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Numerical Simulation of High Mach Number
Astrophysical Jets with Radiative Cooling
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Computational fluid dynamics simulations using the WENO-LF method are
applied to high Mach number nonrelativistic astrophysical jets, including the
effects of radiative cooling. Our numerical methods have allowed us to simu-
late astrophysical jets at much higher Mach numbers than have been attained
(Mach 20) in the literature. Our simulations of the HH 1-2 astrophysical jets
are at Mach 80. Simulations at high Mach numbers and with radiative cooling
are essential for achieving detailed agreement with the astrophysical images.
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1. INTRODUCTION

Hubble Space Telescope images have revealed a new wealth of detail in
gas flows and shock wave patterns involving astrophysical jets and col-
liding interstellar winds of particles. Simulating the fluid flows and shock
wave patterns and detailed temperature profiles by implementing theoreti-
cal models in a gas dynamics simulator will help in analyzing the processes
at work in these astrophysical objects. In this investigation we apply the
WENO-LF method [1]—a modern high-order upwind method—to simu-
late high Mach number nonrelativistic astrophysical jets from young stars
including the effects of radiative cooling. In the astrophysical setting, the
jet gas is on the order of ten times the density of the ambient gas. Sim-
ulations at high Mach numbers and with radiative cooling are essential

1 Division of Applied Mathematics, Korean Advanced Institute of Science and Technology,
Taejon 305-701, South Korea. E-mail: youngsooha@kaist.ac.kr

2 Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287-
1804, USA. E-mails: {gardner,ag}@math.asu.edu

3 Division of Applied Mathematics, Brown University, Providence, RI 02912, USA. E-mail:
shu@dam.brown.edu

29

0885-7474/05/0700-0029/0 © 2005 Springer Science+Business Media, Inc.



30 Ha et al.

for achieving detailed agreement with the astrophysical observations. For
example, the gas flows in the HH 1–2 astrophysical jets are at about Mach
80. The WENO-LF method allows us to simulate astrophysical jets at
much higher Mach numbers than have been attained in the literature. The
wide range of supersonic jets simulated by Norman et al. [2,3] have Mach
numbers in the range 1.5–12, while the maximum Mach number of the jets
simulated by Norman and Stone [4–8] is 20. Our simulations of the HH
1–2 astrophysical jets are at Mach 80. (The convention is to specify the
Mach number of the jet with respect to the jet gas.)

Other early supersonic jet simulations were done in [9,10] using the
front-tracking method. Instabilities and asymmetries of astrophysical jets
are treated by Norman [11,12] and by Stone et al. in [13–15], including
radiative cooling. Recent astrophysical jet simulations emphasizing three-
dimensional computations and relativistic jets (still at Mach numbers �20)
are summarized by Müller [16].

We will apply the WENO-LF simulations in modeling the detailed
astrophysical gas flows imaged by the Hubble Space Telescope, like the
image of the pair of astrophysical jets HH 1–2 by Hester et al. [17], which
depicts shock waves including strong bow and terminal shocks, Kelvin–
Helmholtz rollup of the jet tips, and interaction of the jets with their
ambient environment.

Computer simulations and astrophysical theory will allow us to ana-
lyze the detailed properties of astrophysical jet flows: Can we model and
understand the shock waves that develop in and around the jet? What are
the temperatures, densities, velocities, and chemical compositions of the
jets? How do radiative cooling of the jet gas and interaction of the jet with
inhomogeneities in the ambient environment affect morphology and prop-
agation?

Here we describe our implementation of the two-dimensional “slab”
jet problem using the WENO-LF method, including a realistic model for
radiative cooling. The simulations of the basic jet flows agree well with the
Hubble Space Telescope images of HH 1–2.

2. GAS DYNAMICS WITH RADIATIVE COOLING

The equations of gas dynamics take the form

∂ρ

∂t
+ ∂

∂xi

(ρui)=0, (1)

∂

∂t
(ρuj )+ ∂

∂xi

(ρuiuj )+ ∂P

∂xj

=0, (2)
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∂E

∂t
+ ∂

∂xi

(ui(E +P))=−n2Λ(T ), (3)

where ρ = mH n is the density of the the gas (predominantly H), mH

= 938.272 MeV/c2 is the mass of H, n is the number density, ui is the
velocity, ρui is the momentum density, P = nkBT is the pressure, kB is
Boltzmann’s constant1, T is the temperature, and

E = 3
2nkBT + 1

2ρu2 (4)

is the energy density. Indices i, j equal 1, 2, 3, and repeated indices are
summed over. The pressure is related to the internal energy density by the
equation of state, which to an excellent approximation is polytropic:

P = (γ −1)
(
E − 1

2ρu2
)

, (5)

where the polytropic gas constant γ =5/3 for a monatomic gas like H.
Radiative cooling of the gas is incorporated through the right-hand

side of Eq. (3), with the model for Λ(T ) taken from Fig. 8 of [18]. The
cooling law can be modeled approximately by

(
dE

dt

)

cooling
=−n2Λ(T )≈

{−Λ̃(P 2 −P 2
a ), T >Ta,

0, otherwise,
(6)

where Λ̃ = 8.776 in our computational units, Pa is the ambient pressure,
and Ta is the ambient temperature. The approximation (6) begins to break
down for T >T� ∼106 K.

3. NUMERICAL METHODS

We use a third-order WENO-LF [1] (weighted essentially nonoscillatory
Lax-Friedrichs) finite difference method for our supersonic astrophysical
flow simulations. We have extended and adapted the code for simulating
very high Mach number flows with radiative cooling.

ENO and WENO schemes are high-order finite difference schemes
designed for nonlinear hyperbolic conservation laws with piecewise smooth
solutions containing sharp discontinuities like shock waves and contacts.
Locally smooth stencils are chosen via a nonlinear adaptive algorithm to
avoid crossing discontinuities whenever possible in the interpolation proce-
dure. The weighted ENO schemes use a convex combination of all candi-
date stencils, rather than just one as in the original ENO method.

1kB can be set equal to 1 if T is measured in energy units, with the correspondence 1 eV =
11,604.4 K.
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We tried two different methods of incorporating the radiative cooling
source term in the gas dynamics equations: a splitting method (for CLAW-
PACK and for an implicit treatment of cooling in WENO-LF), and (2) an
unsplit method for WENO-LF with an explicit treatment of cooling. The
computational results were virtually identical. In the splitting method, first
we solve the homogeneous gas dynamics equations (with Λ≡0), and then
we update the energy density E by solving the ordinary differential equa-
tion (ODE)

dE

dt
=−n2Λ(T ) (7)

with the initial condition for E given by the results from the first step. In
the splitting method only the energy density E is changed in the cooling
partial step, while ρ and u are held fixed. The ODE is solved using either
an explicit third-order Runge–Kutta method or an implicit second-order
trapezoidal rule method (which guarantees stability even for very large
timesteps). In the unsplit method in WENO-LF, the cooling term is simply
added in on the right-hand side of the explicit third-order Runge–Kutta
method.

We now describe the computational procedure for the third-order
WENO scheme in more detail. Spatial discretization is discussed first. We
start with the simple case of a scalar equation

ut +f (u)x =0 (8)

and assume ∂f (u)/∂u� 0, i.e., that the “wind direction” is positive. More
general cases will be described later. The computational domain is discret-
ized into a uniform mesh of N gridpoints xi = i∆x, i =1,2, . . . ,N , where
∆x is the uniform mesh size. A smooth nonuniform mesh could also be
used to concentrate gridpoints in certain regions to obtain better resolu-
tion. A conservative numerical approximation uj (t) to the exact solution
u(xj , t) of (8) satisfies the following ODE system:

duj (t)

dt
+ 1

∆x

(
f̂j+1/2 − f̂j−1/2

)
= 0, (9)

where f̂j+1/2 is called the numerical flux, the design of which is the key
ingredient for a successful scheme. For the third-order WENO scheme, the
numerical flux f̂j+1/2 is defined as follows:

f̂j+1/2 =ω1f̂
(1)

j+1/2 +ω2f̂
(2)

j+1/2, (10)
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where f̂
(m)

j+1/2, for m=1,2, are the two second-order accurate fluxes on two
different stencils given by

f̂
(1)

j+1/2 =−1
2
fj−1 + 3

2
fj , f̂

(2)

j+1/2 = 1
2
fj + 1

2
fj+1. (11)

The nonlinear weights ωm are given by

ωm = ω̃m∑2
l=1 ω̃l

, ω̃l = γl

(ε +βl)2
(12)

with the linear weights γl given by

γ1 = 1
3
, γ2 = 2

3
(13)

and the smoothness indicators βl by

β1 = (
fj −fj−1

)2
, β2 = (

fj+1 −fj

)2
. (14)

Finally, the parameter ε insures that the denominator in Eq. (12) never
becomes 0, and is fixed at ε = 10−6 in the computations presented here.
The choice of ε does not affect accuracy: the numerical errors can be
much lower than ε, approaching machine zero. Note that we have used
the short-hand notation fj to denote f (uj (t)), and that the stencil for the
scheme is biased to the left because of the positive wind direction.

This completes the description of the third-order finite difference
WENO scheme [19,20] for the scalar equation with a positive wind direc-
tion. As we can see, the algorithm is actually quite simple and there are no
parameters to be tuned in the scheme. The main reason that it works well,
both for smooth solutions and for solutions containing shocks or other
discontinuities or high gradient regions, is that the nonlinear weights,
determined by the smoothness indicators, automatically adjust themselves
based on the numerical solution to use the locally smoothest information
given by the solution. Higher order WENO schemes are available along
the same lines [20–22].

If the wind direction ∂f (u)/∂u � 0, the method for computing the
numerical flux f̂j+1/2 is the exact mirror image with respect to the point
xj+1/2 of the description above. The stencil would then be biased to the
right. If ∂f (u)/∂u changes sign, we use a smooth flux splitting

f (u)=f +(u)+f −(u), (15)
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where ∂f +(u)/∂u � 0 and ∂f −(u)/∂u � 0, and apply the above procedure
separately on each of them. There are many choices of such flux splittings;
the most popular one is the Lax–Friedrichs flux splitting where

f ±(u)= 1
2

(f (u)±αu) (16)

with α =maxu |∂f (u)/∂u|.
For hyperbolic systems of conservation laws (8), the eigenvalues of the

Jacobian ∂f (u)/∂u are all real, and there is a complete set of right and left
eigenvectors. This allows us to apply the nonlinear WENO procedure in
each of the local characteristic fields, obtained by using the left eigenvec-
tors of the Jacobian. For multiple spatial dimensions, the finite difference
version of WENO schemes simply applies the WENO procedure in each
direction to obtain high order approximations to the relevant spatial deriv-
atives. Unlike dimensional splitting, such a dimension by dimension method
allows us to obtain high order accuracy without the computational cost of
truly multidimensional reconstructions. For details, see [20,22].

The time discretization is implemented by a third-order TVD Runge–
Kutta method [23]:

u(1) = un +∆tL(un, tn),

u(2) = 3
4un + 1

4u(1) + 1
4∆tL(u(1), tn +∆t),

un+1 = 1
3un + 2

3u(2) + 2
3∆tL(u(2), tn + 1

2∆t), (17)

where L is the approximation of the spatial derivatives L(u, t)≈−∂f (u)/∂x

by the WENO procedure outlined above. The time discretization is stable
if the first-order forward Euler timestepping of the spatial operator is sta-
ble (see [24] for more details). This time discretization is very simple and
consists of convex combinations of three first-order forward Euler steps. A
CFL condition is needed for stability:

α
∆t

∆x
�CFL, (18)

where α should be taken as the largest (in absolute value) eigenvalue of
the Jacobian ∂f (u)/∂u. The CFL number should be less than one for sta-
bility and in our computations it is taken to be between 0.1 and 0.6 (typ-
ically 0.4) depending on the stiffness of the cooling source term.

4. ASTROPHYSICAL JET SIMULATIONS

Computational units for the supersonic jet simulations presented in
the Figures are given in Table I. In these units, mH =1.
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Table I. Computational Units for the Jets

Physical quantity Basic scale

Length l = 1011 km
Time t = 1010 s
Velocity u = 10 km/s
Density ρ = 100 H/cm3

Energy density & pressure E = P = 104.4 eV/cm3

Temperature T = 1.044 eV/kB = 12,115 K

The initial conditions were specified by ambient values for density,
pressure, and temperature, except at the inflow boundary of the jet, where
the density, pressure, and temperature were those of the jet. Through-flow
boundary conditions were implemented by ghost points for the rest of the
boundary. The timestep is controlled by the CFL factor, and the Mach 80
jet simulations required on the order of 2000 timesteps.

To validate the WENO-LF simulations, we made a comparison of
simulations of a Mach 5 jet with results from LeVeque’s software pack-
age CLAWPACK [25,26] (Conservation LAWs PACKage). CLAWPACK
consists of routines for solving time-dependent nonlinear hyperbolic con-
servation laws based on higher order Godunov methods and (approxi-
mate) Riemann problem solutions, while the WENO-LF scheme does not
directly employ Riemann problem solutions.

The simulations of the Mach 5 jets were performed on a 300∆x ×
300∆y grid for WENO-LF (Fig. 1) and a 200∆x × 200∆y grid for
CLAWPACK (Fig. 2). On a given grid, second-order CLAWPACK attains
higher resolution of shocks for the jet problem than third-order WENO-
LF, because CLAWPACK solves (approximate) Riemann problems. However
WENO-LF with a 300∆x ×300∆y grid shows slightly higher resolution of
the terminal and bow shocks and runs slightly faster than CLAWPACK
with a 200∆x ×200∆y grid.

For the Mach 5 jets, the jet width is 1010 km and the evolution time
is 4 × 109 s ≈ 130 yr. The Mach number of the jet inflow is Mach 1.7
with respect to the soundspeed in the light ambient gas and Mach 5.3 with
respect to the soundspeed in the heavy jet gas. Excellent agreement was
obtained between the two very different methods.

At Mach numbers above 6, the Roe Riemann solver in the cur-
rent version of CLAWPACK fails, due to the generation of negative
pressures in the Riemann solver around the rollup of the jet tip. With
the HLLE Riemann solver and component-wise limiting (supplied by
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Fig. 1. WENO-LF simulation of Mach 5 jet.
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Fig. 2. CLAWPACK simulation of Mach 5 jet.
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Table II. Parameters for the Jets in HH
1–2

Jet Ambient

γ =5/3 γ =5/3
ρj = 500 H/cm3 ρa = 50 H/cm3

uj = 300 km/s ua = 0
Tj = 1000 K Ta = 10,000 K
cj = 3.8 km/s ca = 12 km/s

LeVeque), CLAWPACK can simulate the jets up to Mach 23. To reach
Mach 80, a new (approximate) Riemann solver could perhaps be devel-
oped for CLAWPACK, but we chose instead to use the WENO-LF
method.

The jets in HH 1–2 have the parameters listed in Table II. The simu-
lations of the Mach 80 jets were performed with the WENO-LF method
on a 500∆x ×250∆y grid. For the Mach 80 jets, the jet width is 1010 km
and the evolution time is 7 × 108 s ≈ 22 yr. The Mach number of the jet
inflow is Mach 25 with respect to the soundspeed in the light ambient gas
and Mach 80 with respect to the soundspeed in the heavy jet gas.

Our simulations with radiative cooling accurately reproduce the mor-
phology and physics of the cylindrically symmetrical jet in HH 1–2,
including the bow shock ahead of the jet, the terminal Mach disk just
inside the tip of the jet, and the Kelvin–Helmholtz rollup of the jet
tip. Note the differences between the Mach 80 jet without (Fig. 3) and
with (Fig. 4) radiative cooling. The jet with radiative cooling has a
much higher density contrast near the jet tip (as the shocked, heated
gas cools radiatively, it compresses), a much thinner bow shock, reduced
Kelvin–Helmholtz rollup of the jet tip, and a lower average tempera-
ture. The simulated shock speed us ≈ 200 km/s, and the simulated post-
shock temperature T� ≈ 500,000 K, which agrees with the astrophysical
formula

T� ≈1.4×105
(

us

100 km/s

)2

K. (19)

Radiative cooling is essential in understanding the density contrast and
morphology of the the jets and bow shocks in HH 1–2. Preliminary sim-
ulations indicate that we can reproduce the morphology of the asymmet-
rical jet if the simulated jet collides with an ambient blob of heavy gas
(Fig. 5). In this simulation, a stationary blob of heavy gas with density
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Fig. 3. Simulation of Mach 80 jet without radiative cooling. Scales are logarithmic.



40 Ha et al.

Fig. 4. Simulation of Mach 80 jet with radiative cooling. Scales are logarithmic.
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Fig. 5. Simulation of Mach 80 jet interacting with an ambient blob of gas.
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and pressure equal to that of the jet was placed in the middle of the
simulation region, slightly above the jet axis. Then the jet was allowed to
propagate and interact with the blob.

5. CONCLUSION

The Euler equations have been applied here to very high tempera-
ture and pressure astrophysical jets, with the additional effects of radia-
tive cooling. We believe the simulations are an excellent approximation to
the physics of the jets, since viscosity is extremely small in the astrophys-
ical setting, and the main corrections to the ideal gas approximation are
included in the radiative cooling term.

In order to make a detailed comparison of the simulations and the
astrophysical images of the HH 1–2 jets including reproducing morphol-
ogy, shock structure, and temperature/ionization profiles of both jets, as
well as the pathological features of the asymmetrical jet, we plan to sim-
ulate the interaction of the jets with their ambient environments in more
detail and to extend the numerical code to a parallel version in three-
dimensions. Three-dimensional simulations with moderate resolution are
feasible on modern workstations. The parallel version is needed to achieve
high resolution of fully 3D flows and shock structures.
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