κq)

2

2βT

∑T
t=1 ‖λt+1‖2 + αD0

T .

Taking β = T 1/8 and using (18), we obtain∥∥∥ 1
T

∑T
t=1 Ht

∥∥∥

≤ κ2
q

2 T
−1/8 + 2(1 + p)T−1/8[κ2fT

−1/4 + νg(κ0 + κ1 + κ3 + κ2T
−1/4) +

ν2
g

2 T
−1/4]

+2κfT
−1 +

(Lg+κq)
2

2 T−1/8(κ0 + κ1 + κ3 + κ2T
−1/4)2 + T−3/4D0

=

[
κ2
q

2 + 2(1 + p)νg(κ0 + κ1 + κ3) +
(Lg+κq)

2

2 (κ0 + κ1 + κ3)
2

]
T−1/8 + o(T−1/8),

which yields item (i).
From Proposition 3, one has

1

T

T∑

t=1

gi(x
t) ≤ 1

σT
λT+1
i + γκ2g +

1

αT

[
1

γ
+ 2κq

][
κ2f
α
T + νg

T∑

t=1

‖λt‖+ σ

2
ν2gT

]

.

Taking γ = T−1/8 and using (18), we obtain
1
T

∑T
t=1 gi(x

t)

≤
[
T−1/8 + 2κqT

−1/4
] [
κ2fT

−1/4 + νg(κ0 + κ1 + κ3 + κ2T
−1/4) +

ν2
g

2 T
−1/4

]

+T−3/4(κ0 + κ1 + κ3 + κ2T
−1/4) + κ2gT

−1/8,

which proves item (ii).
Finally, we consider item (iii). First of all, we estimate ‖g(xt+1) − qt(xt+1)‖.

From Assumption A2 and Assumption B3, we have

‖g(xt+1)− qt(xt+1)‖ =
(∑p

i=1(gi(x
t+1)− qti (x

t+1))2
)1/2

≤
(∑p

i=1

(
Lg+κq

2 ‖xt+1 − xt‖2
)2

)1/2

=
√
p(Lg+κq)

2 ‖xt+1 − xt‖2.



Springer Nature 2021 LATEX template

14 Regrets of PMM for Online Non-convex Optimization

Then, from the definition of λt+1 and Lemma 4 we obtain

‖λt+1 − [λt+1 + σg(xt+1)]+‖ = ‖[λt + σqt(xt+1)]+ − [λt+1 + σg(xt+1)]+‖

≤ ‖λt+1 − λt + σ[g(xt+1)− qt(xt+1)]‖

≤ β0σ +
√
p(Lg+κq)σ

2 ‖xt+1 − xt‖2.
Taking a summation and using Lemma 2, one has

1
T

∑T
t=1 ‖λt+1 − [λt+1 + σg(xt+1)]+‖

≤ β0σ +
2
√
p(Lg+κq)σ

αT

[
T
ακ

2
f + νg

∑T
t=1 ‖λt‖+ σ

2 ν
2
gT

]
.

Therefore, it follows from (18) that
1
T

∑T
t=1 ‖λt+1 − [λt+1 + σg(xt+1)]+‖

≤ 2
√
p(Lg + κq)T

−1/2[κ2fT
−1/4 + νg(κ0 + κ1 + κ3 + κ2T

−1/4) +
ν2
g

2 T
−1/4]

+β0T
−1/4,

which completes the proof of item (iii). �

In the rest of this section, we analyze the objective reduction regret of the
proposed algorithm under a setting where the objective function is a quadratic
convex function, that is, ft(x) = qt0(x) and Assumption B1 holds true. We
emphasize that although the objective function is assumed to be convex, the
feasible set Φ may still be non-convex.

Proposition 10 Let Assumptions A1, B1, B2 be satisfied and ft(x) = qt0(x) for all

x ∈ C. Let σ = T−1/2 and α = T 1/2. The following estimation holds:

1

T

T∑

t=1

ft(x
t)− inf

z∈Φ

1

T

T∑

t=1

ft(z) ≤
(
κ2f +

1

2
ν2g +

1

2
dist2 (x1, S∗)

)
T−1/2,

where S∗ is the set of optimal solutions given by S∗ := argminx∈Φ

∑T
t=1 ft(x).

Proof In view of (6), we have from Assumption B2 that, for all z ∈ C,
qt0(x

t+1) + α
2 ‖x

t+1 − xt‖2

≤ qt0(z) +
1
2σ

[
‖[λt + σqt(z)]+‖2 − ‖[λt + σqt(xt+1)]+‖2

]

+α
2

[
‖z − xt‖2 − ‖z − xt+1‖2

]

≤ qt0(z) +
1
2σ

[
‖[λt + σg(z)]+‖2 − ‖λt+1‖2

]
+ α

2

[
‖z − xt‖2 − ‖z − xt+1‖2

]
.

Rearranging terms and noticing qt0(z) = ft(z) we obtain

ft(x
t) + α

4 ‖x
t+1 − xt‖2

≤ ft(z) +
(
ft(x

t)− qt0(x
t+1)− α

4 ‖x
t+1 − xt‖2

)
+ 1

2σ (‖λ
t‖2 − ‖λt+1‖2)

+〈λt, g(z)〉+ σ
2 ‖g(z)‖

2 + α
2

[
‖z − xt‖2 − ‖z − xt+1‖2

]
.

(19)
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From Assumption B1 and Assumption A1 one has

ft(x
t)− qt0(x

t+1)− α
4 ‖x

t+1 − xt‖2

= 〈−∇ft(xt), xt+1 − xt〉 − 1
2 〈Θ

t
0(x

t+1 − xt), xt+1 − xt〉 − α
4 ‖x

t+1 − xt‖2

≤ 1
α‖∇ft(x

t)‖2 ≤ 1
ακ

2
f .

Therefore, from (19) and the fact that 〈λt, g(z)〉 ≤ 0 for all z ∈ Φ we have

ft(x
t) ≤ ft(z)+

1

α
κ2f +

1

2σ
(‖λt‖2−‖λt+1‖2)+ σ

2
ν2g +

α

2

[
‖z − xt‖2 − ‖z − xt+1‖2

]
.

Making a summation, we obtain

1

T

T∑

t=1

ft(x
t) ≤ 1

T

T∑

t=1

ft(z) +
κ2f
α

+
σν2g
2

+
α

2T
‖z − x1‖2.

Hence, the claim is derived by noting that σ = T−1/2 and α = T 1/2. �

4 OPMM for Online Optimization with
Convex Constraints

In this section, we consider the online optimization problem with convex func-
tional constraints, namely, the case that g1, . . . , gp are all convex functions.
Moreover, we choose Θt

i = 0, i = 1, . . . , p in OPMM. In this case, Assump-
tion B2 is naturally satisfied and Assumption B3 is reduced to the condition
‖Θt

0‖ ≤ κq. Further, under Assumption B1, the subproblem (6) is reduced to
the following convex optimization problem

min
x∈C

{
qt0(x) +

1

2σ
‖[λt + σg(xt) + σJ g(xt)(x− xt)]+‖2 +

α

2
‖x− xt‖2

}
.

(20)
For positively definite matrix G ∈ S

n and x ∈ R
n, we use distGC (x) to

denote the weighted distance of x from C, which is defined by

distGC (x) := inf
u∈C
‖x− u‖G,

where ‖x‖G =
√
xTGx is theG-weighted norm of x. TheG-weighted projection

of x onto C, denoted by ΠG
C (x), is defined by

ΠG
C (x) := argmin

u∈C
‖x− u‖G.

The following lemma is well-known, see, e.g., [30, Example 3.31].

Lemma 11 For a closed convex set C ⊂ R
n and a positively definite matrix G ∈ S

n,
let π(x) := 1

2dist
G
C (x)2. Then, π is continuously differentiable and

∇π(x) = G(x− ΠG
C (x)).
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By introducing artificial vectors z and w, we can express Problem (20) as
the following equivalent convex quadratic programming problem

min
x,z,w

qt0(x) +
α
2 ‖x− xt‖2 + 1

2σ ‖z‖2

s.t. λt + σg(xt) + σJ g(xt)(x− xt)− z + w = 0,

x ∈ C, z ≥ 0, w ≥ 0.

(21)

The Lagrangian function of Problem (21) is given by

Lt(x, z, w, y)

= qt0(x) +
α
2 ‖x− xt‖2 + 1

2σ‖z‖2 + 〈y, λt + σg(xt) + σJ g(xt)(x− xt)− z + w〉.

Then, the dual of Problem (21) is expressed as

max
y∈Rp

inf
x∈C

inf
z≥0

inf
w≥0

Lt(x, z, w, y)

= max
y∈Rp

{
〈y, λt + σg(xt)〉+ inf

x∈C
[qt0(x) +

α
2 ‖x− xt‖2 + 〈y, σJ g(xt)(x− xt)〉]

+ inf
w≥0

yTw + inf
z≥0

[
1
2σ‖z‖2 − 〈y, z〉

]}

= max
y≥0

{
〈y, λt + σg(xt)〉 − σ

2 ‖y‖2 + ft(x
t)− 1

2‖∇ft(xt) + σJ g(xt)T y‖2[Ht]−1

+ infx∈C

[
1
2

∥∥∥x−
(
xt − [Ht]−1(∇ft(xt) + σJ g(xt)T y)

)∥∥∥
2

Ht

]}

= max
y≥0

{
〈y, λt + σg(xt)〉 − σ

2 ‖y‖2 + ft(x
t)− 1

2‖∇ft(xt) + σJ g(xt)T y‖2[Ht]−1

+

[
1
2dist

Ht

C

(
xt − [Ht]−1(∇ft(xt) + σJ g(xt)T y)

)2
]}

,

where Ht := Θt
0 + αI. Therefore, when we derive the optimal solution yt

by solving the dual problem, from the duality theory, the solution of the
subproblem (6) is given by

xt+1 = ΠHt

C

(
xt − [Ht]−1(∇ft(xt) + σJ g(xt)T yt)

)
.

Based on the above analysis, OPMM for the online problem with convex
constraints can be rewritten as in Algorithm 2.

We now discuss the relationship between yt and λt+1.

Proposition 12 Let ωt(y) denote the objective function of Problem (22). Then,

λt+1 = [∇ωt(yt) + σyt]+. (24)
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Algorithm 2: Projection version of OPMM for online non-convex
optimization with convex constraints.

Input: λ1 = 0, x1 ∈ C, σ > 0 and α > 0, receive a cost function f1(·).
1 for t← 1 to T do

2 Choose Θt
0 ∈ S

n and set Ht := Θt
0 + αI. Solve the following convex

optimization problem to obtain yt:

max
y≥0

{
−σ

2 ‖y‖2 + 〈y, λt + σg(xt)〉 − 1
2‖∇ft(xt) + σJ g(xt)T y‖2[Ht]−1

+

[
1
2dist

Ht

C

(
xt − [Ht]−1(∇ft(xt) + σJ g(xt)T y)

)2
]}

.

(22)
3 Compute

xt+1 = ΠHt

C

(
xt − [Ht]−1(∇ft(xt) + σJ g(xt)T yt)

)
. (23)

4 Update

λt+1
i =

[
λti + σ(gi(x

t) + 〈∇gi(xt), xt+1 − xt〉)
]
+
, i = 1, . . . , p.

5 Receive a cost function ft+1(·).

Proof It follows from Lemma 11 that

∇ωt(y)

= −σy + λt + σg(xt)− σJ g(xt)
[
[Ht]−1(∇ft(xt) + σJ g(xt)T y)

]

−σJ g(xt)[Ht]−1Ht
[
xt − [Ht]−1(∇ft(xt) + σJ g(xt)T y)

−ΠHt

C

(
xt − [Ht]−1(∇ft(xt) + σJ g(xt)T y)

)]

= −σy + λt + σg(xt)− σJ g(xt)
[
xt − ΠHt

C

(
xt − [Ht]−1(∇ft(xt) + σJ g(xt)T y)

)]
.

Hence, from (23) we have

∇ωt(yt) = −σyt + λt + σ
[
g(xt) + J g(xt)(xt+1 − xt)

]
,

which implies

λt + σ
[
g(xt) + J g(xt)(xt+1 − xt)

]
= ∇ωt(yt) + σyt.

The claim is derived by noticing the definition of λt+1. �

Furthermore, if we choose a scalar ηt > 0 such that Θt
0 = ηtI satisfies the

required assumptions, we obtain that Ht = (α + ηt)I, [H
t]−1 = (α + ηt)

−1I
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and Problem (22) is equivalent to

max
y≥0

{
−σ

2 ‖y‖2 + 〈y, λt + σg(xt)〉 − 1
2(α+ηt)

‖∇ft(xt) + σJ g(xt)T y‖2

+

[
α+ηt

2 dist
(
xt − [α+ ηt]

−1(∇ft(xt) + σJ g(xt)T y), C
)2

]}
.

(25)
Hence, the formula (23) is reduced to

xt+1 = ΠC

(
xt − [α+ ηt]

−1(∇ft(xt) + σJ g(xt)T yt)
)
,

where yt is the solution to Problem (25). In this case, at each iteration of
Algorithm 2 the main calculations are computing a projection and solving a
relatively simple convex minimization problem which make the algorithm easy
to be implemented.

5 Conclusion

In this paper, we present a proximal method of multipliers with quadratic
approximations (OPMM) for solving an online non-convex optimization with
(possibly non-convex) inequality constraints. We show that, this algorithm
exhibits O(T−1/8) Lagrangian residual regret, O(T−1/8) regret of constraint
violation and O(T−1/4) complementarity residual regret if parameters in the
algorithm are properly chosen, where T denotes the number of iterations. We
also show that, for the case when the constraint functions are all convex, the
projection version of OPMM provides a practical way for finding a decision
sequence {x1, x2, . . . , xT }. To the best of our knowledge, the regret analy-
sis of numerical methods for online non-convex optimization with long term
constraints has not been studied in the literature yet.

We note that, even for the simple bounded box set C = [a, b] ⊂ R
n, the

analysis of regrets requires the exact solution to the subproblem (25). How
to obtain the regret bounds when the subproblem is inexactly solved is an
important future research topic worth considering.
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Appendix A Proof of Lemma 6

Proof Let

r =
ζ

4t0δ
2
max

, ρ = 1− ζ2

8δ2max
,
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then it yields that ρ = 1− rt0
2 ζ.Define η(t) = Zt+t0−Zt, then from |Zt+1−Zt| ≤ δmax

we have |η(t)| ≤ t0δmax and hence

|rη(t)| ≤ ζ

4t0δ
2
max

· t0δmax =
ζ

4δmax
≤ 1. (A1)

From (A1) and the following inequality

eτ ≤ 1 + τ + 2τ2 when |τ | < 1,

we obtain
erZt+t0 = erZterη(t)

≤ erZt [1 + rη(t) + 2r2t20δ
2
max]

= erZt [1 + rη(t) + rt0ζ/2].

Case 1: Zt ≥ θ. In this case, one has from (13) that η(t) ≤ −t0ζ and hence

erZt+t0 ≤ erZt [1− rt0ζ + rt0ζ/2]

= erZt [1− rt0ζ/2]

= ρerZt .

(A2)

Case 2: Zt < θ. In this case, one has η(t) ≤ t0δmax and hence

erZt+t0 = erZterη(t)

≤ erZtert0δmax

≤ erθert0δmax .

(A3)

Combining (A2) and (A3), we obtain

erZt+t0 ≤ ρerZt + erθert0δmax . (A4)

We next prove the following inequality by induction,

erZt ≤ 1

1− ρ
erθert0δmax , t ∈ {0, 1, . . .}. (A5)

We first consider the case t ∈ {0, 1, . . . , t0}. From |Zt+1 −Zt| ≤ δmax and Z0 = 0 we

have Zt ≤ tδmax. This, together with the fact that erθ

1−ρ ≥ 1, implies

erZt ≤ ertδmax ≤ ert0δmax ≤ ert0δmax
erθ

1− ρ
.

Hence, (A5) is satisfied for all t ∈ {0, 1, . . . , t0}. We now assume that (A5) holds true
for all t ∈ {t0+1, . . . , τ} with arbitrary τ > t0. Consider t = τ +1. By (A4), we have

erZτ+1 ≤ ρerZτ+1−t0 + erθert0δmax

≤ ρert0δmax erθ

1−ρ + erθert0δmax = ert0δmax erθ

1−ρ .

Therefore, the inequality (A5) holds for all t ∈ {0, 1, . . .}. Taking logarithm on both
sides of (A5) and dividing by r yields

Zt ≤ θ + t0δmax +
1

r
log

(
1

1− ρ

)
= θ + t0δmax + t0

4δ2max

ζ
log

(
8δ2max

ζ2

)
.

The proof is completed. �
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