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Flooding and Drying in Discontinuous Galerkin
Finite-Element Discretizations of Shallow-Water
Equations. Part 1: One Dimension
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Free boundaries in shallow-water equations demarcate the time-dependent water
line between “flooded” and “dry” regions. We present a novel numerical algo-
rithm to treat flooding and drying in a formally second-order explicit space
discontinuous Galerkin finite-element discretization of the one-dimensional or
symmetric shallow-water equations. The algorithm uses fixed Eulerian flooded
elements and a mixed Eulerian–Lagrangian element at each free boundary.
When the time step is suitably restricted, we show that the mean water depth
is positive. This time-step restriction is based on an analysis of the discret-
ized continuity equation while using the HLLC flux. The algorithm and its
implementation are tested in comparison with a large and relevant suite of
known exact solutions. The essence of the flooding and drying algorithm piv-
ots around the analysis of a continuity equation with a fluid velocity and a
pseudodensity (in the shallow water case the depth). It therefore also applies,
for example, to space discontinuous Galerkin finite-element discretizations of
the compressible Euler equations in which vacuum regions emerge, in anal-
ogy of the above dry regions. We believe that the approach presented can
be extended to finite-volume discretizations with similar mean level and slope
reconstruction.

KEY WORDS: Shallow-water equations; flooding and drying; free-boundary
dynamics; discontinuous Galerkin finite-element method; positivity of mean
water depth.

1. INTRODUCTION

We consider explicit space discontinuous Galerkin finite-element discret-
izations of the symmetric or one-dimensional shallow-water equations
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(e.g., [12])

∂th+ ∂x(hu) = 0,

∂t (hu)+ ∂x(hu2 +P) = S2 ≡−g h∂xhb +S∗
2 , (1.1)

∂t (h v)+ ∂x(huv) = S3

with the horizontal velocity field (u, v)= (
u(x, t), v(x, t)

)
as function of

the horizontal coordinate x and time t ; h(x, t) the depth of the layer of
water; P = P(h)= g h2/2 the “pressure” or potential; and g the gravita-
tional acceleration. The terms S2, S3 may depend in general on x and t

explicitly, and on the variables u, v, h. The fluid’s bottom is at z= hb(x).
Partial derivatives are denoted by ∂t = ∂/∂t , etc.

This system, which is hyperbolic in its conservative limit, models the
flow of a layer of water whose depth is small relative to the horizon-
tal scales of interest. The flow domain is defined by the area where the
depth h is positive. In many practical applications, the flow domain may
have “free” boundaries, where h ↓ 0, as well as more conventional fixed
boundaries (e.g., impenetrable walls). The location of this free boundary
is time-dependent due to the motion of the fluid, resulting in “flooding”
and “drying”. Accurate prediction of this flooding and drying is impor-
tant in forecasting river hydraulics, tsunamis, and near-shore surf zone
dynamics on beaches and sand banks, as well as in designing dikes. This
paper presents the design and verification of a discontinuous Galerkin
finite-element approximation to model such flows in one space dimension,
with an emphasis on the treatment of flooding and drying.1

Discontinuous Galerkin finite-element schemes have several advanta-
ges (e.g., [8,9]):

i. The structure of the scheme allows varying orders of accuracy in
the elements (so-called p-adaptivity).

ii. It is straightforward to use elements with local mesh refinement
(so-called h-adaptivity).

iii. The scheme is extremely local since communication occurs ent-
irely through fluxes at the faces between elements. This prop-
erty is used to deal efficiently with the free-boundary dynamics
in this paper; in addition, it allows for efficient parallelization.
The implementation of other boundary conditions such as in-
and outflow conditions is also efficient and accurate due to the
local nature of the scheme.

1A preliminary version was presented in [4].
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Disadvantages are that the scheme is more complex, and that more
degrees of freedom are involved relative to finite-volume or finite-difference
schemes.

The flooding and drying algorithm consists of the following. To deal
with discontinuities such as hydraulic jumps and bores, the depth and
velocity times depth are the computational variables advanced in time.
Nevertheless, velocity and depth are approximated by the same order
polynomial basis functions per element. Consequently, the velocity times
depth has a constrained, higher-order basis function. This ensures that
it becomes zero at the water line exactly when the depth becomes zero,
conforming to the mathematical shallow-water model and reality. The
finite-element discretization is therefore Galerkin for the variables veloc-
ity and height, but not in the primary computational variables. The one-
dimensional computational domain may contain multiple disconnected
“patches” of water, the flooded regions, separated by dry regions. For each
patch the boundary consists either of the computational boundary or a
free boundary. The algorithm uses fixed Eulerian flooded elements and
one mixed Eulerian–Lagrangian element at each free boundary. Hence, it
is a particular case of an arbitrary Lagrangian Eulerian or ALE grid, e.g.,
[22]. Positivity of the mean water depth is ensured by a suitable restric-
tion of the time step. This restriction is based on analysis of the discret-
ized continuity equation in which we use the numerical HLLC flux. The
size of the free-boundary element is controlled by elements which merge
and split using the mean and slope information of the velocity and depth.
Drying in a patch occurs when a dry region emerges in a flooded region
resulting in the splitting of the original patch. Merging of patches arises
when a dry region between two patches becomes inundated. Drying and
merging of multiple patches of fluid is introduced using mean and slope
information.

The time-step restriction we have found, is similar to that of Perthame
[14] which restriction was derived for a first-order finite-volume method
with a forward Euler time discretization and a flux based on kinetic the-
ory for the compressible Euler equations. We have adapted the kinetic
flux to shallow-water equations and to our flooding and drying treat-
ment in a discontinuous Galerkin finite-element method higher-order in
space and time, but preliminary tests showed the HLLC flux to be more
accurate. Perthame and Simeoni [15] and Audusse and Bristeau [1] use a
kinetic scheme for the shallow-water equations in a finite-volume method.
In particular, their algorithm preserves flow at rest over topography
and provides an energy dissipation inequality. Our scheme by construc-
tion preserves flow at rest above arbitrary (piecewise linear and smooth)
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topography. But so far we are unable to prove an energy dissipation
inequality for our algorithm.

We verified the numerical discretization of the shallow-water equa-
tions by comparing the numerical solutions with various one-dimensional
exact solutions in which flooding and drying occurs: Riemann problems
with drying (e.g., [19,20]), the Carrier–Greenspan [7] solution, the para-
bolic bowl solution [23], and the Peregrine–Williams [13] solution. This
suite of exact verification cases is much more extensive than usual for test-
ing shallow-water discretizations. The design of the algorithm has benefit-
ted from the various test criteria.

Extra numerical dissipation may be required to control unwanted
oscillations at discontinuities such as hydraulic jumps and bores. The
inclusion of a dissipation operator, analogous to the one in [10] and [22]
for the space–time discontinuous Galerkin finite-element discretization, is
preferable to a slope limiter for steady-state solutions. Unfortunately, we
were unable to derive a dissipation operator adequate enough for the vari-
ety of complex simulations we considered. In the end, we successfully used
the slope limiting treatment of Schwanenberg [16] for the shallow-water
equations with topography, and the general shock detection and limiting
approach of Krivodonova et al. [11]. Since a rigorous mathematical jus-
tification of such extra numerical dissipation appears to be lacking, the
addition of extra dissipation is only discussed in Appendix B as it is not
required to test the flooding and drying algorithm. In contrast, the kinetic
flux used by Perthame [14] or shallow-water modifications thereof appears
to have the advantage that no additional slope limiter or extra dissipation
is required. Here, slope limiting is only used in one simulation of waves
overtopping a dike in Sec. 7.

The paper is organized as follows. The shallow-water equations
are rewritten in Sec. 2. The space discontinuous Galerkin finite-element
method is set up for elements with fixed and moving (free-boundary)
nodes in Sec. 3. The flux on these nodes is approximated by the HLLC
flux, as explained in Sec. 4. The discretization in the special elements
next to free boundaries is introduced in Sec. 5. When used with a
time-step restriction, the mean water depth can be guaranteed to remain
non-negative. We have thus developed a robust and accurate method that
deals simultaneously with flooding and drying, and discontinuities such
as hydraulic bores and jumps. In Sec. 6, we present the comparison of
numerical and known exact solutions. Finally, the potential of the discret-
ization is illustrated in a complex simulation of waves which are forced on
one (offshore) boundary, steepen into bores, and subsequently flow over a
dike periodically in Sec. 7. We conclude with a discussion in Sec. 8.
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2. Shallow-Water Equations

Let U = (h,mu = hu,mv = hv)T . To facilitate the numerical formula-
tion, we rewrite (1.1) concisely as

∂tU + ∂xF (U)=S, (2.1)

where F(U) = (hu,hu2 + P,huv)T is the flux, and S = (0, S2, S3)
T the

additional topographic, dissipative or forcing term.
The flow domain Ωf ⊆ Ω ⊂ R, which may be time-dependent, is

embedded in a fixed computational domain Ω. The boundary ∂Ωf (iso-
lated points in our one-dimensional case) consists in general of fixed and
free points. At the fixed boundary points, the boundary conditions spec-
ify the in- and outflow, or no through flow at walls. The free-boundary is
specified by the position(s) x for which h(x, t)↓0. The system (1.1) or (2.1)
is completed with initial conditions U0 =U(x,0).

3. DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD

3.1. Finite Elements

The flow domain Ωf ⊂Ω = [a, b] is partitioned by points xk(t), k =
1, . . . ,Nel + 1, into Nel open elements Kk = (xk, xk+1). The result is a tes-
sellation

T h=
{
Kk|

Nel⋃

k=1

K̄k = Ω̄f and Kk ∩Kk′ =∅ if k 	=k′,1� k, k′ �Nel

}
(3.1)

with K̄k the closure of Kk. For convenience, we will also use the notation
xk,L :=xk and xk,R :=xk+1 below; we define |Kk|=xk,R −xk,L. Both Kk and
Nel may be time-dependent, and the domain Ωf may consist of disjoint
“patches”.

We consider finite-element discretizations of (2.1) with approxima-
tions Uh and wh to the state vector U and test functions w. These are such
that Uh and wh belong to the broken space

Vh={w :w|Kk ∈PdP (Kk), k=1, . . . ,Nel} (3.2)

in which PdP (Kk) denotes the space of polynomials in Kk of degree
dP = dP (U). Hence, in each element Kk, we approximate U and w by
a polynomial spanned by basis functions {ψn,k(x, t)} defined in Sec. 3.3.
The complications arising from the free boundaries are discussed later, in
Sec. 5.
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3.2. Weak Formulation

When we multiply (2.1) by an appropriate test function wh=wh(x, t)
and integrate by parts, the following weak formulation is obtained: Find
a Uh ∈Vh such that ∀wh ∈Vh the following relation is satisfied:

N∑

k=1

{ ∫
Kk
wh ∂t Uh dx+ [F(x−

k,R)wh(x
−
k,R)−F(x+

k,L)wh(x
+
k,L)]

− ∫
Kk
F ∂xwh dx− ∫

Kk
S wh dx}=0, (3.3)

where wh(x
−
k,R)= limx↑xk,R wh(x, t) and wh(x

+
k,L)= limx↓xk,L wh(x, t). (We

only denote dependencies explicitly when confusion may arise.)
Consider a given point xk+1 =xk,R =xk+1,L. Since the elements Kk are

isolated from one another at this stage, Ul :=U(x−
k,R) 	=U(x+

k+1,L)=:Ur and
consequently, the flux F(x−

k,R) 	= F(x+
k+1,L) in general. This is where the

numerical flux, which is at the heart of the method, comes into play. We
replace F(Ul) and F(Ur) by a numerical flux F̃ (Ul,Ur) which is consistent
in the sense that F̃ (U,U)=F(U). Several choices are possible for F̃ . In
this paper we use the HLLC flux which is discussed in detail in Sec. 4.

3.3. Discretized Weak Formulation

Within each element Kk, h(x, t), u(x, t) and v(x, t) are approximated
by a polynomial, e.g.,

hh(x, t) =
dP∑

m=0
ĥm,k(t)ψm,k(x, t) (3.4)

and similarly for the test function w. In a reference element K̂ the coordi-
nate ζ ∈ (−1,1) is introduced with x=x(ζ )= (xk+1 +xk)/2+|Kk| ζ/2. Basis
and test functions satisfy

ψ̂0(ζ )=1 and ψ̂m(ζ )= ζm− cm for m=1, . . . , dP , (3.5)

were dP is the maximum degree of the polynomials used and constants cm
ensure that ψm,k(x, t)= ψ̂m(ζ ) has zero mean in K̂ for m�1.

Taking dP =1, we approximate h and w by its mean and its slope:

hh(x, t)= h̄k + ĥk ψ1,k(x, t) and wh(x, t)= W̄k + Ŵk ψ1,k(x, t) (3.6)

with Ūk = Û0,k, and likewise for u and v. Alternatively,

Uh(x, t)= Ūk + Ûk ψ1,k(x, t)+ Û2,k ψ1,k(x, t) (3.7)
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with h2,k=0, (mu)2,k= ĥk ûk and (mv)2,k= ĥk v̂k These relations for mu and
mv follow by projection and ensure that h,mu and mv are all zero when
the depth h reaches zero. Since elements are allowed to move, we define

d|Kk|/dt=dxk,R/dt−dxk,L/dt,
dxk,R/dt≡Vk,R, and dxk,L/dt≡Vk,L. (3.8)

Since W̄k and Ŵk are arbitrary, we obtain the following equations for the
mean and fluctuating part after substituting (3.6) into (3.3), using (3.8),
and introducing the numerical flux F̃ :

d

dt

(|Kk| Ūk
) = −[

F̃V
(
U(x−

k,R),U(x
+
k+1,L)

)

−F̃V
(
U(x−

k−1,R),U(x
+
k,L)

)]+ |Kk|
2

∫ 1

−1
S(Uh, ζ, t) dζ,

dÛk

dt
= − 3

|Kk|
[
F̃

(
U(x−

k,R),U(x
+
k+1,L)

)

+F̃ (
U(x−

k−1,R),U(x
+
k,L)

)]+ Ûk (Vk,R −Vk,L)/|Kk|

+2 Û2,k (Vk,R +Vk,L)/|Kk|+ 3
|Kk|

∫ 1

−1
F dζ + 3

2

∫ 1

−1
S ζ dζ,

(3.9)

where F̃V (Ul,Ur) is a numerical flux representing F(U) − V U , which
reduces to F̃ (Ul,Ur) when the nodal velocity V =0. The integrals of func-
tions of h,u and v are approximated with a Gaussian quadrature. Time
discretization can be done, for example, with the third-order Runge–Kutta
method of Shu and Osher [18], as used in the tests in Sec. 6 and 7.

For hyperbolic systems, numerical fluxes are often based on the exact
or approximate Riemann problem at the nodes of the elements. It turns
out that it is difficult to guarantee numerical stability near or at free
boundaries where the depth is small or zero, because small errors in the
numerical flux can lead to negative depths. We present and analyze the
HLLC numerical flux in Secs. 4 and 5.1.

4. HLLC FLUX

As noted above, since U is discontinuous across element nodes, we
need to approximate the flux F(U) by a numerical flux F̃ (U). Similarly,
we approximate FV =F(U)−VU by a numerical flux F̃V (U). In this sec-
tion we describe one such approximation, the HLLC flux. In Sec. 5.1, we
show that, when used in conjunction with a forward Euler time discreti-
zation, this approximation has the desirable property of keeping the mean
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depth in each element non-negative. In our approximation the depth h=
h̄+ ζ ĥ. Dry patches emerge when the depth becomes zero in a flooded
region. Hence it is undesirable to enforce h to be positive. Instead, the
slope information is used to indicate where dry regions emerge, that is,
when |ĥ|� h̄.

Following Godunov, a numerical flux can be devised as follows:
approximating the variable U adjacent to a point by the constant values Ul
and Ur immediately left and right of a node, one obtains a Riemann prob-
lem which can be solved exactly. However, since an exact Riemann solver
is numerically expensive, the approximate HLLC solver developed by Toro
et al. [21] is used instead. Next, we briefly summarize the HLLC flux for
later use.

First, consider the Riemann problem

∂tU + ∂xF (U)= 0 (4.1)

with constant initial left and right states Ul and Ur, respectively. We
are seeking an expression for F − V U on either side of the space–time
cell edge, which velocity we denote by V , such that a communication
between the elements is properly established. In the Riemann problem
for the shallow-water equations [21], we can distinguish four situations
without dry patches where either Pl 	= 0, Pr 	= 0 or ul + cl > ur − cr with
c=∫ h[a(w)/w]dw=2

√
g h and gravity-wave speed a=√

∂P/∂h=√
g h, and

three more situations when drying is possible. Drying occurs where h↓0.
Consider the element boundary x′ = xk+1(t)− xk+1(t

n)= V τ for 0<
τ <∆τ = tn+1 − tn, which moves with speed V . The (discontinuous) val-
ues Uh, immediately left and right of this node are Ul and Ur, respec-
tively. In the flooded case, the HLLC approach assumes that there are four
constant states from left to right Ul,U

∗
l ,U

∗
r ,Ur, separated at (x − xk+1)/

(t − tn)= Sl, Sm, Sr. We integrate (4.1) over two control volumes ODCE
and OABE to the left and right of the space–time node x′ =0, see Fig. 1,
for the four cases (i) Sl<V,Sr>V,Sm>V ; (ii) Sl<V,Sm<V,Sr>V ; (iii)
Sl<V,Sm<V,Sr<V ; and (iv) Sl>V,Sm>V,Sr>V . Subsequently, we cal-
culate F −V U along the point xk+1(t) as the average of the contribution
on either side. After using Gauss’ theorem in space and time on (4.1), we
obtain (see [23]):

F̃ hllcV (Ul,Ur) = 1
2∆t

(∫

S−
(F −V Uh) n̄−K dl− +

∫

S+
(F −V Uh) n̄+K dl+

)

= 1
2

{
Fl +Fr −V (Ul +Ur)− (|Sl −V |− |Sm−V |)U∗

l

+(|Sr−V |−|Sm−V |)U∗
r +|Sl −V |Ul −|Sr −V |Ur

}
, (4.2)
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Fig. 1. The wave configuration is sketched to define the variables and states involved in the
HLLC flux approximation. The constant left and right states Ul,r are separated by a left and
right wave Sl,r from two star regions U∗

l,r. These two star regions are divided by a contact
wave Sm.

where Fl,r = F(Ul,r), n̄± are outward pointing normal vectors in space–
time along the node xk+1(t), and dl± are pieces along the boundary S±
of the area left and right of the node xk+1(t). The intermediate states U∗

l,r
and speed Sm follow by using ([2]) (a) the intermediate one star state, Ũ∗,
emerging from the HLL approach, and (b) the Rankine–Hugoniot rela-
tions

(a) Using the HLL approach with one intermediate state Ũ∗ to
determine Sm, and assuming that u∗

l =u∗
r = ũ∗ =Sm, we find that

ũ∗ =Sm= Pl−Pr+hr ur (Sr−ur)−hl ul (Sl−ul)
hr (Sr−ur)−hl (Sl−ul)

(4.3)

with velocities ul,r. It may be checked that

P ∗ =P ∗
l,r =Pl,r +hl,r (Sl,r −ul,r) (Sm−ul,r) (4.4)

as it should be for contact discontinuities with speed Sm. By
retracing the derivation for Sm we find that Sm = Sr = Sl when
hr (Sr − ur)− hl (Sl − ul)= 0. The latter can happen when a dry
patch is about to emerge.

(b) By using the Rankine–Hugoniot relations for ∂tU + ∂xF = 0 we
find

(Sl,r −Sm)U∗
l,r = (Sl,r −ul,r)Ul,r +




0
P ∗ −Pl,r
0



 . (4.5)

By combining (4.2) and (4.5) we can deal with the cases Sl,r =Sm
in order to avoid a division by zero. Handling the latter is impor-
tant when h=0 at one of the nodes of an element.
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Finally, the wave speeds are estimated based on the left and right moving
rarefaction wave speeds

Sl =min(ul −al, ur −ar), Sr =max(ul +al, ur +ar), (4.6)

respectively. When Sl>V the flux simplifies to Fl −V Ul and when Sr<V

to Fr − V Ur, i.e., the upwind cases. When we choose a Lagrangian grid
velocity the choice V =Sm is appropriate since

lim
V→Sm

F̃ hllcV (Ul,Ur)= (0, P ∗,0)T (4.7)

and P ∗ =Pr if hl =0 and ur =Sm, or P ∗ =Pl if hr =0 and ul =Sm.

5. FLOODING AND DRYING

Definition 1. (fluid patches). The fluid is divided into one or more
disjoint patches of fluid in a bounded region (see Fig. 2.) In one dimen-
sion, each patch has a left and right boundary. The boundary conditions
at the external boundaries are, for example, (prescribed) in- or outflow
conditions (depending on the characteristics), and no flow through mov-
ing or fixed walls.

In one dimension a dry–wet boundary is demarcated by a particle on
the left or right of the patch. There are three situations to distinguish:
(i) a patch of fluid moves along with a dry–wet boundary on the left,
on the right, or at both sides; (ii) a patch of fluid breaks up into two
patches in which case we may have to define two new particles; and (iii)
two patches of fluid merge into one patch of fluid.

Definition 2. (free-boundary elements). The elements of a patch con-
sist of Eulerian fixed elements and mixed Eulerian–Lagrangian free-
boundary elements. The Eulerian fixed elements of Ωf coincide with a
subset of underlying fixed elements of the computational domain Ω.

A free, dry–wet boundary on the right of a patch is modeled with a
free-boundary element whose right node moves with the flow, (see Fig. 3).

a b

P P P1 2 M

Fig. 2. A sketch of the M patches Pi within the space Ω= [a, b].



Flooding and Drying in DGFEM 57

K

k k+1

ri

K k

h(x,t)
ALE mesh

fixed mesh

Fig. 3. A patch in the finite-element space with a free-boundary element Kri on the right.
The (interior) elements away from a free boundary are fixed or Eulerian, while the free-
boundary element is mixed Eulerian–Lagrangian. Hence, the computational mesh used is a
particular case of an ALE mesh (e.g., [22]). Denoted is the height field h(x, t) for the case
with linear basis functions. Note that in Kri we have h=0 at the free boundary.

At this right node of the free-boundary element the depth is generally
zero. The left node of this free-boundary element is fixed.

When the depth is zero at this right node k= ri, we constrain the lin-
ear representation hk = h̄k + ĥk ζ to be zero at ζ = 1 such that ĥri = −h̄ri.
From the mean part of (3.9), we find the equations of motion for h̄ri

|Kri|
dh̄ri

dt
= F̃h

(
Uri−1,R,Uri,L

)− h̄ri VR (5.1)

with VR =dxri,R/dt and VL =0. The subscript in F̃h denotes that we con-
sider the depth component hu of the flux (4.2) with VL =0. Likewise for a
free-boundary element on the left k= le, and we constrain ĥle = h̄le. From
(3.9), we find the equations of motion for h̄le

|Kle|
dh̄le

dt
=−F̃h

(
Ule,R,Ule+1,L

)+ h̄le VL (5.2)

with VL = dxle,L/dt and VR = 0. The discretization for the other variables
remains unconstrained, which formally ensures second-order accuracy for
the velocity and hence the advancement of the free boundary.

Definition 3. Define the Heaviside function Θ(x) with Θ(x)=0 when
x<0 and Θ(x)=1 for x�0, and denote by SmL the Sm-velocity at the left
node of an element, and so forth.

5.1. Time-step Criterion for the Mean Depth

Using an forward Euler time-step scheme, we next show that the
mean depth remains positive for a suitably restricted time step.

Proposition 5.1. We consider the following assumptions:
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A1: Use the discontinuous Galerkin finite-element discretization
(3.9), either with a mean only or with both mean and slope
information, together with the HLLC flux defined in (4.2)–(4.6).

A2: Use a forward Euler time-stepping scheme to integrate the con-
tinuity equation ∂th+ ∂x(hu)=0 from time tn to time tn+1.

A3: Let the depth at time tn in element Kk be hnk with hnk,L and
hnk,R the values at the left and right nodes of this element.
For interior (flooded) elements we have hnk,L > 0, hnk,R > 0 and
VR = VL = 0. For a free-boundary element on the left we have
hnk,L = 0, hnk,R> 0 and VR = 0. Likewise, for a free boundary ele-
ment on the right we have hnk,L>0, hnk,R =0 and VL =0.

Given assumptions A1–A3 and the Definitions 1–3, the mean depth h̄n+1

at the next time step is positive provided the time step is less than the min-
imum value of the elemental time steps ∆tk. This elemental time step ∆tk
in element Kk is defined in (5.6).

Proof. Consider the forward Euler time integration for the mean
depth in the discontinuous Galerkin finite-element discretization:

h̄n+1
k = h̄nk −∆t [F̃V,h(Unk,R,U

n
k+1,L)− F̃V,h(Unk−1,R,U

n
k,L)]/|Kn

k |
+∆t (V nL −V nR) h̄nk/|Kn

k |, (5.3)

where h̄n+1
k is the depth at the next time step and h̄nk the depth at the pre-

vious time step in element k. Define the shorthand SVl = Sl −V , etc. The
subscripts in F̃V,h denote that we consider the depth component hu of the
flux (4.2), i.e.,

2 F̃V,h = ul hl +ur hr − (|SVl |− |SVm |) h∗
l + (|SVr |− |SVm |) h∗

r

+|SVl |hl −|SVr |hr −V (hl +hr)

= (
(Sl −Sm+|SVl |− |SVm |) ul + (|SVm |−V )Sl + (V −|SVl |) Sm

) hl

Sl −Sm
+(
(Sr −Sm−|SVr |+ |SVm |) ur−(|SVm |+V )Sr+(V +|SVr |) Sm

) hr

Sr−Sm
(5.4)

after using (4.5). The flux (5.4) at a node reduces to the following four
cases:

F̃V,h =






hr (ur −V )<0 if SVl <S
V
m <S

V
r <0,

hr (V −Sm) (ur −Sr)/(Sr −Sm)<0 if < SVl <S
V
m <0 ∧ SVr >0,

hl (ul −V )>0 if 0<SVl <S
V
m <S

V
r ,

hl (Sm−V ) (ul −Sl)/(Sm−Sl)>0 if < SVl <0 ∧ 0<SVm <S
V
r

(5.5)
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in which we used the relation (4.6) to determine these inequalities. The ele-
mental time step

∆tk = h̄nk |Kk|/max
(
(VR −VL) h̄k +hrL (VL −urL)Θ(−SmL)Θ(−SrL)

+hrL
(VL −SmL) (SrL −urL)

(SrL −SmL)
Θ(−SmL)Θ(SrL)

−hlL (ulL −VL)Θ(SlL)Θ(SmL)

−hlL
(SmL −VL) (ulL −SlL)

(SmL −SlL)
Θ(−SlL)Θ(SmL)

+hlR
(SmR −VR) (ulR −SlR)

(SmR −SlR)
Θ(SmR)Θ(−SlR)

+hlR (ulR −VR)Θ(SmR)Θ(SlR)

−hrR
(SmR −VR) (urR −SrR)

(SrR −SmR)
Θ(−SmR)Θ(SrR)

−hrR (VR −urR)Θ(−SmR)Θ(−SrR),0
)
. (5.6)

All terms on the right-hand side in (5.6) are evaluated at time tn.
We obtain (5.6) and the time–step restriction ∆t <∆tk by using the

result (5.5) in (5.3) and requiring that h̄n+1
k > 0. Note that each term in

the denominator on the right-hand side of (5.6) is positive. The sign in
front of a term in this bracket thus signals whether it yields a positive or
negative contribution to the denominator.

Procedure 1 (merging and splitting of elements). In order to main-
tain the mostly Eulerian nature of the numerical scheme, (i) we split
a free-boundary element when it becomes too large, and (ii) merge a
free-boundary element with its neighbor when the former becomes too
small. Therefore, the number of elements in a patch with at least one free
boundary may change over time. Due to the local nature of discontinuous
Galerkin finite-element methods, this update can be handled locally.

The element-splitting process (which operationally is performed when
a free-boundary element becomes larger than, say, the size of the local
underlying fixed element Kk plus 0.6 times the size of the overflown adja-
cent fixed element) is quite simple: the part of the free-boundary element
entirely between two of the fixed nodes is made a regular element, and
the remainder the new free-boundary element (see Fig. 4a). For the con-
strained linear basis function, no information is lost in this process. We
determine the new values simply by projection. Mean and slope values
of the depth and the velocity can be preserved in this splitting process.
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Fig. 4. Element (a) splitting and (b) merging sketched for the depth field in the case of
linear basis functions.

This operation is not performed when there is a front nearby (and a patch
merger – see below – is imminent).

In the element-merging process (performed operationally when the
size of an edge element falls below, say, 0.4 times that of the local reg-
ular element), we construct a new free (i.e., “triangular”) element from
the old free-boundary element and its neighbor, preserving the integral of
hh,uh, vh, and the location of the original front (see Fig. 4b). For the lin-
ear basis function at the free boundary, the slope information ĥk of the
neighboring element is constrained. Only the mean value of h is thus pre-
served.

Procedure 2 (merging and splitting of patches). In addition to ele-
ment merging and splitting discussed above, patches may also merge and
split. When the depth of the fluid becomes zero in the interior of a patch
or when a splitting criterion is met, the patch is split into two patches with
free-boundary conditions at the splitting point. In the absence of source
terms S, the splitting criterion derives optimally from a Riemann splitting
criterion for a flat bottom case, that is, at an edge splitting occurs when
ul + cl �ur − cr or approximately since cl,r �1, when ul �ur (see, e.g., [19,
20]). Alternatively, the Riemann problem may be considered for a locally
uniform bottom slope. When fronts from two patches meet, we merge the
patches into a single patch. For computational reasons, patches are con-
strained to have a minimum of two elements.

It is easy to see that, due to our linear basis functions, the depth of
the fluid must first become zero at a node before it does in the interior
of an element. Thus, given sufficient temporal resolution as guaranteed by
the time-step criterion for the depth, patch splitting always occurs at one
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or two nodes of an element for linear or constant basis functions, respec-
tively. When this happens, the (regular) elements bordering the node(s) are
made free-boundary elements having the same length as the underlying
regular elements, preserving the integral of U (see Fig. 5).

When the free boundaries of two patches meet or overlap after a full
time step, the patches are merged: the free-boundary elements are con-
verted into regular elements, preserving as much of the original infor-
mation as possible. Due to the finite temporal resolution in practice, we
perform the patch merging procedure when two free-boundary elements
have actually overlapped. There are several scenarios for this overlap,
which can be simplified if we split the free-boundary elements before merg-
ing the patches. After the boundary-element splitting, we are left with two
possibilities: (a) the more generic case where the free-boundary elements
overlap within one regular element (see Fig. 6a), and (b) the less generic
case where the free-boundary elements overlap within two regular elements
(see Fig. 6b).

A patch is not split if a new patch would consist of only one element.
A note on implementation: the set of patches (whose number should

be small in normal operation) is implemented as a linked list, each of

Fig. 5. Patch splitting sketched for the depth field in the case of linear basis functions.

(a)

(b)

Fig. 6. Patch merging sketched for the depth field for two generic cases where free bound-
aries overlap (a) in one element and (b) in two elements in the case of linear basis functions.
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which contains information about the boundary conditions, the location of
the boundaries, of the neighboring patches (if any), and the free-boundary
elements (if any).

Definition 4. The preliminary time step ∆tp is the minimum over all
elements of each time step associated with the maximum wave speed in
element Kk

|Kk|/min(|uk|+
√
g hk), (5.7)

and the time-step estimate ∆t̃k in each left and right free-boundary
element

∆t̃k < |Kk|/
(

max
(
VR −2urLΘ(−SmL),0

)
max(−SrL,0)

+max
(
VR +2

|SmL| (SrL −urL)

(SrL −SmL)
Θ(−SmL),0

)
max(SrL,0)

)
, (5.8)

∆t̃k < |Kk|/
(

max
(
−VL +2

|SmR| (ulR −SlR)

(SmR −SlR)
Θ(SmR),0

)
max(−SlR,0)

+max
(
−VL +2ulRΘ(SmR),0

)
max(SlR,0)

)
, (5.9)

respectively. In order to derive (5.8) and (5.9), we used the inequalities
hk,R �2 h̄k and hk,L �2 h̄k in (5.6) and ignored the terms with a minus
sign in the denominator of the right-hand side of (5.6).

5.2. Stepping Forward in Time

Corollary 5.2. We consider the following assumptions:

A4: For all interior elements, depth and velocity are approximated by
a mean and slope, as follows, h= h̄k+ζ ĥk, u= ū+ζ û and v= v̄+
ζ v̂. Define mu = hu= m̄u + ζ m̂u,1 + (ζ 2 − 1/3) m̂u,2, and likewise
for mv=hv. Using a weak formulation for mu=hu and mv=hv,
we then obtain

ū= 3 m̄u h̄−m̂u,1 ĥ
3 h̄2−ĥ2

, û= 3 (m̂u,1 h̄−m̄u ĥ)
3 h̄2−ĥ2

, m̂u,2= ĥ û (5.10)

and likewise for v̄ and v̂.

A5: For free boundary elements, depth is approximated by
hk = h̄k (1 ± ζ ) at left and right free boundary elements, respec-
tively.
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A6: In a free boundary element on the left VL = uk,L. In a free-
boundary element on the right VR =uk,R.

A7: The time step ∆t is the minimum of ∆tp in definition 4 and time
steps ∆t̂k for interior elements. Here ∆t̂k is the local time step for
which h̄n+1

k ± ĥn+1
k =0, in which h̄n+1

k ± ĥn+1
k follows from the dis-

continuous Galerkin discretization (3.9) for the continuity equa-
tion as

h̄n+1
k ± ĥn+1

k = h̄nk ± ĥnk − ∆t

|Kn
k |

(
(1±3) F̃ hllch (Unk,R,U

n
k+1,L)

+ (−1±3)F̃h(Unk−1,R,U
n
k,L)

)
± 2∆t

|Kn
k |
(3 h̄nk ū

n
k + ĥnk ûnk )

(5.11)

with F̃h= F̃V=0,h given in (5.5). Note that VR =VL =0 for interior
elements.

A8: When the depth of an interior element Kk falls dry after the
time step ∆t̂k at node xk or xk+1, the patch to which Kk belongs
is split and left and right free-boundary elements Kk−1 and Kk or
Kk and Kk+1 emerge.

Given Definitions 1–4, Procedures 1 and 2, and Assumptions 1–8 the shal-
low-water equations are integrated forward in time with a discontinuous
Galerkin finite-element method formally first order in time and second
order in space under preservation of non-negative water depth.

Proof. By construction.

Remarks. (i) The proposition and corollary extend to the third-
order Runge–Kutta scheme by repeating the proposition for every
intermediate stage with intermediate depth h(i) assuming subse-
quently that h̄(i) ± ĥ(i)�0 and h̄(i) > 0. Unfortunately, a smaller
time step for h(i) may require a restart at tn.

(ii) The conditions in remark (i) are ensured by limiting h to zero
whenever h<0 at one side of an interior element at an interme-
diate stage when the multi-stage third-order Runge–Kutta method
is used. This limiting is necessary because we are unable to find
the time step at which a dry patch emerges in the multi-stage time
discretization, in contrast to the forward Euler case.
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(iii) The proof shows that the maximum time step allowed per ele-
ment is most easily implemented numerically in parallel with the
determination of the fluxes.

(iv) For a patch that consists of only two elements the velocities left
and right of a patch are set equal in order to avoid very thin
and small patches. When this situation emerges, the dynamics
has essentially reached the subgrid scales. The numerical model is
then no longer expected to be accurate.

(v) The proposition and corollary are in principle valid for any sys-
tem discretized in a similar way and with a one-dimensional con-
tinuity equation. Hence, it is not restricted to the shallow-water
case, but also valid, for example, for the compressible Euler equa-
tions by replacing h by a density ρ.

6. VERIFICATION

In the numerical verification, we consider the dam break problem, the
drying Riemann problem over a flat bottom, the parabolic bowl solution
[22], the Carrier–Greenspan solution [7] and the Peregrine–Williams solu-
tion [13]. These exact solutions are summarized in Appendix A.

In the verification cases, the numerical solution is compared with the
exact solution. We use the L2-errors

L2(u, h) =
(∫

Ωf

(unumerical −uexact)
2 + (hnumerical −hexact)

2 dx

Lf

)1/2
(6.1)

L2(m,h) =
(∫

Ωf

(Unumerical −Uexact)
2 dx

Lf

)1/2
(6.2)

with Lf the flooded part of the computational domain, and the L∞-error,
the maximum difference between the numerical and exact solution. When
possible and useful, the difference between the exact and numerical solu-
tion of the frontal position, and the error in the break up time of a patch
of fluid is calculated as well.

Dimensionless, scaled equations have been used, effectively taking
g=1. Shallow slopes of 1:20 or 1:100 emerging in the dimensional prob-
lem, cf. the shallowness assumption, therefore often appear as slopes of
order one in our dimensionless examples (see the scalings in, e.g. [6,13]).
The total number of fixed finite elements across the computational domain
is stated in each case below. In the actual computation, only the flooded
(fixed and free boundary) elements are used in action.
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6.1. Riemann Solutions

A summary of the solutions to the Riemann problem for the shallow-
water equations can be derived from Smoller [19] or Toro [20].

6.1.1. Dam Break

Consider a dam break problem with an initial condition h(x,0)=H0
for x− x0< 0 and zero elsewhere, and u(x,0)= 0. Since the initial condi-
tion is discontinuous, we adapted our boundary treatment by using both
slope and mean as variable as long as the depth at the front is positive,
while the speed of the front is the prediction ul+cl with c=2

√
g h for the

Riemann problem with one side a dry bed. Otherwise, when the depth has
become zero at the front, the free-boundary treatment explained before is
used.

The numerical and exact solutions are displayed in Fig. 7. From
Table I, we conclude that the solution converges at order ∼ 0.7 in the
L2(u, h)-norm, at order ∼ 0.65 in the position of the front, while it is of
order 0.9 for the L2(m,h)-norm and 0.4 in the L∞-error.

Both the dam break problem and the next case in which a dry
patch emerges are special. These solutions start from a discontinuity, and
then the front moves over the horizontal topography such that the depth
becomes tangent to the bed in a quadratic manner near the free-bound-
ary on the right of a patch, i.e., h∝ (xR(t)−x)2. The depth and speed at
the front in our discretization, however, are approximated with linear poly-
nomials. Higher-order (constrained) polynomial approximations tangent to
the bed may be required to improve the approximation of mu and h in
the free-boundary element. In addition, the solution does not have contin-
uous derivatives for t > 0, which may also impede second-order accuracy.
In contrast, in the other cases which are considered with topography, the
free surface intersects the boundary at a finite angle, and the representa-
tion by linear polynomials appears sufficient even when the actual solution
is quadratic (but not tangent to the bed).

6.1.2. Drying

A dry patch occurs in Riemann problems when the constant initial
data at t =0 meet the drying criterion cl + cr −ur +ul<0. Two expansion
waves then propagate away from a dry patch, which immediately appears
at t ↓0.

The numerical results in Table II and Fig. 8 show that the accuracy
is of order 0.9 for L2(m,h), while the L2(u, h)- and L∞-errors are fixed.
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Fig. 7. Free surface and velocity profiles are shown as functions of space and time for the
dam break problem. Solid lines display the numerical solution, and dashed lines the exact
solution. 400 elements are used without additional numerical dissipation.

The initial conditions are chosen such that a small dry patch develops. The
numerical solution develops this dry patch initially, but due to the numer-
ical dissipation inherent in the HLLC flux the patch incorrectly floods
again thereafter. As in the dam break problem, the velocity and depth
are constant and linear in the numerical solution, while being linear and
quadratically tangent to the bed in the exact solution. Again, higher-order
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Table I. Dam Break Test Without Extra Dissipation. Error in Norms L2(u, h), L2(m,h),
L∞; and the Frontal Position, εxR =xR −xnumerical

R , at Time t=4. Parameters and Initial
Conditions are x <x0 :u(x,0)=0, h(x,0)=1;x >x0 :u(x,0)=0, h(x,0)=0 with

x0 =10, a0 =H0 =1,CFL=0.1

N L2(u, h) p L2(m,h) p L∞ p εxR p

50 0.030743 0.019413 0.09060 1.9698
100 0.019316 0.67 0.010832 0.84 0.08300 0.13 1.3194 0.58
200 0.011859 0.70 0.005860 0.89 0.06351 0.39 0.8747 0.59
400 0.007155 0.73 0.003106 0.92 0.04631 0.46 0.5570 0.65
800 0.004200 0.77 0.001619 0.94 0.03438 0.43 0.3391 0.72

constrained polynomials at the free-boundary may be required to (par-
tially) remedy this mismatch.

6.2. Parabolic Bowl

The results in Table III and Fig. 9 show that the numerical accuracy
is of order two. The parabolic test solution is thus sufficiently smooth so
that the numerical results converge to the expected second-order accuracy.
The difference of the exact and numerical position of the free-boundary
at a fixed time is not such a good indicator (see εxb in Table III), perhaps
because the solution and its error are oscillatory or because the element
splitting process (temporarily and intermittently) reduces accuracy (which
is not visible in the graph of xb(t) vs t). Nevertheless, this difference

Table II. Drying Test Without Extra Dissipation. Error in Norms
L2(u, h), L2(m,h), L∞; and the Frontal Position Closest to the

Origin, εxR =xR −xnumerical
R , at time t=1.5. Parameters and Initial

Conditions x <x0 :u(x,0)=ul, h(x,0)=hl;x >x0 :u(x,0)=ur,

h(x,0)=hr with hl =0.5, hr =1, ul =0, ur =3.5, c0 =1,CFL=0.5.
The Drying Criterion cl + cr −ur +ul ≈−8.5786e−2<0 is met

at t=0

N L2(u, h) p L2(m,h) p L∞

50 0.2423 0.074455 1.630
100 0.1558 0.64 0.026786 1.47 1.549
200 0.1831 −0.23 0.014764 0.86 1.523
400 0.1475 0.31 0.007556 0.97 1.499
800 0.1550 −0.07 0.004023 0.91 1.496
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Fig. 8. Free surface and velocity profiles are shown as functions of space and time for
the Riemann problem in which a dry patch emerges. Solid lines display the numerical solu-
tion, and dashed lines the exact solution. 400 elements are used without additional numerical
dissipation.
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Table III. Parabolic Bowl Test without Extra Dissipation. Error in the Norms L2(u, h),
L2(m,h), L∞; and the Error in the Frontal Position xb, εxb =xb−xnumerical

b , all at Time
t=3. Parameters and Initial Conditions are u(x,0)=0, h(x,0)=0.5h1(0)
(xb(0)− (x−0.5)2) with B=12, xb(0)=

√
1/6, h1(0)=12,CFL=0.01

N L2(u, h) p L2(m,h) p L∞ p εxb

10 0.03891532 0.03637109 0.0678214 −0.01737615
20 0.01450206 1.42 0.00653306 2.48 0.0338388 1.00 −0.00276955
40 0.00229621 2.66 0.00129805 2.33 0.0053047 2.67 −0.00083484
80 0.00058647 1.97 0.00033048 1.97 0.0019417 1.45 −0.00007639

160 0.00014010 2.07 0.00010330 1.68 0.0005360 1.86 −0.00010299
320 0.00002367 2.57 0.00001827 2.50 0.0001101 2.28 −0.00001834

converges as well, but slower. Note that the free surface in the parabolic
bowl solution intersects the topography at a finite angle, in contrast to the
previous two solutions.

6.3. Carrier–Greenspan

The numerical results are given in Table IV and Fig. 10. The numeri-
cal accuracy in the interior is about order 1 for the L2-norms and around
order 0.4 for the L∞-norm and about order 1.2 for the error in the frontal
position. The plot of the height field h(x, t) shows clearly that some accu-
racy is lost where the gradient becomes very steep or infinite, which coin-
cides with the region where the Jacobian of the transformation becomes
small. The latter may explain why the convergence is not optimal, i.e., of
order 2.

6.4. Peregrine–Williams

Peregrine and Williams [13] derived an analytical solution for a dam
break problem of a shallow-water layer on a steep slope of a dike.
Eventually, the water reaches the top of the dike and falls down. The
top of the dike defines a critical point in the flow. Peregrine and Wil-
liams [13] scaled the shallow-water equations, which form is equivalent to
shallow-water equations either on a shallow slope with a horizontal coor-
dinate x or on a steep slope in which coordinate x follows the slope. Here,
we used the former, with a horizontal coordinate x.

A numerical simulation with a resolution of 200 elements and no
extra numerical dissipation shows the numerical (solid lines) and exact
(dashed lines) in Fig. 11. The order of accuracy of the L2-errors is
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Fig. 9. Free surface (40 elements) and velocity (20 and 40 elements) profiles are shown as
functions of space and time for the parabolic bowl problem. Solid lines display the numer-
ical solution, and thin and thick dashed lines the exact solution and the beach topography,
respectively. No additional numerical dissipation is added.
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Table IV. Carrier–Greenspan Test Without Extra Dissipation. Error in Norms L2(u, h),
L2(m,h), L∞; and the Error on the Frontal Position xR, εxR =xR −xnumerical

R , all at Time
t=4. CFL=0.01. For the other Parameters and Initial Conditions (see Appendix A)

N L2(u, h) p L2(m,h) p L∞ p εxR p

10 0.00373049 0.00178246 0.0071550 −0.0055263
20 0.00090234 2.05 0.00047815 1.90 0.0019300 1.89 −0.0019313 1.51
40 0.00052466 0.78 0.00041581 0.20 0.0014153 0.45 −0.0007257 1.41
80 0.00025871 1.02 0.00022217 0.90 0.0007413 0.93 −0.0003197 1.18

160 0.00005417 2.26 0.00003680 2.59 0.0003948 0.91 −0.0001476 1.11
320 0.00002251 1.27 0.00001020 1.85 0.0002998 0.40 −0.0000611 1.27
640 0.00001180 0.93 0.00000637 0.68 0.0002178 0.46 −0.0000258 1.24

about 1. The accuracy of the front position is about 0.7. The prediction
of the break up time converges slowly, eventually at an order 0.5. The
L∞-error is around of the order 0.3−0.4. (Table V)

7. Run-up and Overtopping

Finally, a complex simulation with wave breaking, run-up and over-
topping is shown to display the potential of the presented numerical dis-
cretization of the shallow-water equations. The space–time plot of depth
and velocity profiles in Fig. 12 depicts the time history of multiple waves
steepening to bores, running up the beach, and spilling water over the top
of the dike. This dike top is a critical point as in the Peregrine–Williams
solution. Beyond the dike top the water rushes down in broken patches of
fluid. The offshore beach slope is scaled to unity, and a wave maker intro-
duces sinusoidal waves offshore. At the left boundary x=0, we specify the
state Ul0, used in the flux calculation. It is grown from rest and h=H0 lin-
early in t from 0<t <0.1 to the solution for t �0.1

ul(0, t)=−k A sin(k x−ω t)/ω, hl(0, t)=H0 −A sin(k x−ω t) (7.1)

with H0 = 1, k=ω= 3π,A= 0.07 and initial condition h(x,0)=H0 −x for
x <H0 and u(x,0)= 0. The offshore boundary condition is implemented
with the same HLLC flux scheme used at interior element nodes. Essen-
tially depending on the characteristics, information is thus (partly) flowing
in or out the domain. The landward boundary is open, such that water is
allowed to vanish.

In the simulation in Fig. 12, we see initially sinusoidal waves steepen
to bores when they approach the shore. After a bore has formed the slope
between bores is nearly parallel to the beach topography, and the dynam-
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Fig. 10. Free surface and velocity profiles for the Carrier–Greenspan test case, see Table IV,
for N =40 elements without additional dissipation.

ics behind the last bore resembles the initial condition of the idealized
overtopping solution of Peregrine and Williams. The evolution of each
incoming bore then resembles intermittently the Peregrine–Williams solu-
tion. Due to the offshore driving of waves, multiple bores create multiple
overtopping events. On the right side of the dike top, multiple patches with
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Fig. 11. Free surface and velocity profiles are shown as functions of space and time for the
Peregrine–Williams solution. N = 200 elements are used with the HLLC flux without addi-
tional numerical dissipation. The (scaled) beach topography has slope 1 : 1, while this slope
should be small in dimensional terms.

very shallow water rush down the slope rapidly to leave the computational
domain.
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Table V. The Peregrine–Williams Overtopping Test Without Additional Dissipation. Error
in Norms L2(u, h), L2(m,h), L∞; and the Frontal Position of the First Patch,
εxs =xs −xnumerical

s With xs =x0 − t2/2+2 t , at Time t=3, and the Time of
Break up, ∆tb. The Exact Solution Breaks at t=2. Parameters and Initial Conditions
L=4;x0 =2;E=1;x <x0 :u(x,0)=−1, h(x,0)=1;x >x0 :u(x,0)=0, h(x,0)=0 and

CFL=0.01

N
10

L2(u,h)

10−2 p
L2(m,h)

10−2 p L∞
10−2 p εxs p

∆tb
10−2 p

5 1.11062 0.27475 3.5526 0.11229 1.8016
10 0.25262 2.13 0.01023 1.43 0.8717 2.03 0.09737 0.21 2.2975 −0.3508
20 0.12717 0.99 0.04828 1.08 0.6081 0.52 0.06290 0.63 1.9403 0.24
40 0.06738 0.91 0.02356 1.04 0.4991 0.29 0.03995 0.65 1.3653 0.51
80 0.03680 0.87 0.01160 1.02 0.3877 0.36 0.02502 0.68 0.9631 0.50

8. CONCLUSIONS

This paper is a study of the free-boundary dynamics in one-
dimensional shallow-water equations with a space discontinuous Galerkin
finite-element scheme. Our numerical scheme is able to preserve the non-
negative nature of the (mean) depth in combination with a free-boundary
treatment in mixed Eulerian–Lagrangian elements. A variety of solutions
has been considered in which the free-boundary movement is essential,
including cases where free boundaries emerge or disappear.

We combined an explicit space discontinuous Galerkin finite-element
scheme [9] with the HLLC flux to ensure positivity of the mean water
depth in each element under certain reasonable time-step restrictions. A
spatial discretization was considered which is formally second-order accu-
rate with constant and linear polynomial basis functions, representing the
mean and slope of the velocity and depth in each element. The free-
boundary movement and the appearance of dry patches with zero water
depth in the middle of the fluid domain has been handled by using the
slope information of the depth. Finally, the robustness of the method is
exemplified by a complex simulation of multiple shoaling and steepening
water waves running up the seaward slope of a dike, overtopping, and then
breaking up in two or more patches at the downslope side.

Detailed and varied numerical verifications show that our method
is second order in smooth cases and in the interior of the domain in
the absence of physical discontinuities. It reduces to order 0.7–1.0 in the
presence of discontinuities, and at the free boundary. It reduces to order
0.5 at the front when (multiple) dry patches emerge. Riemann problems
with dry patches on horizontal topography lead to numerical solutions
with inaccurate predictions of the free-boundary position, because the lin-
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Fig. 12. Two free surface profiles (thick solid lines) are shown from the front and back side
of a dike, as well as velocity profiles for multiple waves steepening, running-up a dike and
overtopping a dike. 400 elements are used with a localized slope limiter (combining [11,16],
see Appendix B). Slope limiting is not necessary for the robustness of the method, but avoids
the modest oscillations around the incoming bores occurring otherwise. Note how periodic
the space-time profiles become. The (scaled) beach topography is indicated by the dashed
lines. We observe that the patches of water are rushing down the back slope very fast and are
very thin.
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ear polynomial approximations cannot converge well to these solutions in
which the free surface is parallel to the topography at the free bound-
ary, and because the initial condition near (emerging) free boundaries is
discontinuous. The initial discontinuity can be avoided starting with a con-
tinuous profile in this Riemann problem. A discontinuity in the first deriv-
ative, however, also prevents convergence to second-order accuracy.

Local p-refinement combined with an asymptotic analysis at the free
boundary (such that the order of the basis and test function is raised) is
anticipated to (partly) remedy the accuracy loss in these Riemann prob-
lems with dry patches and raise the accuracy at the edge elements in gen-
eral (see also [5]). However, the introduction of a constrained second-order
basis function in these elements poses additional restrictions in order to
ensure positivity of the mean depth. Patch splitting also reduces the accu-
racy. Using space–time discontinuous Galerkin finite-element methods can
possibly lead to more accurate patch splitting because the time of split-
ting is then known directly. The implicit nature of the space–time method
and the stability of the required iterative solvers of the non-linear alge-
braic problem can, however, pose drawbacks.

The extension of the flooding and drying approach to two dimensions
is in progress. The HLLC flux can be extended to higher dimensions [22],
as well as Proposition 5.1 on the time-step criterion ensuring positivity of
the mean depth in a triangulation [3]. The proposal [3] is to maintain the
mesh quality through an update of the mesh topology by locally deform-
ing an underlying basic, regular mesh of rectangles to the fixed and free
boundaries. A triangular mesh is then defined by inserting diagonals in
this (locally deformed) rectangular mesh. As in the one-dimensional mesh
in Fig. 3, an ALE computational mesh is used in combination with a
fixed, regular mesh. The structured fixed mesh in principle allows for a
more efficient handling of the motion and upgrading of the computational
mesh, as nodes are restricted to move along the rectangular faces or their
diagonals of the fixed mesh only.

In addition, an implicit space–time discontinuous Galerkin
finite-element method is under development for flooding and drying in
two-dimensional shallow-water equations. In this approach, the use of a
cut cell approach is anticipated.
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A. SUMMARY OF EXACT SOLUTIONS

In the following, we provide all the exact solutions used in the main
text for reference.

Consider a dam break problem with as initial condition h(x,−t0)=
H0 for x−x0<0 and zero elsewhere, and u(x,−t0)=0. The terms on the
RHS of (1.1) are zero, S2 =S3 =0. The evolving dam break solution in an
unbounded domain is

g h(x, t)=






a2
0 x−x0<−a0 t,

1
9

(
2a0 − (x−x0)/t

)2 −a0 t <x−x0<2a0 t,

0 x−x0>2a0 t,

(A.1)

u(x, t)=






0 x−x0<−a0 t,
2
3

(
a0 + (x−x0)/t

)
−a0 t <x−x0<2a0 t,

0 x−x0>2a0 t,

(A.2)

with a0 =√
gH0.

The Riemann solution with U=Ul for x<x0 and U=Ur for x>x0 at
t = 0 in which a dry patch appears can be stated explicitly. The terms on
the RHS of (1.1) are zero, S2 =S3 = 0. Drying occurs when cl + cr −ur +
ul<0, and the solution is

a(x, t)=






al, x−x0<(ul −al) t,
1
3 [ul + cl − (x−x0)/t ], (ul −al) t <x−x0<Sl t,

0, Sl t <x−x0<Sr t,
1
3 [(x−x0)/t−ur + cr], Sr t <x−x0<(ur +ar) t,

ar, x−x0>(ur +ar) t,

(A.3)

u(x, t)=






ul, x−x0<(ul −al) t,
1
3 [ul + cl +2 (x−x0)/t ], (ul −al) t <x−x0<Sl t,

0, Sl t <x−x0<Sr t,
1
3 [2 (x−x0)/t+ur − cr], Sr t <x−x0<(ur +ar) t,

ur, x−x0>(ur +ar) t,

(A.4)

with a=√
g h, c=2a and Sl =ul + cl, Sr =ur − cr.

Consider a fluid in a parabolic bowl, which resides symmetrically
around the origin. The following, scaled shallow water equations ∂tu+
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u∂xu=−∂x(h+hb) and ∂th+∂x(hu)=0 can be simplified exactly by intro-
ducing the following Ansatz [23]: u = u0(t) x, h = h0(t) − h1(t) x

2/2, and
hb = B x2/2 with x ∈ [−xb, xb] and, hence, xb(t) = √

2h0(t)/h1(t). Mass
M = ∫

h(x, t) dx = (2/3) h1 x
3
b = (2/3)m is conserved, that is dM/dt = 0.

Given this conserved mass and an initial condition defining m, the above
system can be reduced to:

dxb

dt
= 1

2xb

∂E

∂u0
=u0 xb,

du0

dt
=− 1

2xb

∂E

∂xb
=−u2

0 −B+m/x3
b (A.5)

with “energy” E=u2
0 x

2
b +B x2

b + 2m/xb. Instead of finding a closed-from
solution, we numerically integrate the two ordinary differential equations
(A.5) directly for comparison with the solution of the finite-element dis-
cretization.

Carrier and Greenspan [7] considered the dimensionless shallow-water
equations on a uniform slope ∂th+ ∂x(hu)=0 and ∂tu+u∂xu+ ∂xh=−1.
They introduced a hodograph transformation with u= λ/2 − t and c =√
h= σ̃ /4, such that the shallow-water equations reduce to a linear equa-

tion in φ with u(σ̃ , λ)= ∂σ̃ φ/σ̃ . Hence the shoreline lies at σ̃ = 0. The
solution is well defined provided the Jacobian between x, t and σ̃ , λ exists,
where

t=λ/2−u and x= ∂λφ/4− σ̃ 2/16−u2/2. (A.6)

Assuming φ to be harmonic in λ, the solution is a sum of Fourier modes:

φ(σ̃ , λ)=
∞∑

k=0

Ak J0(ωk σ̃ ) sin(ωk λ+ϕk) (A.7)

with ωk the frequency and J0 the Bessel function of the first kind and ϕk
a phase. We consider the case where the Jacobian of the transformation
is critical for a single mode such that Ak=1,ωk=1 and the front reaches
infinite steepness at periodic instants.

Peregrine and Williams [13] considered the following solution overtop-
ping a dike for the scaled shallow-water equations ∂th+ ∂x(hu)= 0 and
∂tu+ u∂xu+ ∂xh= −∂xhb with hb(x)= 1 for x < x0 +E and hb(x)= −1
for x�x0 +E. Consider initially quiescent flow with depth unity for x<x0
and no fluid or zero depth beyond. The critical point lies at x0 +E with
0<E < 1. The following analytical solution emerges for x < x0 +E. For
t ∈ [0, T1], where T1 = 2 − √

4−2E the time when the front reaches the
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critical point at x0 +E, and for t ∈ [T1, T2], where T2 =√
2E the time when

the flow becomes critical, one obtains

h(x, t)=






1, x−x0<− t2

2 − t,
1

36 t2

(
4 t− t2 −2 (x−x0)

)2
, −t2/2− t <x−x0,

<min
(
xs −x0 ≡− t2

2 +2 t,E
)
,

0, min
(
− t2

2 +2 t,E
)
<x−x0<E,

u(x, t)=






−t, x−x0<−t2/2− t,
2

3 t

(
t− t2 + (x−x0)

)
, −t2/2− t <x−x0<min

(
− t2

2 +2 t,E
)
,

0, min
(
− t2

2 +2 t,E
)
<x−x0<E.

(A.8)

For t ∈ [T2, T3] with T3 =2 the time when the flow starts to recede down the
slope from the critical point, and for t >T3, we find the exact solution:

h(x, t)=






1, x−x0<− t2

2 − t,
1

36 t2

(
4 t− t2 −2 (x−x0)

)2
, − t2

2 − t <x−x0<
√

2E t− t2

2 ,

1
9

(
2− t+√

2 (E−x+x0)
)2
,

√
2E t− t2

2 <x−x0,

<E− (t−2)2
2 Θ(t−2),

0, E− (t−2)2
2 Θ(t−2),

<x−x0<E,

u(x, t)=






−t, x−x0<− t2

2 − t
2

3 t

(
t− t2 + (x−x0)

)
, − t2

2 − t <x−x0<
√

2E t− t2

2 ,

1
3

(
2− t−2

√
2 (E−x+x0)

)
,

√
2E t− t2

2 <x−x0

<E− (t−2)2
2 Θ(t−2),

0, E− (t−2)2
2 Θ(t−2)

<x−x0<E,

(A.9)

with Heaviside function Θ(·).
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B. EXTRA NUMERICAL DISSIPATION

The slope limiting treatment of Schwanenberg [16] is akin to well-
known slope limiters, but is applied to a formulation in terms of the vari-
ables zs = h+ hb, u, v instead of h,u, v provided we choose the reference
level such that zs(x, t)>0. In terms of zs the shallow-water equations read

∂t zs + ∂x
(
u (zs −hb)

)=0, ∂tu+u∂xu+g ∂xzs =0. (B.1)

Instead of the usual Riemann invariants u ± 2
√
g h,u for the flat bot-

tom shallow water equations, we use the approximations u± 2
√
g zs, u to

ensure that the solution is limited to a horizontal water surface and not a
surface parallel to the topography. The limiter in the approximate charac-
teristic variables Uc limits the existing slope to the new slope Û ′

c

Û ′
c,k =m(Ûc,k, Ūc,k+1 − Ūc,k, Ūc,k − Ūc,k−1) (B.2)

with the minmod function m(·)

m(a1, a2, a3)=
{
s min1 �n� 3 |an| if s= sign(a1)=· · ·= sign(an),
0 otherwise. (B.3)

This limiter does perform but poorly with our flooding and drying
scheme since it introduces extra uncontrollable dissipation in shallow areas
in which shocks should have minimal or zero strength. Consequently, the
accuracy decreases. Indeed, Shen and Meyer [17] showed that the jump of
a bore approaching a beach reduces to zero in the limit h→ 0. From the
one-dimensional shock relation it follows that the shock speed becomes
infinite when there is no water in front of the shock. Hence, the shock
strength diminishes quickly when h→0.

Krivodonova et al. [11] derive a shock detection criterion to selec-
tively use extra stabilizing dissipation at shocks only. Their approach uses
the difference in convergence rates between smooth and discontinuous
parts of the solution. The following quantity is used for shock detection:

Ik = |(h̄k−ĥk−h̄k−1−ĥk−1)Θ(uk,L,0)+ (h̄k + ĥk − h̄k+1 + ĥk+1)Θ(−uk,R,0)|
|Kk| ||hk||max

(B.4)

for the depth h, written in our one-dimensional notation with first-order
polynomial basis functions. Here uk,L is the velocity in element Kk at the
left face at xk and uk,R the velocity in Kk at the right face at xk+1. ||h||max
denotes the maximum of h in element Kk. The quantity Ik signals whether
the (numerical) jumps of h that move into an element Kk correspond to
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genuine discontinuities or not. The detection scheme of Krivodonova et al.
[11] states that

h=
{

is discontinuous if Ik >1,
is continuous if Ik <1, (B.5)

only when Ik >1 the previous limiter is activated. We have used the depth
as tell-tale. Other choices are used by Krivodonova et al. [11] in the con-
text of the compressible Euler equations.
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