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Abstract. In this paper, we provide a new scheme for approximating the weakly efficient

solution set for a class of vector optimization problems with rational objectives over a feasible

set defined by finitely many polynomial inequalities. More precisely, we present a procedure to

obtain a sequence of explicit approximations of the weakly efficient solution set of the problem

in question. Each approximation is the intersection of the sublevel set of a single polynomial

and the feasible set. To this end, we make use of the achievement function associated with the

considered problem and construct polynomial approximations of it over the feasible set from

above. Remarkably, the construction can be converted to semidefinite programming problems.

Several nontrivial examples are designed to illustrate the proposed new scheme.

1. Introduction

Vector optimization forms an important field of research in optimization theory; see, e.g., [4, 8,

9, 28, 35], and many practical applications in various areas, such as engineering [9], humanitarian

aid [13], medical health [5] and so on. In this paper, we will be concerned with the following

constrained vector rational optimization problem of the form

MinRm+

{
f(x) :=

(
p1(x)

q1(x)
, . . . ,

pm(x)

qm(x)

)
: x ∈ Ω

}
, (VROP)

where “MinRm+ ” is understood with respect to the ordering non-negative orthant Rm+ , f : Rn →
Rm is a rational mapping with fi = pi

qi
, in which pi and qi are real polynomials in the variable

x = (x1, . . . , xn) for each i = 1, . . . ,m, and the feasible set Ω is given by

Ω := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . , r},

where for each j = 1, . . . , r, gj is a real polynomial in the variable x. By letting qi = 1 for all

i = 1, . . . ,m, our model then covers vector polynomial optimization problems [1, 17, 25, 28, 31],

and by letting pi, qi be linear functions for all i = 1, . . . ,m, our model also covers linear fractional

vector optimization problems [16] as well.

For vector optimization, it is almost impossible to find a single point simultaneously minimiz-

ing all the objective functions. Therefore, we usually look for some “best preferred” solutions in
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vector optimization. Now, let us recall the concepts of optimal solutions to vector optimization

problems. A point x ∈ Ω is said to be an efficient solution (or Edgeworth–Pareto (EP) optimal

point) to the problem (VROP) if it holds that

f(y)− f(x) 6∈ −Rm+ \ {0} for all y ∈ Ω;

and a weakly efficient solution (or weakly EP optimal point) to the problem (VROP) if it holds

that

f(y)− f(x) 6∈ −Rm++ for all y ∈ Ω,

where Rm++ denotes the positive orthant of Rm. Let ε ∈ Rm+ be given, a point x ∈ Ω is said to

be a weakly ε-efficient solution to the problem (VROP) if it holds that

f(y)− f(x) + ε 6∈ −Rm++ for all y ∈ Ω.

Denote by S (resp., Sw, Sεw) the set of all efficient (resp, weakly efficient, weakly ε-effcient)

solutions to the problem (VROP), respectively. Clearly, S ⊂ Sw ⊂ Sεw, but not conversely. We

call the image f(Sw) the Pareto frontier (the Pareto curve if m = 2) of (VROP); see [29].

Throughout this paper, we make the following blanket assumptions on (VROP):

(A1) The feasible set Ω is nonempty and compact;

(A2) The denominators qi(x) > 0 over Ω for all i = 1, . . . ,m.

As each fi is continuous, (A1) implies that the image f(Ω) of the rational mapping f over Ω is

also compact, which ensures the existence of (weakly) efficient solutions to the problem (VROP);

see, e.g., [2, Theorem 1], [8, Theorem 2.1] and [35, Corollary 3.2.1]. The problem (VROP) is

well defined under (A2), which is commonly adopted in the literature when studying fractional

programming. Moreover, by substituting piqi
q2i

for pi
qi

, (A2) can be weakened as qi(x) 6= 0 over Ω

for all i = 1, . . . ,m.

Motivated by its extensive applications, a great deal of attention has been attracted to the

development of algorithms for computing (weakly) efficient solutions to vector optimization; see

[3, 6, 10, 24, 25, 31, 37–39] and references therein. Among them, there are mainly two different

approaches for solving vector optimization, by which we mean finding its (weakly) efficient

solutions. One is based on the scalarization methods (e.g., [3, 6, 24, 25, 31]), which computes

(weakly) efficient solutions by choosing some parameters in advance and reformulating them as

one or several single objective optimization problems. The other is based on descent methods;

see e.g., [10] for Newton’s methods, [37–39, 42, 43] for (projected) gradient methods.

We would like to emphasize that the aforementioned methods can only find one or some

particular (weakly) efficient solutions, rather than giving information about the whole set of

(weakly) efficient solutions, which is apparently important for applications of vector optimziation

in the real world. Instead, the aim and novelty of this paper is to provide a new scheme for

approximating the whole set of weakly (ε-)efficient solutions of (VROP). More precisely, we

provide a procedure to obtain a sequence of explicit approximations of Sεw (and hence Sw by

letting ε→ 0). Each approximation is the intersection of the sublevel set of a single polynomial
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and the feasible set Ω. As far as we know, there are few methods of this type for solving vector

optimization problems in the literature.

To this end, we make use of the achievement function (c.f. [8, 32, 41]) associated with the

problem (VROP) which is defined as

ψ(x) := sup
y∈Ω

min
i=1,...,m

[fi(x)− fi(y)].

It can be shown that the sets Sw and Sεw can be written as the intersection of sublevel sets of

ψ(x) and the feasible set Ω (see Section 3). As the function ψ(x) can be fairly complicated,

the problem is reduced to construct polynomial approximations of ψ(x). By rewriting the

definition of ψ(x) as a parametric polynomial optimization problem, we can contruct a sequence

of polynomial approximations {ψk(x)}k∈N of ψ(x) over the feasible set Ω from above by invoking

the “joint+marginal” approach developed by Lasserre in [21, 22]. Remarkably, the construction

of {ψk(x)}k∈N can be converted to semidefinite programming (SDP) problems. For ε ∈ Rm+
of the form ε = (δ, . . . , δ) with δ > 0, the intersection, denoted by A(δ, k), of the sublevel set

ψk(x) ≤ δ and the feasible set Ω are inner approximations of Sεw. Under some conditions, we

prove that vol (Sεw \ A(δ, k)) → 0 as k → ∞, where “vol(·)” denotes the Lebesgue volume (see

Theorem 4.2). Since it holds for ε = (δ, . . . , δ) that Sεw → Sw as δ → 0 (see Proposition 3.2), we

may take A(δ, k) as an approximation of Sw with sufficiently small δ > 0 and sufficiently large

k ∈ N (see Corollary 4.1 and Remark 4.1).

The rest of this paper is organized as follows. Section 2 contains some preliminaries on

polynomial optimization. In Section 3, we study the characterization of the weakly efficient

solution set of the problem (VROP) by the associated achievement function ψ(x). In Section 4,

we show how to approximate the weakly (ε-)efficient solution set of the problem (VROP), and

present some nontrivial illustrating examples. Concusions are given in Section 5.

2. Preliminaries

In this section, we collect some notation and preliminary results which will be used in this

paper. The symbol N (resp., R, R+, R++) denotes the set of nonnegative integers (resp., real

numbers, nonnegative real numbers, positive real numbers). For a set D in Rn, we use cl(D)

and int(D) to denote the closure and interior of D, respectively. Denote by B the closed

unit ball in Rn centered at the origin. For a point u ∈ Rn, dist(u, D) denotes the Euclidean

distance between u and D. For u ∈ Rn, ‖u‖ denotes the standard Euclidean norm of u. For

α := (α1, . . . , αn) ∈ Nn, |α| = α1 + · · · + αn. For k ∈ N, denote by Nnk = {α ∈ Nn : |α| ≤ k}
and |Nnk | its cardinality. Denote by R[x] the ring of polynomials in x := (x1, . . . , xn) with real

coefficients and by R[x]k the set of polynomials in R[x] of degree up to k. For a polynomial

f, we use deg(f) to denote the total degree of f. For α ∈ Nn, the notation xα stands for the

monomial xα1
1 · · ·xαnn .

Now we recall some background about the sum of squares representations of nonnegative

(positive) polynomials over a set defined by finitely many polynomial inequalities. We say that
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a polynomial h ∈ R[x] is sum of squares of polynomials if there exist polynomials hj , j = 1, . . . , s,

such that h =
∑s

j=1 h
2
j . The set consisting of all sum of squares polynomial in x is denoted by

Σ2[x]. Let {h1, . . . , hs} ⊂ R[x] be a finite set of polynomials and

S := {x ∈ Rn : hj(x) ≥ 0, j = 1, . . . , s}.

Assumption 2.1. There exists some N ∈ R such that

N −
n∑
i=1

x2
i = σ0(x) +

s∑
j=1

σj(x)hj(x),

for some sum of squares polynomials σj ∈ Σ2[x], j = 0, 1, . . . , s.

Theorem 2.1 (Putinar’s Positivstellensatz [33]). Suppose that Assumption 2.1 holds. If h(x) ∈
R[x] is positive on S, then h(x) can be written in the form

h(x) = σ0(x) +
s∑
j=1

σjhj(x), (1)

for some sum of squares polynomials σj ∈ Σ2[x], j = 0, 1, . . . , s.

Note that if we fix the degrees of σj ’s in (1), then checking the above representation of h(x)

reduces to an SDP feasibility problem (c.f. [23]). The well-known Lasserre’s hierarchy of SDP

relaxations for polynomial optimization problems is based on Putinar’s Positivstellensatz and

the dual moment theory (c.f. [18, 21]).

A sparse version of the representation (1) is available if some sparsity pattern is satisfied by

h and hj ’s. For a subset I ⊆ {1, . . . , n}, denote the subset of variables xI := {xi : i ∈ I} and

R[xI ] as the polynomial ring in the variables xI .

Assumption 2.2. There are partitions {1, . . . , n} = I1 ∪ · · · ∪ Il and {1, . . . , s} = J1 ∪ · · · ∪ Jl
where Ji, i = 1, . . . , l are disjoint. The collections {Ii}li=1 and {Ji}li=1 satisfy the following:

(i) ∀i ∈ {1, . . . , l − 1}, ∃k ∈ {1, . . . , i} s.t. Ii+1 ∩ (I1 ∪ · · · ∪ Ii) ⊆ Ik;
(ii) hj ∈ R[xIi ] for each j ∈ Ji, 1 ≤ i ≤ l.

(iii) For each i = 1, . . . , l, there exists some Ni ∈ R such that

Ni −
∑
j∈Ii

x2
j = σi,0 +

∑
j∈Ji

σi,jhj ,

for some sum of squares polynomials σi,0, σi,j ∈ Σ2[xIi ], j ∈ Ji.

The following result enables us to construct sparse SDP relaxations of polynomial optimization

problems, which can significantly reduce the computational cost (c.f. [19, 40]).

Theorem 2.2 (Sparse version of Putinar’s Positivstellensatz [12, 19, 40]). Suppose that As-

sumption 2.2 holds. If h(x) ∈
∑l

i=1 R[xIi ] and is positive on S, then h(x) can be written as

h(x) =

l∑
i=1

σi,0 +
∑
j∈Ji

σi,jhj

 ,
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for some sum of squares polynomials σi,0, σi,j ∈ Σ2[xIi ], j ∈ Ji, i = 1, . . . , l.

3. Charactering the weakly efficient solution set

In this section, we study the achievement function associated with (VROP), which can be

used to characterize the weakly (ε-)efficient solution set of (VROP).

By defintion of Sw, we have

Sw =
{
x ∈ Ω: ∀y ∈ Ω, f(y)− f(x) 6∈ −Rm++

}
= {x ∈ Ω: ∀y ∈ Ω, ∃i ∈ {1, . . . ,m} such that fi(x)− fi(y) ≤ 0}

=

{
x ∈ Ω: ∀y ∈ Ω, min

i=1,...,m
[fi(x)− fi(y)] ≤ 0

}
=

{
x ∈ Ω: sup

y∈Ω
min

i=1,...,m
[fi(x)− fi(y)] ≤ 0

}
.

Let ψ : Rn → R be the function given by

ψ(x) := sup
y∈Ω

min
i=1,...,m

[fi(x)− fi(y)].

The function ψ(x) is known as the achievement function in the area of vector optimization in

the literature; see [8, Section 4.6] and [32, 41]. Therefore,

Sw = {x ∈ Rn : ψ(x) ≤ 0} ∩ Ω.

Moreover, we have the following results, which imply that the function ψ(x) is indeed a merit

function (see [7, 26, 38, 39]).

Proposition 3.1. [32, Lemmas 3.1 and 3.2] The achievement function ψ(x) satisfies

(i) ψ(x) ≥ 0 for all x ∈ Ω and hence Sw = {x ∈ Ω: ψ(x) = 0} .
(ii) ψ(x) is locally Lipschitz on Ω.

Proof. (i) is clear. If the objective in (VROP) is a vector of polynomials, (ii) was proved in [32,

Lemma 3.2] which is based on the locally Lipschitz property of polynomial functions. Note that

the rational function fi is locally Lipschitz on Ω under (A1-2). Hence, the proof of [32, Lemma

3.2] is still valid for the case studied in this paper. �

So far, we know the weakly efficient solution set Sw can be completely characterized with

the help of the achievement function ψ(x). Note that, ψ(x) can be fairly complicated and

computing ψ(x) by some descent methods directly might be difficult. However, as shown below

in Proposition 3.3, the sublevels of ψ(x) have rather close relation with the set of all weakly ε-

efficient solutions, which in turn yields the information of the set of all weakly efficient solutions.

Recall the definition of the set Sεw of all weakly ε-efficient solutions to (VROP), and clearly by

definition, Sw ⊂ Sεw for any ε ∈ Rm+ . Conversely, denote a set-valued mapping F(·) : Rm ⇒ Rn

and let F(ε) := Sεw for ε ∈ Rm+ . The following proposition shows that F(·) is continuous at ε̄ = 0
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relative to Rm+ in the sense of Painlevé–Kuratowski (see [34, Definition 5.4]), i.e., F(ε) → F(0)

as ε → 0. For convenience, we recall the definitions of continuity (outer semicontinuity, inner

semicontinuity) for set-valued mapppings; see [34, Chapters 4 & 5] for more information. Given

a set-valued mapping F : Rm ⇒ Rn, we denote by

lim sup
y→ȳ

F (y) := {x ∈ Rn : ∃yk → ȳ, ∃xk → x with xk ∈ F (yk)} ,

lim inf
y→ȳ

F (y) := {x ∈ Rn : ∀yk → ȳ, ∃xk → x with xk ∈ F (yk)} ,

the outer and inner limit of F at ȳ in the sense of Painlevé–Kuratowski, respectively.

Definition 3.1. A set-valued mapping F : Rm ⇒ Rn is said to be outer semicontinuous (osc)

at ȳ if lim sup
y→ȳ

F (y) ⊂ F (ȳ), and inner semicontinuous (isc) at ȳ if F (ȳ) ⊂ lim inf
y→ȳ

F (y). It is

called continuous at ȳ if F is simultaneously osc and isc at ȳ, i.e., F (y) → F (ȳ) as y → ȳ.

These terms are invoked relative to X, a subset of Rm containing ȳ, if the inclusions hold in

restriction to convergence y → ȳ with y ∈ X.

It follows from Definition 3.1 that F(·) is continuous at ε̄ = 0 relative to Rm+ . Similar to

[34, Proposition 5.12 and Exercise 5.13], we have the following result. For any ε ∈ Rm+ , denote

εmax := max
i=1,...,m

{εi} and εmin := min
i=1,...,m

{εi}.

Proposition 3.2. For any d > 0, there exists a number δ(d) > 0 depending on d such that

dist(u,Sw) < d for any u ∈ Sεw, i.e., Sεw ⊂ Sw + dB, whenever εmax < δ(d).

Proof. Suppose that the conclusion does not hold for some d > 0. Then, for any k ∈ N,

there exist ε(k) with ε
(k)
max < 1

k and a point u(k) ∈ Sε(k)w such that dist(u(k),Sw) ≥ d. As Ω

is compact, without loss of generality, we can assume that there is a point u′ ∈ Ω such that

limk→∞ u
(k) = u′. Now we show that u′ ∈ Sw. To the contrary, suppose that there exists y′ ∈ Ω

such that f(y′)− f(u′) ∈ −Rm++, i.e., maxi=1,...,m[fi(y
′)− fi(u′)] < 0. Due to the continuity of

fi, there exists k′ ∈ N such that for each i = 1, . . . ,m,

max
i=1,...,m

[fi(y
′)− fi(u′)] +

1

k
+ fi(u

′)− fi(u(k)) < 0

holds for any k ≥ k′. Then for each i = 1, . . . ,m,

fi(y
′)− fi(u(k)) + ε

(k)
i = fi(y

′)− fi(u′) + fi(u
′)− fi(u(k)) + ε

(k)
i

≤ max
i=1,...,m

[fi(y
′)− fi(u′)] + fi(u

′)− fi(u(k)) +
1

k
(by ε

(k)
max <

1
k )

< 0,

which means that f(y′) − f(u(k)) + ε(k) ∈ −Rm++, i.e., u(k) 6∈ Sε(k)w , a contradiction. Hence,

u′ ∈ Sw and dist(u′,Sw) = 0. However, due to the continuity of distance function, one has

dist(u′,Sw) = lim
k→∞

dist(u(k),Sw) ≥ d > 0,

a contradiction. �
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Furthermore, the following proposition allows us to study the set Sεw of all weakly ε-efficient

solutions by means of sublevels of ψ(x).

Proposition 3.3. For any ε ∈ Rm+ , we have

{x ∈ Ω: ψ(x) ≤ εmin} ⊂ Sεw ⊂ {x ∈ Ω: ψ(x) ≤ εmax} . (2)

Particularly, if εmax = εmin, then

{x ∈ Ω: ψ(x) ≤ εmin = εmax} = Sεw.

Proof. To show the first relation in (2), suppose to the contrary that there exists u ∈ Ω such

that ψ(u) ≤ εmin but u 6∈ Sεw. Then, there exists y′ ∈ Ω such that f(y′) − f(u) + ε ∈ −Rm++,

i.e., fi(u)− fi(y′)− εi > 0 for each i = 1, . . . ,m. Thus, mini=1,...,m[fi(u)− fi(y′)] > εmin which

implies that ψ(u) > εmin, a contradiction.

Now, fix a point u ∈ Sεw. For any y ∈ Ω, by definition, there exists ky ∈ {1, . . . ,m} depending

on y such that fky(y)− fky(u) + εky ≥ 0. Then, mini=1,...,m[fi(u)− fi(y)] ≤ εky for all y ∈ Ω,

and hence

ψ(u) = max
y∈Ω

min
i=1,...,m

[fi(u)− fi(y)] ≤ εmax,

thus, the second relation in (2) holds. Consequently, the conclusion follows. �

4. Approximations of weakly (ε-)efficient solution set

In this section, we will construct polynomial approximations of the achievement function ψ(x)

from above and use their sublevel sets to approximate the set of all weakly (ε-)efficient solutions

to (VROP). The construction of these polynomial approximations of ψ(x) is inspired by [22]

and can be reduced to SDP problems. As Ω is compact, after a possible re-scaling of the gj ’s,

we may and will assume that ∆ := [−1, 1]n ⊇ Ω in the rest of this paper.

4.1. Approximations of achievement function. To construct polynomial approximations

of ψ(x), we need first compute upper and lower bounds of fi(x), i = 1, . . . ,m, over Ω. To this

end, for each i = 1, . . . ,m, we compute a number f lower
i ∈ R satisfying

pi(x)− f lower
i qi(x) = σi,0(x) +

r∑
j=1

σi,j(x)gj(x) +

n∑
j=1

σi,r+j(x)(1− x2
j ),

σi,0, σi,j ∈ Σ2[x], j = 1, . . . , r + n, deg(σi,0) ≤ 2ki, ki ∈ N,

deg(σi,jgj) ≤ 2ki, j = 1, . . . , r, deg(σi,r+j(1− x2
j )) ≤ 2ki, j = 1, . . . , n,

(3)

which is equivalent to an SDP feasibility problem (c.f. [23]). Under (A1-2), each pi(x)
qi(x) is

bounded from below on Ω and pi(x) − f lower
i qi(x) > 0 on Ω for any f lower

i < minx∈Ω
pi(x)
qi(x) .

Hence, by Putinar’s Positivstellensatz, a number f lower
i satisfying (3) always exists for ki large
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enough (note that Assumption 2.1 holds due to the redundant polynomials 1− x2
j , j = 1, . . . , n,

added in (3)). Clearly, it holds that

f lower := min
i=1,...,m

f lower
i ≤ min

i=1,...,m, x∈Ω

pi(x)

qi(x)
.

Similarly, replace pi(x)− f lower
i qi(x) in (3) by fupper

i qi(x)− pi(x), where fupper
i denotes another

real number. Then similarly, such a number fupper
i exists for ki large enough and can be

computed by solving another SDP feasibility problem. Then, we have

fupper := max
i=1,...,m

fupper
i ≥ max

i=1,...,m, x∈Ω

pi(x)

qi(x)
.

Now, we deal with the achievement function ψ(x) over ∆ from the viewpoint of polynomial

optimization problems. For each x ∈ Rn, it holds that

ψ(x) := sup
y∈Ω

min
i=1,...,m

[fi(x)− fi(y)]

= sup
y∈Ω

min
i=1,...,m

[
pi(x)

qi(x)
− pi(y)

qi(y)

]
= sup
y∈Ω,z∈R

{
z :

pi(x)

qi(x)
− pi(y)

qi(y)
≥ z, i = 1, . . . ,m

}
.

For any x ∈ ∆, let
ψ̃(x) := max

y∈Rn,z∈R
z

s.t. pi(x)qi(y)− pi(y)qi(x)− zqi(x)qi(y) ≥ 0, i = 1, . . . ,m,

y ∈ Ω, z ∈ [f lower − fupper, fupper − f lower].

(4)

In other words, ψ̃(x) over ∆ can be seen as the optimal value function of the parameter poly-

nomial optimization problem (4). Under (A1-2), we have

Proposition 4.1. ψ̃(x) = ψ(x) for all x ∈ Ω. Hence, Propositions 3.1 and 3.3 also hold for ψ̃.

Next, we construct polynomial approximations of ψ̃ over ∆ from above by means of the

SDP method proposed in [22], and use their sublevel sets to approximate the set of all weakly

(ε-)efficient solutions to (VROP).

Consider the following sets

K :=

(x,y, z) ∈ Rn × Rn × R :


pi(x)qi(y)− pi(y)qi(x)− zqi(x)qi(y) ≥ 0,

i = 1, . . . ,m, x ∈ ∆, y ∈ Ω,

z ∈ [f lower − fupper, fupper − f lower]

 ,

and

Kx := {(y, z) ∈ Rn × R : (x,y, z) ∈ K} , for x ∈ ∆.

Then it is clear that K is compact and for any x ∈ ∆, ψ̃(x) = max(y,z)∈Kx
z.

As proved in [22, Theorem 1], a sequence of polynomial approximations of ψ̃(x) on ∆ from

above exists mainly due to the Stone–Weierstrass theorem.
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Proposition 4.2. (c.f. [22, Theorem 1]) There exists a sequence of polynomials {ψk ∈ R[x] : k ∈
N} such that ψk(x) ≥ ψ̃(x) for all x ∈ ∆, and {ψk}k∈N converges to ψ̃ in L1(∆), i.e.,

lim
k→∞

∫
∆
|ψk(x)− ψ̃(x)|dx = 0.

Let {ψk ∈ R[x] : k ∈ N} be as in Proposition 4.2. For any δ > 0 and k ∈ N, denote

A(δ, k) := {x ∈ Ω: ψk(x) ≤ δ} .

For any δ > 0, with a slight abuse of notation, we denote Sδw := Sεw, where ε = (δ, . . . , δ). The

following result can be derived by slightly modifying the proof of [22, Theorem 3]. It shows that

we can approximate the set Sδw by the sequence {A(δ, k)}k∈N.

Theorem 4.1. For any δ > 0, we have A(δ, k) ⊂ Sδw and

vol ({x ∈ Ω: ψ(x) < δ}) ≤ lim
k→∞

vol (A(δ, k)) ≤ vol ({x ∈ Ω: ψ(x) ≤ δ}) = vol
(
Sδw
)
. (5)

Consequently, if vol ({x ∈ Ω: ψ(x) = δ}) = 0, then limk→∞ vol
(
Sδw \ A(δ, k)

)
= 0.

Proof. By Proposition 3.3, it is clear that A(δ, k) ⊂ Sδw. By Proposition 4.2, ψk converges to ψ̃

in measure, that is, for every α > 0,

lim
k→∞

vol
(
{x ∈ ∆: |ψk(x)− ψ̃(x)| ≥ α}

)
= 0. (6)

Consequently, for every ` ≥ 1, it holds that

vol
({
x ∈ Ω: ψ(x) ≤ δ + −1

`

})
= vol

({
x ∈ Ω: ψ̃(x) ≤ δ + −1

`

})
(by Proposition 4.1)

= vol
({
x ∈ Ω: ψ̃(x) ≤ δ + −1

`

}
∩ {x ∈ Ω: ψk(x) > δ}

)
+ vol

({
x ∈ Ω: ψ̃(x) ≤ δ + −1

`

}
∩ {x ∈ Ω: ψk(x) ≤ δ}

)
= lim

k→∞
vol
({
x ∈ Ω: ψ̃(x) ≤ δ + −1

`

}
∩ {x ∈ Ω: ψk(x) ≤ δ}

)
(by (6))

≤ lim
k→∞

vol ({x ∈ Ω: ψk(x) ≤ δ})

≤ vol
({
x ∈ Ω: ψ̃(x) ≤ δ

})
= vol

(
Sδw
)
. (by Propositions 3.3 and 4.1)

Now, taking `→∞ yields (5) and the conclusion. �

Corollary 4.1. The following assertions are true.

(i) For any d > 0, there exists δ(d) > 0 depending on d such that

A(δ, k) ⊂ Sw + dB

holds for any δ < δ(d) and any k ∈ N.

9



(ii) For d > 0 and any δ > 0 with vol ({x ∈ Ω: ψ(x) = δ}) = 0, there exists k(d, δ) ∈ N
depending on δ and d such that

Sw ∩ cl (int (Ω \ Sw)) ⊂ A(δ, k) + dB

holds for any k > k(d, δ).

Proof. (i) Since A(δ, k) ⊂ Sδw for any k ∈ N by Theorem 4.1, the existence of δ(d) is a direct

consequence of Proposition 3.2.

(ii) Let u ∈ Sw ∩ cl (int (Ω \ Sw)) 6= ∅, then ψ̃(u) = 0 by Propositions 3.1 (i) and 4.1, and

there exists a sequence {u(l)}l∈N ⊂ int (Ω \ Sw) such that liml→∞ u
(l) = u. Fix the numbers

d, δ > 0. By the continuity of ψ̃ on Ω (Proposition 4.1), there exists l0 ∈ N depending on d

and δ such that ψ̃(u(l0)) < δ and ‖u(l0) − u‖ < d. As u(l0) ∈ int (Ω \ Sw), by the continuity

of ψ̃ again, there is a neighborhood O(l0) ⊂ Ω of u(l0) such that ψ̃(x) < δ and ‖x − u‖ < d

for all x ∈ O(l0). Proposition 3.3 implies that O(l0) ⊂ Sδw. Then, we show that there exists

k(d, δ) ∈ N such that for any k > k(d, δ), it holds that A(δ, k) ∩ O(l0) 6= ∅ which means that

u ∈ A(d, δ) + dB and the conclusion follows. To the contrary, suppose that such k(d, δ) does

not exist, then there is subsequence {A(δ, kj)}j∈N with kj → ∞ such that A(δ, kj) ∩ O(l0) = ∅
for all kj . Then, vol(Sδw \ A(δ, kj)) ≥ vol(O(l0)) > 0 for all kj . As vol ({x ∈ Ω: ψ(x) = δ}) = 0,

it contradicts the conclusion in Theorem 4.2. �

Remark 4.1. From Corollary 4.1 and its proof, we can see that

(i) If Sw ∩ cl (int (Ω \ Sw)) 6= ∅, then for any δ > 0, A(δ, k) 6= ∅ for k large enough. In fact,

we have O(l0) ⊂ {x ∈ Ω: ψ(x) < δ} for the neighborhood O(l0) in the proof of Corollary

4.1. Then, (5) implies that A(δ, k) 6= ∅ for k large enough.

(ii) Suppose there is a sequence {δi}i∈N with δi ↓ 0 such that vol ({x ∈ Ω: ψ(x) = δi}) = 0

holds for all i and Sw = Sw ∩ cl (int (Ω \ Sw)), then Corollary 4.1 (i) and (ii) indicate

that the whole set of the weakly efficient solutions of (VROP) can be approximated

arbitrarily well by A(δ, k) with sufficiently small δ > 0 and sufficiently large k ∈ N.

4.2. Computational aspects. Now we follow the scheme proposed in [22, Section 3.3] to

construct a sequence of polynomials (ψk)k∈N ∈ R[x] as defined in Proposition 4.2.

We denote the following m+ r + 2n+ 1 polynomials in R[x,y, z]

h1,1(x,y, z) = p1(x)q1(y)− p1(y)q1(x)− zq1(x)q1(y), . . . ,

h1,m(x,y, z) = pm(x)qm(y)− pm(y)qm(x)− zqm(x)qm(y),

h2,1(x,y, z) = g1(y), . . . , h2,r(x,y, z) = gr(y),

h2,r+1(x,y, z) = 1− y2
1, . . . , h2,r+n(x,y, z) = 1− y2

n,

h3,1(x,y, z) = 1− x2
1, . . . , h3,n(x,y, z) = 1− x2

n,

h4,1(x,y, z) = (fupper − f lower)2 − z2.

(7)
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Denote by J1 = {1, . . . ,m}, J2 = {1, . . . , r + n}, J3 = {1, . . . , n} and J4 = {1}. Then,

K = {(x,y, z) ∈ Rn × Rn × R : hi,j(x,y, z) ≥ 0, i = 1, . . . , 4, j ∈ Ji}.

Let λ be the scaled Lebesgue measure on ∆, i.e., dλ(x) = dx/2n, and

γα :=

∫
∆
xαdλ(x) =


0, if αi is odd for some i

n∏
i=1

(αi + 1)−1, otherwise

be the moment of λ for each α ∈ Nn.

For each k ∈ N, with k ≥ max
{
ddeg hi,j

2 e, i = 1, . . . , 4, j ∈ Ji
}

, consider the following opti-

mization problem,

ρ∗k := inf
φ,σ0,σi,j

∫
∆
φ(x)dλ(x)

=
∑
α∈Nn2k

cαγα


s.t. φ(x) =

∑
α∈Nn2k

cαx
α ∈ R[x]2k, cα ∈ R,

φ(x)− z = σ0 +

4∑
i=1

∑
j∈Ji

σi,jhi,j , σ0, σi,j ∈ Σ2[x,y, z],

deg(σ0), deg(σi,jhi,j) ≤ 2k, i = 1, . . . , 4, j ∈ Ji,

(Pk)

which can be reduced to an SDP problem (c.f. [18, 20]). Clearly, for any (φ, σ0, σi,j) feasible to

(Pk), we have φ(x) ≥ ψ̃(x) on ∆. The following result follows directly from [22, Theorem 5]

and we include here a brief proof for the sake of completeness. It shows that we can compute

the sequence of polynomials {ψk ∈ R[x] : k ∈ N} in Proposition 4.2 by solving (Pk).

Theorem 4.2. We have limk→∞ ρ
∗
k =

∫
∆ ψ̃(x)dλ(x). Consequently, let

(
ψk, σ

(k)
0 , σ

(k)
i,j

)
be a

nearly optimal solution to (Pk), e.g.,
∫

∆ ψkdλ(x) ≤ ρ∗k + 1/k, then ψk(x) ≥ ψ̃(x) on ∆ and

lim
k→∞

∫
∆
|ψk(x)− ψ̃(x)|dλ(x) = 0.

Proof. We only need to prove that limk→∞ ρ
∗
k =

∫
∆ ψ̃(x)dλ(x). Consider the following infinite-

dimensional linear program

ρ∗ := inf
φ

∫
∆
φ(x)dλ(x)

=
∑
α∈Nn2k

cαγα


s.t. φ(x) =

∑
α∈Nn

cαx
α ∈ R[x], cα ∈ R,

φ(x)− z ≥ 0, ∀ (x,y, z) ∈ K.

It is clear that ∆, K are compact and Kx is nonempty for every x ∈ ∆. Then, by [22, Corollary

2.6], it holds that ρ∗ =
∫

∆ ψ̃(x)dλ(x). Let (φ`)`∈N be a minimizing sequence of the above
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problem. For any ` ∈ N, let φ′`(x) = φ`(x) + 1/`, then we have φ′`(x) − z ≥ 1/` > 0 on K.

Notice that

2n+ (fupper − f lower)2 −
n∑
i=1

(
x2
i + y2

i

)
− z2 =

r+n∑
j=r+1

h2,j +

n∑
j=1

h3,j + h4,1,

that is, Assumption 2.1 holds for the defining polynomials of K. Therefore, by Putinar’s

Positivstellensatz (Theorem 2.1), there exists k` ∈ N and σ
(`)
0 , σ

(`)
i,j ∈ Σ2[x,y, z] such that

(φ′`, σ
(`)
0 , σ

(`)
i,j ) is a feasible solution to (Pk`). Note that ρ∗ ≤ ρ∗k holds for any k ∈ N. Then,

it implies that∫
∆
ψ̃(x)dλ(x) = ρ∗ ≤ ρ∗k` ≤

∫
∆
φ`(x)dλ(x) +

1

`
↓ ρ∗ =

∫
∆
ψ̃(x)dλ(x).

As ρ∗k is monotone, we have limk→∞ ρ
∗
k =

∫
∆ ψ̃(x)dλ(x). �

Next, we propose a sparse version of the SDP problem (Pk) by exploiting its sparsity pattern,

which reduces the computational costs at the order k. Add a redundant polynomial

h1,m+1(x,y, z) = 2n+ (fupper − f lower)2 −
n∑
i=1

(
x2
i + y2

i

)
− z2

in (7) and reset J1 = {1, . . . ,m + 1}. Denote the following subsets of variables I1 = {x,y, z},
I2 = {y}, I3 = {x} and I4 = {z}. For i = 1, . . . , 4, denote by R[Ii] the ring of real polynomials

in the variables in Ii. Then, the following conditions hold.

(i) For each i = 1, 2, 3, there exists some s ≤ i such that Ii+1 ∩
⋃i
j=1 Ij ⊆ Is;

(ii) For each i = 1, . . . , 4, and each j ∈ Ji, hi,j ∈ R[Ii];

(iii)
∑

α∈Nn2k
cαx

α−z in (Pk) is the difference of two polynomials in R[I3] and R[I4], respectively.

Then, by the sparse version of Putinar’s Positivstellensatz (Theorem 2.2), we can construct

a sparse version of (Pk) as

ρ̃∗k := inf
φ,σi,0,σi,j

∫
∆
φ(x)dλ(x)

=
∑
α∈Nn2k

cαγα


s.t. φ(x) =

∑
α∈Nn2k

cαx
α ∈ R[x]2k, cα ∈ R,

φ(x)− z =
4∑
i=1

σi,0 +
∑
j∈Ji

σi,jhi,j

 , σi,0, σi,j ∈ Σ2[Ii],

deg(σi,0), deg(σi,jhi,j) ≤ 2k, i = 1, . . . , 4, j ∈ Ji.

(SPk)

Theorem 4.3. The statements for (Pk) in Theorem 4.2 also hold for (SPk).

Proof. Let φ′` be the polynomial in the proof of Theorem 4.2. Note that Assumption 2.2 holds

by adding the redundant polynomial h1,m+1. Then, by Theorem 2.2, there exists k̃` ∈ N and

σ
(`)
i,0 , σ

(`)
i,j ∈ Σ2[Ii], i = 1, . . . , 4, j ∈ Ji such that

(
φ′`, σ

(`)
i,0 , σ

(`)
i,j

)
is a feasible solution to (SPk̃`).

Hence, the conclusion follows from the proof of Theorem 4.2. �
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4.3. Comparisons with existing SDP relaxation methods. Now, we compare our method

with the recent existing work in [31] and [29]. All the three methods can deal with vector (non-

linear) polynomial optimization problems by SDP relaxations, without convexity assumptions

on the involved functions. For convenience, we assume that all objectives fi’s in (VROP) are

polynomials, i.e., qi(x) = 1, i = 1, . . . ,m.

To get weakly efficient solutions to (VROP), Nie and Yang [31] used the linear scalarization

and the Chebyshev scalarization techniques to scalarize (VROP) to a single objective polynomial

optimization problem and solve it by the SDP relaxation method proposed in [30]. Precisely, for

a given nonzero weighting parameter w := (w1, . . . , wm) ∈ Rm, the linear scalarization scalarizes

the problem (VROP) to

min w1f1(x) + · · ·+ wmfm(x) s.t. x ∈ Ω, (8)

and the Chebyshev scalarization scalarizes the problem (VROP) to

min
x∈Ω

max
1≤i≤m

wi(fi(x)− f∗i ), (9)

where each f∗i is the goal which decision maker wants to achieve for the objective fi. In general,

by the scalarizations (8) and (9), we can only find one or some particular (weakly) efficient

solutions for a given weight w. Moreover, a serious drawback of linear scalarization is that

it can not provide a solution among sunken parts of Pareto frontier due to “duality gap” of

nonconvex cases (see Example 4.3). Instead, the sets {A(δ, k)} computed by our method can

approximate the whole set of weakly efficient solutions in some sense under certain conditions.

The representation of A(δ, k) as the intersection of the sublevel set of a single polynomial and

the feasible set is more desirable in some applications. For example, it can be used in optimiza-

tion problems with Pareto constraints (c.f. [14]). A Pareto constraint can be replaced by the

polynomial inequality ψk(x) ≤ δ with small δ > 0 and large k ∈ N (see Example 4.3).

On the other hand, Magron et al. [29] studied the problem (VROP) with m = 2. Rather than

computing the weakly efficient solutions, they presented a method to approximate as closely as

desired the Pareto curve which is the image of the objective functions over the set of weakly

efficient solutions. To this end, they also considered the scalarizations (8) and (9), as well as the

parametric sublevel set approximation method which is inspired by [11] and amounts to solving

the following parametric problem

min
x∈Ω

f2(x) s.t. f1(x) ≤ w, (10)

with a parameter w ∈ [minx∈Ω f1(x),maxx∈Ω f1(x)]. By treating w in (8), (9) and (10) as

a parameter and employing the “joint+marginal” approach proposed in [20], they associated

each scalarization problem a hierarchy of SDP relaxations and obtained an approximation of

the Pareto curve by solving an inverse problem (for (8) and (9)) or by building a polynomial

underestimator (for (10)). Again, comparing with the approximate Pareto curve obtained in [29],

it is more convenient to apply our explicit approximation A(δ, k) of the weakly efficient solution
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set to optimization problems with Pareto constraint. Moreover, when using the scalarization

problems (8) and (9), the approach in [29] requires that for almost all the values of the parameter

w, these parametric problems (8) and (9) have a unique global minimizer. Namely, there should

be a one-to-one correspondence between the points on the computed Pareto curves and the

associated weakly efficient solutions in the feasible set. Note that our method does not have

such restriction when approximating the set of weakly efficient solutions (see Example 4.4).

4.4. Numerical experiments. Here we present some numerical examples to illustrate the

behavior of the sets A(δ, k) in approximating Sw as δ → 0 and k → ∞. We use the software

Yalmip [27] to implement the problems (SPk) and call the SDP solver SeDuMi [36] to solve the

resulting SDP problems. For the examples with m = 2, to show how close the sets A(δ, k)

in approximating Sw, we illustrate the corresponding images of f(Ω) and f(A(δ, k)). To this

end, we choose a square containing Ω. For each point u on a uniform discrete grid inside the

square, we check if u ∈ Ω (resp., u ∈ A(δ, k)). If so, we have (f1(u), f2(u)) ∈ f(Ω) (resp.,

(f1(u), f2(u)) ∈ f(A(δ, k))) and we plot the point (f1(u), f2(u)) in grey (resp., in red) in the

image plane.

Example 4.1. Consider the problemMinR3
+

(
x1, x2, x

2
1 + x2

2

)
s.t. x ∈ Ω1 := {x ∈ R2 : x2

1 + x2
2 ≤ 1}.

Clearly, the set of all weakly efficient solution to this problem is

Sw =
{
x ∈ R2 : x1 ≤ 0, x2 ≤ 0, x2

1 + x2
2 ≤ 1

}
.

For any δ > 0, by considering the four quadrants of R2 one by one, it is easy to check by

definition that the set Sδw consists of the following four sets

{x ∈ R2 : x1 ≥ δ, x2 ≥ δ, x2
1 + x2

2 ≤ δ},

{x ∈ R2 : x1 ≤ δ, x2 ≥ δ, x2
2 + 2δx1 − δ − δ2 ≤ 0, x2

1 + x2
2 ≤ 1},

{x ∈ R2 : x1 ≤ δ, x2 ≤ δ, x2
1 + x2

2 ≤ 1},

{x ∈ R2 : x1 ≥ δ, x2 ≤ δ, x2
1 + 2δx2 − δ − δ2 ≤ 0, x2

1 + x2
2 ≤ 1}.

For δ = 0.1, we show the set Sδw and its approximations A(δ, k), k = 2, 3, 4, in Figure 1. �

Example 4.2. To illustrate how the set A(δ, k) behaves in approximating the set of weakly

efficient solutions Sw as δ → 0 and k →∞, we consider the problem
MinR2

+

(
x1,

x2
2 − 2x1x2 + 1

x2
2 + 1

)
s.t. x ∈ Ω2 :=

{
x ∈ R2 : 1− x2

1 − x2
2 ≥ 0

}
.

We plot the images f(A(δ, k)) with δ = 0.1, 0.05, 0.02 and k = 3, 4, 5, as well as f(Ω2), in Figure

2. �
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(c) A(δ, 3)
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(d) A(δ, 4)

Figure 1. The set Sδw and its approximations A(δ, k) with δ = 0.1, k = 2, 3, 4,

in Example 4.1.

Example 4.3. Consider the problem
MinR2

+

(√
2

2
(−x1 + x2),

√
2

2
(x1 + x2)

)
s.t. x ∈ Ω3 :=

{
x ∈ R2 : g(x) := x2

2(1− x2
1)− (x2

1 + 2x2 − 1)2 ≥ 0
}
,

In fact, the equality g(x) = 0 defines the so-called bicorn curve as show in Figure 3 (a). Hence,

the feasible set Ω3 of this problem is the region enclosed by the bicorn curve and the image

f(Ω3) is obtained by rotating Ω3 clockwise by 45◦ (Figure 3 (b)). It is clear that the weakly

efficient solution set Sw consists of the points on the shorter path connecting the two singular

points of the bicorn curve. As discussed in subsection 4.3, the linear scalarization (8) can only

enable us to compute two points in Sw, namely, the two singular points of the bicorn curve.
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(a) f(A(0.1, 3)) (b) f(A(0.1, 4)) (c) f(A(0.1, 5))

(d) f(A(0.05, 3)) (e) f(A(0.05, 4)) (f) f(A(0.05, 5))

(g) f(A(0.02, 3)) (h) f(A(0.02, 4)) (i) f(A(0.02, 5))

Figure 2. The images f(A(δ, k)) (in red) and f(Ω2) (in gray) in Example 4.2

By our method, we compute the approximation A(0.01, 4) and show it in Figure 3 (a), which

is the intersection of Ω3 and the area under the red curve defined by ψ4(x) = 0.01. The image

f(A(0.01, 4)) is illustrated in Figure 3 (c), which shows that we can obtain good approximations

of Sw including the ones corresponding to the sunken part of Pareto curve.

Next, we consider the following optimization problem with a Pareto constraint

min x2
1 + (x2 − 1)2 s.t. (x1, x2) ∈ Sw,
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Figure 3. (a) The bicorn curve and the curve defined by ψ4(x) = 0.01; (b) The

images f(A(0.01, 4)) (in red) and f(Ω3) (in gray) in Example 4.3

which is to compute the square of the Euclidean distance between the point (0, 1) and the curve

Sw. It is easy to see that the unique minimizer of the above problem is
(
0, 1

3

)
and the minimum

is 4
9 ≈ 0.444. With the approximation A(0.01, 4) of Sw, we consider the polynomial optimization

problem

min x2
1 + (x2 − 1)2 s.t. x ∈ Ω3, ψ4(x) ≤ 0.01.

We solve this problem by Lasserre’s hierarchy of SDP relaxations (c.f. [18, 21]) with the software

GloptiPoly [15], and get the certified minimizer (−0.0000, 0.3473) and minimum 0.4260. �

Example 4.4. Consider the problemMinR2
+

(
−x2

1, x
4
1 + x2

2

)
s.t. x ∈ Ω4 :=

{
x ∈ R2 : 1− x2

1 − x2
2 ≥ 0

}
.

It is easy to see that the set of weakly efficient solutions Sw = [−1, 1]×{0} and the image f(Sw)

(the Pareto curve) is the curve{
(t1, t2) ∈ R2 : t2 = t21, t1 ∈ [−1, 0]

}
in the objective plane where t1 = −x2

1 and t2 = x4
1 +x2

2. Clearly, for every point (t1, t2) ∈ f(Sw),

there are two weakly efficient solutions (−
√
−t1, 0) and (

√
−t1, 0). Therefore, this problem does

not satisfy the assumptions of the approach proposed in [29] when using the scalarizations (8)

and (9). By our method, we compute the set A(0.005, 5), which is the intersection of the unit

disk and the area enclosed by the red curve defined by ψ5(x) = 0.005 in Figure 4 (a). The images

f(Ω4) and f(A(0.005, 5)) is shown in Figure 4 (b), which illustrates that we can approximate

the set of weakly efficient solutions as closely as possible. �
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Figure 4. (a) The set Sw and the curve defined by ψ5(x) = 0.005; (b) The

images f(A(0.005, 5)) (in red) and f(Ω4) (in gray) in Example 4.4

.

5. Conclusions

In this paper, we provide a new scheme for approximating the set of all weakly (ε-)efficient

solutions to the problem (VROP). The procedure mainly relies on the achievement function

associated with (VROP) and the “joint+marginal” approach proposed by Lasserre [22]. The

obtained results seem new in the area of vector optimization with polynomial structures, in the

sense that we approximate the whole set of weakly (ε-)efficient solutions to the problem (VROP).

Moreover, the obtained results also significantly develop the recent achievements in [6, 24, 25]

for vector polynomial optimization problems from convex settings to nonconvex settings.

Acknowledgments. The authors thank Professor Tien-Son Pham for his helpful comments on

the early version of this manuscript. Feng Guo was supported by the Chinese National Natural

Science Foundation under grant 11571350, and the Fundamental Research Funds for the Central

Universities. Liguo Jiao was supported by Natural Science Foundation of Jilin Province (no.

20220101302JC) and the Fundamental Research Funds for the Central Universities.

References

[1] V. Blanco, J. Puerto, and S. E. H. B. Ali. A semidefinite programming approach for solving

multiobjective linear programming. Journal of Global Optimization, 58(3):465–480, 2014.

[2] J. M. Borwein. On the existence of Pareto efficient points. Mathematics of Operations

Research, 8(1):64–73, 1983.

18



[3] R. S. Burachik, C. Y. Kaya, and M. M. Rizvi. A new scalarization technique and new

algorithms to generate Pareto fronts. SIAM Journal on Optimization, 27(2):1010–1034,

2017.

[4] V. Chankong and Y. Y. Haimes. Multiobjective Decision Making: Theory and Methodology.

Amsterdam, North-Holland, 1983.

[5] W. Chen, J. Unkelbach, A. Trofimov, T. Madden, H. Kooy, T. Bortfeld, and D. Craft.

Including robustness in multi-criteria optimization for intensity modulated proton therapy.

Physics in Medicine and Biology, 57(3):591–608, 2012.

[6] T. D. Chuong. Second-order cone programming relaxations for a class of multiobjective

convex polynomial problems. Annals of Operations Research, 311(2):1017–1033, 2022.

[7] J. Dutta, P. Kesarwani, and S. Gupta. Gap functions and error bounds for nonsmooth

convex vector optimization problem. Optimization, 66(11):1807–1836, 2017.

[8] M. Ehrgott. Multicriteria Optimization (2nd ed.). Springer, Berlin, 2005.

[9] H. Eschenauer and J. Koski. Multicriteria Design Optimization. Springer, Berlin, 1990.

[10] J. Fliege, L. M. G. Drummond, and B. F. Svaiter. Newton’s method for multiobjective

optimization. SIAM Journal on Optimization, 20(2):602–626, 2009.

[11] B. L. Gorissen and D. d. Hertog. Approximating the Pareto set of multiobjective linear

programs via robust optimization. Operations Research Letters, 40(5):319–324, 2012.

[12] D. Grimm, T. Netzer, and M. Schweighofer. A note on the representation of positive

polynomials with structured sparsity. Archiv der Mathematik, 89(5):399–403, 2007.

[13] W. J. Gutjahr and P. C. Nolz. Multicriteria optimization in humanitarian aid. European

Journal of Operational Research, 252(2):351–366, 2016.

[14] S. T. Hackman and U. Passy. Maximizing a linear fractional function on a Pareto efficient

frontier. Journal of Optimization Theory and Applications, 113(1):83–103, 2002.
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