
Noname manuscript No.
(will be inserted by the editor)

Lipschitz-inspired HALRECT Algorithm for Derivative-free
Global Optimization

Linas Stripinis · Remigijus Paulavičius

Received: date / Accepted: date

Abstract This article considers a box-constrained global optimization problem
for Lipschitz-continuous functions with an unknown Lipschitz constant.
Motivated by the famous DIRECT (DIviding RECTangles), a new HALRECT

(HALving RECTangles) algorithm is introduced. A new deterministic approach
combines halving (bisection) with a new multi-point sampling scheme in contrast
to trisection and midpoint sampling used in most existing DIRECT-type
algorithms. A new partitioning and sampling scheme uses more comprehensive
information on the objective function. Four different strategies for selecting
potentially optimal hyper-rectangles are introduced to exploit the objective
function’s information effectively. The original algorithm HALRECT and other
introduced HALRECT variations (twelve in total) are tested and compared with the
other twelve recently introduced DIRECT-type algorithms on 96 box-constrained
benchmark functions from DIRECTGOLib v1.1, and 96 perturbed their versions.
Extensive experimental results are advantageous compared to state-of-the-art
DIRECT-type global optimization. New HALRECT approaches offer high robustness
across problems of different degrees of complexity, varying from simple –
uni-modal and low dimensional to complex – multi-modal and higher
dimensionality.

Keywords DIRECT-type algorithm · Global optimization · Derivative-free
optimization · Lipschitz optimization · Sampling-based algorithm

Mathematics Subject Classification (2020) 65K05 · 74P99 · 78M50, 90C99 ·
65K10

L. Stripinis, R. Paulavičius
Vilnius University, Institute of Data Science and Digital Technologies, Akademijos 4, LT-08663
Vilnius, Lithuania
E-mail: linas.stripinis@mif.vu.lt

R. Paulavičius
E-mail: remigijus.paulavicius@mif.vu.lt

ar
X

iv
:2

20
5.

03
01

5v
2

 [
m

at
h.

O
C

]
 1

8
Se

p
20

22

2 Linas Stripinis, Remigijus Paulavičius

1 Introduction

Generally, global optimization approaches can be divided into two main classes:
deterministic and stochastic [17,38]. Deterministic algorithms theoretically
guarantee that at least one global optimum can be found [9], while stochastic
algorithms find the solution in the probability sense [21]. Various optimization
problems in science and engineering (e.g., machine learning models [2], Boeing
design [3], etc.) are black-box, i.e., the analytic information about the objective
and constraints functions is unavailable. Therefore, the development of
derivative-free optimization has been forced by the need to optimize various and
often increasingly complex problems in practice.

In this paper we consider a box-constrained potentially black-box global
optimization problem

min
x∈D

f(x), (1)

where f : Rn → R is a real-valued Lipschitz-continuous function, i.e., there exists
a positive constant 0 < L <∞, such that∣∣f(x)− f(y)

∣∣ ≤ L‖x− y‖, ∀x,y ∈ D, (2)

and the feasible region is an n-dimensional hyper-rectangle D = [a,b] = {x ∈ Rn :
aj ≤ xj ≤ bj , j = 1, . . . , n}. In a black-box optimization case, the objective function
f is unknown and any information can only be obtained by evaluating the function
at feasible points.

The DIRECT algorithm, developed by Jones et al. [20], is a well-known and
widely used sampling-based solution technique for derivative-free global
optimization with limitations in the box. An algorithm is an extension of
classical Lipschitz optimization (e.g., [29,30,35,36,41,43]), where the need to
know the Lipschitz constant is eliminated. The DIRECT algorithm has also been
successfully extended to solve problems with various constraints. Authors in [32]
proposed an approach to tackle linearly constrained problems. Other authors [5,
7,18,22,33,34,49] introduced DIRECT-type algorithm for generally constrained or
even the for problems with hidden constraints [10,25,44]. In addition,
DIRECT-type algorithms appear more often in the parallel environment [14,52,50].

A decade-old comprehensive numerical benchmarking [37] showed the
encouraging performance of DIRECT-type algorithms among other derivative-free
global optimization methods. Our recent extensive study [50] revealed that new
and potentially better DIRECT-type algorithms are available today. In [45], we also
demonstrated that even better DIRECT-type algorithms could be obtained by
combining various already known candidate selection and partitioning
techniques, leading to even more efficient DIRECT-type algorithms. Therefore,
continuous design and development of efficient DIRECT-type algorithms is
important and motivated by practice needs.

Unfortunately, DIRECT-type algorithms are not without their drawbacks.
Among them, two well-known ones are [11,18,19,26,28,40]: i) delayed discovery
of the globally optimal solution, especially for multi-modal and greater
dimensionality problems, and ii) slow fine-tuning of the solution to high
accuracy. This limits DIRECT applicability mainly to lower-dimensionality global
optimization problems [19]. The first drawback is possibly determined by the
original sampling scheme based on one center point per hyper-rectangle. If the

Lipschitz-inspired HALRECT Algorithm for Derivative-free Global Optimization 3

hyper-rectangle containing the global solution has a bad objective value at the
midpoint, it is undesirable for the selection, and his further subdivision is
delayed.

To address this in [26,39], the authors introduced two different diagonal
sampling schemes using two points per hyper-rectangle. In this way, new
algorithms, BIRECT [26] and ADC [39], intuitively reduce the chance of this
situation occurring. It would require evaluating two bad points in the
hyper-rectangle containing the global optimum. In [18], the author observed that
to reduce the curse of dimensionality, the division of hyper-rectangles along only
one longest side instead of all has a very positive impact. Moreover, various
two-phase-based approaches (see, e.g., [27,39]) and hybridized DIRECT-type
methods (see, e.g. [16,18,28,49,23,24]) were proposed to address both these
shortcomings.

This paper introduces a new HALRECT (HALving RECTangles) algorithm
based on a new multi-point sampling scheme efficiently combined with halving
(bisection). Each hyper-rectangle is represented by considering up to 2n + 1
sampling points and halved using bisection instead of just one sampled midpoint
and trisection traditionally used in most DIRECT-type algorithms. Therefore, more
comprehensive information about the objective function over each
hyper-rectangle is captured, especially for higher-dimensionality problems, as
more sampled points are considered in selecting potentially optimal
hyper-rectangles.

The rest of the paper is organized as follows. Section 2 reviews relevant
existing DIRECT-type modifications and summarizes the most common selection
schemes and partitioning strategies used in state-of-the-art DIRECT algorithms. A
description of the new HALRECT algorithm and all its new variations is given in
Section 3. The extensive numerical investigation of twelve HALRECT variations and
comparison with twelve recently introduced DIRECT-type algorithms [45] using 96
box-constrained global optimization test problems and their perturbed versions
from DIRECTGOLib v1.1 [51] is provided in Section 4. Finally, we conclude the
paper in Section 5.

2 Related literature review

This section reviews some of the most relevant DIRECT-type modifications. We begin
with a recap of the original algorithm. Reviewing other DIRECT-type algorithms,
we mainly focus on the proposed candidate selection, sampling, and partitioning
schemes.

2.1 Original DIRECT algorithm

The original DIRECT algorithm is designed for box-constrained global optimization
problems. Initially, the algorithm normalizes the feasible region D = [a,b] to a unit
hyper-rectangle D̄ = [0, 1]n and only refers to the original space D when evaluating
the objective function f . Therefore, throughout this paper, when it says that the
value of the objective function is evaluated at f(c), where the midpoint c ∈ D̄, it

4 Linas Stripinis, Remigijus Paulavičius

is understood that the corresponding midpoint of the original domain (x ∈ D) is
used, i.e.,

f(c) = f(x),where xj = (bj − aj)cj + aj , j = 1, . . . , n. (3)

In each iteration, certain hyper-rectangles are identified and selected as
“potentially optimal hyper-rectangles” (POH) for further investigation. DIRECT

samples and evaluates the objective function at the midpoint of each POH and
subdivides them (into smaller hyper-rectangles) using the trisection strategy.
The selection, sampling, and subdivision procedures continue until some
predefined limits have not been reached. Fig. 1 illustrates this process, showing
the initialization and the first two subsequent iterations of DIRECT for the
two-variable Bukin6 test problem.

0 1
6

1
3

1
2

2
3

5
6

1
0

1
6

1
3

1
2

2
3

5
6

1

c1

50.05

c1

c 2

Initialization

Sampling point

0 1
6

1
3

1
2

2
3

5
6

1
0

1
6

1
3

1
2

2
3

5
6

1

c1

50.05

c2

116.68

c3

16.78

c4

150.05

c5

132.33

c1

Iteration 1

Selected POH

0 1
6

1
3

1
2

2
3

5
6

1
0

1
6

1
3

1
2

2
3

5
6

1

c1

50.05

c2

116.68

c3

16.78

c4

150.05

c5

132.33

c6

142.51

c7

140.55

c1

Iteration 2

Unselected region

Fig. 1 Two-dimensional illustration of selection, central sampling, and trisection used in the
original DIRECT algorithm [20] solving the Bukin6 test problem.

Regardless of the dimension, the first evaluation of the objective function is
performed at the midpoint (c1). Then, the DIRECT algorithm identifies and selects
the POHs. At initialization, the selection is trivial since only one hyper-rectangle
(D̄1) is available (see the left panel in Fig. 1). After selection, DIRECT samples new
midpoints at positions

c1 ± 1

3
dmaxej , j ∈M, (4)

where dmax is equal to the maximum side length, M is a set of dimensions with
the maximum side length, and ej is the jth unit vector. The algorithm uses n-
dimensional trisection, with the property that the objective function is evaluated
at each hyper-rectangle only once — at a midpoint. The midpoint of the initial
hyper-rectangle becomes the midpoint of the new smaller “middle” one. Suppose
the selected hyper-rectangle has more than one dimension with the maximum side
length (as is the case for the initial hyper-rectangle). In that case, DIRECT starts
the trisection from the dimension with the lowest wj value

wj = min{f(c1 +
1

3
dmaxej), f(c1 − 1

3
dmaxej)}, j ∈M, (5)

Lipschitz-inspired HALRECT Algorithm for Derivative-free Global Optimization 5

and continues to the highest [19,20]. In this way, the lower function values are
placed in larger hyper-rectangles (see the middle panel in Fig. 1). If all side lengths
are equal, 2n+ 1 new smaller non-overlapping hyper-rectangles of n distinct sizes
are created.

Unlike initialization, in subsequent iterations, the selection of POHs is not
trivial, as we have more than one candidate (see the middle and right panels in
Fig. 1). Therefore, the selection procedure needs to be formalized. Let the current
partition in iteration k be defined as:

Pk = {D̄ik : i ∈ Ik}, (6)

where

D̄ik = [aik,b
i
k] = {x ∈ D̄ : 0 ≤ aikj ≤ xj ≤ b

i
kj ≤ 1, j = 1, . . . , n, ∀i ∈ Ik}, (7)

and Ik is the index set that identifies the current partition Pk. The next partition,
Pk+1, is obtained by subdividing selected POHs from the current partition Pk. At
the first iteration (k = 0), there is always only one candidate, P0 = {D̄1

0}, which is
automatically potentially optimal. The formal requirement of potential optimality
in subsequent iterations is stated in Definition 1.

Definition 1 (Original selection) Let ci denote the midpoint, f(ci) objective
function value f(ci) obtained at the midpoint, and δik be a measure (equivalently,
sometimes called distance or size) of hyper-rectangle D̄ik. Let ε > 0 be a positive
constant and fmin be the best currently found objective function value. A hyper-
rectangle D̄hk , h ∈ Ik is said to be potentially optimal if there exists some rate-of-
change (Lipschitz) constant L̃ > 0 such that

f(ch)− L̃δhk ≤ f(ci)− L̃δik, ∀i ∈ Ik, (8)

f(ch)− L̃δhk ≤ fmin − ε
∣∣∣fmin

∣∣∣ , (9)

and the measure of the hyper-rectangle D̄ik is

δik =
1

2

∥∥∥bik − aik

∥∥∥ . (10)

The hyper-rectangle D̄hk is potentially optimal if the lower Lipschitz bound for
the objective function computed on the left-hand side of (8) is the lowest with some
positive constant L̃ in the current partition Pk. In (9), the parameter ε is used
to protect against excessive refinement of the local minima [20,27]. Therefore,
the lower Lipschitz bound on POH must be lower than the current minimum

value (fmin) by a considerable amount (≥ ε
∣∣∣fmin

∣∣∣). In [20], the authors obtained

good performance using ε values ranging from 10−3 to 10−7, and by default, the
ε = 10−4 value is suggested.

A geometrical interpretation of POH selection using Definition 1 is illustrated
in the right panel of Fig. 2. Here, each hyper-rectangle is represented as a dot
whose horizontal coordinate is equal to the measure of the hyper-rectangle (δik).
The vertical coordinate is equal to the value of the function at the midpoint f(ci).
POHs satisfy both conditions of Definition 1 and correspond to the lower-right
convex hull of blue marked points in Fig. 2.

6 Linas Stripinis, Remigijus Paulavičius

0 1
6

1
3

1
2

2
3

5
6

1
0

1
6

1
3

1
2

2
3

5
6

1

c1

50.05

c2

116.68

c3

16.78

c4

150.05

c5

132.33

c6

142.51

c7

140.55

c9

39.02

c10

83.45

c11

80.04

c12

183.35

c13

79.94

c14

81.93

c15

81.55

c16

72.25

c17

27.85

c18

95.79

c19

64.59

c20 c21

c24

86.31

c25

76.85

c26

16.68

c27

114.27

c28

26.68

c29

105.26

c1

c 2

DIRECT sampling and partitioning

0 0.2 0.4 0.6 0.8 1
0

40

80

120

160

200

δik

f
(c

i)

POH selection

non-potentially optimal
potentially optimal

Fig. 2 Visualization of selected potentially optimal rectangles in the fifth iteration of the
DIRECT algorithm solving two-dimensional Bukin6 test problem.

2.2 Brief review of candidate selection schemes

Typically, the DIRECT-type algorithms include three main steps: selection (of
POHs), sampling, and partitioning (subdivision). At each iteration, a specific
DIRECT-type algorithm first selects the set of POHs before sampling and
subdividing them. In [45], we reviewed various improvements and new ideas
introduced for the selection of POH proposed in the DIRECT literature. The three
most promising ones were extracted and used to construct new DIRECT-type
algorithms, combining them with four different sampling and partitioning
techniques. For consistency, we give a brief description and a summary (see
Table 1) of the most often used selection schemes. Section 2.3 briefly reviews
sampling and partitioning techniques traditionally used in DIRECT-type
algorithms.

2.2.1 Improved original selection strategy

It was observed that the original candidate selection strategy could be very
inefficient on symmetric and other specific problems. There may be many POHs
with the same diameter δik and objective value, leading to a drastic increase in
selected POHs per iteration. To overcome this, the authors of [11] proposed an
improvement by selecting only one of these many “equivalent candidates”. In
[19], the authors showed that such modification could significantly increase the
performance of the DIRECT algorithm.

2.2.2 Aggressive Selection strategy

In [1], the authors relaxed the selection criteria of POHs and proposed an aggressive
version. The main idea is to select and divide at least one hyper-rectangle from each

Lipschitz-inspired HALRECT Algorithm for Derivative-free Global Optimization 7

group of different diameters (δik) with the lowest value of the function. Definition 2
formalizes the strategy for identifying an aggressive set of potentially optimal
hyper-rectangles from the current partition.

Definition 2 (Aggressive selection) Let ci, f(ci), and δik be defined as in
Definition 1. Let Iik ⊆ Ik be the subset of indices corresponding to
hyper-rectangles having the same measure (δik). The notation Imin

k corresponds to
the subset of hyper-rectangle indices that has the smallest measure δmin

k , while
Imax
k has the largest measure (δmax

k), and Ik = Imin
k ∪ · · · ∪ Imax

k .
Then for each subset, Iik (min ≤ i ≤ max), find hyper-rectangle(s) D̄hk , h ∈ Iik

with the lowest function value among all of the same measure (δik), i.e.,

f(ch) ≤ f(cl), ∀l ∈ Iik. (11)

For the situation presented in Fig. 2, using Definition 2, two additional hyper-
rectangles from the groups where the original selection (see Definition 1) does
not consider are selected. From the Lipschitz optimization point of view, such
an approach may seem less favorable since it explores non-potentially optimal
hyper-rectangles. There is no such positive constant L̃ value, using which the
lower Lipschitz bound would have the lowest values for these additional candidates
selected by an aggressive strategy.

2.2.3 Improved aggressive selection strategy

In [14], the authors introduced an improvement to aggressive selection. They
showed that by limiting the refinement of the search space when the measure of
hyper-rectangles (δik) reached some prescribed limit δlimit, the memory usage
might be reduced from 10% to 70%. Therefore, the improved aggressive version
can run longer without memory allocation failure. We note that in our
experimental part (described in Section 4), the limit parameter (δlimit) for
algorithms using this selection scheme was set to the measure of a
hyper-rectangle that has been subdivided 50n times (same as in [45]).

2.2.4 Two-step-based Pareto selection

In our recent extension, DIRECT-GL [48], we introduced a new two-step-based
approach to identify the extended set of POHs, formally stated in Definition 3.

Definition 3 (Two-step Pareto selection) Find all Pareto optimal
hyper-rectangles that are non-dominated on size (the higher, the better) and
center point function value (the lower, the better), and all non-dominated on size
and distance from the current minimum point (the closer, the better). Then take
the unique union of these two identified sets of candidates.

Unlike the aggressive strategy (Definition 2), using Definition 3, hyper-rectangles
from the groups where the minimum objective function value is higher than the
minimum value from the larger groups are not selected. Compared to the original
selection (Definition 1), using Definition 3, the set of POHs is enlarged by adding
more medium-sized hyper-rectangles. In this sense, Pareto selection may be more
global. Additionally, in the second step, the hyper-rectangles that are

8 Linas Stripinis, Remigijus Paulavičius

Table 1 Summary of selection schemes typically used in DIRECT-type algorithms (in ascending
order of the year of publication)

Notation & source Identification of POH Final selection of POH

OS (Jones et. al, 1993) Original Selection strategy
using Definition 1.

Selects all candidates which
satisfies Definition 1.

AS (Baker et. al, 2000) Aggressive Selection
strategy using Definition 2.

Selects all candidates which
satisfies Definition 2.

IO (Gablonsky et. al,
2001)

Improved Original selection
strategy using Definition 1.

Selects only one hyper-rectangle
if there is a tie for the lowest
function value in the same
diameter group.

IA (He et. al, 2008) Improved Aggressive
selection strategy using
Definition 2, but limiting
the selection of candidates
to some prescribed limit
(δlimit).

Selects only one hyper-rectangle
if there is a tie for the lowest
function value in the same
diameter group and δik ≥ δ

limit.

GL (Stripinis et. al,
2018)

Two-step-based (Global-
Local) Pareto selection
using Definition 3.

Selects only one hyper-rectangle
if there is a tie for the lowest
function value or distance from
the current minimum point.

non-dominated with respect to the size and distance from the current minimum
point are selected. Therefore, the set of POHs is enlarged with various size
hyper-rectangles nearest the current minimum point.

2.3 Brief review of sampling and partitioning schemes

This subsection briefly reviews some of the primary sampling and partitioning
techniques proposed in the DIRECT literature. A summary of them is given in
Table 2, including illustrative examples.

2.3.1 Hyper-rectangular partitioning based on 1-dimensional trisection and center

sampling

In [18], Jones proposed a revised version of the original DIRECT algorithm. One of
the main algorithmic changes was made to the partitioning scheme. The author
suggested trisecting selected POHs only along the longest side (coordinate). If there
are several equal longest sides, the dimension that has been split the fewest times
during the search procedure is selected. If there is a tie on the latter criterion, the
lowest indexed dimension is selected. In [19], the authors experimentally justified
that such modification can significantly improve the performance of the original
DIRECT algorithm.

Lipschitz-inspired HALRECT Algorithm for Derivative-free Global Optimization 9

Table 2 Summary of sampling and partitioning schemes typically used in the DIRECT-type
algorithms (in ascending order of the year of publication)

Notation
& Source

Partitioning scheme Sampling scheme Illustrative example

N-DTC
(Jones et.
al, 1993)

Hyper-rectangular
partitioning based
on N-Dimensional
Trisection.

Sampling points are
located at the Center
points of each hyper-
rectangle.

1-DTC
(Jones et.
al, 2001)

Hyper-rectangular
partitioning based
on 1-Dimensional
Trisection.

Sampling points are
located at the Center
points of each hyper-
rectangle.

1-DTDV
(Sergeyev
et. al,
2006)

Hyper-rectangular
partitioning based
on 1-Dimensional
Trisection.

Sampling points
are located at two
Diagonal Vertices of
each hyper-rectangle.

1-DTCS
(Paulavǐsius
et. al,
2014)

Simplicial partitioning
based on 1-
Dimensional
Trisection.

Sampling points
are located at the
Center points of each
Simplex.

1-DBVS
(Paulavǐsius
et. al,
2014)

Simplicial partitioning
based on 1-
Dimensional
Bisection.

Sampling points are
located at Vertices of
each Simplex.

1-DBDP
(Paulavǐsius
et. al,
2016)

Hyper-rectangular
partitioning based
on 1-Dimensional
Bisection.

Sampling points
are located at two
Diagonals Points
equidistant between
themselves and a
diagonal’s vertices.

2.3.2 Hyper-rectangular partitioning based on 1-dimensional trisection and sampling

on diagonal vertices

Adaptive diagonal curves (ADC) based algorithm was proposed in [39].
Independently of the dimension, ADC evaluates the objective function f(x) on two
vertices of the main diagonals. By sampling two points per hyper-rectangle, such
a partitioning scheme reduces the chance that the algorithm samples two bad
points in the same hyper-rectangle containing an optimal solution. Thus, better
performance could be expected, especially on more complex problems. Moreover,
such a scheme has a significant advantage over center sampling methods when
most solution coordinates are located on the boundaries [45]. As in the revised
version of DIRECT [18], each selected POH is trisected along just one of the
longest sides.

10 Linas Stripinis, Remigijus Paulavičius

2.3.3 Simplicial partitioning based on 1-dimensional trisection/bisection and

sampling at center/vertices

In DISIMPL [31], simplicial partitions are considered instead of hyper-rectangles.
At the initialization step, the unit hyper-rectangle D̄ is partitioned into n!
simplices by the standard face-to-face simplicial division based on combinatorial
vertex triangulation [31]. After this, all simplices share the diagonal of the
feasible region and have equal hyper-volume. In [31], two different sampling and
partitioning strategies were proposed: i) evaluating the objective function at the
geometric center point of the simplex and trisecting them (1-DTCS); ii)
evaluating the objective function on all unique vertices of the simplex and
bisecting them (1-DBVS). While simplicial partitions are very promising for
symmetric [31] and problems with linear constraints [32] for box-constrained,
they are less appealing as the number of initial simplices increases speedily with
the number of dimensions.

2.3.4 Hyper-rectangular partitioning based on 1-dimensional bisection and sampling

at two diagonal points

One of the most recent proposals, BIRECT (BIsecting RECTangles) [26], is also
motivated by the diagonal partitioning strategy [39,40,42]. However, the
objective function is evaluated at two points on the diagonal that are equidistant
between themselves and the vertices of the diagonal. Such a sampling strategy
enables the reuse of the sampling points in descendant hyper-rectangles.
Moreover, the bisection is used instead of the typical trisection for
diagonal-based algorithms and most DIRECT-type algorithms.

3 Description of the HALRECT algorithm

Unlike most DIRECT-type algorithms based on central sampling combined with
trisection, HALRECT (HALving RECTangles) is based on a unique multi-point
sampling technique combined with a halving (bisection). We first give a
high-level illustration of the sampling and partitioning techniques used in the
HALRECT algorithm. We illustrate them on a binary tree (see Fig. 3). Note that
the value of the function was evaluated at more than one sampling point at each
POH (except the initial hyper-rectangle). The experimental part shows that
much more comprehensive information about the objective function over
hyper-rectangles can be exploited efficiently and positively impact the
algorithm’s performance. In contrast to the authors of the original DIRECT, who
proposed trisection, bisection combined with central sampling can also be a very
efficient combination. In the following subsections, we detail the main steps of
the HALRECT algorithm.

3.1 Initialization phase

Like others, the HALRECT algorithm begins by scaling the feasible region D to an
n-dimensional unit hyper-rectangle D̄1

0. It only refers to the initial space D when

Lipschitz-inspired HALRECT Algorithm for Derivative-free Global Optimization 11

Initialization

Ite
rat

ion
1 Iteration 1

Iteration
2

Ite
ra
tio

n
2

Iteration
3

Ite
ra
tio

n
3

Iteration
3

It
er
a
ti
o
n
3

Fig. 3 Sampling and partitioning techniques used in the HALRECT algorithm illustrated as a
binary tree

evaluating the objective function f(x). The selection of POH in the initialization
phase is trivial, as only one candidate is available. However, in the subsequent
iterations, the selection of POHs is not trivial, and Section 3.3 is devoted to
formalizing this.

3.2 Partitioning and sampling scheme

Like other DIRECT-type algorithms, HALRECT samples and evaluates the objective
function at midpoints (in the initial phase at c1 ∈ D̄1

0). However, unlike most
other algorithms, HALRECT uses bisection instead of trisection. As a result,
midpoints, after bisection, shift in different facets of the hyper-rectangle.
Moreover, all these sampling points can be involved in the POHs selection
process. This way, more detailed information about each hyper-rectangle is
considered. Fig. 4 illustrates the selection, sampling, and subdivision procedures
in the initialization and the subsequent first two iterations of HALRECT for two-
and three-dimensional test problems.

Now let us formalize the sampling and partitioning schemes used in HALRECT. In
iteration k, the current partition (Pk) and hyper-rectangle (D̄ik) are defined as in
Eqs. (6) and (7), where Ik is the index set of the current partition. Additionally, for
each hyper-rectangle, we define the representative sampling index set Hik storing
the indices (i) of all sampled points (ci) within the hyper-rectangle at which the
objective function has already been evaluated. We note that initially sampled
midpoints, after subdivision (bisection), change their position and later are located
on facets of hyper-rectangles (see Fig. 4).

12 Linas Stripinis, Remigijus Paulavičius

0 1
6

1
3

1
2

2
3

5
6

1
0

1
6

1
3

1
2

2
3

5
6

1

c1

c1

c 2

Initialization

0 1
6

1
3

1
2

2
3

5
6

1
0

1
6

1
3

1
2

2
3

5
6

1

c1
c2 c3

c1

Iteration 1

0 1
6

1
3

1
2

2
3

5
6

1
0

1
6

1
3

1
2

2
3

5
6

1

c1
c2 c3

c4

c5

c1

Iteration 2

0 1
6

1
3

1
2

2
3

5
6

1 0
1
6

1
3

1
2

2
3

5
6
10

1
6

1
3

1
2

2
3

5
6

1

c1

c1

c2

c 3

Initialization

0 1
6

1
3

1
2

2
3

5
6

1 0
1
6

1
3

1
2

2
3

5
6
10

1
6

1
3

1
2

2
3

5
6

1

c1c2 c3

c1

c2

Iteration 1

0 1
6

1
3

1
2

2
3

5
6

1 0
1
6

1
3

1
2

2
3

5
6
10

1
6

1
3

1
2

2
3

5
6

1

c1c2 c3

c4

c5

c1

c2

Iteration 2

New sampling point Previous sampling point Selected POH Unselected region

Fig. 4 Illustration of selection, sampling and partitioning schemes used in the HALRECT
algorithm on two-dimensional (upper part) and three-dimensional (lower part) test problems.

Using these notations, at the initial (k = 0) and the first two iterations, the
current partition (Pk) and the representative sampling index sets (Hik) are

P0 = {D̄1
0},H1

0 = {1},

P1 = {D̄2
1, D̄

3
1},H2

1 = {1, 2},H3
1 = {1, 3},

P2 = {D̄3
2, D̄

4
2, D̄

5
2},H3

2 = {1, 3},H4
2 = {1, 2, 4},H5

2 = {1, 2, 5}.

Selected POHs (Section 3.3 describes the selection process) are bisected only
along one coordinate with the maximum side length. Algorithm 1 describes the
procedure used in HALRECT to select the branching variable, i.e., coordinate index
(br ∈ {1, ..., n}).

Example 1 In Fig. 5, an illustration of branching variable selection is given in the
HALRECT algorithm moving from the second to the third iteration. In the second
iteration (k = 2), there are two POHs (D̄3

2 and D̄4
2). For D̄3

2 there is only one
longest side (coordinate j = 2 with the side length d32 = 1), therefore Algorithm 1
returns br = 2. However, for D̄3

2, at Step 1 of Algorithm 1, both sides are equal,
and therefore λ1 = {1, 2}. Since the midpoint c4 is also a current minimum point
(cmin), after Step 2, the set λ2 = {1, 2}. Finally, the coordinate with the smallest
index value (br = 1) is selected in the third step and returned.

Lipschitz-inspired HALRECT Algorithm for Derivative-free Global Optimization 13

Algorithm 1 Branching coordinate index selection

Input: Selected POH (D̄ik), new sampling point (ci ∈ D̄ik), current minimum point (cmin);
Output: Branching coordinate index (br) ;

1: Find all the longest sides (indices of corresponding coordinates)

λ1 = arg max
j=1,...,n

{
dij =| b̄ij − āij |

}
; //See Eq. (7) (12)

2: Find the furthest coordinate(s) from ci to cmin

λ2 = arg max
j∈λ1

{
| cij − cmin

j |
}

; (13)

3: Select the coordinate with the smallest index

br = min
j∈λ2

j. (14)

Return br.

0 1
6

1
3

1
2

2
3

5
6

1
0

1
6

1
3

1
2

2
3

5
6

1

c1c2 c3

c4

c5

c1

c 2

Iteration 2

0 1
6

1
3

1
2

2
3

5
6

1
0

1
6

1
3

1
2

2
3

5
6

1

c1c2 c3

c4

c5

c6

c7

c8 c9

c1

c 2

Iteration 3

New sampling point Previous sampling point Current minimum (cmin)
Selected POH Unselected region

Fig. 5 Illustration of sampling and partitioning schemes used in the HALRECT algorithm on a
two-dimensional example moving from the second to the third iteration.

When the branching coordinate (br) is identified, each POH (D̄ik) is bisected

into two equal smaller hyper-rectangles D̄left
k and D̄right

k . The new midpoints

(cleft ∈ D̄left
k and cright ∈ D̄right

k) are located at the following positions:

cleft = (ci1, ..., c
i
br −

dibr
4
, ..., cin), (15)

cright = (ci1, ..., c
i
br +

dibr
4
, ..., cin), (16)

where ci ∈ D̄ik. We note that naming new hyper-rectangles and midpoints as the
“left” and the “right” is only relative.

14 Linas Stripinis, Remigijus Paulavičius

Continuing in the same vein, after bisection of D̄3
2, new midpoints are located

at:

cleft = c6 =

(
c31, c

3
2 −

d32
4

)
=

(
3

4
,
1

4

)
,

cright = c7 =

(
c31, c

3
2 +

d32
4

)
=

(
3

4
,
3

4

)
.

After bisection of D̄4
2, new sampling points are located at:

cleft = c8 =

(
c41 −

d41
4
, c42

)
=

(
1

8
,
1

4

)
,

cright = c9 =

(
c41 +

d41
4
, c42

)
=

(
3

8
,
3

4

)
.

The illustration of sampled search space after ten iterations using the HALRECT

algorithm on Sum of Powers function is given in Fig. 6.

0 1
6

1
3

1
2

2
3

5
6

1

0

1
6

1
3

1
2

2
3

5
6

1

c1

c 2

2-dimensional case

0 1
6

1
3

1
2

2
3

5
6

1 0
1
6

1
3

1
2

2
3

5
6
1

0

1
6

1
3

1
2

2
3

5
6

1

c1

c2

c 3

3-dimensional case

Fig. 6 The illustration of sampled points after 10 iterations of the HALRECT algorithm using
two and three-dimensional Sum of Powers functions.

After subdivision, each POH (D̄ik) is removed, and two new ones are added to
the list that describes the current partition:

Pk+1 = (Pk \ D̄ik) ∪ D̄left
k ∪ D̄right

k .

Therefore, moving from iteration two to three, hyper-rectangles D̄3
2 and D̄4

2 are
removed from the partition (P2), and new ones are included:

P3 = {D̄5
3, D̄

6
3, D̄

7
3, D̄

8
3, D̄

9
3}.

Lipschitz-inspired HALRECT Algorithm for Derivative-free Global Optimization 15

New vectors of the representative index sets Hleft
k and Hright

k are constructed based

on the set Hik corresponding to the subdivided hyper-rectangle (D̄ik). The following
rules are used to create them:

Hleft
k = {h ∈ Hik : cibr ≥ c

h
br} ∪ {left}, (17)

Hright
k = {h ∈ Hik : cibr ≤ c

h
br} ∪ {right}. (18)

Example 2 Let us consider the subdivided hyper-rectangle D̄4
2, whose

representative sampling index set H4
2 = {1, 2, 4} (see Fig. 5). Then Hleft

3 and
Hright

3 consist of:

Hleft
3 = H8

3 =
{
h ∈ H4

2 : c41 ≥ ch1
}
∪ {8} = {2, 4, 8},

Hright
3 = H9

3 =
{
h ∈ H4

2 : c41 ≤ ch1
}
∪ {9} = {1, 2, 4, 9}.

In the following subsection, we will show how these representative index sets
(Hik) are used to select potentially optimal hyper-rectangles by taking into account
up to 2 × n + 1 objective function values over each hyper-rectangle. But first we
prove that the cardinality of Hik cannot exceed 2n+ 1.

Corollary 1 The cardinality of any representative sampling index set Hik is less than

or equal to 2× n+ 1, i.e.,

max
i∈Ik,∀k

card(Hik) ≤ 2× n+ 1. (19)

Proof In HALRECT, selected POHs are bisected only along one coordinate with the
maximum side length. Without loss of generality, assume that br = 1, i.e., the
branching (bisection) on the x1 variable takes place. As a result, the midpoint,
after bisection, shifts on the “left” and on the “right” facet of two newly created
hyper-rectangles (see the middle part for two and three-dimensional illustrations
in Fig. 4). This way, each subdivided hyper-rectangle cuts off the old facet and
replaces it with a new one. Therefore, only one point can appear on one facet
concerning the branching variable.

Throughout the search process (as the number of iterations k increases), all this
will be applied to other branching variables (x2, . . . , xn) too. From this follows, that
the set Hik is constructed only by points located in the hyper-rectangular facets
and one midpoint. As each hyper-rectangle contains 2 × n facets, the maximal
number of 2× n+ 1 points can be included in Hik.

3.3 Selection of potentially optimal hyper-rectangles

Since the objective function in the HALRECT algorithm is evaluated at multiple
points, more comprehensive information about the objective function values can
be efficiently integrated into the selection scheme. In Definition 4, we introduce
four different selection schemes implemented in the new HALRECT algorithm, where
the main difference is how the value F ik is calculated (see Eqs. (23a) to (23d)).

16 Linas Stripinis, Remigijus Paulavičius

Definition 4 (HALRECT selection) Let ci ∈ D̄ik denote the midpoint, cj ∈ D̄ik, j ∈
Hik denote all sampling points (including ci) of hyper-rectangle (D̄ik), card(Hik) –
the cardinality of (Hik), δik be a measure of D̄ik, and F ik – aggregated value based
on objective function values attained at sampling point(s) whose indices belong to
Hik. Let ε > 0 be a positive constant and fmin be the best currently found objective
function value. A hyper-rectangle D̄hk , h ∈ Ik is said to be potentially optimal if
there exists some rate-of-change (Lipschitz) constant L̃ > 0 such that

Fhk − L̃δ
h
k ≤ F

i
k − L̃δ

i
k, ∀i ∈ Ik, (20)

Fhk − L̃δ
h
k ≤ fmin − ε

∣∣∣fmin
∣∣∣ , (21)

where the measure of the hyper-rectangle D̄ik is

δik =
∥∥∥bik − aik

∥∥∥ , (22)

and F ik is defined in one of the following four ways

F ik = f(ci) (23a)

F ik = min
j∈Hi

k

f(cj) (23b)

F ik =
1

card(Hik)

card(Hi
k)∑

j=1

f(cj) (23c)

F ik =
1

2

(
min
j∈Hi

k

f(cj) + f(ci)

)
(23d)

3.3.1 Midpoint value based selection

Definition 1 is typically used in most existing DIRECT-type algorithmic
modifications to select POHs. Geometrical visualization of the selection scheme
used in DIRECT was shown in Fig. 2. The same selection scheme could be directly
applied using the new sampling and partitioning strategy proposed in HALRECT,
as the midpoint is always included in the sampling set. It is obtained by using
Eq. (23a) in Definition 4.

For the illustrative comparison of all selection schemes, we will use
partitioned space in the seventh iteration of the HALRECT algorithm solving the
two-dimensional Bukin6 test function. The selected POHs using this selection
scheme are shown in part (a) on the right panel of Fig. 7. Y -axis shows the
objective function values attained at the midpoints f(ci) of hyper-rectangles
belonging to the current partition. These values can also be seen on the left
panel of Fig. 7. The apparent drawback is that the midpoints of previously
partitioned hyper-rectangles (see black dots on the left panel of Fig. 7) are not
involved in POH selection anymore.

Lipschitz-inspired HALRECT Algorithm for Derivative-free Global Optimization 17

0 1
6

1
3

1
2

2
3

5
6

1
0

1
6

1
3

1
2

2
3

5
6

1

50.05100.00 0.10

122.57

122.57

119.97 120.02

158.11

70.71

25.02 96.84

90.16

82.94

150.10

86.70

90.21

90.26

87.61 94.51

82.99

147.97

175.02 143.63

83.04

148.02

78.12 85.78

60.03

105.41

43.32

129.92

c1

c 2

HALRECT partitioning scheme

Using eq. (23a) in Def. 4 Using eq. (23b) in Def. 4

Using eq. (23c) in Def. 4 Using eq. (23d) in Def. 4

0

50

100

150

200
Using Eq. (23a) in Def. 4:

non-POH POH

(a)

f
(c

i
)

0

50

100

150

200
Using Eq. (23b) in Def. 4:

non-POH POH

(b)

m
in

l∈
H
i k

f
(c

l)

0 0.15 0.3 0.45 0.6

0

50

100

150

200
Using Eq. (23c) in Def. 4:

non-POH POH

(c)

δik

1

ca
rd

(H
i k
)

c
a
rd

(H
i k
)

∑ l=
1

f
(c

l)

0 0.15 0.3 0.45 0.6

0

50

100

150

200
Using Eq. (23d) in Def. 4:

non-POH POH

(d)

δik

1 2

 
m
in

l∈
H
i k

f
(c

l)
+

f
(c

i
) 

Selection of POH using IO on different models

Fig. 7 Two-dimensional illustration (in the seventh iteration of HALRECT on Bukin6 test
problem) of four different POH selection scheme variations (see Definition 4) implemented
in the HALRECT algorithm and controlled by Eqs. (23a) to (23d).

3.3.2 Minimum value based selection

The second selection scheme in HALRECT is motivated by the BIRECT algorithm [26].
Instead of objective function evaluation at midpoints, the sampling and evaluation
on the diagonal points equidistant between themselves and the endpoints of a
diagonal are used. Then, in the selection of POHs, the minimum of these two
points is used. In the HALRECT case, the best (minimum) function value is used
at all the points sampled in the hyper-rectangle (D̄ik). It is obtained by using
Eq. (23b) in Definition 4.

As more sampling points are used in the lower Lipschitz bound calculation,
more information about the objective function is exploited for POH identification,
likely to result in faster convergence. Therefore, on the vertical y-axis, instead of
function values obtained at the current midpoints, the minimum values attained
at all sampled points over a hyper-rectangle (minj∈Hi

k
f(cj)) are used (see part (b)

on the right side of Fig. 7).

Corollary 2 For each hyper-rectangle D̄ik the following condition holds

min
j∈Hi

k

f(cj) ≤ f(ci) (24)

Proof It follows directly from the definition of Hik (see Definition 4).

3.3.3 Mean value based selection scheme

The third selection scheme implemented in HALRECT is motivated by the mean value
obtained at diagonal sampling points and proposed in [39]. In the HALRECT case, the
mean function value is calculated from all sampled points on the hyper-rectangle
(D̄ik). It is obtained by using Eq. (23c) in Definition 4. Using this selection scheme,
on the vertical y-axis, the mean values calculated from objective function values

18 Linas Stripinis, Remigijus Paulavičius

attained at all sampled points over a hyper-rectangle are used (see part (c) on the
right side of Fig. 7).

3.3.4 Midpoint and minimum values based selection scheme

The final selection scheme (see Eq. (23d)) implemented in HALRECT combines ideas
used in Eq. (23a) and Eq. (23c) and takes the mean of these two values. On
the vertical y-axis, the mean values calculated for each hyper-rectangle using two
values: i) the midpoint value f(ci), and ii) the minimum value minj∈Hi

k
f(cj) are

used (see part (d) on the right side of Fig. 7).
The impact of these four selection schemes on the performance of HALRECT is

explored in Section 4.1.

3.3.5 Reducing the set of selected POHs

It was stated in Section 2.2 that sometimes, e.g., using Definition 1 on symmetric
problems, there might exist many POHs with the same measure δk and objective
function value, leading to a significant increase of selected “equivalent” POHs per
iteration. This situation can also arise in HALRECT, mainly when Eq. (23b) is used.
Then a good objective function value attained at the vertex can be shared up to
2n hyper-rectangles.

Many authors (see, e.g., [18,19,11,45,50]) observed that selecting only one
from many “equivalent” candidates can significantly increase the performance of
DIRECT-type algorithms. Some authors (see, e.g., [1,11,18]) did not specify how
the only candidate should be selected, while in [48,50], the authors selected a
hyper-rectangle with the largest index value among them. In the HALRECT

algorithm, as more sampling points per hyper-rectangle are available, we use a
unique strategy to select “the most promising candidate”. Specifically, we sort in
ascending order the objective function values attained at the points belonging to
the hyper-rectangle. Then, if there are two hyper-rectangles of the same size with
the same minimum value, we compare the second smallest values and choose the
hyper-rectangle with the smaller value. If the second smallest values are equal,
we compare the subsequent ones.

3.4 Algorithmic steps

The complete description of the HALRECT algorithm is shown in Algorithm 2. The
inputs for the algorithm are the problem (f), optimization domain (D), and one
(or few) stopping criteria: required tolerance (εpe), the maximal number of
function evaluations (Mmax), and the maximal number of iterations (Kmax). After
termination, HALRECT returns the value of the objective function found (fmin)
and the solution point (xmin) together with algorithmic performance measures:
final tolerance – percent error (pe), the number of function evaluations (m), and
the number of iterations (k).

Like almost all DIRECT-type algorithms, HALRECT performs initialization:
normalization of the feasible region, initial evaluation of the objective function at
the midpoint, setting initial values for performance measures, and specifying

Lipschitz-inspired HALRECT Algorithm for Derivative-free Global Optimization 19

Algorithm 2 The HALRECT algorithm

1: HALRECT(f ,D,opt);
Input: Problem f , search domain D, and adjustable algorithmic parameters opt: tolerance

(εpe), the maximal number of function evaluations (Mmax) and the maximal number of
iterations (Kmax);

Output: The best objective function value fmin, minimum point cmin, and algorithmic
performance measures pe, k, m;

2: Normalize the search domain D to be the unit hyper-rectangle D̄;
3: Initialize: c1 = (1

2
, . . . , 1

2
), k = 1, m = 1 and pe; // pe defined in Eq. (30)

4: Evaluate f1 = f(c1), and set fmin = f1, cmin = c1, H1
1 = {1};

5: while pe > εpe and m < Mmax and k < Kmax do
6: Identify the set Sk ⊆ Pk of POHs applying Definition 4;

7: for each D̄jk ∈ Sk do
8: Find the branching coordinate index (br) using Algorithm 1;

9: Bisect D̄jk into two new hyper-rectangles D̄m+1
k and D̄m+2

k ;

10: Create new midpoints cm+1 and cm+2; // see Eqs. (15) and (16)
11: Construct Hm+1,Hm+2; // see Eqs. (17) and (18)

12: Update the partition set: Pk = Pk \ D̄jk ∪ D̄
m+1
k ∪ D̄m+2

k ;

13: if f(cm+1) ≤ fmin or f(cm+2) ≤ fmin then
14: Update fmin, cmin;
15: end if
16: Update performance measures: k, m and pe;
17: end for
18: end while
19: Return fmin, cmin, and algorithmic performance measures: k, m and pe.

stopping conditions (see Algorithm 2, lines 2–4). The main while loop (see
Algorithm 2, lines 5–18) is executed until any specified stopping condition is
satisfied. At the beginning of each iteration, the HALRECT algorithm identifies the
set of POHs (see Algorithm 2, line 6). As noted in the previous section, the
HALRECT algorithm uses four different approaches controlled by Eqs. (23a)
to (23d). Then, the HALRECT algorithm bisects all POHs, samples at new
midpoints of created hyper-rectangles and updates performance measures. In the
end, the solution is found, and the performance measures are returned.

3.5 Convergence properties of the HALRECT algorithm

The convergence properties of DIRECT-type algorithms are broadly reviewed and
investigated (see, e.g., [8,20,26,27,39]). Typically, they belong to the class of
“divide the best” methods and have the “everywhere-dense” type of convergence,
that is, convergence to each point of the feasible region. The continuity of the
objective function (at least in the neighborhood of global minima) is the only
assumption required to ensure convergence.

The convergence of HALRECT follows from a logic similar to that of other DIRECT-
type algorithms. Let us state it formally in Theorem 1, when the maximal allowed
number of generated trial points, or the maximal number of function evaluations,
Mmax →∞.

20 Linas Stripinis, Remigijus Paulavičius

Theorem 1 For any global minima x∗ ∈ D̄ and any ε > 0 there exists an iteration

number kε ≥ 1 and a sampling point cj ∈ D̄i
∗

k ⊆ D̄, such that

max
j∈Hi∗

k

{‖cj − x∗‖} ≤ ε. (25)

Proof In the selection scheme developed in HALRECT (see Definition 4), every
iteration (k) always selects at least one hyper-rectangle D̄max

k ∈ Sk ⊆ Pk from the
group of hyper-rectangles with the most extensive measure δmax

k (see the right
panel of Fig. 7)

δmax
k = max

i∈Ik
{δik}. (26)

From Eq. (26) follows, the hyper-rectangle D̄max
k with the largest measure δmax

k

will be bisected through the longest coordinate (see Section 3.2) in each HALRECT

iteration. Since each group δk of distinct measures contains only a finite number of
hyper-rectangles, all hyper-rectangles of the group δmax

k will be partitioned after
a sufficient number of iterations.

The procedure will be repeated with a new group of the largest
hyper-rectangles. As a result, after the finite number of iterations, the current
partition Pk, k ≥ kε will have only hyper-rectangles measured δmax

k ≤ ε, i.e.,

‖bi
max

k − ai
max

k ‖ ≤ ε. (27)

From Eq. (27) follows, the measure δi
∗

k of the hyper-rectangle containing the global

minimum x∗ ∈ D̄i
∗

k also does not exceed ε

‖bi
∗

k − ai
∗

k ‖ ≤ ε. (28)

Moreover, it is clear, that

max
j∈Hi∗

k

{‖cj − x∗‖} ≤ δi
∗

k . (29)

Thus, from Eqs. (28) and (29) follows Eq. (25).

4 Experimental results

This section describes the numerical experiments conducted to evaluate the
performance of the newly introduced HALRECT algorithm and all its modifications
by comparing them with other well-known and relevant DIRECT-type approaches.
In total, we examine twelve variations of HALRECT. We compared them with
twelve recently introduced DIRECT-type algorithms [45] available in the most
recent version of DIRECTGO v1.1.0 [46] using 96 box-constrained global
optimization test problems and their perturbed versions from DIRECTGOLib

v1.1 [47,51] (listed in Table 5 in Appendix A).
In our recent study [45], we stress that the optimization domains (D) for

certain test problems were redesigned to eliminate the dominance of particular
partitioning schemes. The exact modified domains are also considered in this
paper. Note that different subsets (e.g., low dimensional problems (n ≤ 4),
non-convex problems, etc.) of the entire set were used to deepen the

Lipschitz-inspired HALRECT Algorithm for Derivative-free Global Optimization 21

investigation. All the problems and algorithms used in this section are
implemented in the Matlab R2022a environment. All computations were
performed using an Intel R CoreTM i5-10400 @ 2.90GHz processor and 16 GB
RAM. All algorithms were tested using a limit of Mmax = 106 function
evaluations in each run. For the 96 analytical test cases with a priori known
global optima f∗, one of the used stopping criteria is based on the percent error:

pe = 100×

 f(x)−f∗

|f∗| , f∗ 6= 0,

f(x), f∗ = 0,
(30)

where f∗ is the known global optimum. Thus if not specified differently, tested
algorithms were stopped when the percent error became smaller than the
prescribed value equal to εpe = 10−2 or when the number of function evaluations
exceeded the prescribed limit of 106.

Testing results shown in this article are also available in digital form in the
Results/JOGO2 directory of the GitHub repository [46]. The Scripts/JOGO2

directory of the same GitHub repository [46] provides the MATLAB script for
cycling through all DIRECTGOLib v1.1 test problems used in this article. The
script can reproduce the results presented here. In addition, they can be used to
compare and evaluate newly developed algorithms.

4.1 Comparison of different selection strategies in HALRECT

In this section, the impact and comparison of three different selection schemes:
Lipschitz-based (using Definition 4), improved aggressive (using Definition 2), and
two-step based Pareto (using Definition 3), and four different strategies to obtain
an aggregated objective function information over hyper-rectangles (controlled by
Eqs. (23a) to (23d)) in the performance of HALRECT is investigated. In total, twelve
different variations of HALRECT are compared.

The results obtained on the entire set of 96 DIRECTGOLib v1.1 test problems
are summarized in Table 3. The best results are highlighted in bold. In the upper
part of this table, the performance of HALRECT is given using four strategies to
obtain the aggregated information about the objective function (F ik). As can be
seen, there is no single superior strategy. The best average results are obtained
with the first strategy based on a single midpoint value (see Eq. (23a)). However,
the overall lowest number of unsolved problems (7/96) was obtained with the
second strategy. It is based on the minimum value attained at all sampled points
belonging to a certain hyper-rectangle (see Eq. (23b)). Moreover, it performed
significantly better on average than the other strategies on low-dimensional (n ≤ 4)
problems. It can also be seen that the third strategy, based on the mean value
(see Eq. (23c)), was the worst for practically all summarized cases. The best median
results were obtained with the fourth strategy (see Eq. (23d)), which combines all
three strategies, using the arithmetic mean of the estimates used in the first two
strategies.

Our recent work [45] showed that combining existing partition and selection
schemes into DIRECT-type algorithms could lead to more efficient ones. Motivated
by this, we have created two different HALRECT algorithmic versions, HALRECT-IA

and HALRECT-GL, where the original partition strategy is used, but the selection

22 Linas Stripinis, Remigijus Paulavičius

scheme is changed. Specifically, in HALRECT-IA, the original Lipschitz lower
bounds-based selection scheme (Definition 4) is replaced with the improved

aggressive selection (Section 2.2.3) using newly introduced Eqs. (23a) to (23d) for
the information about the objective function. Similarly, in HALRECT-GL, the
original HALRECT selection scheme is replaced with a two-step-based (Global-Local)

Pareto selection (Section 2.2.3). Consequently, the results obtained on the same
testbed are summarized in the middle and bottom parts of Table 3. Comparing
the influence of Eqs. (23a) to (23d) on the performance of three different versions
of HALRECT, we observe that for both HALRECT-IA and HALRECT-GL, the best results
for practically all cases are obtained when Eq. (23d) is used. However, in the case
of HALRECT-IA and HALRECT-GL, we no longer observe that Eq. (23c) is always the
worst, as was the case for HALRECT. Comparing HALRECT, HALRECT-IA, and
HALRECT-GL, we observe that the lowest number of unsolved problems (2/96) is
obtained using HALRECT-GL. It was the best for almost all criteria, except for the
median value, where HALRECT with Eq. (23d) performed the best.

Table 3 Comparison of HALRECT versions based on three different selection schemes: Lipschitz-
based (used in HALRECT), improved aggressive (used in HALRECT-IA), and two-step based Pareto
(used in HALRECT-GL) and four different strategies to obtain an aggregated objective function
information (controlled by Eqs. (23a) to (23d)). The performance measured as the number of
function evaluations. The best results are marked in bold.

Alg. Criteria # of cases Eq. (23a) Eq. (23b) Eq. (23c) Eq. (23d)

H
A
L
R
E
C
T

of failed problems 96 8 7 15 12
Median results 96 1, 419 2, 119 3, 581 976
Average results 96 127,562 143, 909 216, 933 142, 403
Average (n ≤ 4) 51 30, 792 7,248 31, 456 48, 456
Average (n > 4) 45 237,918 298, 952 427, 839 249, 953
Average (convex) 30 93, 018 167, 616 236, 137 83,835
Average (non-convex) 66 143, 263 133,133 208, 204 169, 024
Average (uni-modal) 15 62, 774 159, 110 221, 099 60,046
Average (multi-modal) 81 142, 513 140,401 215, 972 161, 408

H
A
L
R
E
C
T
-
I
A

of failed problems 96 9 9 15 5
Median results 96 1, 826 1, 880 2, 737 1,581
Average results 96 114, 222 124, 552 194, 832 62,874
Average (n ≤ 4) 51 43, 203 10, 634 13, 223 3,762
Average (n > 4) 45 195, 668 253, 895 400, 948 129,952
Average (convex) 30 105, 963 139, 058 234, 394 51,166
Average (non-convex) 66 117, 975 117, 958 176, 849 68,197
Average (uni-modal) 15 65, 698 127, 693 250, 054 62,332
Average (multi-modal) 81 125, 419 123, 827 182, 084 63,000

H
A
L
R
E
C
T
-
G
L

of failed problems 96 5 7 5 2
Median results 96 1,404 2, 564 2, 185 1, 520
Average results 96 64, 275 107, 127 65, 271 41,061
Average (n ≤ 4) 51 25, 847 10, 831 4, 360 3,301
Average (n > 4) 45 108, 401 216, 503 134, 399 83,929
Average (convex) 30 40, 343 79, 374 13, 521 7,055
Average (non-convex) 66 75, 153 119, 742 88, 793 56,519
Average (uni-modal) 15 24, 714 116, 545 65, 538 18,646
Average (multi-modal) 81 73, 405 104, 953 65, 209 46,234

Additionally, the operational characteristics [13,53] using all 96 test problems
from DIRECTGOLib v1.1 are reported in Fig. 8. Operational characteristics

Lipschitz-inspired HALRECT Algorithm for Derivative-free Global Optimization 23

provide the proportion of test problems that can be solved within a given budget
of function evaluations. Fig. 8 reveals that all HALRECT algorithms based on three
different selection schemes and four different strategies for F ik (Eqs. (23a)
to (23d)) perform similarly when the budget given for the evaluations of
objective functions is relatively small (m ≤ 1, 000). Within this budget, all
versions of HALRECT could solve approximately half of the test problems.
However, as the number of function evaluations increases (as more complex
problems are considered), the dominance of Eq. (23d) based versions (especially
HALRECT-GL) begins to emerge. At the same time, the worst results come from
versions based on Eq. (23c).

102 103 104 105 106
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eq. (23a)

Eq. (23b)

Eq. (23c)

Eq. (23d)

Algorithm
HALRECT
HALRECT-IA
HALRECT-GL

Function evaluations

P
ro
p
o
rt
io
n
o
f
so
lv
ed

p
ro
b
le
m
s

Operational characteristics

Fig. 8 Operational characteristics of HALRECT, HALRECT-IA, HALRECT-GL algorithms based on
Eqs. (23a) to (23d) (used in the selection scheme) on the whole set of DIRECTGOLib v1.1 test
problems.

4.2 Comparison of three HALRECT variations vs. twelve recent DIRECT-type
algorithms

Based on the results presented in the previous section, the three most promising
variations of HALRECT algorithms (all based on Eq. (23d)) are considered and
compared with twelve different DIRECT-type global optimization variations
introduced in [45]. These twelve DIRECT-type algorithms have been created by
newly combining three known selection schemes: i) Improved Original (IO), ii)
Improved Aggressive (IA), and iii) two-step-based (Global-Local) Pareto (GL)
(see Table 1), and four partitioning techniques: i) Hyper-rectangular partitioning
based on N-Dimensional Trisection and objective function evaluations at Center
points (N-DTC), ii) Hyper-rectangular partitioning based on 1-Dimensional
Trisection and objective function evaluations at Center points (1-DTC), iii)

24 Linas Stripinis, Remigijus Paulavičius

Hyper-rectangular partitioning based on 1-Dimensional Trisection and objective
function evaluations at two Diagonal Vertices (1-DTDV), and iv)
Hyper-rectangular partitioning based on 1-Dimensional Bisection and objective
function evaluations at two Diagonal Points (1-DBDP) (see Table 2).

Table 4 shows the summarized comparative results on the whole set of 96
box-constrained test problems from DIRECTGOLib v1.1. In Table 4, each column
corresponds to a DIRECT-type algorithm based on a different partitioning scheme.
Since each partition scheme was run on 96 problems using 3 different selection
methods (rows of Table 4), each DIRECT-type algorithm based on a certain partition
scheme was involved in solving 3 × 96 = 288 problems. As previously, the best
results are marked in bold. We note that the original HALRECT algorithm does
not have the purpose of adapting the IO scheme designed to reduce the number of
“equivalent” hyper-rectangles. As described in Section 3.3.5, the HALRECT algorithm
internally uses an innovative approach to deal with such cases.

Regardless of the chosen POH selection scheme (IO, IA, GL), the smallest
number of unsolved problems was achieved using the HALRECT partitioning
scheme-based algorithms (HALRECT, HALRECT-IA, HALRECT-GL). Summing the
results, HALRECT partitioning scheme-based algorithms did not solve (19/288) of
the test cases, while the second and third best partitioning schemes (1-DBDP
and N-DTC) based algorithms did not solve (28/288) and (29/282) cases
accordingly. Naturally, a higher number of solved problems leads to better
performance of the HALRECT partitioning scheme-based algorithms. Consequently,
the three HALRECT partitioning scheme-based algorithms required approximately
31% and 36% evaluations of fever functions in comparison to the other two
algorithms based on the best partition schemes (1-DBDP and N-DTC) based
algorithms. The most notable difference in the HALRECT partitioning scheme was
observed when the IA selection scheme was used. The HALRECT-IA algorithm
required approximately 57% and 61% compared to the two best algorithms
(1-DBDP-IA and 1-DTC-IA).

In different subsets of test problems, again, on average, the HALRECT

partitioning scheme-based algorithms dominate the other schemes. The
dominance of the HALRECT partitioning scheme can be seen especially on more
complex, multi-modal, non-convex, and n > 4 test problems. Solving multi-modal
problems with HALRECT partitioning scheme-based algorithms required
approximately 33% and 37% evaluations of fever functions compared to the other
two algorithms based on the best partition schemes (1-DBDP and N-DTC).
Among the different selection schemes, the highest level of dominance has been
observed using the GL selection scheme. HALRECT-GL required approximately 62%
and 65% fever function evaluations compared to the other two best algorithms
(1-DBDP-GL and N-DTC-GL). On a subset of non-convex test cases, HALRECT

partitioning-based algorithms required approximately 38% and 55% fever
function evaluations than the other two best algorithms (1-DBDP and N-DTC).
Once again, the HALRECT-GL version has shown even more outstanding
performance and outperformed the second-best algorithm 1-DBDP-GL by
approximately 59% of fever function evaluations.

Apart from the convex test problems, the advantage of HALRECT partitioning
scheme-based algorithms is lesser on more straightforward test problems. For the
n ≤ 4 optimization test instances, HALRECT partitioning-based algorithms required
approximately 4% and 24% fever function evaluations than the other two best 1-

Lipschitz-inspired HALRECT Algorithm for Derivative-free Global Optimization 25

T
a
b
le

4
T

h
e

n
u

m
b

er
o
f

fu
n

ct
io

n
ev

a
lu

a
ti

o
n

s
a
n
d

th
e

ex
ec

u
ti

o
n

ti
m

e
(i

n
se

co
n

d
s)

o
f

th
re

e
H
A
L
R
E
C
T

v
er

si
o
n

s
b

a
se

d
o
n

E
q
.

(2
3
d

)
v
s.

tw
el

v
e
D
I
R
E
C
T
-t

y
p

e
a
lg

o
ri

th
m

s
(i

n
tr

o
d

u
ce

d
in

[4
5
])

o
n
D
I
R
E
C
T
G
O
L
i
b

v
1
.
1

te
st

p
ro

b
le

m
s.

T
h

e
b

es
t

re
su

lt
s

a
re

m
a
rk

ed
in

b
o
ld

.

C
ri

te
ri

a
/

A
lg

o
ri

th
m

s
#

o
f

ca
se

s
F

u
n

ct
io

n
ev

a
lu

a
ti

o
n

s
E

x
ec

u
ti

o
n

ti
m

e
(i

n
se

co
n

d
s)

H
A
L
R
E
C
T

N
-D

T
C

-I
O

1
-D

T
C

-I
O

1
-D

B
D

P
-I

O
1
-D

T
D

V
-I

O
H
A
L
R
E
C
T

N
-D

T
C

-I
O

1
-D

T
C

-I
O

1
-D

B
D

P
-I

O
1
-D

T
D

V
-I

O

#
o
f

fa
il
ed

p
ro

b
le

m
s

9
6

1
2

1
2

1
8

1
2

2
1

−
−

−
−

−
A

v
er

a
g
e

re
su

lt
s

9
6

1
4
2
,4

0
3

1
4
2
,2

7
7

2
1
1
,4

6
3

1
4
6
,1

3
3

2
2
7
,4

5
5

6
5
2
.9

7
1
8
4
.7
7

4
3
5
.4

9
3
0
6
.4

3
9
,5

3
3
.2

8
A

v
er

a
g
e

(n
≤

4
)

5
1

4
8
,4

5
6

4
3
,8

3
2

4
2
,6

3
3

4
1
,6

0
2

4
1
,9

9
0

3
1
7
.9

6
1
8
0
.4

1
3
2
1
.2

3
1
6
9
.5
4

1
,7

3
0
.3

9
A

v
er

a
g
e

(n
>

4
)

4
5

2
4
9
,9

5
3

2
5
4
,8

1
9

4
0
3
,7

4
9

2
6
5
,5

2
2

4
3
8
,5

7
4

1
,0

3
9
.7

2
1
9
3
.7
3

5
7
2
.1

3
4
6
5
.3

3
1
8
,4

1
4
.9

9
A

v
er

a
g
e

(c
o
n
v
ex

)
3
0

8
3
,8

3
5

1
1
1
,8

1
7

1
7
0
,6

7
5

8
0
,4

9
0

1
7
1
,8

6
8

1
0
5
.1

7
9
9
.5

1
2
9
2
.3

7
8
9
.4
3

7
,2

0
4
.9

6
A

v
er

a
g
e

(n
o
n

-c
o
n
v
ex

)
6
6

1
6
9
,0

2
4

1
5
6
,1

2
2

2
3
0
,0

0
4

1
7
5
,9

7
1

2
5
2
,7

2
2

9
0
1
.9

7
2
2
3
.5
3

5
0
0
.5

5
4
0
5
.0

6
1
0
,5

9
1
.6

0
A

v
er

a
g
e

(u
n

i-
m

o
d

a
l)

1
5

6
0
,0

4
6

6
0
,1

0
0

5
7
,3

6
0

6
2
,0

1
6

1
1
1
,5

4
7

5
5
.2

3
2
7
.3
2

1
0
0
.3

8
6
2
.2

9
4
,8

0
0
.2

8
A

v
er

a
g
e

(m
u

lt
i-

m
o
d

a
l)

8
1

1
6
1
,4

0
8

1
6
1
,2

4
0

2
4
7
,0

2
6

1
6
5
,5

4
5

2
5
4
,2

0
3

7
9
0
.9

1
2
2
1
.1
1

5
1
2
.8

3
3
6
2
.7

7
1
0
,6

2
5
.5

0
M

ed
ia

n
re

su
lt

s
9
6

9
7
6

7
7
1

1
,1

9
8

9
5
3

8
4
7

0
.6

8
0
.1
7

0
.2

7
0
.3

0
0
.7

5

C
ri

te
ri

a
/

A
lg

o
ri

th
m

s
#

o
f

ca
se

s
H
A
L
R
E
C
T
-
I
A

N
-D

T
C

-I
A

1
-D

T
C

-I
A

1
-D

B
D

P
-I

A
1
-D

T
D

V
-I

A
H
A
L
R
E
C
T
-
I
A

N
-D

T
C

-I
A

1
-D

T
C

-I
A

1
-D

B
D

P
-I

A
1
-D

T
D

V
-I

A

#
o
f

fa
il
ed

p
ro

b
le

m
s

9
6

5
1
3

1
3

1
1

1
8

−
−

−
−

−
A

v
er

a
g
e

re
su

lt
s

9
6

6
2
,8

7
4

1
7
2
,8

0
5

1
6
0
,6

9
1

1
4
6
,8

8
7

2
0
2
,6

9
4

1
8
.6
7

2
1
.4

3
6
9
.0

6
3
3
.5

9
8
,5

8
0
.8

1
A

v
er

a
g
e

(n
≤

4
)

5
1

3
,7

6
2

2
5
,9

6
8

2
3
,6

3
8

4
5
,6

4
3

9
,7

8
5

1
.0
9

2
.7

4
4
.1

0
1
4
.0

3
1
6
.8

0
A

v
er

a
g
e

(n
>

4
)

4
5

1
2
9
,9

5
2

3
3
9
,7

9
1

3
1
6
,5

4
1

2
6
2
,6

4
0

4
2
1
,5

3
9

3
8
.6
1

4
2
.6

7
1
4
2
.7

6
5
6
.0

7
1
8
,2

8
7
.0

5
A

v
er

a
g
e

(c
o
n
v
ex

)
3
0

5
1
,1

6
6

1
4
9
,7

1
1

1
2
6
,0

3
0

1
0
9
,3

7
4

1
5
3
,5

9
4

1
9
.0

6
1
7
.6
5

5
1
.2

7
2
4
.6

2
7
,2

0
4
.2

4
A

v
er

a
g
e

(n
o
n

-c
o
n
v
ex

)
6
6

6
8
,1

9
7

1
8
3
,3

0
2

1
7
6
,4

4
6

1
6
3
,9

3
9

2
2
5
,0

1
2

1
8
.4
9

2
3
.1

5
7
7
.1

4
3
7
.6

7
9
,2

0
6
.5

2
A

v
er

a
g
e

(u
n

i-
m

o
d

a
l)

1
5

6
2
,3

3
2

1
0
8
,0

6
8

7
8
,2

2
6

7
3
,9

5
7

1
1
1
,8

0
5

2
0
.9

0
9
.6
1

3
0
.5

0
1
5
.2

8
4
,8

0
0
.4

3
A

v
er

a
g
e

(m
u

lt
i-

m
o
d

a
l)

8
1

6
3
,0

0
0

1
8
7
,7

4
4

1
7
9
,7

2
2

1
6
3
,7

1
7

2
2
3
,6

6
8

1
8
.1
5

2
4
.1

5
7
7
.9

5
3
7
.8

2
9
,4

5
3
.2

0
M

ed
ia

n
re

su
lt

s
9
6

1
,5

8
1

7
,6

0
8

1
,2

8
7

2
,1

0
8

1
,5

8
6

0
.4

1
0
.4

1
0
.2
1

0
.2
1

0
.5

3

C
ri

te
ri

a
/

A
lg

o
ri

th
m

s
#

o
f

ca
se

s
H
A
L
R
E
C
T
-
G
L

N
-D

T
C

-G
L

1
-D

T
C

-G
L

1
-D

B
D

P
-G

L
1
-D

T
D

V
-G

L
H
A
L
R
E
C
T
-
G
L

N
-D

T
C

-G
L

1
-D

T
C

-G
L

1
-D

B
D

P
-G

L
1
-D

T
D

V
-G

L

#
o
f

fa
il
ed

p
ro

b
le

m
s

9
6

2
4

5
5

5
−

−
−

−
−

A
v
er

a
g
e

re
su

lt
s

9
6

4
1
,0

6
1

7
1
,4

8
8

6
2
,4

7
5

6
5
,4

4
2

7
1
,3

1
9

1
6
.3

1
9
.1
0

3
8
.1

2
2
1
.2

5
3
,9

0
7
.7

9
A

v
er

a
g
e

(n
≤

4
)

5
1

3
,3

0
1

9
,6

7
5

7
,0

7
3

4
1
,3

0
0

5
,7

7
2

0
.6
3

1
.0

8
1
.0

9
1
4
.3

3
1
0
.6

8
A

v
er

a
g
e

(n
>

4
)

4
5

8
3
,9

2
9

1
4
1
,7

5
3

1
2
5
,4

1
7

9
3
,7

1
4

1
4
5
,7

3
3

3
4
.0

9
1
8
.2
1

8
0
.1

1
2
9
.4

1
8
,3

2
4
.7

5
A

v
er

a
g
e

(c
o
n
v
ex

)
3
0

7
,0

5
5

5
5
,3

2
0

4
5
,5

2
0

4
2
,3

2
6

8
,9

5
0

1
.4
8

6
.9

4
2
2
.6

6
1
3
.3

9
2
0
.7

9
A

v
er

a
g
e

(n
o
n

-c
o
n
v
ex

)
6
6

5
6
,5

1
9

7
8
,8

3
7

7
0
,1

8
2

7
5
,9

4
9

9
9
,6

6
9

2
3
.0

5
1
0
.0
8

4
5
.1

4
2
4
.8

2
5
,6

7
4
.6

1
A

v
er

a
g
e

(u
n

i-
m

o
d

a
l)

1
5

1
8
,6

4
6

2
8
,4

7
8

1
2
,6

2
4

2
3
,3

0
0

2
5
,7

9
6

4
.7

8
2
.0
9

2
.2

8
2
.9

4
4
,3

1
0
.8

8
A

v
er

a
g
e

(m
u

lt
i-

m
o
d

a
l)

8
1

4
6
,2

3
4

8
1
,1

8
3

7
3
,9

7
9

7
5
,3

9
8

8
1
,8

2
5

1
8
.9

7
1
0
.7
1

4
6
.3

9
2
5
.4

8
3
,8

1
4
.7

7
M

ed
ia

n
re

su
lt

s
9
6

1
,5

2
0

1
,8

4
8

9
6
0

2
,0

4
2

7
7
5

0
.4

2
0
.1

9
0
.1
7

0
.2

3
0
.3

9

26 Linas Stripinis, Remigijus Paulavičius

DTDV and 1-DTC partitioning-technique-based algorithms. However, looking at
individual algorithms, the most efficient HALRECT-GL algorithm outperformed the
second-best 1-DTDV-GL by requiring approximately 43% fewer objective function
evaluations. Similar trends persist for uni-modal test problems.

The median value is the only criterion for which HALRECT partitioning-based
algorithms were not dominant. Based on the median values, 1-DTDV and 1-DTC
algorithms appear to be the most effective and can solve at least half of the
problems with the best performance.

Based on the number of function evaluation criteria among the selection
schemes, the best overall performance was achieved using two-step-based Pareto
selection (GL). All partitioning strategies combined with the latter POH
selection scheme solved the largest number of test problems and showed the best
performance, especially on more complex ones. The best combination, out of 15
tested, proved to be the HALRECT-GL algorithm, the second-best 1-DTC-GL, and
the third-best HALRECT-IA.

Based on execution times, the fastest performing partitioning scheme is
N-DTC. On average, the N-DTC required approximately 41% of fever execution
times than the second fastest partition strategies (1-DBDP). It is not surprising
since the N-DTC partitioning scheme subdivides the hyper-rectangle through all
the largest side lengths, resulting in more function evaluations but fewer
expensive computations, like POH selection. Overall, the proposed HALRECT

partitioning scheme ranks only fourth in speed. Additional calculations
hampered the performance of the algorithm. However, due to their exceptional
performance and a small number of failures, the HALRECT-GL and HALRECT-IA

algorithms rank second and third in terms of running speed, behind only the
N-DTC-GL algorithm. Finally, the situation in favor of the HALRECT algorithm
will be even more promising when the values of the objective functions are more
expensive. In the case studied, the test functions are cheap.

Finally, operational characteristics in Fig. 9 show the behavior of all fifteen
algorithms on all box-constrained test problems from DIRECTGOLib v1.1. When a
given budget of function evaluations is low (Mmax ≤ 1, 000), all algorithms
perform similarly regardless of the partitioning scheme. All algorithms solved
approximately 60% of the test problems within this relatively small budget.
However, when the maximum budget for function evaluations increased
(Mmax > 1, 000), the algorithms based on the HALRECT partitioning strategy
combined with IA and GL selection schemes showed the best performance.

4.3 Investigating the impact of the domain perturbation

In investigating different partitioning techniques, one method may be lucky,
because the partitioning approach in the initial steps naturally samples near the
solution. In such situations, the location of the solution may favor one
partitioning strategy over another. This section investigates the robustness of the
partitioning approaches, especially the newly introduced HALRECT, to slight
perturbations of the domain. This work extends our similar experiments
described in [45], where we identified test problems for which a particular
partitioning scheme (regardless of the selection strategy) had a clear dominance,
possibly due to the conveniently defined variable bounds. Using the following

Lipschitz-inspired HALRECT Algorithm for Derivative-free Global Optimization 27

102 103 104 105 106
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Partitioning

HALRECT

N-DTC

1-DTC

1-DBDP

1-DTDV

Function evaluations

P
ro
p
o
rt
io
n
o
f
p
ro
b
le
m
s
so
lv
ed

Selection scheme – IO

102 103 104 105 106

Partitioning

HALRECT

N-DTC

1-DTC

1-DBDP

1-DTDV

Function evaluations

Selection scheme – IA

102 103 104 105 106

Partitioning

HALRECT

N-DTC

1-DTC

1-DBDP

1-DTDV

Function evaluations

Selection scheme – GL

Fig. 9 Operational characteristics of three new HALRECT variations (based on HALRECT
partitioning scheme) vs. twelve DIRECT-type algorithms (introduced in [45]) on the whole set
box-constrained test problems from DIRECTGOLib v1.1.

rule, we perturbed the initial domain (D = [a,b]) for all box-constrained test
problems from DIRECTGOLib v1.1:

Dpert
j = [min (aj + ρdj , x

min
j), bj + ρdj]j , j = 1, ...n, (31)

where dj =| bj − aj |, and ρ is a percentage of the shift. The perturbed domain
Dpert is obtained by shifting the original D (given in Table 5) by a ρ percentage.
Since there is a risk that the solution may change when the domain is shifted, the
calculation on the left-hand side of the bound checks that the shifted (aj + ρdj)
coordinate is not greater than xmin

j . We used two different values (ρ = 2.5% and
ρ = 5%) for the domain perturbation in the experimental study.

The experimental results obtained of five DIRECT-type algorithms based on
different partitioning schemes combined with GL selection are illustrated in
Fig. 10. The efficiency of the HALRECT-GL algorithm, when a given budget of
function evaluations is low (Mmax ≤ 200), has increased. However, when
(30, 000 < Mmax < 200, 000), the performance of the HALRECT-GL algorithm
slightly worsened compared to the initial results. However, the algorithm’s
efficiency remains the same with a large objective function evaluation budget
(Mmax > 200, 000). Algorithms based on other partitioning schemes behave
similarly for different values of ρ. The percentage of solved test problems remains
similar for almost all algorithms. A more noticeable difference is using a
1-DTDV-GL algorithm. When ρ = 2.5%, the percentage of solved problems is
reduced by ∼ 5%, and when ρ = 5%, it is reduced by ∼ 4%.

5 Conclusion

This paper introduces a new DIRECT-type algorithm (HALRECT) for box-constrained
global optimization problems. A new deterministic approach combines halving

28 Linas Stripinis, Remigijus Paulavičius

102 103 104 105 106
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Partitioning

HALRECT-GL

N-DTC-GL

1-DTC-GL

1-DBDP-GL

1-DTDV-GL

Function evaluations

P
ro
p
o
rt
io
n
o
f
p
ro
b
le
m
s
so
lv
ed

ρ = 5%

102 103 104 105 106

Partitioning

HALRECT-GL

N-DTC-GL

1-DTC-GL

1-DBDP-GL

1-DTDV-GL

Function evaluations

ρ = 2.5%

102 103 104 105 106

Partitioning

HALRECT-GL

N-DTC-GL

1-DTC-GL

1-DBDP-GL

1-DTDV-GL

Function evaluations

ρ = 0%

Fig. 10 Operational characteristics of five DIRECT-type algorithms based on different
partitioning schemes combined with GL selection on the whole set of box-constrained perturbed
problems from DIRECTGOLib v1.1.

(bisection) with a new multi-point sampling scheme in contrast to trisection and
midpoint sampling used in most existing DIRECT-type algorithms. Three selection
schemes and four strategies are introduced to calculate the aggregated information
of the objective function used in the selection of the candidate. In this way, twelve
variations of the HALRECT algorithm are introduced and experimentally compared.
Three of the most promising versions were selected and compared versus twelve
recent DIRECT-type algorithms. The extensive experimental results revealed that
the new algorithms based on HALRECT partitioning schemes give results comparable
and often superior to these 12 DIRECT-type algorithms. Further investigation has
shown that small perturbations in the domain D of the test problems can help the
HALRECT algorithm to represent better and select POHs, which can significantly
improve performance efficiency.

Code availability

All implemented versions of the HALRECT algorithm are available at the GitHub
repository: https://github.com/blockchain-group/DIRECTGO and can be used
under the MIT license. We welcome contributions and corrections to this work.

Data statement

DIRECTGOLib - DIRECT Global Optimization test problems Library is designed as a
continuously-growing open-source GitHub repository to which anyone can easily
contribute. The exact data underlying this article from DIRECTGOLib v1.1 can be
accessed either on GitHub or at Zenodo:

– GitHub: https://github.com/blockchain-group/DIRECTGOLib/tree/v1.1,
– Zenodo: https://doi.org/10.5281/zenodo.6491951,

https://github.com/blockchain-group/DIRECTGO
https://github.com/blockchain-group/DIRECTGOLib/tree/v1.1
https://doi.org/10.5281/zenodo.6491951

Lipschitz-inspired HALRECT Algorithm for Derivative-free Global Optimization 29

and used under the MIT license. We welcome contributions and corrections to this
work.

A DIRECTGOLib v1.1 library

A summary of all used box-constrained optimization problems from DIRECTGOLib v1.1[51,47]
and their properties are given in Table 5. [45] Test problems with the α symbol indicate that
the non-default domain D was used for the test problem. The modified domain D was taken
from the [45] study for all the α symbol-marked test problems. Here, the main features are
reported: problem number (#), name of the problem, source, dimensionality (n), optimization
domain (D), problem type, and the known minimum (f∗). Some of these test problems have
several variants, e.g., Bohachevsky, Shekel, and some of them, like Alpine, Csendes, Griewank,
etc., can be tested for varying dimensionality.

References

1. Baker, C.A., Watson, L.T., Grossman, B., Mason, W.H., Haftka, R.T.: Parallel Global
Aircraft Configuration Design Space Exploration, p. 79–96. Nova Science Publishers, Inc.,
USA (2001)

2. Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning, vol. 4. Springer,
New York, NY, USA (2006)

3. Booker, A.J., Dennis, J., Frank, P.D., Serafini, D.B., Torczon, V.: Optimization using
surrogate objectives on a helicopter test example. In: Computational Methods for Optimal
Design and Control, pp. 49–58. Springer, New York, NY, USA (1998). DOI 10.1007/
978-1-4612-1780-0 3

4. Clerc, M.: The swarm and the queen: towards a deterministic and adaptive particle swarm
optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99
(Cat. No. 99TH8406), vol. 3, pp. 1951–1957 Vol. 3. IEEE, Washington, DC, USA (1999).
DOI 10.1109/CEC.1999.785513

5. Costa, M.F.P., Rocha, A.M.A.C., Fernandes, E.M.G.P.: Filter-based direct method for
constrained global optimization. Journal of Global Optimization 71(3), 517–536 (2018).
DOI 10.1007/s10898-017-0596-8

6. Dixon, L., Szegö, C.: The global optimisation problem: An introduction. In: L. Dixon,
G. Szegö (eds.) Towards Global Optimization, vol. 2, pp. 1–15. North-Holland Publishing
Company, Amsterdam, Netherlands (1978)

7. Finkel, D.E.: MATLAB source code for DIRECT. http://www4.ncsu.edu/~ctk/Finkel_
Direct/ (2004). Online; accessed: 2017-03-22

8. Finkel, D.E., Kelley, C.T.: Additive scaling and the DIRECT algorithm. Journal of Global
Optimization 36(4), 597–608 (2006). DOI 10.1007/s10898-006-9029-9

9. Floudas, C.A.: Deterministic global optimization: theory, methods and applications,
Nonconvex Optimization and Its Applications, vol. 37. Springer US, Boston, MA (1999).
DOI 10.1007/978-1-4757-4949-6

10. Gablonsky, J.M.: Modifications of the DIRECT algorithm. Ph.D. thesis, North Carolina
State University (2001)

11. Gablonsky, J.M., Kelley, C.T.: A locally-biased form of the DIRECT algorithm. Journal
of Global Optimization 21(1), 27–37 (2001). DOI 10.1023/A:1017930332101

12. Gavana, A.: Global optimization benchmarks and ampgo. http://infinity77.net/
global_optimization/index.html. Online; accessed: 2021-07-22

13. Grishagin, V.A.: Operating characteristics of some global search algorithms. In: Problems
of Stochastic Search, vol. 7, pp. 198–206. Zinatne, Riga (1978). In Russian

14. He, J., Verstak, A., Watson, L.T., Sosonkina, M.: Design and implementation of a
massively parallel version of direct. Computational Optimization and Applications (2008).
DOI 10.1007/s10589-007-9092-2

15. Hedar, A.: Test functions for unconstrained global optimization. http://www-optima.
amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm (2005). Online;
accessed: 2017-03-22

http://www4.ncsu.edu/~ctk/Finkel_Direct/
http://www4.ncsu.edu/~ctk/Finkel_Direct/
http://infinity77.net/global_optimization/index.html
http://infinity77.net/global_optimization/index.html
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm

30 Linas Stripinis, Remigijus Paulavičius

Table 5 Key characteristics of the DIRECTGOLib v1.1[51,47] test problems for box-constrained
global optimization

Name Source n D Type No. of minima f∗

1, 2, 3 Ackleyα [15,54] 2, 5, 10 [−18, 47]n non-convex multi-modal 0.0000

4, 5, 6 Alpineα [12] 2, 5, 10 [i
√

2, 8 + i
√

2]n non-convex multi-modal −2.8081n

7 Beale [15,54] 2 [−4.5, 4.5]n non-convex multi-modal 0.0000
8 Bohachevsky1α [15,54] 2 [−55, 145]n convex uni-modal 0.0000
9 Bohachevsky2α [15,54] 2 [−55, 145]n non-convex multi-modal 0.0000

10 Bohachevsky3α [15,54] 2 [−55, 145]n non-convex multi-modal 0.0000
11 Booth [15,54] 2 [−10, 10]n convex uni-modal 0.0000
12 Branin [15,6] 2 [−5, 10]× [10, 15] non-convex multi-modal 0.3978
13 Bukin6 [54] 2 [−15, 5]× [−3, 3] convex multi-modal 0.0000
14 Colville [15,54] 4 [−10, 10]n non-convex multi-modal 0.0000
15 Cross in Tray [54] 2 [0, 10]n non-convex multi-modal −2.0626
16 Crosslegtable [12] 2 [−10, 15]n non-convex multi-modal −1.000

17, 18, 19 Csendesα [12] 2, 5, 10 [−10, 25]n convex multi-modal 0.0000
20 Damavandi [12] 2 [0, 14]n non-convex multi-modal 0.0000

21, 22, 23 Deb01α [12] 2, 5, 10 [−0.55, 1.45]n non-convex multi-modal −1.0000
24, 25, 26 Deb02α [12] 2, 5, 10 [0.225, 1.225]n non-convex multi-modal −1.0000
27, 28, 29 Dixon and Price [15,54] 2, 5, 10 [−10, 10]n convex multi-modal 0.0000

30 Drop waveα [54] 2 [−4, 6]n non-convex multi-modal −1.0000

31 Easomα [15,54] 2

[
−100

i+ 1
, 100i

]n
non-convex multi-modal −1.0000

32 Eggholder [54] 2 [−512, 512]n non-convex multi-modal −959.6406
33 Goldstein and Priceα [15,6] 2 [−1.1, 2.9]n non-convex multi-modal 3.0000

34, 35, 36 Griewankα [15,54] 2, 5, 10

[
−
√

600i,
600
√
i

]n
non-convex multi-modal 0.0000

37 Hartman3 [15,54] 3 [0, 1]n non-convex multi-modal −3.8627
38 Hartman6 [15,54] 6 [0, 1]n non-convex multi-modal −3.3223
39 Holder Table [54] 2 [−10, 10]n non-convex multi-modal −19.2085
40 Hump [15,54] 2 [−5, 5]n non-convex multi-modal −1.0316
41 Langermann [54] 2 [0, 10]n non-convex multi-modal −4.1558

42, 43, 44 Levy [15,54] 2, 5, 10 [−10, 10]n non-convex multi-modal 0.0000
45 Matyasα [15,54] 2 [−5.5, 14.5]n convex uni-modal 0.0000
46 McCormick [54] 2 [−1.5, 4]× [−3, 4] convex multi-modal −1.9132
47 Michalewicz [15,54] 2 [0, π]n non-convex multi-modal −1.8013
48 Michalewicz [15,54] 5 [0, π]n non-convex multi-modal −4.6876
49 Michalewicz [15,54] 10 [0, π]n non-convex multi-modal −9.6601
50 Perm4 [15,54] 4 [−i, i]n non-convex multi-modal 0.0000

51, 52, 53 Pinterα [12] 2, 5, 10 [−5.5, 14.5]n non-convex multi-modal 0.0000
54 Powell [15,54] 4 [−4, 5]n convex multi-modal 0.0000

55 Power Sumα [15,54] 4 [1, 4 + i
√

2]n convex multi-modal 0.0000
56, 57, 58 Qing [12] 2, 5, 10 [−500, 500]n non-convex multi-modal 0.0000

59, 60, 61 Rastriginα [15,54] 2, 5, 10 [−5 i
√

2, 7 + i
√

2]n non-convex multi-modal 0.0000

62, 63, 64 Rosenbrockα [15,6] 2, 5, 10

[
−

5
√
i
, 10
√
i

]n
non-convex uni-modal 0.0000

65, 66, 67 Rotated H Ellipα [54] 2, 5, 10 [−35, 96]n convex uni-modal 0.0000

68, 69, 70 Schwefelα [15,54] 2, 5, 10

[
−500 +

100
√
i
, 500−

40
√
i

]n
non-convex multi-modal 0.0000

71 Shekel5 [15,54] 4 [0, 10]n non-convex multi-modal −10.1531
72 Shekel7 [15,54] 4 [0, 10]n non-convex multi-modal −10.4029
73 Shekel10 [15,54] 4 [0, 10]n non-convex multi-modal −10.5364
74 Shubert [15,54] 2 [−10, 10]n non-convex multi-modal −186.7309

75, 76, 77 Sphereα [15,54] 2, 5, 10 [−2.75, 7.25]n convex uni-modal 0.0000

78, 79, 80 Styblinski Tangα [4] 2, 5, 10 [−5, 5 + i
√

3]n non-convex multi-modal −39.1661n
81, 82, 83 Sum of Powersα [54] 2, 5, 10 [−0.55, 1.45]n convex uni-modal 0.0000
84, 85, 86 Sum Squareα [4] 2, 5, 10 [−5.5, 14.5]n convex uni-modal 0.0000

87 Trefethen [12] 2 [−2, 2]n non-convex multi-modal −3.3068
88, 89, 90 Trid [15,54] 2, 5, 10 [−100, 100]n convex multi-modal ϑ
91, 92, 93 Vincent [4] 2, 5, 10 [0.25, 10]n non-convex multi-modal −n
94, 95, 96 Zakharovα [15,54] 2, 5, 10 [−1.625, 13.375]n convex multi-modal 0.0000

ϑ – − 1
6
n3 − 1

2
n2 + 2

3
n

α – domain D was taken from [45]
i = 1, ..., n

16. Holmstrom, K., Goran, A.O., Edvall, M.M.: User’s guide for tomlab 7 (2010). URL https:
//tomopt.com/

17. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Nonconvex
Optimization and Its Application. Kluwer Academic Publishers, Berlin, Germany (1995)

18. Jones, D.R.: The Direct global optimization algorithm. In: C.A. Floudas, P.M. Pardalos
(eds.) The Encyclopedia of Optimization, pp. 431–440. Kluwer Academic Publishers,
Dordrect (2001)

19. Jones, D.R., Martins, J.R.R.A.: The DIRECT algorithm: 25 years later. Journal of Global
Optimization 79, 521–566 (2021). DOI 10.1007/s10898-020-00952-6

https://tomopt.com/
https://tomopt.com/

Lipschitz-inspired HALRECT Algorithm for Derivative-free Global Optimization 31

20. Jones, D.R., Perttunen, C.D., Stuckman, B.E.: Lipschitzian optimization without the
Lipschitz constant. Journal of Optimization Theory and Application 79(1), 157–181
(1993). DOI 10.1007/BF00941892

21. Liberti, L., Kucherenko, S.: Comparison of deterministic and stochastic approaches to
global optimization. International Transactions in Operational Research 12(3), 263–
285 (2005). DOI https://doi.org/10.1111/j.1475-3995.2005.00503.x. URL https://
onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2005.00503.x

22. Liu, H., Xu, S., Chen, X., Wang, X., Ma, Q.: Constrained global optimization via a direct-
type constraint-handling technique and an adaptive metamodeling strategy. Structural and
Multidisciplinary Optimization 55(1), 155–177 (2017). DOI 10.1007/s00158-016-1482-6

23. Liuzzi, G., Lucidi, S., Piccialli, V.: A direct-based approach exploiting local minimizations
for the solution for large-scale global optimization problems. Computational Optimization
and Applications 45(2), 353–375 (2010). DOI 10.1007/s10589-008-9217-2

24. Liuzzi, G., Lucidi, S., Piccialli, V.: Exploiting derivative-free local searches in direct-type
algorithms for global optimization. Computational Optimization and Applications 65,
449–475 (2016). DOI DOI10.1007/s10589-015-9741-9

25. Na, J., Lim, Y., Han, C.: A modified direct algorithm for hidden constraints in
an lng process optimization. Energy 126, 488–500 (2017). DOI https://doi.org/
10.1016/j.energy.2017.03.047. URL https://www.sciencedirect.com/science/article/
pii/S0360544217304164

26. Paulavičius, R., Chiter, L., Žilinskas, J.: Global optimization based on bisection of
rectangles, function values at diagonals, and a set of Lipschitz constants. Journal of
Global Optimization 71(1), 5–20 (2018). DOI 10.1007/s10898-016-0485-6

27. Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased DISIMPL
algorithm for expensive global optimization. Journal of Global Optimization 59(2-3),
545–567 (2014). DOI 10.1007/s10898-014-0180-4

28. Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased BIRECT
algorithm with local accelerators for expensive global optimization. Expert Systems with
Applications 144, 11305 (2020). DOI 10.1016/j.eswa.2019.113052

29. Paulavičius, R., Žilinskas, J.: Analysis of different norms and corresponding Lipschitz
constants for global optimization. Technological and Economic Development of Economy
36(4), 383–387 (2006). DOI 10.1080/13928619.2006.9637758

30. Paulavičius, R., Žilinskas, J.: Analysis of different norms and corresponding Lipschitz
constants for global optimization in multidimensional case. Information Technology and
Control 36(4), 383–387 (2007)

31. Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz
constant. Journal of Global Optimization 59(1), 23–40 (2014). DOI 10.1007/
s10898-013-0089-3

32. Paulavičius, R., Žilinskas, J.: Advantages of simplicial partitioning for Lipschitz
optimization problems with linear constraints. Optimization Letters 10(2), 237–246
(2016). DOI 10.1007/s11590-014-0772-4

33. Pillo, G.D., Liuzzi, G., Lucidi, S., Piccialli, V., Rinaldi, F.: A DIRECT-type approach
for derivative-free constrained global optimization. Computational Optimization and
Applications 65(2), 361–397 (2016). DOI 10.1007/s10589-016-9876-3

34. Pillo, G.D., Lucidi, S., Rinaldi, F.: An approach to constrained global optimization based
on exact penalty functions. Journal of Optimization Theory and Applications 54(2), 251–
260 (2010). DOI 10.1007/s10898-010-9582-0

35. Pintér, J.D.: Global optimization in action: continuous and Lipschitz optimization:
algorithms, implementations and applications, Nonconvex Optimization and Its
Applications, vol. 6. Springer US, Berlin, Germany (1996). DOI 10.1007/
978-1-4757-2502-5

36. Piyavskii, S.A.: An algorithm for finding the absolute minimum of a function. Theory of
Optimal Solutions 2, 13–24 (1967). DOI 10.1016/0041-5553(72)90115-2. In Russian

37. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and
comparison of software implementations. Journal of Global Optimization 56(3), 1247–
1293 (2013). DOI 10.1007/s10898-012-9951-y

38. Sergeyev, Y.D., Kvasov, D., Mukhametzhanov, M.: On the efficiency of nature-inspired
metaheuristics in expensive global optimization with limited budget. Scientific reports
8(1), 1–9 (2018). DOI 10.1038/s41598-017-18940-4

39. Sergeyev, Y.D., Kvasov, D.E.: Global search based on diagonal partitions and a set of
Lipschitz constants. SIAM Journal on Optimization 16(3), 910–937 (2006). DOI 10.1137/
040621132

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2005.00503.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2005.00503.x
https://www.sciencedirect.com/science/article/pii/S0360544217304164
https://www.sciencedirect.com/science/article/pii/S0360544217304164

32 Linas Stripinis, Remigijus Paulavičius

40. Sergeyev, Y.D., Kvasov, D.E.: Diagonal Global Optimization Methods. FizMatLit,
Moscow (2008). In Russian

41. Sergeyev, Y.D., Kvasov, D.E.: Lipschitz global optimization. In: J.J. Cochran, L.A.
Cox, P. Keskinocak, J.P. Kharoufeh, J.C. Smith (eds.) Wiley Encyclopedia of Operations
Research and Management Science (in 8 volumes), vol. 4, pp. 2812–2828. John Wiley &
Sons, New York, NY, USA (2011)

42. Sergeyev, Y.D., Kvasov, D.E.: Deterministic Global Optimization: An Introduction to the
Diagonal Approach. SpringerBriefs in Optimization. Springer, Berlin, Germany (2017).
DOI 10.1007/978-1-4939-7199-2

43. Shubert, B.O.: A sequential method seeking the global maximum of a function. SIAM
Journal on Numerical Analysis 9, 379–388 (1972). DOI 10.1137/0709036

44. Stripinis, L., Paulavičius, R.: A new DIRECT-GLh algorithm for global optimization
with hidden constraints. Optimization Letters 15(6), 1865–1884 (2021). DOI 10.1007/
s11590-021-01726-z. URL https://doi.org/10.1007/s11590-021-01726-z

45. Stripinis, L., Paulavičius, R.: An empirical study of various candidate selection and
partitioning techniques in the DIRECT framework. Journal of Global Optimization (2022).
DOI 10.1007/s10898-022-01185-5. URL https://doi.org/10.1007/s10898-022-01185-5

46. Stripinis, L., Paulavičius, R.: Directgo: A new direct-type matlab toolbox for derivative-
free global optimization, version v1.1.0, GitHub. https://github.com/blockchain-group/
DIRECTGO/releases/tag/v1.1.0 (2022)

47. Stripinis, L., Paulavičius, R.: DIRECTGOLib - DIRECT Global Optimization test
problems Library, Version v1.1, GitHub. https://github.com/blockchain-group/
DIRECTGOLib/tree/v1.1 (2022)

48. Stripinis, L., Paulavičius, R., Žilinskas, J.: Improved scheme for selection of potentially
optimal hyper-rectangles in DIRECT. Optimization Letters 12(7), 1699–1712 (2018).
DOI 10.1007/s11590-017-1228-4

49. Stripinis, L., Paulavičius, R., Žilinskas, J.: Penalty functions and two-step selection
procedure based DIRECT-type algorithm for constrained global optimization. Structural and
Multidisciplinary Optimization 59(6), 2155–2175 (2019). DOI 10.1007/s00158-018-2181-2

50. Stripinis, L., Paulavičius, R.: DIRECTGO: A New DIRECT-Type MATLAB Toolbox
for Derivative-Free Global Optimization. ACM Transactions on Mathematical Software
(2022). DOI 10.1145/3559755. URL https://doi.org/10.1145/3559755

51. Stripinis, L., Paulavičius, R.: DIRECTGOLib - DIRECT Global Optimization test
problems Library, Version v1.1, Zenodo (2022). DOI 10.5281/zenodo.6491951. URL
https://doi.org/10.5281/zenodo.6491951

52. Stripinis, L., Žilinskas, J., Casado, L.G., Paulavičius, R.: On matlab experience in
accelerating direct-glce algorithm for constrained global optimization through dynamic
data structures and parallelization. Applied Mathematics and Computation 390,
1–17 (2021). DOI https://doi.org/10.1016/j.amc.2020.125596. URL https://www.
sciencedirect.com/science/article/pii/S0096300320305518

53. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints:
Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

54. Surjanovic, S., Bingham, D.: Virtual library of simulation experiments: Test functions and
datasets. http://www.sfu.ca/~ssurjano/index.html (2013). Online; accessed: 2017-03-22

https://doi.org/10.1007/s11590-021-01726-z
https://doi.org/10.1007/s10898-022-01185-5
https://github.com/blockchain-group/DIRECTGO/releases/tag/v1.1.0
https://github.com/blockchain-group/DIRECTGO/releases/tag/v1.1.0
https://github.com/blockchain-group/DIRECTGOLib/tree/v1.1
https://github.com/blockchain-group/DIRECTGOLib/tree/v1.1
https://doi.org/10.1145/3559755
https://doi.org/10.5281/zenodo.6491951
https://www.sciencedirect.com/science/article/pii/S0096300320305518
https://www.sciencedirect.com/science/article/pii/S0096300320305518
http://www.sfu.ca/~ssurjano/index.html

	1 Introduction
	2 Related literature review
	3 Description of the HALRECT algorithm
	4 Experimental results
	5 Conclusion
	A DIRECTGOLib v1.1 library

