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Abstract

This paper concerns a high-dimensional stochastic programming problem of minimizing
a function of expected cost with a matrix argument. To this problem, one of the most
widely applied solution paradigms is the sample average approximation (SAA), which uses
the average cost over sampled scenarios as a surrogate to approximate the expected cost.
Traditional SAA theories require the sample size to grow rapidly when the problem dimen-
sionality increases. Indeed, for a problem of optimizing over a p-by-p matrix, the sample

complexity of the SAA is given by Õ(1) · p
2

ǫ2
· polylog(1

ǫ
) to achieve an ǫ-suboptimality

gap, for some poly-logarithmic function polylog( · ) and some quantity Õ(1) independent
of dimensionality p and sample size n. In contrast, this paper considers a regularized SAA
(RSAA) with a low-rankness-inducing penalty. We demonstrate that the sample complex-
ity of RSAA is Õ(1) · p

ǫ3
· polylog(p, 1

ǫ
), which is almost linear in p and thus indicates a

substantially lower dependence on dimensionality. Therefore, RSAA can be more advan-
tageous than SAA especially for larger scale and higher dimensional problems. Due to the
close correspondence between stochastic programming and statistical learning, our results
also indicate that high-dimensional low-rank matrix recovery is possible generally beyond
a linear model, even if the common assumption of restricted strong convexity is completely
absent.

Keywords: Stochastic optimization, MCP, folded concave penalty, sample average ap-
proximation, high dimensionality, sparsity, low-rankness
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1. Introduction

As dimensionality inflates in modern applications of stochastic programming (SP) in order
to generate more comprehensive and higher-granular decisions, the sample average approxi-
mation (SAA), which is traditionally a common solution paradigm for SP, sometimes tends
to be demanding for sample availability. The current SAA theories as per [27], [24], [25]
and [26] require that the number of samples should always be greater than the number of
decision variables; for optimizing over a p-by-p matrix, the sample size n should grow at
least quadratically in p. Such sample size requirement may be undesirably costly in certain
high-dimensional applications. Recently, a regularized SAA with sparsity-inducing penalty
has been studied by [13], which shows that significant reduction of sample size require-
ment may be achieved by exploiting sparse structures in the problem. This current paper
then seeks to generalize the result therein to the settings where sparsity is replaced by a
low-rankness assumption. We will show that a similar level of success can be achieved.

The particular problem of focus is stated as follows: Let Z ∈ W, for some W ⊆ ℜq and
q > 0, be a random vector. Consider a measurable, deterministic function f : Sp ×W → ℜ
where Sp is the cone of p-by-p (p ≥ 1) symmetric and positive semidefinite matrices and
f(X, Z) is a cost function with respect to parameter Z and a fixed matrix of decision
variables X. Then the problem of consideration is an SP problem given as

X∗ ∈ argmin {F(X) : X ∈ Sp} . (1)

where F(X) = E[f(X, Z)] is well-defined and finite-valued for any given X ∈ Sp. Assume,
hereafter, that σmax(X

∗) ≤ R for some constant R ≥ 1, where σmax(·) denotes the spectral
radius. With some abuse of terminology, we say that the dimensionality of this problem
is p, since the unknown is a p-by-p matrix. We refer to this optimization problem as
the “true problem” and X∗ as the “true solution”, as they assume the exact knowledge
of the underlying distribution and the admissibility of calculating the multi-dimensional
integration involved in evaluating the expected cost. We would like to remark that (1)
subsumes the unconstrained problems since any symmetric matrix can be represented by
the difference between two symmetric and positive semidefinite matrices. Furthermore, also
subsumed by (1) are problems with non-symmetric and non-square matrices X, since they

can be transformed into symmetric matrices by the self-adjoint dilation with X̄ =

[

0 X
X⊤ 0

]

for some all-zero matrices 0’s with proper dimensions.

Hereafter, let Zn1 = (Z1, ..., Zn) be a sequence of n-many i.i.d. random samples of Z.
To solve Problem (1), one of the most popular solution schemes, as mentioned above, is to
invoke the following SAA formulation as a surrogate:

XSAA ∈ argmin

{

Fn(X, Zn1 ) :=
1

n

n
∑

i=1

f(X, Zi) : X ∈ Sp
}

. (2)

According to the seminal results by [27], XSAA well approximates X∗ in the sense that

F(XSAA)− F(X∗) ≤ Õ(1) ·
√

p2 · lnn
n

(3)
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with high probability, where Õ(·) is some quantity that is independent of p and n. Thus, to
ensure the same suboptimality gap, it stipulates that the sample size, n, must grow qradrat-
ically if p increases. For an SP problem where X∗ is sparse and f is twice-differentiable
almost surely, we have shown in [13] that (3) can be sharpened, in terms of its dependence
on p, into:

F(XRSAA)− F(X∗) ≤ Õ(1) ·
√

ln(np)

n1/4
, (4)

with high probability, whereXRSAA is an SAA scheme with sparsity-inducing regularization.
Similar (and potentially stronger) results than the above have been reported by [10] and
[11] in the context of high-dimensional statistical and machine learning under a sparsity
assumption and/or its limited variations.

In contrast, this paper provides a substantial generalization to [13; 10; 11] by weaken-
ing the sparsity and twice-differentiability assumptions simultaneously to low-rankness and
continuous differentiability. Particularly, our low-rankness assumption is as below:

Assumption 1 The rank rk( · ) of X∗ in the problem (1) satisfies s := rk(X∗) ≪ p for
some s ≥ 1.

The above low-rankness assumption is more general than the sparsity assumption of a
vector, since any vector x can be represented by a diagonal matrix, diag(x), whose diagonal
entries equal to x. Then, sparsity of x implies that diag(x) is of low rank. Furthermore,
we generalize the assumption twice-differentiability to Lipschitz continuity of the partial
derivatives of f w.r.t. the eigenvalues of the input matrix, as we will discuss in more detail
subsequently.

For this more general problem, our solution paradigm modifies the SAA into the follow-
ing regularized SAA (RSAA):

XRSAA ∈ argmin
X∈Sp







Fn,λ(X, Zn1 ) := Fn(X, Zn1 ) +

p
∑

j=1

Pλ(σj(X))







, (5)

where σj(X) stands for the jth eigenvalue of X and Pλ is a penalty function in the form

of the minimax concave penalty (MCP) [28] given as Pλ(x) =
∫ x
0

[aλ−t]+
a dt, for some user-

specific tuning parameters a, λ > 0. Here [ · ]+ = max{ · , 0}. The MCP is a mainstream
special form of the folded concave penalty (FCP) first proposed by [7].

Under the above settings, the RSAA formulation is nonconvex and its global solutions
are elusive. To ensure computability, this paper considers stationary points that satisfy a set
of significant subspace second-order necessary conditions (S3ONC), given as in Definition
2 in the subsequent. The S3ONC herein is an extension to a similar notion presented by
[12; 13] and is a special case than the canonical second-order KKT conditions. Hence, any
second-order (local optimization) algorithm that computes a second-order KKT solution
ensures the S3ONC. The resulting computational effort of an S3ONC solution (a solution
that satisfies the S3ONC) is likely tractable.
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Let Xℓ1
λ be defined as

Xℓ1
λ ∈ argminX∈Sp

Fn(X, Zn1 ) + λ‖X‖∗, (6)

with ‖ · ‖∗ denoting the nuclear norm. We show that, under a few standard assumptions in
addition to Assumptions 1, for any S3ONC solution to the RSAA, denoted XRSAA, which
satisfies Fn,λ(XRSAA) ≤ Fn,λ(Xℓ1

λ ) a.s., it holds that

F(XRSAA)− F(X∗) ≤ Õ(1) ·
(

s · p2/3
n2/3

+
s · p1/3
n1/3

)

· ln(np), (7)

with overwhelming probability, when our knowledge on the rank of X∗ is completely absent.
Furthermore, if we allow the penalty parameter to incorporate knowledge on the rank s of
X∗, as in Assumption 1, then a better choice of λ allows that

F(XRSAA)− F(X∗) ≤ Õ(1) ·
(

s1/3 · p2/3
n2/3

+
s2/3 · p1/3

n1/3

)

· ln(np), (8)

with overwhelming probability, where the sample size requirement has a lower dependence
on s of X∗ compared to (7). The above results are then the promised, almost linear,
sample complexity; from both (7) and (8), n should only increase almost linearly in p
to compensate the growth in dimensionality. This indicates that the RSAA would be
much more advantageous than the SAA especially for problems with higher dimensions. To
compute the desired solution XRSAA, one may invoke an S3ONC-guaranteeing algorithm
initialized at Xℓ1

λ . Meanwhile, the initial solution, Xℓ1
λ , is often polynomial-time computable

when f( ·, w) is convex for almost every w ∈ W (although the convexity of f( ·, w) is not
necessary to prove the almost linear sample complexity).

To our knowledge, our paper presents the first SAA variant that ensures a sample
complexity that is almost linear in dimensionality under low-rankness. Even though similar
results have been achieved previously, e.g., by [17], [21] and [6] in the context of high-
dimensional low-rank matrix estimation, most of the existing results assume the presence
of restricted strong convexity (RSC) or its variations. While the RSC is deemed generally
plausible for statistical and/or machine learning, such type of assumptions are often not
satisfied by stochastic programming. Furthermore, due to the correspondence between the
SAA and matrix estimation problems, our results may also imply that high-dimensional
matrix estimation is generally possible under the low-rankness assumption; even if the
conditions such as the RSC or alike are completely absent, the MCP-based regularization
may still ensure a sound generalization error as measured by the excess risk, which coincides
in formulation with the suboptimality gap in minimizing the SP. In addition, our results
do not assume a linear or generalized linear model in data generation. Even though a few
other likely more important error bounds are unavailable herein but are presented by [17],
[21] and [6] (most of whom focus more on linear or generalized linear models under RSC
or alike), we believe that the excess risk is still an important out-of-sample performance
measure commonly employed by, e.g., [1], [9], and [5].
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The rest of the paper is organized as follows: Section 2 presents our assumptions and
main results. Section 3 presents the general road map for our proof and major schemes
employed. Section 4 then concludes our paper. All technical proofs are presented in the
appendix.

1.1 Notations

Throughout this paper, we denote by ‖ · ‖ the 2-norm of a vector, by σmax(·) the spectral
norm, by ‖ · ‖∗ the nuclear norm, and by ‖ · ‖p the p-norm (with 1 ≤ p ≤ ∞). Let σj(X)
be the jth singular value of matrix X. Denote by ‖ · ‖F the Frobenius norm.

2. Sample complexity of the regularized SAA under low-rankness

This section presents our main results in Subsection 2.3 after we introduce our assumptions
in Subsection 2.1 as well as the definition of the S3ONC in Subsection 2.2.

2.1 Assumptions.

In addition to the low-rankness structure as in Assumption 1, we will make the following
additional assumptions about continuous differentiability (Assumption 2), the tail of the
underlying distribution (Assumption 3), and a Lipschitz-like continuity (Assumption 4).

Assumption 2 Let UL ≥ 1. Assume that

∣

∣

∣

∣

∣

∂f(X, z)

∂σj(X)

∣

∣

∣

∣

X=X1

− ∂f(X, z)

∂σj(X)

∣

∣

∣

∣

X=X2

∣

∣

∣

∣

∣

< UL · |σj(X1)− σj(X2)| (9)

for every j = 1, ..., p, all X1, X2 ∈ Sp, and almost every z ∈ W.

Assumption 3 The family of random variables, f(X, Zi) − E[f(X, Zi)], i = 1, ..., n, are
independent and follow sub-exponential distributions; that is

‖f(X, Zi)− E[f(X, Zi)]‖ψ1 ≤ K,

for some K ≥ 1 for all X ∈ Sp : σmax(X) ≤ R, where ‖ · ‖ψ1 is the sub-exponential norm.

Invoking the well-known Bernstein-type inequality, one has that, for all X ∈ Sp, it holds
that

P

(∣

∣

∣

∣

∣

n
∑

i=1

ai {f(X, Zi)− E[f(X, Zi)]}
∣

∣

∣

∣

∣

> K(‖a‖
√
t+ ‖a‖∞t)

)

≤ 2 exp (−ct) ,

∀t ≥ 0, a = (ai) ∈ ℜn, (10)

for some absolute constant c ∈ (0, 1
2 ]. [See also 23].

Assumption 4 For some measurable and deterministic function C : W → ℜ
with E[|C(Z)|] ≤ Cµ, for some Cµ ≥ 1, the random variable C(Z) satisfies that
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‖C(Z)− E [C(Z)]‖ψ1
≤ KC for some KC ≥ 1. Furthermore, |f(X1, z) − f(X2, z)| ≤

C(z)‖X1 −X2‖ for all X1, X2 ∈ Sp, and almost every z ∈ W.

Remark 1 Assumption 2 is easily verifiable and applies to a flexible set of SP problems.
Assumptions 3 and 4 are standard, and, by a close examination, it is essentially equivalent
to the assumptions made by [27] in the analysis of the traditional SAA.

2.2 The significant subspace second-order necessary conditions

Our sample complexity results concern critical points that satisfy the S3ONC as per the
following definition, where we notice that Pλ(t) is twice differentiable for all t ∈ (0, aλ).

Definition 2 For given Zn1 ∈ Wn, a vector X̂ ∈ Sp is said to satisfy the S3ONC (denoted
by S3ONC(Zn1 )) of the problem (5) if both of the following sets of conditions are satisfied:

a. The first-order KKT condition is satisfied at XRSAA; that is,

∇Fn,λ(XRSAA, Zn1 ) = 0, (11)

where ∇Fn,λ(XRSAA, Zn1 ) is the gradient of Fn,λ(XRSAA, Zn1 ) at X
RSAA.

b. The following inequality holds at XRSAA for all j = 1, ..., p:

UL +

[

∂2Pλ(σj(X))

[∂σj(X)]2

]

X=XRSAA

≥ 0, if σj(X
RSAA) ∈ (0, aλ), (12)

where UL is as defined in (9) for Assumption 2.

As mentioned, the above S3ONC is verifiably a weaker condition than the canonical
second-order KKT conditions. Therefore, any local optimization algorithm that guarantees
the second-order KKT conditions will necessarily ensure the S3ONC.

2.3 Main results

Introduce a few short-hand notations: Denote ∆̃ := ln (18R · (KC + Cµ)) and λ(ρ) :=
√

8K(2p+1)2/3s−ρ

c·a·n2/3 [ln(n1/3p) + ∆̃], for the same c in (10) and a user-specific ρ ≥ 0. Recall

the definition of Xℓ1
λ in (6) and specify a−1 = 2UL (and thus a < UL−1. We are now ready

to present our claimed results.

.

Theorem 3 Suppose that Assumptions 1 through 4 hold. Specify the penalty parameter
λ := λ(ρ). Let XRSAA ∈ Sp : σmax(X

RSAA) ≤ R satisfy the S3ONC(Zn1 ) to (5) almost
surely. For any Γ ≥ 0 and some universal constants c̃, C1 > 0, if

n > C1 · s3ρ ·
[

(

Γ

K

)3

+ 1

]

· p+ C1 · s · p ·
(

ln(n1/3p) + ∆̃
)

, (13)

6
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and Fn,λ(XRSAA, Zn1 ) ≤ Fn,λ(X∗, Zn1 )+Γ almost surely, then the excess risk is bounded by

F(XRSAA)− F(X∗) ≤

√

K · sρ · p1/3 · Γ
n1/3

+ Γ

+C1K ·









s1−ρ · p2/3 ·
(

ln(n1/3p) + ∆̃
)

n2/3
+

√

√

√

√

s · p ·
(

ln(n1/3p) + ∆̃
)

n
+

p1/3 · sρ
n1/3









, (14)

with probability at least 1− 2(p + 1) exp(−c̃n)− 6 exp
(

−2c(2p + 1)2/3n1/3
)

.

Proof See proof in Section A.1.

Remark 4 Some explanations on the notations are below:

1. Γ measures the solution quality in solving the (in-sample) RSAA formulation; that is, Γ
is the suboptimality gap of minimizing the RSAA, which is the surrogate model for the
true SP problem in (1). We refer to Γ as “in-sample suboptimality gap” hereafter.

2. More important to us is a second type of suboptimality gap, which we refer to as the
“out-of-sample suboptimality gap”, calculated as F(X)− F(X∗) for a feasible solution X.
The out-of-sample suboptimality gap measures how well the solution X optimizes the true
SP problem in (1).

3. ∆̃ is some logarithmic terms independent of p and n.

4. K and KC are subexponential norms of the underlying distributions. They are alternative
measures of the distributions’ variances.

Remark 5 Some intuitions on the above theorem are as follows:

1. Theorem 3 ensures that all S3ONC solutions to the RSAA formulation yield a bounded
out-of-sample suboptimality gap in minimizing the true problem (1).

2. Furthermore, the out-of-sample suboptimality gap is consistent with the in-sample subop-
timality gap in the sense that the former deteriorates as Γ increases. When Γ is relatively
large, the deterioration is dominated by a linear rate.

We may well control the in-sample suboptimality gap Γ by properly initializing the
search for an S3ONC solution. Indeed, as is shown in the corollary below, using Xℓ1

λ defined
in (6) to warm-start any S3ONC-guaranteeing local optimization algorithm ensures the
promised sample complexity.

Corollary 6 Suppose that Assumptions 1 through 4 hold. Specify the penalty parameter λ =
λ(0) (that is, ρ = 0) in both formulations (6) and (5). Let XRSAA ∈ Sp : σmax(X

RSAA) ≤ R
satisfy the S3ONC(Zn1 ) to (5) almost surely. For some universal constant c̃, C2 > 0, if

n > C2 · p · UL · [ln(n 1
3 p) + ∆̃] · s 3

2R
3
2 , (15)

7



Liu, Hernandez, and Lee

and

Fn,λ(XRSAA, Zn1 ) ≤ Fn,λ(Xℓ1
λ , Z

n
1 ) (16)

almost surely, where Xℓ1
λ is as defined in (6), then the excess risk is bounded by

F(XRSAA)− F(X∗)

≤ C2 · s ·K ·





p2/3
(

ln(n
1
3 p) + ∆̃

)

n
2
3

+
p1/3R · U1/2

L

√

ln(n
1
3p) + ∆̃

n
1
3



 , (17)

with probability at least 1− 2(p + 1) exp(−c̃n)− 6 exp
(

−2c(2p + 1)2/3n1/3
)

.

Proof See proof in Section A.2.

Remark 7 We would like to make a few remarks on the above result:

1. Corollary 6 above establishes our claimed result of almost linear complexity at an S3ONC
solution generated with a proper initialization.

2. The same corollary considers the particular sublevel set that has a better objective value
(in terms of RSAA formulation) than Xℓ1

λ . In such a case, the suboptimality in minimiz-
ing the true problem (1) explicitly vanishes as sample size n increases.

3. Xℓ1
λ is an initial solution often tractably computable under the common assumption that

f( · , z) is convex for almost every z ∈ W. However, our results in Theorem 3 is not
contingent on the convexity of f( · , z), although generating Xℓ1

λ may be intractable when
convexity of f( · , z) is not in presence.

4. Corollary 6 above is consistent with the claimed sample complexity in (7), which is almost
linear in p. Indeed, for achieving an accuracy of ǫ, the above bounds indicate a sample
complexity Õ(1) · p

ǫ3
· polylog(p, 1

ǫ ), which is almost linear in p, for some quantities Õ(1)
that is independent of n, ǫ, and p.

We note that the dependence of sample size n on rank s of the true solution X∗ is cubic,
which means that the proposed approach is more powerful when the true solution X∗ is of
very low rank. The deterioration may be fast when s increases. Nonetheless, we believe it
possible to significantly reduce the order on s if any further information below is given: (i) If
the Fn or F satisfies strong convexity or its certain relaxed forms, dependence on s is likely
reducible, as it has been successful for [13] in stochastic optimization under sparsity. (ii) If
the value of s can be coarsely predicted in the sense that O(1) ·s for some universal constant
O(1) is given, then one may also properly modify the value of λ to decrease the dependence
on s. We will consider the relatively special case in (i) in future study. Nonetheless, our
claim in (ii) above is provided in Corollary 8 below.

8
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Corollary 8 Suppose that Assumptions 1 through 4 hold. Specify the penalty parameter λ =
λ(23 ) (that is, ρ = 2

3) in both formulations (6) and (5). Let XRSAA ∈ Sp : σmax(X
RSAA) ≤ R

satisfy the S3ONC(Zn1 ) to (5) almost surely. For some universal constant c̃, C3 > 0, if

n > C3 · p · UL · [ln(n 1
3 p) + ∆̃] · s2 ·R 3

2 , (18)

and and (16) holds almost surely, where Xℓ1
λ is as defined in (6), then the excess risk is

bounded by

F(XRSAA)− F(X∗)

≤ C3 ·K ·





s1/3p2/3
(

ln(n
1
3 p) + ∆̃

)

n
2
3

+
s2/3p1/3 ·R · U1/2

L ·
√

ln(n
1
3p) + ∆̃

n
1
3



 , (19)

with probability at least 1− 2(p + 1) exp(−c̃n)− 6 exp
(

−2c(2p + 1)2/3n1/3
)

.

Proof See proof in Section A.3.

Remark 9 The Corollary 8, similar to Corollary 6, establishes our claimed result of almost
linear complexity at a computable S3ONC solution generated with a proper initialization,
Xℓ1
λ , which can be tractable when f( · , z) is convex for almost every z.

Remark 10 In contrast to Corollary 6, Corollary 8 yields a sample complexity with much
reduced dependence on s; quadratic instead of cubic in s. We suppose that this dependence
is no longer improvable. This is because, even if we are given the exact knowledge to
correctly reduce the “redundant” dimensions of the problem, the traditional SAA to the
reduced problem will still require a sample size quadratically dependent on s.

Remark 11 There is strong correspondence between the SP and statistical learning as for-
merly noted by [13; 16]. More specifically, the SAA formulation (5) can be considered as an
M-estimation problem and the suboptimality gap F(XRSAA) − F(X∗) has the same formu-
lation as the excess risk discussed by [1], [9], and [5]. We therefore argue that the results
in Theorem (3) and Corollaries 6 and 8 indicate that M-estimation with high dimensions
is generally possible under a low-rankness assumption. In particular, since our analysis
does not assume any form of RSC, we believe that our results then provides perhaps the
first out-of-sample performance guarantee for high-dimensional low-rank estimation beyond
RSC.

Remark 12 We would like to remark again that, to obtain the desired results, the incurred
computational ramification can be reasonably small. This is because XRSAA is only a sta-
tionary point that satisfies (16). First, the stationarity can be ensure by invoking local
optimization algorithms. Second, the stipulated inequality in (16) can be ensured by ini-
tializing the local algorithm with Xℓ1

λ . Such an initializer often can be generated within
polynomial time under the common assumption that f( · , w) is convex for almost every
w ∈ W, although the convexity of f( · , w) is not necessary for proving the claimed almost
linear sample complexity.

9
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3. Proof Overview and Techniques

3.1 General ideas

The general idea of our proof is straightforward and focuses on addressing the question:
how to show that an S3ONC solution has low rank. If this question is answered, then the
desired results can be almost evident by analyzing the ǫ-net for all the low-rank subspaces.
Such an analysis is available in Lemma 3.1 of [3] and is restated (with minor modifications)
in Lemma 20 herein.

To that end, we utilize a unique property of the MCP function, which ensure that the
stationary points that satisfy the S3ONC solutions XRSAA must obey a thresholding rule:
for all the singular values, they must be either 0 or greater than aλ. This means that for each
nonzero singular value in the S3ONC solution XRSAA, an additional penalty of value aλ2

2 is
added to the objective function of the RSAA, and, therefore, the total penalty incurred by
the low-rankness-inducing regularization is

∑p
j=1 Pλ(σj(X

RSAA)) = rk(XRSAA) · aλ22 . Now,
consider those stationary points whose suboptimality gaps (in minimizing the RSAA) are
smaller than a user-specific quantity Γ, and therefore, Fn,λ(XRSAA,Zn1 ) = Fn(XRSAA,Zn1 )+

rk(XRSAA) · aλ22 ≤ Fn,λ(X∗,Zn1 )+Γ. The rank of such XRSAA rank must be bounded from
above by a function of Γ. Such a function can be explicated via a peeling technique discussed
by [22]. Some relative details are provided below.

3.2 Proof Roadmap

The proof of Theorem 3 is motivated by [11] but involves substantial generalization from
an SP problem under sparsity in [11] to an SP problem under low-rankness herein. To
understand the non-trivial step involved in this generalization, one may observe the fun-
damental differences between those two problems: While low-rankness can be represented
by sparsity via a linear transformation, the linear operator involved in this transformation
is completely unknown. More specifically, by singular value decomposition, one may write
X∗ := UD∗V ⊤ for some proper unitary matrices U and V . Apparently, as per Assumption
1, the diagonal matrix D∗ must be sparse and U⊤ and V are linear operators that project
X∗ to a sparse domain; indeed, D∗ = U⊤X∗V . Nonetheless, the knowledge on U⊤ and V
are completely absent, which leads to significant ramifications in analysis.

The following are general explanations on the key steps, where Õ(1)’s denote (potentially
different) quantities that are independent of p and n:

Step 1. The thresholding rule of the MCP. Under the assumption that UL < a−1, in Propo-
sition 13, we show that, for an S3ONC solution to the RSAA formulation, denoted XRSAA,
a thresholding rule of σj(X

RSAA), for all j, is that σj(X
RSAA) 6= 0 =⇒ σj(X

RSAA) ≥ aλ,
where a and λ are the tuning parameters of the MCP function, Pλ. This can be demon-
strated by observing that the definition of the S3ONC, which is UL − P ′′

λ (σj(X
RSAA)) =

UL − 1
a ≥ 0 if σj(X

RSAA) ∈ (0, aλ), contradicts with the assumption that UL < a−1.
Therefore, it holds that σj(X

RSAA) ≥ aλ, unless σj(X
RSAA) = 0.

Step 2. ǫ-net argument for low-rank subspaces. We apply the well-known ǫ-net argument
to show a point-wise error bound for |Fn,λ(X,Zn1 )−F(X)| ≤ ǫ for all X ∈ Sp : σmax(X) ≤ R
in all rank-p̃ subspaces, whose elements have rank no greater than a given p̃. To that end,

10
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first observe that, for any rank-p̃ subspace, the standard ǫ-net argument results in a covering

number of Õ(1)
(√

p̃ · Õ(1)
ǫ

)(2p+1)p̃
. Second, since there can be

(

p
p̃

)

-many rank-p̃ subspaces,

the total covering number for all possible rank-p̃ subspaces is

(

p

p̃

)

·
(

√

p̃ · Õ(1)

ǫ

)p̃

≤
(

Õ(1) · p
ǫ

)(2p+1)p̃
.

Combining this covering number, the Bernstein-like inequality, and Lipschitz-like inequality
in (10), we have that, for any t ≥ 0,

|Fn(X,Zn1 )− F(X)| > Õ(1) · t
n
+ Õ(1) ·

√

t

n
+ ǫ,

∀X ∈ Sp : σmax(X) ≤ R : rk(X) ≤ p̃, (20)

with probability at most
(

Õ(1) · pǫ
)(2p+1)p̃

exp(−ct) + exp(−Õ(1) · n) for some universal

constant c ∈ (0, 1/2]. We may choose to let t = 2p̃(2p + 1) ln
(

Õ(1)·p
ǫ

)

, as well as ǫ = n− 1
3 ,

then, observe that the probability the fact (we will call it Observation (⋆), to be useful
later in Step 4) that the first term in the probability is vanishing exponentially fast to zero
as p̃ increases and the second term is independent of p̃.

Step 3. An implication of Step 2. Let XRSAA be an S3ONC solution to the RSAA formu-
lation in (5). Assume that XRSAA is within the Γ-sublevel set for some Γ ≥ 0. Then, (cf.

Assumption 1) it is straightforward to obtain from the fact that 0 ≤ Pλ( · ) ≤ aλ2

2 and the
results of Step 1 (i.e., σj(X) ≥ aλ, unless σj(X) = 0),

Fn(XRSAA,Zn1 ) + rk(XRSAA) · aλ
2

2
≤ Fn(X∗,Zn1 ) +

aλ2 · s
2

+ Γ. (21)

If rk(XRSAA) ≤ p̃, the result from Step 2 can be invoked to bound the differences,
F(XRSAA) − Fn(XRSAA,Zn1 ) and Fn(X∗,Zn1 ) − F(X∗), to be smaller than a desired level.

In particular, as we choose to let t = 2p̃(2p+ 1) ln
(

Õ(1)·p
ǫ

)

, as well as ǫ = n− 1
3 , in (20) and

λ = Õ(1) · p
1/3

√
ln(np)

n1/3 in (21). After some algebraic simplification, we obtain that

F(XRSAA)− F(X∗)

≤ − aλ2

2
rk(XRSAA) + Õ(1) · sp

2/3 ln(pn)

n2/3
+ Õ(1) ·

√

p̃

n
ln (pn) +

p1/3

n1/3
+ Γ (22)

≤ Õ(1) · p̃ · p ln(pn)
n

+ Õ(1) ·
√

p̃ · p
n

ln (pn) +
1

n1/3
+ Γ (23)

with probability at least 1 − exp
(

−Õ(1) · p̃ · p · ln (np)
)

− exp(−Õ(1) · n). Recalling that

p̃ is an upper bound on the rank of XRSAA, the above result in (23) is now close to the
desired “almost linear” sample complexity results if p̃ much smaller than p. As it turns out,

11
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it is indeed the case. As is demonstrated in Theorem 3, we can show that rk(XRSAA) ≤
p̃ := Õ(1) ·

(

s+ n1/3

p1/3
+ n1/3

p1/3
· Γ
)

, which is to be explained subsequently.

Step 4. Upper bound on rk(XRSAA). From Step 3, we observe that the desired result in
Theorem 3 can be shown by proving that

rk(XRSAA) ≤ Õ(1) ·
(

s+
n1/3

p1/3
+

n1/3

p1/3
· Γ
)

. (24)

To that end, we may invoke a scheme motivated by the peeling technique discussed by [22].

We will show in Proposition 15 that, for some integer p̃u := Õ(1) ·
(

s+ n1/3

p1/3
+ n1/3

p1/3
· Γ
)

, it

holds that, for all p̃ ≥ p̃u, the inequality in (22) cannot be satisfied given {rk(XRSAA) ≥
p̃}; this is because the first (negative) term therein would have too large a magni-
tude and render the whole composite on the right-hand-side of (22) a negative quan-
tity, which implies F(XRSAA) − F(X∗) < 0 and contradicts with the fact that X∗ min-
imizes F by definition. Since {(22) holds} ∩ {rk(XRSAA) ≥ p̃} ⊇ {rk(X) = p̃} ∩
{The complement to (20) holds with given p̃}, it then implies that, for all p̃ ≥ p̃u,

0 = P
[

{rk(XRSAA) = p̃} ∩ {The complement to (20) holds with given p̃}
]

.

As an immediate result, P[rk(X) = p̃] ≤ P[{(20) holds with given p̃}] for all p̃ : p̃ ≥
p̃u. Therefore, invoking union bound and De Morgan’s law, P[rk(X) ≤ p̃u − 1] ≥
1 −∑p

p̃=p̃u
P[rk(X) = p̃] ≥ 1 −∑p

p̃=p̃u
P[{(20) holds with given p̃}]. By our choice of pa-

rameters for t and ǫ as in Step 2, the Observation (⋆) (which is defined in Step 2) leads
to a simplification of the probability bound by noting

∑p
p̃=p̃u

P[{(20) holds with given p̃}]
involves the sum of a geometric sequence plus a term vanishing exponentially in n. Combin-
ing the results from Step 4 with Step 3, we can then show Theorem 3 after some algebraic
simplification.

Step 5. To show Corollaries 6 and 8. Both corollaries can be shown by noticing that Xℓ1
λ

yields a suboptimality gap of no more than Õ(1)·λ·s·R when we choose λ = Õ(1)· p
1/3

√
ln(np)

n1/3s−ρ/2

in (6) (which share the same λ value as in (5)). Specifically, Corollary 6 is shown with ρ = 0
and Corollary 8 is shown with ρ = 2/3.

4. Conclusions

This paper proposes a regularized SAA (RSAA), which is incorporates a low-rankness-
exploiting regularization into the traditional SAA framework, to solve high-dimensional SP
problems of minimizing an expected function over a p-by-p matrix argument. We prove
that certain stationary points ensure an almost linear sample complexity: the RSAA only
requires a sample size almost linear in p to achieve sound optimization quality, while, in
contrast, the required sample size for the traditional SAA is at least quadratic in p. The
reduced sample complexity can be obtained at certain stationary points without incurring
a significant computational effort, especially when the cost function f( · , z) is convex for
almost every z ∈ W. Our RSAA theory also implies that, under the low-rankness assump-

12
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tion, high-dimensional matrix estimation is generally possible beyond linear and generalized
linear models even if p, the size of the matrix to be estimated, is large and the RSC is absent.
Future research will focus on generalizing our paradigm to problems with general linear and
nonlinear constraints. Furthermore, we will investigate the (non-)tightness of our bound on
sample complexity.

Appendix A. Technical proofs

A.1 Proof of Theorem 3

The proof follows the argument of Proposition 1 in [11] and makes important generaliza-
tions from handling sparsity to low-rankness. Furthermore, much more flexible choices of
penalty parameters λ is enabled. We follow the same set of notations in Proposition 16

in defining p̃u, ǫ, and ∆1(ǫ) := ln
(

18pR·(KC+Cµ)
ǫ

)

. Furthermore, we will let ǫ := 1
n1/3 and

∆̃ := ln (18 ·R · (KC + Cµ)). Then ∆1(ǫ) = ln
(

18·(KC+Cµ)·p·R
ǫ

)

= ln(n1/3p) + ∆̃ > 0 and

λ =

√

8·s−ρ·K(2p+1)2/3·∆1(ǫ)

c·a·n2/3 =

√

8·s−ρ·K·(2p+1)2/3

c·a·n2/3 [ln(n1/3p) + ∆̃]. We will denote by O(1)’s
universal constants, which may be different in each of their occurence.

To show the desired results, it suffices to simplify the results in Proposition 16. We
will first derive an explicit form for p̃u. To that end, we let PX := p̃u and T1 :=
2Pλ(aλ) − 8K·(2p+1)

cn ∆1(ǫ). We then solve the following inequality, which is equivalent to
(44) of Proposition 16, for a feasible PX ,

T1

2
· PX − 2K√

n

√

2PX · (2p + 1)∆1(ǫ)

c
> Γ + 2ǫ+ sPλ(aλ), (25)

for the same c ∈ (0, 0.5] in (10). Solving the above inequality in terms of

PX , we have
√
PX > 2K

T1
√
n

√

2(2p+1)·∆1(ǫ)
c +

√

2(2K)2·(2p+1)·∆1(ǫ)
cn

+2T1[Γ+2ǫ+sPλ(aλ)]

T1
. To

find a feasible PX , we may as well let PX > 32K2·(2p+1)·∆1(ǫ)
cT 2

1 ·n
+ 8T−1

1 [Γ + 2ǫ +

sPλ(aλ)]. For λ =
√

8K·s−ρ·∆1(ǫ)·(2p+1)2/3

c·a·n2/3 =
√

8K·s−ρ·(2p+1)2/3

c·a·n2/3 [ln(n1/3p) + ∆̃] with ∆̃ :=

ln (18 · R · (KC + Cµ))), we have Pλ(aλ) = aλ2

2 = 4K·s−ρ·(2p+1)2/3

c·n2/3 · ∆1(ǫ). Furthermore,

2Pλ(aλ) =
8K·s−ρ·(2p+1)2/3·∆1(ǫ)

c·n2/3 > 4·s−ρK·∆1(ǫ)·(2p+1)2/3

c·n2/3 + 8K·(2p+1)
nc ∆1(ǫ) as per our assump-

tion (i.e., (13) implies that n1/3 > 2sρ). Therefore, T1 = 2Pλ(aλ) − 8K·(2p+1)
nc ∆1(ǫ) >

4K·s−ρ·∆1(ǫ)·(2p+1)2/3

c·n2/3 . Hence, if we recall ǫ = n−1/3, to satisfy (25), it suffices to let PX be

any integer that satisfies PX ≥ 2cn1/3s2ρ

∆1(n
−

1
3 )·(2p+1)2/3·

+ 2cn2/3sρ

K∆1(n
−

1
3 )·(2p+1)2/3·

·
[

Γ + 2
n1/3 + sPλ(aλ)

]

,

which is satisfied by letting PX ≥ p̃u with

p̃u :=

⌈

2cn1/3s2ρ

∆1(n
− 1

3 ) · (2p + 1)1/3
+

2cn2/3sρ

K ·∆1(n
− 1

3 ) · (2p+ 1)2/3
·
(

Γ +
2

n1/3

)

+ 8s

⌉

. (26)

In the meantime, verifiably, p̃u > s. Since the above is a sufficient to ensure (25), we
know that (44) in Proposition 16 holds for any p̃ : p̃u ≤ p̃ ≤ p. Due to Proposition 16,

13



Liu, Hernandez, and Lee

with probability at least P ∗ := 1− 6 exp
(

−p̃u · (2p+ 1) ·∆1(n
− 1

3 )
)

− 2(p+1) exp(−c̃n) ≥
1− 6 exp(−2c · (2p+ 1)2/3 · n1/3)− 2(p+ 1) exp(−c̃n), it holds that

F(XRSAA)− F(X∗) ≤ s · Pλ(aλ) +
2K√
n

√

2p̃u(2p+ 1)

c
∆1(n

− 1
3 )

+
4K

n

p̃u(2p + 1)

c
∆1(n

− 1
3 ) + 2ǫ+ Γ, (27)

in which p̃u is as per (26).

The following simplifies the formula while seeking to preserve the rates in n and p.
Firstly, we have

√

2p̃u · (2p + 1)

cn
∆1(n

− 1
3 ) (28)

≤

√

√

√

√

4 · (2p + 1)s2ρ

cn · (2p + 1)1/3
∆1(n

− 1
3 ) · cn1/3

∆1(n
− 1

3 )
+

4cn2/3(2p+ 1)sρ

K(2p+ 1)2/3∆1(n
− 1

3 )

(

Γ +
2

n1/3

)

· ∆1(n
− 1

3 )

cn

+

√

2

cn
∆1(n

− 1
3 ) · (8s+ 1) · (2p+ 1)

≤

√

4(2p + 1)2/3s2ρ

n2/3
+

4sρ · (Γ + 2
n1/3 ) · (2p + 1)1/3

Kn1/3
+

√

2

nc
∆1(n

− 1
3 ) · (8s + 1) · (2p + 1),

(29)

which is due to
√
x+ y ≤ √

x+
√
y for any x, y ≥ 0 and the relations that 0 < a < U−1

L ≤ 1,

0 < c ≤ 0.5, K ≥ 1, and ∆1(n
− 1

3 ) ≥ ln 36.

Similar to the above, we obtain

3p̃u · (2p + 1)

cn
∆1(n

− 1
3 )

≤ 4 · (2p+ 1)2/3s2ρ

n2/3
+

2

nc
∆1(n

− 1
3 ) (8s+ 1) · (2p + 1) +

4 · sρ · (Γ + 2
n1/3 )

K · n1/3
· (2p + 1)1/3.

(30)

Since (13) and ∆1(n
− 1

3 ) = ln(np)+∆̃, we have 4(2p+1)2/3s2ρ

n2/3 +
4(Γ+ 2

n1/3
)·(2p+1)1/3sρ

Kn1/3 ≤ O(1) and
2
nc∆1(n

− 1
3 ) [8s+ 1] · (2p + 1) ≤ O(1). Therefore, it holds that 2p̃u

cn ∆1(n
− 1

3 )(2p + 1) ≤ O(1) ·
√

(2p+1)2/3s2ρ

n2/3 +
(Γ+ 2

n1/3
)·(2p+1)1/3·sρ

Kn1/3 + O(1) ·
√

∆1(n
−

1
3 )

nc · (8s+ 1) · (2p + 1). Combining the

above with (29) and (30), the inequality in (27) can be simplified into F(XRSAA)−F(X∗) ≤

O(1)s1−ρ · K·∆1(n
−

1
3 )·p2/3

c·n2/3 + O(1) · K ·
√

p2/3s2ρ

n2/3 +
(Γ+ 2

n1/3
)·p1/3sρ

Kn1/3 + O(1) · K
√

sp
nc∆1(n

− 1
3 ) +

14
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2
n1/3 + Γ. Together with ∆1(n

− 1
3 ) ≥ ln 2, K ≥ 1, and 0 < c ≤ 0.5, the above becomes

F(XRSAA)−F(X∗) ≤ O(1)·
(

s1−ρ ·∆1(n
−1/3) · p2/3

n2/3
+

p1/3 · sρ
n1/3

+

√

s · p ·∆1(n−1/3)

n

)

·K

+O(1) ·

√

K · sρ · p1/3 · Γ
n1/3

+ Γ, (31)

which then shows Theorem 3 since ∆1(n
− 1

3 ) := ln
(

18n1/3(KC + Cµ) · p · R
)

. �

A.2 Proof of Corollary 6

Lemma 19 implies that Fn,λ(XRSAA, Zn1 ) ≤ Fn,λ(X∗, Zn1 ) + λ‖X∗‖∗ almost surely. Below
we invoke the results from Theorem 3 with Γ = λ‖X∗‖∗ and assumption that ρ = 0 and
λ = λ(0). Note that it is assumed that

n > C2 · p · UL · [ln(np) + ∆̃] · s3/2R3/2 > O(1) · p · a−1 · [ln(np) + ∆̃] · s3/2R3/2, (32)

and Γ
K ≤ λ‖X∗‖∗

K ≤
‖X∗‖∗·

√

8K·(2p+1)2/3

c·a·n2/3
[ln(n1/3p)+∆̃]

K (as well as K ≥ 1). In view of

(32), it then holds under Assumption 1 that Γ
K ≤ Rs ·

√

8(2p+1)2/3

cK·a·n2/3 [ln(n
1/3p) + ∆̃] ≤

O(1) ·
√

Rs
a1/3

[ln(n1/3p) + ∆̃]1/3. Therefore,
(

Γ
K

)3 ≤
(

O(1) ·
√

Rs
a1/3

[ln(n1/3p) + ∆̃]1/3
)3

≤

O(1) · R3/2s3/2
√

a−1 · [ln(n1/3p) + ∆̃], for some universal constants O(1). Furthermore,

since a < U−1
L ≤ 1, it holds that, if n satisfies (15) for some universal constant C2, then

n > O(1) · p · a−1 · [ln(n1/3p) + ∆̃] · s3/2R3/2 ≥ O(1) · p · R3/2s3/2
√

a−1 · [ln(n1/3p) + ∆̃] +

O(1) ·p+C1 ·s ·p ·
(

ln(n1/3p) + ∆̃
)

≥ C1 ·
[

(

Γ
K

)3
p+ p+ s · p ·

(

ln(n1/3p) + ∆̃
)]

. Therefore,

Theorem 3 is met and thus (14) in Theorem 3 implies that

F(XRSAA)− F(X∗) ≤ O(1) ·K ·





sp2/3∆1(n
−1/3)

n2/3
+

√

sp∆1(n
− 1

3 )

n
+

p1/3

n1/3





+O(1) ·

√

Kp1/3(λ‖X∗‖∗)
n1/3

+ λ‖X∗‖∗,

with probability at least 1 − 2(2p + 1) exp(−c̃n)− 6 exp
(

−2cn1/3 · (2p + 1)2/3
)

. Note that

a < 1, K ≥ 1, p ≥ 1,
[

ln(n1/3p) + ∆̃
]

≥ 1 and

√

sp∆1(n
−

1
3 )

n ≤ s(2p+1)1/3·
√

∆1(n
−

1
3 )

n1/3 (due

to (15) again). Hence, F(XRSAA) − F(X∗) ≤ O(1) · K ·
[

sp2/3·(ln(np)+∆̃)
n2/3 + p1/3

n1/3

]

+ O(1) ·

sRK·(2p+1)1/3

min{a1/2n1/3, a1/4n1/3}
[

ln(n1/3p) + ∆̃
]1/2

, which shows Part (ii) by further noticing that a =

1
2UL

and UL ≥ 1. �
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A.3 Proof of Corollary 8

The proof follows almost the same argument as in Section A.2 for proving Corollary 6,
except that the choice of user-specific parameters are different. Again, Lemma 19 implies
that Fn,λ(XRSAA, Zn1 ) ≤ Fn,λ(X∗, Zn1 ) + λ‖X∗‖∗ almost surely. As the same in Part (ii),
below we invoke the results from Theorem 3 with Γ = λ‖X∗‖∗ and assumption that ρ = 2/3
and λ = λ(23 ). Note that it is assumed that

n > C3 · p · UL · [ln(np) + ∆̃] · s2R3/2 > O(1) · p · a−1 · [ln(np) + ∆̃] · s2R3/2, (33)

and Γ
K ≤ λ‖X∗‖∗

K ≤
‖X∗‖∗·

√

8K·(2p+1)2/3 ·s−2/3

c·a·n2/3
[ln(n1/3p)+∆̃]

K (as well as K ≥ 1). In view of

(33), it then holds under Assumption 1 that Γ
K ≤ Rs ·

√

8(2p+1)2/3s−2/3

cK·a·n2/3 [ln(n1/3p) + ∆̃] ≤

O(1) ·
√

R
a1/3

[ln(n1/3p) + ∆̃]1/3. Therefore,
(

Γ
K

)3 ≤
(

O(1) ·
√

R
a1/3

[ln(n1/3p) + ∆̃]1/3
)3

≤

O(1) · R3/2
√

a−1 · [ln(n1/3p) + ∆̃], for some universal constants O(1). Furthermore, since

a < U−1
L ≤ 1, it holds that, if n satisfies (18), then n > O(1) · p · a−1 · [ln(n1/3p) + ∆̃] ·

s2R3/2 ≥ O(1) · p ·R3/2s2
√

a−1 · [ln(n1/3p) + ∆̃]+O(1) · s2 · p+C1s · p ·
(

ln(n1/3p) + ∆̃
)

≥
C1 ·

[

s2
(

Γ
K

)3
p+ s2 · p+ s · p ·

(

ln(n1/3p) + ∆̃
)]

. Therefore, (13) in Theorem 3 is met and

thus (14) in Theorem 3 implies that

F(XRSAA)− F(X∗) ≤ O(1) ·K ·





s1/3p2/3∆1(n
−1/3)

n2/3
+

√

sp∆1(n
− 1

3 )

n
+

p1/3 · s2/3
n1/3





+O(1) ·

√

Kp1/3 · s2/3 · (λ‖X∗‖∗)
n1/3

+ λ‖X∗‖∗,

with probability at least 1 − 2(2p + 1) exp(−c̃n)− 6 exp
(

−2cn1/3 · (2p + 1)2/3
)

. Note that

a < 1, K ≥ 1, p ≥ s ≥ 1,
[

ln(n1/3p) + ∆̃
]

≥ 1 and

√

sp∆1(n
−

1
3 )

n ≤ (2p+1)1/3·
√

∆1(n
−

1
3 )

n1/3 (in

view of (18) again). Hence, F(XRSAA)−F(X∗) ≤ O(1) ·K ·
[

s1/3p2/3·(ln(np)+∆̃)
n2/3 + s2/3·p1/3

n1/3

]

+

O(1) · s2/3RK·(2p+1)1/3

min{a1/2n1/3, a1/4n1/3}
[

ln(n1/3p) + ∆̃
]1/2

, which shows Part (iii) by further noticing

that a = 1
2UL

. �

A.4 Auxiliary results

Proposition 13 Suppose that a < UL
−1. Assume that the S3ONC(Zn1 ) is satisfied almost

surely at XRSAA ∈ Sp. Then,

P[{|σj(XRSAA)| /∈ (0, aλ) for all j}] = 1.
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Proof Since XRSAA satisfies the S3ONC(Zn1 ) almost surely, Eq. (12) implies that for any
j ∈ {1, ..., p}, if σj(XRSAA) ∈ (0, aλ), then

0 ≤UL +

[

∂2Pλ(|σj(X)|)
[∂σj(X)]2

]

X=XRSAA

= UL − 1

a
. (34)

Further observe that ∂2Pλ(t)
∂t2

= −a−1 for t ∈ (0, aλ). Therefore, (34) contradicts with the
assumption that UL < 1

a . This contradiction implies that

P[{XRSAA satisfies the S3ONC(Zn1 )} ∩ {|σj(XRSAA)| ∈ (0, aλ)}] = 0

=⇒ 0 ≥ 1− P[{XRSAA does not satisfy the S3ONC(Zn1 )}]− P[{|σj(XRSAA)| /∈ (0, aλ)}].

Since P[{XRSAA satisfies the S3ONC(Zn1 )}] = 1, it holds that P[{|σj(XRSAA)| /∈ (0, aλ)}] =
1 for all j = 1, ..., n, which immediately leads to the desired result.

Proposition 14 Suppose that Assumptions 3 and 4 hold. Let ǫ ∈ (0, 1], p̃ : p̃ > s,

∆1(ǫ) := ln
(

18·(KC+Cµ)·p·R
ǫ

)

, and Bp̃,R := {X ∈ Sp : σmax(X) ≤ R, rk(X) ≤ p̃} . Then, for
the same c ∈ (0, 0.5] as in (10) and for some c̃ > 0,

max
X∈Bp̃,R

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(X, Zi)− F(X)

∣

∣

∣

∣

∣

≤ K√
n

√

2p̃(2p + 1)

c
∆1(ǫ) +

K

n
· 2p̃(2p + 1)

c
∆1(ǫ) + ǫ

with probability at least 1− 2 exp (−p̃(2p + 1)∆1(ǫ))− 2 exp(−c̃n).

Proof We will follow the “ǫ-net” argument similar to Shapiro et al. [27] to construct a net
of discretization grids G(ǫ) := {X̃k} ⊆ Bp̃,R such that for any X ∈ Bp̃,R, there is Xk ∈ G(ǫ)
that satisfies ‖Xk −X‖ ≤ ǫ

2KC+2Cµ for any fixed ǫ ∈ (0, 1].

Invoking Lemma 20, for an arbitrary X ∈ Bp̃,R, to ensure that there always exists

X̃k ∈ G(ǫ) that ensures
∥

∥

∥
X− X̃k

∥

∥

∥
≤ ǫ

(2KC+2Cµ) , it is sufficient to have the number of grids

to be no more than
(

18R
√
p̃·(KC+Cµ)
ǫ

)(2p+1)p̃
. Now, we may observe

P

[

max
Xk∈G(ǫ)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(Xk, Zi)− E

[

1

n

n
∑

i=1

f(Xk, Zi)

]∣

∣

∣

∣

∣

≤ K

√

t

n
+

Kt

n

]

=P





⋂

Xk∈G(ǫ)

{∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(Xk, Zi)− E

[

1

n

n
∑

i=1

f(Xk, Zi)

]∣

∣

∣

∣

∣

≤ K

√

t

n
+

Kt

n

}





≥1−
∑

Xk∈G(ǫ)
P

[∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(Xk, Zi)− E

[

1

n

n
∑

i=1

f(Xk, Zi)

]∣

∣

∣

∣

∣

> K

√

t

n
+

Kt

n

]

. (35)
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Further invoking Eq. (10), for the same c as in (10), it holds that

P

[

max
Xk∈G(ǫ)

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(Xk, Zi)− E

[

1

n

n
∑

i=1

f(Xk, Zi)

]∣

∣

∣

∣

∣

≤ K

√

t

n
+

Kt

n

]

≥ 1− |G(ǫ)| · 2 exp(−ct) ≥ 1− 2

(

18R
√
p̃ · (KC + Cµ)

ǫ

)(2p+1)p̃

· exp(−ct).

Combined with Lemma 17 and Lemma 18,

max
X∈Bp̃,R,X

k∈G(ǫ)

{∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(X, Zi)−
1

n

n
∑

i=1

f(Xk, Zi)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

E

[

1

n

n
∑

i=1

f(X, Zi)

]

− E

[

1

n

n
∑

i=1

f(Xk, Zi)

]∣

∣

∣

∣

∣

}

≤ 2(KC + Cµ) ·
ǫ

2KC + 2Cµ
= ǫ, (36)

with probability at least 1 − 2 exp(−c̃ · n) for some problem independent c̃ >
0 and any fixed τ > 0. Observe that for any X ∈ Bp̃,R and Xk ∈
G(ǫ), it holds that |Fn(X,Zn1 )− E [Fn(X,Zn1 )]| ≤

∣

∣Fn(Xk,Zn1 )− E
[

Fn(Xk,Zn1 )
]∣

∣ +
∣

∣Fn(X,Zn1 )−Fn(Xk,Zn1 )
∣

∣+
∣

∣E [Fn(X,Zn1 )]− E
[

Fn(Xk,Zn1 )
]∣

∣ . Therefore, with probability
at least 1− 2 exp(−c̃ · n) for some positive constant c̃ > 0,

max
X∈Bp̃,R,X

k∈G(ǫ)

{

|Fn(X,Zn1 )− E [Fn(X,Zn1 )]| −
∣

∣

∣Fn(Xk,Zn1 )− E

[

Fn(Xk,Zn1 )
]∣

∣

∣

}

≤ ǫ.

(37)

Further invoking (35), we now obtain that

max
X∈Bp̃,R,X

k∈G(ǫ)
|Fn(X,Zn1 )− F(X)| ≤ ǫ+K

√

t

n
+

Kt

n
,

with probability at least 1− 2
(

18R
√
p̃·(KC+Cµ)
ǫ

)(2p+1)p̃
· exp(−ct)− 2 exp(−c̃ ·n). Finally, we

may let t := 2p̃
c · (2p+1) ·∆1(ǫ), where ∆1(ǫ) := ln

(

18·(KC+Cµ)·p·R
ǫ

)

, and obtain the desired

result.

Proposition 15 Suppose that Assumptions 1 through 3 hold, the solution XRSAA ∈ Sp :
σmax(X

RSAA) ≤ R satisfies S3ONC(Zn1 ) almost surely,

Fn,λ(XRSAA,Zn1 ) ≤ Fn,λ(X∗,Zn1 ) + Γ, w.p.1. (38)
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where Γ ≥ 0, ǫ ∈ (0, 1], ∆1(ǫ) := ln
(

18·(KC+Cµ)·p·R
ǫ

)

. For a positive integer p̃u : p̃u > s, if

(p̂− s) · Pλ(aλ) >
4K

cn
∆1(ǫ) · p̂ · (2p + 1) +

2K√
n

√

2p̂ · (2p + 1)

c
∆1(ǫ) + Γ + 2ǫ, (39)

for all p̂ : p̃u ≤ p̂ ≤ p, then P[rk(XRSAA) ≤ p̃u − 1] ≥ 1 − 2p exp(−c̃n) −
4 exp (−p̃u(2p + 1)∆1(ǫ)) for the same c in (10) and some c̃ > 0.

Proof This proof generalizes Proposition EC.3 from [11] bounding the sparsity of an
S3ONC solution to bounding the rank of an S3ONC solution. Though the argument is
similar, details are quite different and thus the result is different. Define BR := {X ∈ Sp :
σmax(X) ≤ R}. Define a few events:

E1 :=
{

(X̃, Z̃n1 ) ∈ BR ×Wn : Fn,λ(X̃, Z̃n1 ) ≤ Fn,λ(X∗, Z̃n1 ) + Γ
}

,

E2 := {X̃ ∈ BR : |σj(X̃)| /∈ (0, aλ) for all j},
E3,p̂ :=

{

X̃ ∈ BR : rk(X̃) = p̂
}

,

where c in E5,p̂ is a universal constant defined to be the same as in (10), p̂ : p̃u ≤ p̂ ≤ p
and (thus p̂ > s by the assumption that p̃u > s). For any (X̃, Z̃n1 ) ∈ {(X̃, Z̃n1 ) ∈ E1} ∩ {X̃ ∈
E2 ∩ E3,p}, where Z̃n1 = (Z̃1, ..., Z̃n), since X̃ ∈ E3,p ∩ E2, which means that X̃ has p̂-many
non-zero singular values and each must not be within the interval (0, aλ), it holds that

Fn(X̃, Z̃n1 ) + p̂Pλ(aλ) ≤
1

n
Fn(X∗, Z̃n1 ) + sPλ(aλ) + Γ, (40)

Notice that X∗ ∈ BR : rk(X∗) = s < p̂ by Assumption 1. We may obtain that, for all
X̃ ∈ E3,p,

1

n

n
∑

i=1

f(X∗, Z̃i)−
1

n

n
∑

i=1

f(X̃, Z̃i)

=

[

1

n

n
∑

i=1

f(X∗, Z̃i)− F(X∗)

]

+

[

F(X̃)− 1

n

n
∑

i=1

f(X̃, Z̃i)

]

+
[

F(X∗)− F(X̃)
]

≤ 2 max
X∈E3,p

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(X, Z̃i)− F(X)

∣

∣

∣

∣

∣

+ F(X∗)− F(X̃)

≤ 2 max
X∈E3,p

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(X, Z̃i)− F(X)

∣

∣

∣

∣

∣

, (41)
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where the last inequality is due to F(X∗) ≤ F(X) for all X ∈ Sp by the definition of X∗.
Define that

E4 :=
{

(X̃, Z̃n1 ) ∈ BR ×Wn : X̃ satisfies S3ONC(Z̃n1 )
}

E5,p̂ :=
{

Z̃n1 ∈ Wn : max
X∈BR: rk(X)≤p̂

∣

∣

∣
Fn(X, Z̃n1 )− F(X)

∣

∣

∣
≤ K√

n

√

2p̂(2p+ 1)

c
∆1(ǫ)

+
K

n
· 2p̂(2p + 1)

c
∆1(ǫ) + ǫ

}

,

Now let us examine the following set:

Λ ={(X̃, Z̃n1 ) : (X̃, Z̃n1 ) ∈ E1 ∩ E4} ∩ {(X̃, Z̃n1 ) : X̃ ∈ E3,p ∩ E2} ∩ {(X̃, Z̃n1 ) : Z̃
n
1 ∈ E5,p̂}.

Combined with (40) and (41), Λ 6= ∅ =⇒ (p̂ − s) · Pλ(aλ) ≤ 2K√
n

√

2p̂(2p+1)
c ∆1(ǫ) +

2K
n ·

2p̂(2p+1)
c ∆1(ǫ) + 2ǫ + Γ, which contradicts with (39) for all p̂ : p̃u ≤ p̂ ≤ p. Now we

recall the definition of XRSAA ∈ BR, which is a solution that satisfies the S3ONC(Zn1 ),
w.p.1., and Fn,λ(XRSAA, Z̃n1 ) ≤ Fn,λ(X∗, Z̃n1 )+Γ, w.p.1. Invoking Proposition 13, we have
P
[

(XRSAA,Zn1 ) ∈ E1 ∩ E4, XRSAA ∈ E2
]

= 1. Hence,

0 =P [Λ]

≥ 1− P
[

XRSAA /∈ E3,p
]

− P [Zn1 /∈ E5,p̂]−
{

1− P
[

(XRSAA,Zn1 ) ∈ E1 ∩ E4, XRSAA ∈ E2
]}

,

for all p̂ : p̃u ≤ p̂ ≤ p. The above then implies that P [Zn1 /∈ E5,p̂] ≥ P
[

XRSAA ∈ E3,p
]

for all
p̂ : p̃u ≤ p̂ ≤ p. Therefore, P[rk(XRSAA) = p̂] ≤ 1 − P [Zn1 ∈ E5,p̂] for all p̂ : p̃u ≤ p̂ ≤ p.
Together with Proposition 14, we have that

P[rk(XRSAA) ≤ p̃u − 1] = P[rk(XRSAA) /∈ {p̃u, p̃u + 1, ..., p}]

=1− P





p
⋃

p̂=p̃u

{rk(XRSAA) = p̂}



 ≥ 1−
p
∑

p̂=p̃u

P[rk(XRSAA) = p̂] ≥ 1−
p
∑

p̂=p̃u

(1− P [Zn1 ∈ E5,p̂])

≥1− 2(p − p̃u + 1) exp(−c̃n)−
p
∑

p̂=p̃u

2 exp (−p̂(2p + 1) ·∆1(ǫ)) . (42)

where c̃ > 0 is some universal constant. Observing that ∆1(ǫ) = ln
(

18·(KC+Cµ)·p·R
ǫ

)

> 1 by

observing that the above (42) involves a geometric sequence, we have

P[rk(XRSAA) ≤ p̃u − 1] ≥1− 2 exp (−p̃u(2p+ 1)∆1(ǫ))

1− exp (−(2p + 1)∆1(ǫ))
− 2p exp(−c̃n). (43)

Further noting that 2 exp(−p̃u(2p+1)∆1(ǫ))
1−exp(−(2p+1)∆1(ǫ))

≤ 4 exp (−p̃u(2p + 1)∆1(ǫ)), we then have the
desired result.
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Proposition 16 Let

∆1(ǫ) := ln

(

18 · (KC + Cµ) · p ·R
ǫ

)

.

Assume that (i) the solution XRSAA satisfies S3ONC(Zn1 ) almost surely; (ii)
Fn,λ(XRSAA, Zn1 ) ≤ Fn,λ(X∗, Zn1 ) + Γ with probability one; and (iii) for some integer
p̃u : p̃u > s, it holds that

p̂ > s+
4K · p̂ · (2p + 1)

cn · Pλ(aλ)
∆1(ǫ) +

2K√
n · Pλ(aλ)

√

2p̂ · (2p + 1)

c
∆1(ǫ) +

Γ + 2ǫ

Pλ(aλ)
, (44)

for all p̃ : p̃u ≤ p̃ ≤ p, any Γ ≥ 0, and any ǫ ∈ (0, 1]. It then holds that

F(XRSAA)− F(X∗) ≤ 4K · p̂ · (p+ 1)

cn
∆1(ǫ)

+
2K√
n

√

2p̂ · (2p + 1)

c
∆1(ǫ) + Γ + 2ǫ+ sPλ(aλ), (45)

with probability at least P ∗ := 1 − 2(p + 1) exp(−c̃n) − 6 exp (−p̃u(2p + 1)∆1(ǫ)) for some
universal constant c̃ > 0.

Proof We first observe that ∆1(ǫ) := ln
(

18·(KC+Cµ)·p·R
ǫ

)

≥ ln 36 because p ≥ 1,

KC , Cµ, R ≥ 1 and 0 < ǫ ≤ 1. By assumption,

Fn,λ(XRSAA, Zn1 ) ≤ Fn,λ(X∗, Zn1 ) + Γ,

w.p.1., Pλ(t) ≥ 0 for all t ≥ 0, and rk(X∗) = s, yields that 1
n

∑n
i=1 f(X

RSAA, Zi) ≤
1
n

∑n
i=1 f(X

∗, Zi) + sPλ(aλ) + Γ, a.s. Furthermore, conditioning on the events that
(a) rk(XRSAA) ≤ p̃u, (b) maxX∈Bp̃u,R

∣

∣

1
n

∑n
i=1 f(X, Zi)− E

[

1
n

∑n
i=1 f(X, Zi)

]∣

∣ ≤
K√
n

√

p̃u·(2p+1)
c ∆1(ǫ) + K

n
p̃u·(2p+1)

c ∆1(ǫ) + ǫ, we obtain that F(XRSAA) − F(X∗) ≤

s · Pλ(aλ) + 2K√
n

√

2p̃u·(2p+1)
c ∆1(ǫ) + 4K

n
p̃u·(2p+1)

c ∆1(ǫ) + 2ǫ + Γ, a.s. Further invoking

Propositions 14 and 15, we have that both events hold simultaneously with probability at
least as in P ∗, which verifiably implies the claimed results.

A.5 Useful Lemmata

Lemma 17 Under Assumption 4, it holds that, for some universal constant c > 0, with
probability at least 1− 2 exp(−c · n), it holds that

max
X1,X2∈Sp

∩{X: σmax(X)≤R,
‖X1−X2‖≤τ}

{|Fn(X1,Z
n
1 )−Fn(X2,Z

n
1 )|} ≤ (2KC + Cµ) · τ.

for any given τ ≥ 0.
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Proof This proof follows a closely similar lemma by [27]. Similar proof has also been
provided by [11], but some subtle differences in the problem context present and thus we
redo the the proof herein. By Assumption 4, for some c > 0,

P

(∣

∣

∣

∣

∣

n
∑

i=1

1

n
{C(Zi)− E[C(Zi)]}

∣

∣

∣

∣

∣

> KC

(

t

n
+

√

t

n

))

≤ 2 exp (−ct) , ∀t ≥ 0.

If we let t := n and observe that E[C(Zi)] ≤ Cµ, we immediately have that

P

(

n
∑

i=1

C(Zi)
n

≤ 2KC + Cµ
)

≤ 1− 2 exp (−cn) . (46)

If we invoke Assumption 4 again given the event that
{

∑n
i=1

C(Zi)
n ≤ 2KC + Cµ

}

, we have

that for any X1,X2 ∈ Sp,

max
X1,X2∈Sp

∩{X: σmax(X)≤R,
‖X1−X2‖≤τ}

∣

∣

∣

∣

∣

1

n

n
∑

i=1

f(X1, Zi)−
1

n

n
∑

i=1

f(X2, Zi)

∣

∣

∣

∣

∣

≤ max
X1,X2∈Sp

∩{X: σmax(X)≤R,
‖X1−X2‖≤τ}

1

n

n
∑

i=1

‖f(X1, Zi)− f(X2, Zi)‖

≤ max
X1,X2∈Sp

∩{X: σmax(X)≤R,
‖X1−X2‖≤τ}

1

n

n
∑

i=1

C(Zi)‖X1 −X2‖ ≤ (2KC + Cµ) · τ

We have the desired result by combining the above with (46).

Lemma 18 Under Assumption 4, for all

X1, X2 ∈ Sp : max{σmax(X1), σmax(X2)} ≤ R,

it holds that

|E[Fn(X1,Z
n
1 )]− E[Fn(X2,Z

n
1 )]| ≤ Cµ · ‖X1 −X2‖. (47)

Proof This proof follows a closely similar lemma by [27]. Again, a similar proof has
also been provided by [11], but some subtle differences make it necessary to conduct the
repetition herein. As per Assumption 4, it holds that

E [|Fn(X1,Z
n
1 )−Fn(X2,Z

n
1 )|] ≤ E

[

n
∑

i=1

C(Zi)
n

‖X1 −X2‖
]

.
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Due to the convexity of the function | · |, it therefore holds that

|E [Fn(X1,Z
n
1 )]− E [Fn(X2,Z

n
1 )]| ≤E

[

n
∑

i=1

C(Zi)
n

‖X1 −X2‖
]

=E

[

n
∑

i=1

C(Zi)
n

]

· ‖X1 −X2‖.

Invoking Assumption 4 again, it holds that E

[

∑n
i=1

C(Zi)
n

]

=
∑n

i=1 E[C(Zi)]
n ≤ Cµ for all

i = 1, ..., n, which immediately leads to the desired result.

Lemma 19 Denote that Xℓ1
λ ∈ arg min

X∈Sp
Fn(X, Zn1 )+λ ‖X‖∗ , it holds that Fn,λ(Xℓ1

λ , Z
n
1 ) ≤

Fn,λ(X∗, Zn1 ) + λ‖X∗‖∗.

Proof This proof generalizes a similar one in [11] from sparsity-inducing penalty to low-
rankness-inducing penalty; that is, from ℓ1 regularization to nuclear norm-based regulariza-
tion. As per Assumption 4, it holds that We first invoke the definition of Pλ to obtain

0 ≤ Pλ(t) =

∫ t

0

[aλ− θ]+
a

dθ ≤
∫ t

0

aλ

a
dθ = λ · t. (48)

for all t ≥ 0. Secondly, by the definition of Xℓ1
λ ,

Fn(Xℓ1
λ , Z

n
1 ) + λ‖Xℓ1

λ ‖∗ ≤ Fn(X∗, Zn1 ) + λ‖X∗‖∗. (49)

Combining (48) and (49), it holds that

Fn(Xℓ1
λ , Z

n
1 ) +

p
∑

j=1

Pλ

(

|σj(Xℓ1
λ )|
)

≤ Fn(Xℓ1
λ , Z

n
1 ) +

p
∑

j=1

λ · |σj(Xℓ1
λ )|

≤Fn(X∗, Zn1 ) +
p
∑

j=1

Pλ (|σj(X∗)|) + λ‖X∗‖∗,

as desired.

Lemma 20 Let Sr,R := {X ∈ ℜp×p : rk(X) ≤ r, σmax(X) ≤ R}. Then, in terms of the

Frobenius norm, there exists an ǫ-net S̄r obeying |S̄r| ≤
(

9
√
rR
ǫ

)(2p+1)r
.

Proof The proof follows a closely similar result by [3, Lemma 3.1]. Denote by X := UΣV ⊤

the singular value decomposition (SVD) of a matrix in Sr,R. Let D be the set of rank-r
diagonal matrices with nonnegative diagonal entries and nuclear norm smaller than R, and
thus any matrix within set D has the Frobenius norm smaller than

√
r · R. We take D̄ be

an ǫ
3 -net (in terns of Frobenius norm) for D with |D̄| ≤

(

9
√
rR
ǫ

)r
.
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Let Op,r := {U ∈ ℜp×r : U⊤U = I}. For the convenience of analysis on Op,r, we may as
well consider Q̂p,r := {X ∈ ℜp×r : ‖X‖1,2 ≤ 1} and ‖X‖1,2 = maxj ‖Xj‖, where Xj denotes
the jth column of X. Verifiably, Op,r ⊂ Q̂p,r. We may create an ǫ

3
√
rR

-net for Q̂p,r, denoted

by Ōp,r, which satisfies that |Ōp,r| ≤ (9
√
rR/ǫ)pr.

For any X ∈ Sr,R, one may decompose X and obtain X = UΣV ⊤. There exists
X̄ = Ū Σ̄V̄ ⊤ ∈ S̄r,R with Ū , V̄ ∈ Ōp,r, and Σ̄ ∈ D̄ such that ‖U − Ū‖1,2 ≤ ǫ/(3

√
rR),

‖V − V̄ ‖1,2 ≤ ǫ/(3
√
rR), and ‖Σ − Σ̄‖F ≤ ǫ/3. This gives ‖X − X̄‖F =

‖UΣV ⊤ − Ū Σ̄V̄ ⊤‖F = ‖UΣV ⊤ − ŪΣV ⊤ + ŪΣV ⊤ − Ū Σ̄V ⊤ + Ū Σ̄V ⊤ − Ū Σ̄V̄ ⊤‖F ≤
‖(U − Ū)ΣV ⊤‖F + ‖Ū(Σ − Σ̄)V ⊤‖F + ‖Ū Σ̄(V − V̄ )‖F . Since V is orthonormal

matrix, ‖(U − Ū)ΣV ⊤‖F = ‖(U − Ū)Σ‖F =
√

∑

1≤j≤r[σj(X)]2 · ‖Ūj − Uj‖22 ≤
√

‖Σ‖2F · ‖U − Ū‖21,2 ≤ ǫ/3, where Uj is the jth column of U . By a symmetric ar-

gument, we may also obtain that ‖Ū Σ̄(V − V̄ )⊤‖F ≤ ǫ/3. To bound the second term, we
also notice that ‖Ū(Σ − Σ̄)V ⊤‖F = ‖Σ − Σ̄‖F ≤ ǫ/3. Combining the above provides the
desired result.
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