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Abstract In this paper, we propose some new semidefinite relaxations for a
class of nonconvex complex quadratic programming problems, which widely
appear in the areas of signal processing and power system. By deriving new
valid constraints to the matrix variables in the lifted space, we derive some en-
hanced semidefinite relaxations of the complex quadratic programming prob-
lems. Then, we compare the proposed semidefinite relaxations with existing
ones, and show that the newly proposed semidefinite relaxations could be
strictly tighter than the previous ones. Moreover, the proposed semidefinite
relaxations can be applied to more general cases of complex quadratic pro-
gramming problems, whereas the previous ones are only designed for special
cases. Numerical results indicate that the proposed semidefinite relaxations
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not only provide tighter relaxation bounds, but also improve some existing
approximation algorithms by finding better sub-optimal solutions.

Keywords Quadratic optimization · Semidefinite relaxation · Approximation
algorithm · Phase quantized waveform design · Discrete transmit beamforming

1 Introduction

In this paper, we consider the following complex quadratic programming prob-
lem:

min x†Q0x

s.t. x†Qix ≤ bi, i = 1, . . . ,m,

li ≤ |xi| ≤ ui, i = 1, . . . , n,

arg(xixj
†) ∈ Aij , {i, j} ∈ E ,

(CQP)

where Q0, Q1, . . . , Qm ∈ Cn×n are Hermitian matrices, b1, . . . , bm ∈ R, and
li and ui are the lower and upper bounds of the modulus of xi ∈ C for i =
1, . . . , n. The set E is a subset of {{i, j} | 1 ≤ i < j ≤ n}. For each {i, j} ∈ E ,
Aij is either an interval of the form [θij , θ̄ij ], or a set of discrete points of the

form {θ1ij , . . . , θMij } ⊆ R. We use arg(·) to denote the argument of a complex

variable, and (·)† to denote the conjugate transpose of a matrix/vector.
Problem (CQP) arises in many important applications in signal processing,

communication and power system. For example, the radar waveform design
problem [16], the transmit beamforming problem [4,5], and the optimal power
flow problem [8,9], can all be formulated as special cases of (CQP). Besides,
when li = ui = 1 for i = 1, . . . , n, (CQP) degenerates to the unit-modulus
constrained quadratic programming problem, which arises in applications in-
cluding the MIMO detection problem [14], the radar phase code design prob-
lem [15], the angular synchronization problem [1], and the max-3-cut problem
[7]. In some applications arising in network problems, such as the optimal
power flow problem in the electricity network [2,3], the set E can be seen
as an edge set that represents the network structure. Besides, the constraint
arg(xixj

†) ∈ Aij in (CQP), which bounds the difference of phase angles, has
some physical meanings in power systems and other related applications. One
may refer to [3] for further discussions on the physical meaning of this con-
straint.

Problem (CQP) is NP-hard in general, since some of its special cases are
already known to be NP-hard [21]. Hence, it is not possible to solve (CQP)
globally in polynomial-time complexity, unless P=NP. Instead, we are inter-
ested in designing efficient algorithms to find sub-optimal solutions of (CQP).
In the literature, most existing sub-optimal algorithms for solving (CQP)
or its subclass problems are approximation algorithms, local-optimization al-
gorithms, or heuristic algorithms [4,5,7,15,16,18,20,21,22]. Among different
sub-optimal algorithms, the semidefinite relaxation based approximation algo-
rithms have attracted great attention since the pioneering work of Goemans
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and Williamson [6]. One may refer to [13] for a comprehensive survey on the
applications of semidefinite relaxation in signal processing, and [8,9] for the
applications in power system. For certain type of (CQP) which arises in real
applications, it has been proven that under some practical conditions, the prob-
ability of obtaining the global solution of the problem using the semidefinite
relaxation based approximation algorithms can be very high [1,9,11].

However, when the phase angle constraints arg(xixj
†) ∈ Aij are presented

in (CQP), the current existing semidefinite relaxations are generally not tight,
especially when Aij is a discrete set. The reason is that these phase angle con-
straints are usually dropped when deriving semidefinite relaxations of (CQP).
Indeed, by exploiting the phase angle constraints, we may derive some new
valid constraints to enhance the semidefinite relaxation. A theoretical result
has been presented in [11], which shows that by introducing new valid con-
straints derived from the phase angle constraints, we may design an improved
semidefinite relaxation for the MIMO detection problem. The tightness of the
improved semidefinite relaxation can be guaranteed under certain conditions.
Similar enhanced semidefinite relaxations have also been designed for other
types of complex quadratic programming problems that appear in signal pro-
cessing [10,12].

In [10] and [12], Lu et al. have proposed a method of representing a complex
variable by its polar coordinate form to derive tight semidefinite relaxations.
The main idea behind the method is that some valid constraints can be easily
derived in terms of polar coordinate variables, while it is hard to discover
them in the complex coordinate variables. Based on this method, Lu et al. have
proposed some improved semidefinite relaxations for several classes of complex
quadratic optimization problems in [10,12]. However, for problem (CQP) that
contains the constraints arg(xixj

†) ∈ Aij , the previous semidefinite relaxations
proposed in [10,12] are not always applicable.

In this paper, we propose a new semidefinite relaxation, which is tighter
and more flexible than the existing ones in [10,12]. Our main idea is to lift
the variable x to a matrix X = xx†, and exploit the valid inequalities on the
matrix entries Xii, Xjj and Xij to enhance the tightness of a semidefinite
relaxation. The contributions of this paper are two folds:

– From the theoretical aspect, we exactly describe the convex hull of the set

J x
ij := {(xix

†
i , xjx

†
j , xix

†
j) | li ≤ |xi| ≤ ui, lj ≤ |xj | ≤ uj, arg(xixj

†) ∈ Aij}.

It turns out that the convex hull of J x
ij can be represented as a finite number

of linear constraints and no more than two second-order cone constraints.
Our theoretical result can be applied to general cases of (CQP), including
the case of Aij being an interval, and the case of being a finite set. This new
result generalizes the previous one in [2], in which the convex hull of J x

ij is
described only for the case Aij being an interval contained in (−π/2, π/2).

– From the computational aspect, based on the formulation of the convex
hull of J x

ij , we introduce new valid inequalities on variables Xii, Xjj and
Xij to design some enhanced semidefinite relaxations. Our results show
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that the enhanced semidefinite relaxations can be tighter than the existing
semidefinite relaxations in the literature. Moreover, by adopting the en-
hanced semidefinite relaxations, some previous approximation algorithms
can be improved to find better sub-optimal solutions.

The remaining parts of this paper are organized as follows: Section 2 in-
troduces the first enhanced semidefinite relaxation, and analyzes some basic
properties of the proposed semidefinite relaxation. Section 3 compares the
proposed enhanced semidefinite relaxation with existing ones in the litera-
ture. Section 4 proposes the second enhanced semidefinite relaxation which
is further enhanced from the one proposed in Section 2, and shows that the
new semidefinite relaxation can be strictly tighter than the one proposed in
[2]. Section 5 presents the numerical results to show the performance of the
proposed semidefinite relaxations.

The following notations will be adopted throughout the paper: For a given
matrix X ∈ Cn×n, Re(X) and Im(X) denote its component-wise real part and
imaginary part, respectively. For a given Hermitian matrix A ∈ Cn×n, A � 0
means A is positive semidefinite. For two given Hermitian matrices A and B,
A � B means A−B � 0. Moreover, Trace(A) denotes the trace of A, rank(A)
denotes the rank of A, and A · B denotes Trace(A†B). For a set S in some
vector space, we use Conv(S) to represent the convex hull of S. We use

AM :=

{

0,
1

M
2π, . . . ,

M − 1

M
2π

}

to represent the uniformly discretized phase angle set for M ≥ 2. Besides,
with a slight abuse of notations, for a nonzero complex variable z and a set
A ⊂ R, the notation arg(z) ∈ A means that there exists a k ∈ Z such that
arg(z) + 2kπ is contained in A.

2 A new semidefinite relaxation

In this section, we first present a classical semidefinite relaxation for problem
(CQP), and then enhance it by introducing some new valid constraints. Letting
X = xx†, problem (CQP) can be reformulated as follows:

min Q0 ·X
s.t. Qi ·X ≤ bi, i = 1, . . . ,m,

l2i ≤ Xii ≤ u2
i , i = 1, . . . , n,

arg(Xij) ∈ Aij , {i, j} ∈ E ,
rank(X) = 1.

(CQP2)
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Dropping the constraints arg(Xij) ∈ Aij for {i, j} ∈ E and relaxing rank(X) =
1 to X � 0, we have the following classical semidefinite relaxation:

min Q0 ·X
s.t. Qi ·X ≤ bi, i = 1, . . . ,m,

l2i ≤ Xii ≤ u2
i , i = 1, . . . , n,

X � 0.

(CSDP)

(CSDP) has been widely used to design approximation algorithms in the lit-
erature. For example, Maio et al. have applied (CSDP) to design an approxi-
mation algorithm for solving the radar waveform design problem [16]. Zhang
and Huang [21], and So et al. [18], have applied (CSDP) in the special case,
where li = ui = 1 for i = 1, . . . , n, to design approximation algorithms for the
unit-modulus constrained complex quadratic optimization.

However, since the constraints arg(Xij) ∈ Aij are dropped directly, the
bound provided by (CSDP) may not be tight enough for some classes of
(CQP). As discussed in [10,11,12], by exploiting the structure of the phase
angle constraints, we may derive new valid inequalities to enhance the semidef-
inite relaxation.

For this purpose, we introduce the polar coordinate form for each complex
variable xi = rie

iθi . Then, we introduce two lifted matrices, including X =
xx† ∈ Cn×n, and R = rr† ∈ Rn×n. For each {i, j} ∈ E , we have the following
equations:

Rij = rirj , Xij = rirje
i(θi−θj) = Rije

i(θi−θj). (1)

Based on (1), we may further derive the following equations:

RiiRjj = R2
ij , |Xij | = Rij . (2)

Adding (2) into (CSDP), we have the following problem:

min Q0 ·X
s.t. Qi ·X ≤ bi, i = 1, . . . ,m,

l2i ≤ Xii = Rii ≤ u2
i , i = 1, . . . , n,

arg(Xij) ∈ Aij , |Xij | = Rij , R2
ij = RiiRjj , {i, j} ∈ E ,

X � 0.

(CQP3)

Notice that constraints |Xij | = Rij and R2
ij = RiiRjj are nonconvex in

(CQP3). Hence, we need to relax these nonconvex constraints in order to
obtain a convex relaxation. To do this, we define the following set for each
{i, j} ∈ E :

Hij = {(Rii, Rjj , Rij) | l2i ≤ Rii ≤ u2
i , l

2
j ≤ Rjj ≤ u2

j , R
2
ij = RiiRjj}. (3)

We have the following theorem, which is cited from Corollary 5 in [2], with
some modifications on notations.
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Theorem 1 ([2]) The following two linear inequalities are valid for Hij:

(li + ui)(lj + uj)Rij ≥ (l2j + ljuj)Rii + (l2i + liui)Rjj + liljuiuj − l2i l
2
j , (4)

(li + ui)(lj + uj)Rij ≥ (u2
j + ljuj)Rii + (u2

i + liui)Rjj + liljuiuj − u2
iu

2
j . (5)

Moreover, the convex hull of Hij can be represented as follows:

Conv(Hij) =







(Rii, Rjj , Rij)

∣

∣

∣

∣

∣

∣

l2i ≤ Rii ≤ u2
i , l

2
j ≤ Rjj ≤ u2

j

R2
ij ≤ RiiRjj

(Rii, Rjj , Rij) satisfies (4) and (5)







. (6)

The inequality R2
ij ≤ RiiRjj can be transformed to (2R2

ij+R2
ii+R2

jj)
1/2 ≤

Rii+Rjj . Hence, the constraint (Rii, Rjj , Rij) ∈ Conv(Hij) can be formulated
as a set of linear constraints and a second-order cone constraint.

Next, for any given Rij ≥ 0, we consider the nonconvex set

Gij(Rij) := {Xij | Rij = |Xij |, arg(Xij) ∈ Aij}

and its convex hull. When Rij = 0, we simply define Gij(Rij) = {0}. When
Rij > 0, by using the similar arguments in [10], we have the next two propo-
sitions to describe the convex hull of the set Gij(Rij).

Proposition 1 For the case of Aij = [θij , θ̄ij ] where θ̄ij − θij < 2π, we have

Conv(Gij(Rij)) = {Xij | aijRe (Xij) + bijIm (Xij) ≥ cijRij , |Xij | ≤ Rij} ,
(7)

where

aij = cos

(

θij + θ̄ij

2

)

, bij = sin

(

θij + θ̄ij

2

)

, and cij = cos

(

θ̄ij − θij
2

)

.

(8)

Proposition 2 For the case of Aij = {θ1ij , θ2ij , . . . , θMij } where

0 ≤ θ1ij < θ2ij < · · · < θMij < 2π,

we have

Conv(Gij(Rij)) =

{

Xij

∣

∣

∣

∣

atijRe (Xij) + btijIm (Xij) ≤ ctijRij ,
t = 1, 2, . . . ,M

}

, (9)

where θM+1
ij := θ1ij + 2π and

atij = cos

(

θtij + θt+1
ij

2

)

, btij = sin

(

θtij + θt+1
ij

2

)

,

ctij = cos

(

θt+1
ij − θtij

2

)

.

(10)
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Fig. 1 An illustration of the set Gij(Rij) for the case Rij = 1.

The proof of the above two propositions are straightforward, and thus are
omitted here. We illustrate the two propositions in Figure 1. As illustrated in
the left-hand side of Figure 1, for the case Aij = [θij , θ̄ij ] where θ̄ij −θij < 2π,
the set Conv(Gij(Rij)) is defined by the set enclosed by the straight line passing
through points A and B, and the arc connecting the two points. Similarly, as
illustrated in the right-hand side of Figure 1, Conv(Gij(Rij)) can be represented
by M inequalities when Aij = {θ1ij , θ2ij , . . . , θMij }.

Based on Propositions 1 and 2, the constraint Xij ∈ Conv(Gij(Rij)) can
be formulated as a linear inequality constraint and a second-order cone con-
straint of the form (Re2(Xij) + Im

2(Xij))
1/2 ≤ Rij for the continuous case, or

formulated as M linear inequality constraints for the discrete case.

Based on Theorems 1, Propositions 1 and 2, we can relax (CQP3) to the
following convex problem:

min Q0 ·X
s.t. Qi ·X ≤ bi, i = 1, . . . ,m,

l2i ≤ Rii = Xii ≤ u2
i , i = 1, . . . , n,

Xij ∈ Conv(Gij(Rij)), {i, j} ∈ E ,
(Rii, Rjj , Rij) ∈ Conv(Hij), {i, j} ∈ E ,
X � 0.

(ECSDP1)

In order to study the tightness of (ECSDP1), we further define the set

Fij =















(Xii, Xjj , Rij , Xij)

∣

∣

∣

∣

∣

∣

∣

∣

l2i ≤ Xii ≤ u2
i

l2j ≤ Xjj ≤ u2
j

XiiXjj = R2
ij = |Xij |2

arg(Xij) ∈ Aij















. (11)

We have the following theorem.
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Theorem 2 Let (X,R) be a feasible solution of (ECSDP1), then we have

(Xii, Xjj , Rij , Xij) ∈ Conv(Fij) for any {i, j} ∈ E.

Proof Since (Xii, Xjj , Rij) ∈ Conv(Hij), there exist a sequence of points

(Xt
ii, X

t
jj , R

t
ij) ∈ Hij , t = 1, . . . , r, (12)

such that

(Xii, Xjj , Rij) =

r
∑

t=1

λt(X
t
ii, X

t
jj , R

t
ij), (13)

where λ1, . . . , λr ≥ 0 and
∑r

i=1 λt = 1. Similarly, since Xij ∈ Conv(Gij(Rij)),
there exist a sequence of points

Xs
ij ∈ Gij(Rij), s = 1, . . . , k, (14)

such that

Xij =

k
∑

s=1

αsX
s
ij , (15)

where α1, . . . , αk ≥ 0 and
∑k

s=1 αs = 1. For each s ∈ {1, . . . , k}, denote
arg(Xs

ij) by θsij , then we have Xs
ij = Rije

iθij . Now, we construct the following
points:

(Xt
ii, X

t
jj , R

t
ij , R

t
ije

iθs
ij ) ∈ Fij , s = 1, . . . , k, t = 1, . . . , r. (16)

Then, we have that

r
∑

t=1

k
∑

s=1

λtαs(X
t
ii, X

t
jj , R

t
ij) =

r
∑

t=1

λt(X
t
ii, X

t
jj , R

t
ij) = (Xii, Xjj , Rij), (17)

and

k
∑

s=1

r
∑

t=1

λtαsR
t
ije

iθs
ij =

k
∑

s=1

αs

(

r
∑

t=1

λtR
t
ij

)

eiθ
s
ij =

k
∑

s=1

αsRije
iθs

ij = Xij .

(18)
Following from (17) and (18), we have

(Xii, Xjj , Rij , Xij) =

k
∑

s=1

r
∑

t=1

λtαs(X
t
ii, X

t
jj , R

t
ij , R

t
ije

iθs
ij ). (19)

Since
k
∑

s=1

r
∑

t=1

λtαs =

k
∑

s=1

(

r
∑

t=1

λt

)

αs =

k
∑

s=1

αs = 1, (20)

Equation (19) implies that (Xii, Xjj , Rij , Xij) is the convex combination of
the k · r points defined in (16), thus (Xii, Xjj , Rij , Xij) ∈ Conv(Fij). ⊓⊔
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In (ECSDP1), the variables (Rii, Rjj , Rij) are introduced to link the con-
nections between (Xii, Xjj) and Xij by the following constraints:

Xii = Rii, Xjj = Rjj ,

Xij ∈ Conv(Gij(Rij)),

(Rii, Rjj , Rij) ∈ Conv(Hij).

(21)

In order to analyze whether the constraints in (21) can bridge a strong con-
nection between (Xii, Xjj) and Xij , we project the set Fij onto the space of
variables (Xii, Xjj , Xij) and define the following set:

Jij =















(Xii, Xjj , Xij)

∣

∣

∣

∣

∣

∣

∣

∣

l2i ≤ Xii ≤ u2
i

l2j ≤ Xjj ≤ u2
j

XiiXjj = |Xij |2
arg(Xij) ∈ Aij















. (22)

A direct consequence of Theorem 2 is the following theorem.

Theorem 3 Let (X,R) be a feasible solution of (ECSDP1), then for any

{i, j} ∈ E, we have

(Xii, Xjj , Xij) ∈ Conv(Jij). (23)

Proof Based on equation (19) in the proof of Theorem 2, we can derive the
equation on the projected space of variables (Xii, Xjj , Xij) as follows:

(Xii, Xjj , Xij) =

k
∑

s=1

r
∑

t=1

λtαs(X
t
ii, X

t
jj , R

t
ije

iθs
ij ), (24)

where

(Xt
ii, X

t
jj , R

t
ije

iθs
ij ) ∈ Jij , s = 1, . . . , k, t = 1, . . . , r. (25)

Thus we have

(Xii, Xjj , Xij) ∈ Conv(Jij).

⊓⊔

Theorem 3 shows that by introducing the constraints in (21) into (ECSDP1),
the variables (Xii, Xjj) and Xij are strongly connected, in the sense that for
any feasible solution (X,R) of (ECSDP1), we have (Xii, Xjj , Xij) ∈ Conv(Jij)
for any {i, j} ∈ E . Thus, the convex hull of Jij is described by the con-
straints in (ECSDP1) exactly. Based on the above analysis, we may expect
that (ECSDP1) can be tighter than (CSDP). Note that Jij is equivalent to
the set J x

ij defined in Section 1. The convex hull of J x
ij is described exactly

for general cases of (CQP) with different types of Aij .
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3 Comparisons with existing semidefinite relaxations

Besides of the proposed semidefinite relaxation (ECSDP1), some previous pa-
pers including [2,10,12] have also discussed how to exploit the structure of the
phase angle constraints in (CQP) to derive tight semidefinite relaxations. In
this section, we discuss the relationship between (ECSDP1) and the existing
ones in [2,10,12].

3.1 Comparison with the semidefinite relaxation in [2]

We first discuss the connections between (ECSDP1) and the semidefinite re-
laxation proposed in [2]. Consider the following continuous case of (CQP):

min x†Q0x

s.t. x†Qix ≤ bi, i = 1, . . . ,m,

li ≤ |xi| ≤ ui, i = 1, . . . , n,

arg(xixj
†) ∈ [θij , θ̄ij ], {i, j} ∈ E ,

(26)

where −π/2 < θij < θ̄ij < π/2. Using the notations in [2], the lifted matrix X
is represented as X = W + iT , and the following set is defined:

JC =















(Wii,Wjj ,Wij , Tij)

∣

∣

∣

∣

∣

∣

∣

∣

l2i ≤ Wii ≤ u2
i

l2j ≤ Wjj ≤ u2
j

LijWij ≤ Tij ≤ UijWij

WiiWjj = W 2
ij + T 2

ij















, (27)

where Lij = tan θij and Uij = tan θ̄ij . It is easy to check that the set Jij

defined in (22) is equivalent to the set JC under the relationship

(Xii, Xjj , Xij) = (Wii,Wjj ,Wij + iTij).

In order to describe the convex hull of JC , Chen et al. first relax JC to the
set defined by the following inequalities:

l2i ≤ Wii ≤ u2
i ,

l2j ≤ Wjj ≤ u2
j ,

LijWij ≤ Tij ≤ UijWij ,

WiiWjj ≥ W 2
ij + T 2

ij .

(28)

Then, they derive the following valid inequalities for JC :

π3
ijWij + π4

ijTij ≥ (l2j + ljuj)Wii + (l2i + liui)Wjj + liljuiuj − l2i l
2
j ,

π3
ijWij + π4

ijTij ≥ (u2
j + ljuj)Wii + (u2

i + liui)Wjj + liljuiuj − u2
iu

2
j ,

(29)
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where

π3
ij = (li + ui)(lj + uj)

1− f(Lij)f(Uij)

1 + f(Lij)f(Uij)
,

π4
ij = (li + ui)(lj + uj)

f(Lij) + f(Uij)

1 + f(Lij)f(Uij)
,

(30)

and f(·) is defined as

f(t) :=

{

(
√
1 + t2 − 1)/t, if t 6= 0,

0, if t = 0.
(31)

We cite the following results from [2] (see Propositions 2 and 3 in [2]).

Theorem 4 ([2]) For any {i, j} ∈ E, the system of inequalities in (29) is

valid for JC . Moreover, we have

Conv(JC) = {(Wii,Wjj ,Wij , Tij) | (Wii,Wjj ,Wij , Tij) satisfies (28) and (29)}.

Based on Theorem 4, Chen et al. have proposed the following semidefinite
relaxation (named as SDP+complex valid inequalities (3a) and (3b) in [2]):

min Q0 ·X
s.t. Qi ·X ≤ bi, i = 1, . . . ,m,

l2i ≤ Wii ≤ u2
i , i = 1, . . . , n,

(Wii,Wjj ,Wij , Tij) satisfies (29), {i, j} ∈ E ,
LijWij ≤ Tij ≤ UijWij , {i, j} ∈ E ,
X = W + iT � 0.

(ECSDP2)

We have the next theorem.

Theorem 5 The two semidefinite relaxations (ECSDP1) and (ECSDP2) are
equivalent under the assumptions that Aij = [θij , θ̄ij ] and −π/2 < θij < θ̄ij <
π/2 for all {i, j} ∈ E.

Proof We first assume that (X,R) is a feasible solution of (ECSDP1). Letting
W = Re(X) and T = Im(X). Then based on Theorem 3, for any {i, j} ∈
E , we have (Xii, Xjj , Xij) ∈ Conv(Jij), which implies (Wii,Wjj ,Wij , Tij) ∈
Conv(JC). Thus (Wii,Wjj ,Wij , Tij) satisfies (28) and (29) for {i, j} ∈ E , and
X = W + iT is feasible to (ECSDP2).

Next, we assume that X = W + iT is a feasible solution to (ECSDP2).
Then for any {i, j} ∈ E , based on Theorem 4, we have (Wii,Wjj ,Wij , Tij) ∈
Conv(JC), which implies (Xii, Xjj , Xij) ∈ Conv(Jij). Then, there exist a se-
quence of points

(Xt
ii, X

t
jj , X

t
ij) ∈ Jij , t = 1, . . . , k, (32)

such that

(Xii, Xjj , Xij) =
k
∑

t=1

λt(X
t
ii, X

t
jj , X

t
ij), (33)



12 Yingzhe Xu et al.

where λt ≥ 0 for t = 1, . . . , k and
∑k

t=1 λt = 1. We expand the feasible
solution X to a feasible solution (X,R) to (ECSDP1) as follows: For each

i ∈ {1, . . . , n}, let Rt
ii = |Xt

ii| for t = 1, . . . , k, and Rii =
∑k

t=1 λtR
t
ii. Similarly,

for each {i, j} ∈ E , we assign Rij =
∑k

t=1 λtR
t
ij , where Rt

ij = |Xt
ij |. Based

on the above constructions, we can check that (Rt
ii, R

t
jj , R

t
ij) ∈ Hij for all

t = 1, . . . , k, so we have

(Rii, Rjj , Rij) =

k
∑

t=1

λt(R
t
ii, R

t
jj , R

t
ij) ∈ Conv(Hij). (34)

Meanwhile, we have

Xij =
k
∑

t=1

λtX
t
ij =

k
∑

t=1

λtR
t
ij

Rij
Rije

i arg(Xt
ij). (35)

Since
k
∑

t=1

λtR
t
ij

Rij
= 1, (36)

Equations (35) and (36) together imply that Xij is a convex combination of

the points Rije
i arg(Xt

ij) ∈ Gij(Rij), thus

Xij ∈ Conv(Gij(Rij)). (37)

Then, the feasibility of X to (ECSDP2), together with (34) and (37), implies
that (X,R) is feasible to (ECSDP1).

Based on the above discussions, we conclude that X = W + iT is feasible
to (ECSDP2) if and only if there exists a matrix R such that (X,R) is feasible
to (ECSDP1), and the two feasible solutions have the same objective value.
Thus the two problems are equivalent. ⊓⊔

Theorem 5 shows that whenAij = [θij , θ̄ij ] ⊆ (−π/2, π/2) for all {i, j} ∈ E ,
the two relaxations (ECSDP1) and (ECSDP2) are equivalent. The main differ-
ence between the two relaxations is that the convex hull of JC in (ECSDP2)
does not introduce the matrix R to link variables (Xii, Xjj) and Xij , so that
(ECSDP2) can be more compact than (ECSDP1). However, for general cases
of Aij , it is not easy to derive the convex hull of Jij directly. In these cases, it
is very meaningful to introduce the matrix R to link the connections between
(Xii, Xjj) and Xij , from which we may derive the convex hull of Jij easily.
Hence, (ECSDP1) is more general than (ECSDP2), in the sense that it can
be applied to general cases of (CQP) with different types of Aij . Moreover,
even for the case in which Aij ⊆ (−π/2, π/2) for all {i, j} ∈ E , introducing
the real matrix R is also helpful, since we may further enhance (ECSDP1) by
adding a new constraint R � 0. We will discuss the effects of adding R � 0 to
(ECSDP1) in the next section.
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3.2 Comparison with the semidefinite relaxation in [12]

Next, we analyze the relationship between (ECSDP1) and the enhanced semidef-
inite relaxation proposed in [12], which includes the semidefinite relaxation
proposed in [10] as a special case. In [12], Lu et al. have studied the following
nonhomogeneous quadratic programming problem:

min
1

2
x†Q0x+ Re(c†x)

li ≤ |xi| ≤ ui, i = 1, . . . , n,

arg(xi) ∈ Ai ⊆ [0, 2π], i = 1, . . . , n.

(38)

The enhanced semidefinite relaxation introduced in [12] is defined as follows:

min
1

2
Q0 ·X + Re(c†x)

li ≤ ri ≤ ui, i = 1, . . . , n,

xi ∈ Conv(Gi(ri)), i = 1, . . . , n,

Xii ≥ r2i , Xii − (li + ui)ri + liui ≤ 0, i = 1, . . . , n,

X � xx†,

(ECSDP3)

where Gi(ri) := {xi | ri = |xi|, arg(xi) ∈ Ai} for ri > 0 and Gi(0) = {0}. To
show the connections between (ECSDP3) and (ECSDP1), we first transform
(38) to a homogeneous problem by appending xn+1 = 1 to the vector x ∈ Cn

to construct an (n+1)-dimensional vector y, and derive the following problem:

min
1

2
y†Q̃0y

li ≤ |yi| ≤ ui, i = 1, . . . , n,

arg(yiy
†
n+1) ∈ Ai, i = 1, . . . , n,

yn+1 = 1,

(39)

where

Q̃0 =

[

Q0 c
c† 0

]

∈ C
(n+1)×(n+1).

Then, (ECSDP1) for (39) is formulated as follows:

min
1

2
Q̃0 · Y

l2i ≤ Yii ≤ u2
i , i = 1, . . . , n,

Yi,n+1 ∈ Conv(Gi,n+1(Ri,n+1)),

Yii ≥ R2
i,n+1, Yi,i − (li + ui)Ri,n+1 + liui ≤ 0, i = 1, . . . , n,

Yn+1,n+1 = 1, Y � 0,

(ECSDP4)

where the inequality Yi,i − (li + ui)Ri,n+1 + liui ≤ 0 is derived from (4) and
(5) with ln+1 = un+1 = 1. Then we have the next theorem.
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Theorem 6 Problem (ECSDP4) is equivalent to (ECSDP3).

Proof Consider the following correspondence relationship between the solu-
tions of (ECSDP3) and (ECSDP4):

Y =

[

X x
x† 1

]

,

ri = Ri,n+1, i = 1, . . . , n.

(40)

It is easy to check that (Y,R) is feasible to (ECSDP4) if and only if the
corresponding solution (X, x, r) is feasible to (ECSDP3), and the two solutions
have the same objective value. Thus, the two problems are equivalent. ⊓⊔

Theorem 6 shows the equivalence between (ECSDP3) and (ECSDP4).
Moreover, the following theorem shows that (ECSDP3) is also equivalent to
(CSDP) on certain cases of (38).

Theorem 7 For problem (38), under the assumptions that c = 0 and 0 ∈
Conv(Gi(ri)) for any ri ≥ 0, (ECSDP3) is equivalent to (CSDP).

Proof Since (ECSDP3) is equivalent to (ECSDP4), it is at least as tight as
(CSDP). On the other hand, under the given assumptions, let X∗ be the
optimal solution of (CSDP), we can always extend it to a solution (X∗, x∗, r∗)
of (ECSDP3) by assigning x∗

i = 0 and r∗i = (X∗
ii)

1/2 for i = 1, . . . , n, and the
two solutions have the same objective value when c = 0. Thus (ECSDP3) is
equivalent to (CSDP). ⊓⊔

Theorem 7 shows that for certain types of homogeneous quadratic program-
ming problems, both the semidefinite relaxations (ECSDP3) and (ECSDP4)
can not be tighter than the conventional semidefinite relaxation (CSDP). In
many applications in signal processing [4,5,15], the problem is just the case
that satisfies the assumptions in Theorem 7. However, (ECSDP4) is only a
special case of (ECSDP1) for which the set E is predefined as

E = {{1, n+ 1}, . . . , {n, n+ 1}}.

In fact, we may select some other sets E to define (ECSDP1), by which it is
possible to derive a semidefinite relaxation that is tighter than (ECSDP4).
For example, for the case that Ai = AM for all i = 1, . . . , n, where M ≥ 3,
the constraints arg(xi) ∈ AM for i = 1, . . . , n imply that arg(xix

†
j) ∈ AM

for any 1 ≤ i < j ≤ n. Hence, we may select E as any subset of {{i, j} | 1 ≤
i < j ≤ n + 1} to define (ECSDP1). As will be illustrated in the numerical
experiments in Section 5, (ECSDP1) can still be much tighter than (CSDP) on
the homogeneous cases even when the assumptions in Theorem 7 are satisfied,
if the set E is well selected.
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4 Further discussions on the enhanced semidefinite relaxation

(ECSDP1) can be further enhanced by introducing a new positive semidefinite
constraint R � 0. In this section, we define the following enhanced semidefinite
relaxation to analyze the effects of introducing R � 0 into (ECSDP1).

min Q0 ·X
s.t. Qi ·X ≤ bi, i = 1, . . . ,m,

l2i ≤ Rii = Xii ≤ u2
i , i = 1, . . . , n,

Xij ∈ Conv(Gij(Rij)), {i, j} ∈ E ,
(Rii, Rjj , Rij) satisfies (4) and (5), {i, j} ∈ E ,
X � 0, R � 0.

(ECSDP)

Note that since the constraint R � 0 implies the constraints R2
ij ≤ RiiRjj for

all {i, j} ∈ E , the latter constraints can be ignored after adding R � 0 into
(ECSDP1) to derive the formulation of (ECSDP). However, in the converse
direction, since the constraints R2

ij ≤ RiiRjj for all {i, j} ∈ E do not imply
R � 0, (ECSDP) can be tighter than (ECSDP1) for some instances of (CQP).
The following example demonstrates this claim.

Consider the following 3-dimensional instance of (CQP):

min x†Q0x

s.t. 1 ≤ |xi| ≤ 4, i = 1, 2, 3,

arg(x†
ixj) ∈ [−π/6, π/6], {i, j} ∈ E ,

(41)

where

Q0 =





−2 −4 0
−4 2 −2
0 −2 6



+ i ·





0 −8 1
8 0 −10
−1 10 0



 (42)

and E = {{i, j} | 1 ≤ i < j ≤ 3}. A direct computation shows that the opti-
mal values of (ECSDP1) and (ECSDP2) are both equal to −248.39, whereas
the optimal value of (ECSDP) is −248.15. The absolute difference between the
optimal values of (ECSDP) and (ECSDP1) is 0.24. Hence, the proposed relax-
ation (ECSDP) is strictly tighter than the semidefinite relaxations (ECSDP1)
and (ECSDP2).

When deriving the formulation (ECSDP) from (ECSDP1), the second-
order cone constraints of the formRiiRjj ≥ R2

ij have been dropped. In fact, un-
der certain conditions, more constraints can be dropped to simplify (ECSDP).
We consider two such cases based on the next theorem.

Theorem 8 For a pair of {i, j} ∈ E, if
0 ∈ Conv(Gij(Rij))

for all Rij ≥ 0, then

Conv(Gij(Rij)) ⊆ Conv(Gij(R
′
ij)) (43)

holds for any 0 ≤ Rij < R′
ij .
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Proof For the case of Rij = 0, we have Conv(Gij(Rij)) = {0}. Then (43) holds
under the condition 0 ∈ Conv(Gij(R

′
ij)). Now we consider the case of Rij > 0.

For any Xij ∈ Conv(Gij(Rij)), there exist a sequence of points

Xt
ij ∈ Gij(Rij), λt ≥ 0, t = 1, . . . , k, (44)

such that

Xij =

k
∑

t=1

λtX
t
ij and

t
∑

i=1

λt = 1. (45)

For any R′
ij > Rij , by the definition of Gij(R

′
ij), it is easy to check that

R′
ijX

t
ij/Rij ∈ Gij(R

′
ij). (46)

Then,

R′
ijXij/Rij =

k
∑

t=1

λtR
′
ijX

t
ij/Rij ∈ Conv(Gij(R

′
ij)). (47)

Equation (47) and the condition 0 ∈ Conv(Gij(R
′
ij)) together imply that

Xij ∈ Conv(Gij(R
′
ij)), since Xij is on the line segment which connects 0 and

R′
ijXij/Rij when R′

ij > Rij . This completes the proof. ⊓⊔

Remark 1 The condition 0 ∈ Conv(Gij(Rij)) holds for any Rij ≥ 0 if and only

if there exists a R̃ij > 0 such that 0 ∈ Conv(Gij(R̃ij)).

Based on Theorem 8, we can show that inequalities (4) and (5) are re-
dundant in (ECSDP) when 0 ∈ Conv(Gij(Rij)) for any Rij ≥ 0, in the sense
that the projection of the feasible domain of (ECSDP) onto the space of X is
not affected by these inequalities. More specifically, the inequalities in (4) and
(5) constrain Rij from below, and the inequality RiiRjj ≥ R2

ij constrains Rij

from above, which provides an upper bound R̄ij := (RiiRjj)
1/2 of Rij . Under

the conditions in Theorem 8, the equation
⋃

Rij∈[Rij ,R̄ij ]

Conv(Gij(Rij)) = Conv(Gij(R̄ij))

holds for any 0 ≤ Rij ≤ R̄ij . Thus, dropping the inequalities (4) and (5), only

the lower bound of Rij is affected, but the upper bound R̄ij does not change,
so that the range of Xij is unchanged. Based on the above discussions, we
simplify (ECSDP) for the following two cases.

Case 1: Aij = AM for all {i, j} ∈ E where M ≥ 3. In this case, we can
see that 0 ∈ Conv(Gij(Rij)) holds for any Rij ≥ 0. Hence, based on Theorem
8, we can drop the constraints defined by inequalities (4) and (5) to simplify
(ECSDP).

Case 2: Aij = [θij , θ̄ij ] with π ≤ θ̄ij − θij < 2π for all {i, j} ∈ E . In
this case, we also have 0 ∈ Conv(Gij(Rij)). Then, based on Theorem 8, con-
straints (4) and (5) can be dropped. In addition, based on Theorem 8 again,
the constraints |Xij | ≤ Rij for {i, j} ∈ E can be dropped. In detail, let
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(X̂, R̂) be the optimal solution to (ECSDP) with constraints (4), (5) and
constraints |Xij | ≤ Rij for {i, j} ∈ E being dropped. Since the inequali-

ties |X̂ij | ≤ (X̂iiX̂jj)
1/2 holds automatically under the constraint X̂ � 0,

we can construct another solution (X̂, R′) by assigning the entries of R′ to
R′

ij = (XiiXjj)
1/2. Then, it is easy to check (X̂, R′) is feasible to (ECSDP)

in its original version. Hence, the constraints |Xij | ≤ Rij for {i, j} ∈ E can be
dropped without affecting the optimal value of (ECSDP).

In our numerical experiment, in order to reduce the computational com-
plexity, we always simplify (ECSDP) according to the types of the phase angle
constraints for a variety of (CQP) arising in different application backgrounds.

5 Numerical results

We carry out numerical experiments to investigate the tightness of the pro-
posed semidefinite relaxation (ECSDP). Our test instances are randomly gen-
erated to simulate some practical applications in signal processing. The exper-
iments are carried out on a personal computer with Intel Core(TM) i7-9700
CPU (3.00 GHz) and 16 GB RAM. We use Mosek (Ver 9.2) [17] to solve all
semidefinite relaxations. All algorithms are implemented in Matlab R2017a.
For all the three problems discussed in the following subsections, the set E is
always set to E = {{i, j} | 1 ≤ i < j ≤ n}.

5.1 Phase quantized waveform design

We consider the phase quantized waveform design problem with constraints
on peak to average ratio (ref. [16]). The problem can be formulated as follows:

max x†Qx

s.t. x†x = n,

|xi|2 ≤ γ, i = 1, . . . , n,

arg(xi) ∈ AM , i = 1, . . . , n,

(48)

where the meaning of parameters Q, n, γ, M and the decision variables
x1, . . . , xn are described in [16]. Based on the discussions in Section 4, relax-
ation (ECSDP) for (48) can be simplified as follows:

max Q ·X
s.t. Trace(X) = n,

Xii = Rii ≤ γ, i = 1, . . . , n,

Xij ∈ Conv(Gij(Rij)), {i, j} ∈ E ,
X � 0, R � 0,

(49)

where the constraint Xij ∈ Conv(Gij(Rij)) is described in (9). Besides, the
classical semidefinite relaxation (CSDP) of (48) can be obtained by dropping
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the constraint Xij ∈ Conv(Gij(Rij)) for {i, j} ∈ E in (49). In [16], Maio et al.
have applied (CSDP) to design an approximation algorithm.

In our experiments, we compare (ECSDP) with (CSDP) from two aspects:
First, we investigate whether (ECSDP) can be much tighter than (CSDP).
Second, we investigate whether the approximation algorithm proposed in [16]
can be improved to find better sub-optimal solutions by using (ECSDP) rather
than (CSDP).

The numerical experiments are carried out as follows: we use ten randomly
generated test instances, in each of which the matrix Q ∈ Cn×n is generated
using the procedures in [19]: Q =

∑n
k=1 uku

†
k, where uk, k = 1, . . . , n, is a

random vector in Cn whose real-part and imaginary-part elements are inde-
pendently sampled from the standard Gaussian distribution. The parameter
γ is set to 1.2. We consider the cases of n = 20 and M ∈ {3, 6}. For each
test instance, we solve the relaxations (CSDP) and (ECSDP) to estimate up-
per bounds (UB in short) for (48). Based on the optimal solutions of the two
relaxations, we run the approximation algorithm proposed in [16] to obtain
sub-optimal solutions, whose objective values provide lower bounds (LB in
short) for (48). The lower and uppder bounds obtained from the two relax-
ations are listed in Table 1, along with the computational time (in seconds) for
solving different semidefinite relaxations. Finally, we define the “Gap Closed”
as1

Gap Closed = 1− UBECSDP − LBECSDP

UBCSDP − LBCSDP
, (50)

where LB(•) and UB(•) denote the lower and upper bounds obtained from the
corresponding relaxation method, respectively. The results of Gap Closed are
listed in the last column of Table 1.

Table 1 Computational results on instances of Problem (48).

Instance CSDP ECSDP Gap

ID (n,M) UB LB Time UB LB Time Closed

1 (20,3) 1094.58 1044.10 0.16 1071.85 1050.14 0.31 57%
2 (20,3) 1125.75 1063.21 0.17 1078.46 1071.90 0.32 90%
3 (20,3) 1137.79 1079.27 0.16 1103.90 1081.97 0.32 63%
4 (20,3) 1073.05 1015.17 0.17 1049.16 1020.37 0.32 50%
5 (20,3) 1134.78 1040.75 0.16 1084.89 1057.29 0.31 71%
6 (20,6) 1130.19 1025.88 0.16 1124.07 1031.64 0.59 11%
7 (20,6) 1115.55 1033.44 0.17 1112.86 1040.41 0.63 12%
8 (20,6) 1106.84 1020.79 0.17 1103.74 1040.53 0.65 27%
9 (20,6) 1126.50 1024.32 0.17 1113.95 1028.55 0.62 16%
10 (20,6) 1122.23 1045.24 0.17 1110.84 1048.37 0.60 19%

1 In the literature, the term “gap” means the difference between the optimal value of
an optimization problem and its lower/upper bound. Here we borrow the term “gap” for
convenience, but the meaning is different.
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From the results listed in Table 1, we can see that the upper bounds pro-
vided by (ECSDP) are consistently tighter than the bounds of (CSDP) on all
test instances. For the case ofM = 3, the improvement on closing gaps is signif-
icant. In fact, the setAM can be regarded as a discrete approximation of the set
[0, 2π]. Hence, for the case thatM is small, the constraintXij ∈ Conv(Gij(Rij))
can be more effective for reducing the gap. As M becomes larger, the difference
between the optimal values of (ECSDP) and (CSDP) tends to zero. That is
why the tightness of the upper bounds can be improved more significantly on
the case of M = 3 than on the case of M = 6.

On the other hand, for all the ten test instances, the lower bounds obtained
by using (ECSDP) are larger than the lower bounds obtained by using (CSDP).
These results imply that by using (ECSDP) for the approximation algorithm,
better sub-optimal solutions can be found.

The improvement on the upper and lower bounds are not obtained for free.
As we may observe that the computational time for solving (ECSDP) is longer
than the one for (CSDP). This is reasonable since the number of variables and
the number of constraints in (ECSDP) are both larger than those of (CSDP).

In conclusion, using (ECSDP) to replace (CSDP) for problem (48), we may
obtain better upper bounds and better sub-optimal solutions, with the cost
of higher computation complexity. Moreover, we would like to mention that
problem (48) is a homogeneous case of (CQP) that satisfies the assumptions
in Theorem 7, hence the semidefinite relaxation proposed in [12] can not be
tighter than (CSDP).

5.2 Discrete transmit beamforming

In this subsection, we consider the discrete transmit beamforming problem,
which can be formulated as follows (ref. [5]):

max
t,x

t

s.t. x†Qix ≥ tγkσ
2
k, i = 1, . . . , k,

x†x ≤ Ptot,

|xi| ∈ {∆, 2∆, . . . , 2m∆}, i = 1, . . . , n,

arg(xi) ∈ AM , i = 1, . . . , n,

(51)

where Qi = hih
†
i with hi ∈ Cn being the channel vector for each i = 1, . . . , k,

n is the number of transmit antennas, k is the number of receivers, m is the
number of bits to represent the discrete amplitude values, Ptot denotes the
maximum total power, ∆ =

√
Pmax/2

m where Pmax is the maximum per-
antenna power, and M = 2b where b is the number of bits to represent the
discrete amplitude values.
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If we relax the discrete constraint |xi| ∈ {∆, 2∆, . . . , 2m∆} to ∆ ≤ |xi| ≤
2m∆, then we have the relaxation (CSDP) for (51) as follows:

max t

s.t. Qi ·X ≥ tγkσ
2
k, i = 1, . . . , k,

Trace(X) ≤ Ptot,

∆2 ≤ Xii ≤ Pmax, i = 1, . . . , n,

X � 0.

(52)

On the other hand, relaxation (ECSDP) for (51) is formulated as follows:

max t

s.t. Qi ·X ≥ tγkσ
2
k, i = 1, . . . , k,

Trace(X) ≤ Ptot,

∆2 ≤ Rii = Xii ≤ Pmax, i = 1, . . . , n,

Xij ∈ Conv(Gij(Rij)), {i, j} ∈ E ,
X � 0, R � 0.

(53)

We compare the performance of the two relaxations on instances that are
randomly generated according to the procedure in [5]: For each i = 1, . . . , k,
the vector hi ∈ Cn follows the standard n-dimensional complex Gaussian
distribution, Qi = hih

†
i , γk is uniformly selected from {1, 2, 3, 4}, and σ2

k = 1.0.
Also based on the parameter settings in [5], we set n = 4, Pmax = 20, Ptot = 40,
and consider the case of k ∈ {4, 8, 12}, m ∈ {3, 4}, and b ∈ {3, 4}.

Based on the procedures described above, for each setting of parame-
ters (n, k,m, b), we generate ten test instances. Each instance is relaxed to
(ECSDP) and (CSDP), respectively. Moreover, the optimal value of each in-
stance is computed by CPLEX, using the integer programming formulation
proposed in [5]. With a known optimal value for each test instance, the “Gap
Closed” is defined as

Gap Closed = 1− UBECSDP − V ∗

UBCSDP − V ∗
, (54)

where V ∗ denotes the optimal value returned by CPLEX. The numerical re-
sults are listed in Table 2. For each row, the listed results summarize the
average performance on the ten test instances.

From the results in Table 2, we can see that relaxation (ECSDP) is consis-
tently tighter than (CSDP) for all settings of parameters. The proposed valid
inequalities exploited from the convex hull of Gij(Rij) and Hij are effective for
improving the tightness of the semidefinite relaxation, which reduce 9.7%–30%
of the relaxation gap introduced by (CSDP) on average.
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Table 2 Computational results on discrete transmit beamforming problems.

(n, k,m, b)
ECSDP CSDP

Optimal Value Gap Closed
Upper Bound Time Upper Bound Time

(4,4,3,3) 38.7921 0.010 39.8886 0.005 36.3148 30.16%
(4,8,3,3) 36.7337 0.010 37.2159 0.005 32.1290 9.72%
(4,12,3,3) 25.9584 0.011 26.2780 0.005 21.1069 10.34%
(4,4,4,4) 39.3492 0.017 39.8886 0.005 38.3498 31.58%
(4,8,4,4) 36.9279 0.017 37.2159 0.005 34.1607 10.67%
(4,12,4,4) 26.0792 0.017 26.2780 0.005 22.7450 10.61%

Note: The results in each row are averaged over the ten test instances.

5.3 Continuous phase angle constraints

We consider (CQP) with continuous phase angle constraints. As discussed
in Section 4, when Aij = [θij , θ̄ij ] with −π/2 < θij < θ̄ij < π/2 for all
{i, j} ∈ E , (ECSDP1) is equivalent to (ECSDP2). However, it has been shown
that (ECSDP) can be tighter than (ECSDP1). In this subsection, we compare
the tightness of these different relaxations numerically. For this purpose, we
generate test instances of the following form:

min x†Q0x

li ≤ |xi| ≤ ui, i = 1, . . . , n,

arg(xixj
†) ∈ [θij , θ̄ij ], {i, j} ∈ E ,

(55)

where li = 1.0, ui = 4.0 for all i = 1, . . . , n, and Q0 ∈ Cn is a randomly
generated Hermitian matrix, with each diagonal entry following the standard
Gaussian distribution, and with the real-part and the imaginary-part of each
non-diagonal entry also following the standard Gaussian distribution.

We first generate ten 20-dimensional test instances with Aij = [−π/6, π/6]
for all {i, j} ∈ E , and compare the three relaxations (CSDP), (ECSDP2) and
(ECSDP). Since (ECSDP1) is equivalent to (ECSDP2) but is not as compact
as (ECSDP2), it is not selected for the current comparison. The computational
results for the three selected semidefinite relaxations are listed in Table 3.

From the results in Table 3, we can observe that both (ECSDP) and
(ECSDP2) are much tighter than (CSDP). Meanwhile, the bounds of (ECSDP)
are uniformly tighter than the bounds of (ECSDP2) (although the improve-
ments are marginal). Based on the above results, we may conclude that in com-
parison with the previous semidefinite relaxations in the literatures, (ECSDP)
is the tightest one.

We further consider the case that π < θ̄ij−θij < 2π, for which the semidef-
inite relaxation (ECSDP2) proposed in [2] can not be applied. We investigate
whether (ECSDP) can still be tighter than (CSDP) in this case. To do so, we
generate another ten test instances, in which each θij is uniformly sampled

from (−π,−π/2), and θ̄ij = θij + ϕij , where ϕij is uniformly sampled from
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Table 3 Computational results on instances with continuous phase angle set.

Instance Lower Bound Time

ID CSDP ECSDP2 ECSDP CSDP ECSDP2 ECSDP

1 -2965.66 -1120.93 -1116.66 0.02 0.20 0.32
2 -2895.56 -593.77 -592.48 0.01 0.16 0.26
3 -2567.41 -1168.01 -1167.79 0.01 0.18 0.38
4 -3062.55 -622.25 -618.21 0.01 0.17 0.24
5 -3469.90 -896.06 -893.29 0.01 0.16 0.27
6 -3069.32 -1026.03 -1025.35 0.01 0.19 0.27
7 -2779.32 -975.31 -969.00 0.01 0.17 0.25
8 -2658.00 -542.72 -539.58 0.01 0.15 0.24
9 -3381.43 -1225.68 -1221.91 0.01 0.18 0.30
10 -3087.94 -1096.40 -1092.99 0.01 0.17 0.25

(π, 2π). Then, the (ECSDP) and (CSDP) based lower bounds are computed
and listed in Table 4.

Table 4 Computational results on instances with continuous phase angle set.

Instance Lower Bound Time

ID CSDP ECSDP CSDP ECSDP

1 -2984.13 -2741.61 0.02 0.07
2 -3080.58 -2798.36 0.01 0.04
3 -3170.00 -2972.45 0.01 0.04
4 -3630.20 -3414.64 0.01 0.04
5 -3062.33 -2866.65 0.01 0.04
6 -3225.01 -2945.75 0.01 0.04
7 -2760.60 -2513.31 0.01 0.04
8 -3174.43 -2892.12 0.01 0.04
9 -3032.56 -2909.40 0.01 0.04
10 -3083.04 -2827.94 0.01 0.04

From the results in Table 4, we can find that even for the case that π <
θ̄ij − θij < 2π, (ECSDP) can be tighter than (CSDP). These results indicate
that the new semidefinite relaxation (ECSDP) can be applied to more general
cases of (CQP), whereas the previous one in [2] is specially designed for the
case of −π/2 < θij < θ̄ij < π/2.

6 Conclusions

In this paper, we propose some new semidefinite relaxations for a class of
complex quadratic programming problems. The main idea behind the pro-
posed semidefinite relaxations is that the convex hull of (Xii, Xjj , Xij) is ex-
ploited to derive valid constraints for the lifted matrix X = xx†, which are
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very effective for tightening the conventional semidefinite relaxation. The main
technique to derive the valid constraints is to represent the entry Xij in its
polar coordinate form, so that the convex hull of variables in the polar coordi-
nate representations can be derived easily. Our numerical results show that the
proposed semidefinite relaxation (ECSDP) achieves better performance than
the conventional ones in terms of tightness. Besides, using the new semidefi-
nite relaxations, some previous approximation algorithms can be improved for
finding better sub-optimal solutions.

The proposed semidefinite relaxations are theoretically compared with
the previous semidefinite relaxations proposed in [10,12] and our proposed
(ECSDP) can be tighter than the previous ones. In particular, for the ho-
mogeneous cases that satisfy the assumptions in Theorem 7, the semidefinite
relaxations proposed in [10,12] is equivalent to (CSDP), whereas the newly
proposed (ECSDP) is tighter than (CSDP). Moreover, the proposed semidefi-
nite relaxations are also compared with the one proposed in [2]. As discussed
in Section 4, the semidefinite relaxation proposed in [2] is designed for the
case where each Aij is a sub-interval of (−π/2, π/2). In this case, the newly
proposed semidefinite relaxation (ECSDP1) is equivalent to the one proposed
in [2], whereas (ECSDP) can be strictly tighter than the one in [2]. Moreover,
(ECSDP1) and (ECSDP) can be applied to general cases of (CQP), and keep
their effectiveness even for cases where Aij = [θij , θ̄ij ] with π < θ̄ij −θij < 2π.

Based on the results presented in this paper, there are two potential di-
rections that deserve further research. First, for the discrete case, such as the
radar waveform design problem discussed in Section 5.1, whether the theoret-
ical approximation ratio of (ECSDP) based approximation algorithm can be
better than the ratio of (CSDP) based algorithm is an interesting question to
answer. Second, since (ECSDP) can be tighter than the semidefinite relaxation
proposed in [2], we may try to design a new branch-and-bound algorithm to
solve the optimal power flow problem, using (ECSDP) as a relaxation method.
It is interesting to design a new branch-and-bound algorithm to compare with
the one in [2].
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