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In constructing local Fourier bases and in solving differential equations with
nonperiodic solutions through Fourier spectral algorithms, it is necessary to
solve the Fourier Extension Problem. This is the task of extending a nonpe-
riodic function, defined on an interval x € [—y, x], to a function f which is
periodic on the larger interval x € [—®, ©]. We derive the asymptotic Fourier
coefficients for an infinitely differentiable function which is one on an interval
x €[—x, x], identically zero for |x| > @, and varies smoothly in between. Such
smoothed “top-hat” functions are “bells” in wavelet theory. Our bell is (for x >
0) T(x: L, x,®)=(+erf(z))/2 where z=LE/\/1—&2 where £ =—1+2(O —
x)/(® — x). By applying steepest descents to approximate the coefficient inte-
grals in the limit of large degree j, we show that when the width L is fixed,
the Fourier cosine coefficients a; of 7 on x €[—©, O] are proportional to a; ~
(1/j)exp(—Ln1/22*1/2(1 — X/@)l/zjl/z)A(j) where A(j) is an oscillatory fac-
tor of degree given in the text. We also show that to minimize error in a Fou-
rier series truncated after the Nth term, the width should be chosen to increase
with N as L=0.91,/T— x/ON'/2. We derive similar asymptotics for the func-
tion f(x) =x as extended by a more sophisticated scheme with overlapping

bells; this gives an even faster rate of Fourier convergence.
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Boyd
1. INTRODUCTION: LOCAL FOURIER BASES AND FOURIER
EXTENSION

For some applications, it is very helpful to have smoothed approximations
to the usual step-function and top-hat function, which are respectively

0, x<-—x
Hay=% =0 T =11,  xe[—x x] (1)
L x>0 0 x> x

(Note that the “top-hat” is just the superposition of two step-functions;
this piecewise-constant function is known variously as the “box” function
or as the “characteristic” or “indicator” function of the interval [—y, x].)
In wavelet and local Fourier basis theory, functions similar to H and
T are called “ramps” and “bells”, respectively. The smoothing replaces
these discontinuous functions by other functions that are similar, but infi-
nitely differentiable. Smoothed ramps and bells are useful to construct
local Fourier bases (Averbuch et al. [1-5], Israeli et al. [32, 33], Vozovoi
et al. [42, 43], Coifman and Meyer [21], Jawerth and Sweldens [34], Bitt-
ner and Chui [6], Matviyenko [35]). Ramps and bells are also useful to
solve the Fourier extension problem, in which a non-periodic f(x) defined
on a certain interval is transformed into a function f which is periodic
on a larger interval (Boyd [17-19], Elghaoui and Pasquetti [23, 22], Nord-
strom et al. [38], Hogberg and Henningson [31], Garbey and Tromeur
Dervout [29], Garbey [28], Haugen and Machenhauer [30]). In particu-
lar, [17] gives an example of how, using Fourier Extension, one can solve
an ordinary differential equation with non-periodic boundary conditions
using a Fourier basis with an exponential rate of convergence. Lastly, such
functions are also useful to blend different local approximations into a
global approximation as in Boyd [15].

Ramps and bells fall into two broad classes. The “C*” class consists
of functions that are analytic for all real x, but have flat portions that are
only approximately equal to one. The “non-analytic” class sacrifices analy-
ticity at the boundaries of the flat portion, x = £y, so that the top-hat is
identically equal to one for all x e[—yx, x].

There is much freedom to choose smoothed functions within each
class; Matviyenko [35] has created a family of bells, later used widely in
wavelets and local Fourier methods, which have discontinuous (k + 1)st
order derivatives at x = +x and thus belong to C*. Two different bells,
themselves entire functions, but creating extended functions f whose Fou-
rier series have only a finite algebraic rate of convergence, are compared
by Israeli et al. [32].
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We prefer instead to choose a bell which is non-analytic, but nev-
ertheless is such that the Fourier series of the extended function f will
converge exponentially fast with the truncation N of the Fourier series.
Our bell has the advantage that it is identically one, and not merely
approximately one, in the central region. Furthermore, our choice has no
singularities except at the points where it is absolutely necessary to have
singularities: at infinity and at the “breakpoints” x = £y, +6. Lastly, our
bell is very simple, being constructed of nothing more exotic than an error
function and a square root. In the absence of a theory for optimizing non-
analytic bells, our choice is a good combination of simplicity and smooth-
ness.

Our bell, non-analytic but C*, is based on the erf-like function

-1, x<—1
Ex;L)= erf(L \/1)“_7), xe[-1,1] 2)
1, x>1

Note that the argument of the error function varies from —oo to oo as x
varies from —1 to 1. L is a user-choosable width parameter; the central
question of this article is: What choice of L is best?

From the erf-like function comes the ramp [smoothed step-function]

Hx; Ly=(1/2){1+&} (3)
and, defining,
Q=W —-x)/2 4)
the bell [smoothed top-hat]
H(x+x+£2]/82: L), xe[-¥ —x]

T(: L.y ¥)= L relzxexd ()
H(—[x—x—$]/2; L), xe[x,¥]

At the “breakpoints” where x = £y and x ==Y, 7 is infinitely differen-
tiable, but all derivatives are zero and the function has essential singulari-
ties. In the Fourier extension problem, the flat portion of 7 is the physical
region where the extended function f= f as marked in Fig. 1.

One might suppose that the singularities at the ends of each smoothing
interval would poison the convergence of the Fourier series of 7 so that
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T(x; L=2, x=1, ¥=m)
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Fig. 1. Erf-smoothed top-hat function or bell, 7. The function 7 =1 for all x e[—x, x] where
here x has been chosen to be one. This central interval is the “physical region” in applications.
The function smoothly varies from to 1 to 0 on the intervals x e[—¥, —x] and x €[x, ¥]. The
function is singular at both boundaries of each smoothing region as marked by the black disks.
Derivatives of 7 to all orders exist (and are zero) at each essential singularity.

the coefficients would decrease very slowly. However, because the function
is infinitely differentiable, its Fourier coefficients in fact fall off exponen-
tially fast with N as illustrated in Fig. 2. Because 7 is symmetric with
respect to x=0, that is, 7 (x; L, x,¥)=7 (—x; L, x, ¥), the Fourier series
for the top-hat function is a cosine series. The figure also shows that the
rate of convergence is strongly dependent upon L: our task is to assess
how rapidly.

In the Fourier extension problem, the extended periodic function f
is constructed by multiplying the original, nonperiodic function f by 7.
The true goal is to optimize the convergence of the Fourier series of f by
varying both the ratio of the width of the physical region to the extension
region and also by independently varying L. Unfortunately, it is not pos-
sible to do this in an f(x)-independent way. As explained in Sec. 10, the
best choice of the relative width of the extension interval is highly depen-
dent on f(x) with a narrow extension interval being best for f(x) which
are highly structured while a broad extension is preferred when f(x) is
very smooth. Therefore, we shall take the width of the physical region to
be a fixed parameter x.

Similarly, since f(x) is not known a priori, the best we can hope to
do is to choose the width parameter L so that the bell 7 is as smooth as
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Fig. 2. Right: Top-hat function 7 (x; L, x, ¥) for three different values of the width param-
eter, L =2,4,6 where the gradient steepens as L increases. Left: Fourier cosine coefficients
for each choice of L. x =0,% =nx (Note that the coefficients depend only on the ratio of
x/¥.)

possible in the sense of having the smallest error in a Fourier series trun-
cated at the Nth term for L = Loptimum (V). We assume, but cannot prove
except for specific f(x), that this will also optimize convergence for the
extended function f, too.

As explained in the next section, there are several ways to perform
the extension. For the “naive” or “non-overlapping” extension, it is suffi-
cient to examine the Fourier series for 7, which is a problem of some
interest in its own right. (There have been only limited analyses of Fou-
rier series for functions which are C°°.) The improved or “overlapping”
extension has the property that the extension of f(x)=1is f =1, which
is completely trivial. Thus, in this case, we must look at the Fourier series
for the simplest function with a nontrivial extension, which is that of
f(x)=x. (In the limit L — oo, f is the piecewise linear “sawtooth” func-
tion (Boyd [16]), so we shall refer to f for finite L as a smoothed saw-
tooth.) Very conveniently, it turns out that the Fourier coefficients for the
overlapping-smoothed sawtooth are proportional to the same integral,
dubbed I* below, as yields the Fourier coefficients for 7 itself. Thus, it
is sensible to analyze both cases in a single article since both hinge on an
asymptotic analysis of the same integral.
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2. THE FOURIER EXTENSION PROBLEM

Definition 1 (Fourier Extension Problem).

Given a (generally) nonperiodic function f(x) which is of interest on
x €[—x, x], the Fourier Extension Problem is to define a function f on a
larger interval x e[—®, @] such that (i)

f=f  Yxe[-x x] (6)

and (ii) f is periodic with period 20 and (iii) f has a rapidly conver-
gent Fourier series or meets similar criteria of smoothness. The extension
is of the First Kind when f(x) is known and analytical everywhere on the
extended interval x € [—©, @]; of the Second Kind when f(x) is known
but has singularities on either or both of the “extension intervals” x €
[-®, —x] and x €[x, ®] and of the Third Kind when f(x) is not known
outside the “physical” interval x e[—x, x]. Boyd [17].

In this article, we shall focus only on the simplest case of Fourier
Extension of the First Kind, and thus assume that f(x) is known and
analytical everywhere on the extended interval [—©, @].

There are many strategies for an extension of the First Kind. We
shall briefly list three. The first two are most easily explained through the
method of imbricate series.

2.1. Imbricate Series

Let G(x) be a function defined on x €[—00, oo] with the property that
it decays as fast as 1/|x|%, «a > 1, or faster as |x| — oo. If we replicate an
infinite number of copies of G(x) and then superpose these copies with
one copy centered at each point of an infinite lattice with even spacing
26, then the sum converges and is by construction a function periodic
with period 20:

(o)
f= )" Gx-m20) (7

m=—00

The sum is the “imbricate series” of f and G(x) is the “pattern” function
(Boyd [11, 14]).

2.2. Naive or Non-Overlapping Extension
In this case, the pattern function is

GX)=f=f@)Tk;L; x,0), xe[-6,0] ®)
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Fig. 3. Fourier Extension of the First Kind: f(x) is known in analytical (or other comput-
able) form outside the physical interval, x €[—, x]. The periodic function f(x)= f(x) for all
x on the physical interval, but differs from f(x) (dashed curve) in the “smoothing regions”
x€[—0, —x],x €[x, ®] where here ©® =mx.

(Outside this interval, G=0 whereas f is defined outside x €[-®, ®] by
its periodicity of period 26.) Because 7 =0V|x| > @, the pattern func-
tion is “infinitely flat” at x =+6 in the sense that f and all its deriv-
atives are zero at these points. We may dub this the “non-overlapping
extension” because the copies of the pattern function have zero overlap;
if x is restricted to the fundamental period interval, x e[—®, @], then the
imbricate series is truncated to the single term f(x)7.

The extension is illustrated in Fig. 3. It can be shown by integration-
by-parts that a function f cannot have a Fourier series whose coefficients
a; decrease exponentially fast with j unless the values of f and all its
derivatives have the same values at x =0 as at x =—0 (Boyd [16]). For
the non-overlapped extension, all the derivatives are zero at both ends
of the period interval, and therefore the derivative matching condition is
trivially satisfied.
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The simplest f(x) that can be extended this way is f(x) =1; its
extension is simply 7. Thus, to find the Fourier coefficients of the simplest
non-overlapped extension is to find the coefficients of 7 itself. As we shall
prove through our asymptotics, however, this extension is not as efficient
as the overlapped procedure described next.

2.3. Overlapped Extension

The deficiency of the the non-overlapped extension is that the “relax-
ation zone” where 7 varies from one to zero is crammed into the interval
x €[x, ®]. If we double the width of the extension zone by choosing the
imbricate pattern function to be

Gx)=f(X)T(x;L; x,®+2E) ©)
where
E=(0-x)/2, (10)

the copy of G centered on the origin and that centered on x =260 will
overlap on the interval x €[y, ® +2 E]. But so what? The leftward relaxa-
tion zone of 7(x —20; L; x,® +2E) decreases from one at x =6 +2E
to zero at x =0 —2E = x, but it does not overlap with the “physical”
interval x €[—x, x] where we demand that the extended function f exactly
equal f(x). Because the relaxation zone has been doubled, the bell 7 is
smoother than in the non-overlapped method, and the convergence of the
Fourier series of f is improved. The two species of extension are com-
pared in Fig. 4.

There is also a second, more subtle advantage: If f(x) is a periodic
function of period 20 so that it does not need to be extended, then the
overlapped extension has the virtue that f= fVx e[-©, @] as proved in
Boyd [17]. In other words, the extension modifies only those parts of f(x),
if it is a mixture of periodic and nonperiodic components, which actually
need to be modified so that f is periodic.

To optimize the width parameter L inside the bell function 7, it
is not possible to examine the coefficients of the extension of f(x)=1
because for the overlapping extension, the extension is the constant f=1!
The simplest nontrivial extended function is

o
Sw(x;L,x,0)= Z (x =2mO)T (x —2mO; L, x, © +28)
m=—o0

[Sawtooth Function] (11)
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Naive Extension: No Overlap Between Copies

Improved Extension: Overlapped
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Fig. 4. Comparison of the non-overlapping (“naive”) and overlapping extensions. Both
graphs show three copies of the imbricate pattern function G for each case. In the overlap-
ping method, copies of the pattern function are allowed to overlap in pairs. However, only
the central copy is nonzero on the physical interval x € [—x, x] where 7 =1 and f=f so
that the extension is faithful to the function being extended, f(x), on this interval.

We shall dub this the “sawtooth” function because in the limit L — oo, it
reduces to the piecewise constant linear function of that name Boyd [16].
In the rest of the article, we shall derive asymptotic approximations to the
Fourier coefficients of the sawtooth function as well as for 7 ((x; L, x, ¥ =
©®), which is the extension of f(x)=1 via the non-overlapped scheme.

3. ASYMPTOTICS, ENVELOPES AND GOALS
3.1. Horizontal and Uniform Limits

Before we dive into a rather complicated derivation of asymptotic
approximations, it is important to be clear about our goals. The trunca-
tion error of a function f(x; L) will be defined to be the L, norm of the
error when the Fourier series is truncated at the Nth term:

N
En(L)=max | f(x; L) = X(j) aj cos(jx) (12)
=

It is a function of two parameters: the map parameter L and the trunca-
tion N. Fig. 5 shows the contours of Ey in the N — L? plane for a par-
ticular choice of the top-hat parameters y, ¥.

The usual Fourier theory corresponds to taking a “horizontal” limit:
N — oo for fixed L. We shall derive and discuss the asymptotics of the a;
in this limit in Secs. 7 and 9.

However, one may also ask what happens in the limit that N and
L simultaneously tend to infinity. This calculation is harder because the
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Fig. 5. Contours of —logy(Ey) in the N — L? plane. The function f is defined by imbri-
cating the top-hat function 7 (x; L, x, ¥) for x =0, ¥ =x (the “naive” extension), but the
truncation error is qualitatively similar for other choices of x, ¥, and other ways of extend-
ing the smoothed top-hat function into a periodic function. The fixed-L asymptotics corre-
sponds to taking the limit N — oo along a horizontal line in this plane. However, the axis
of the “valley” is diagonal as marked by the thick dashed line. If we move horizontally from
the black dot at L2 =5, N =10 (along the thin dotted line) , the error falls to 0(10~%) by
N =50. However, moving along the diagonal from this same starting point, the errors falls to
0(10712) by N =50, an error reduction of an additional factor of a thousand. The diagonal
limit in which N and L? increase simultaneously requires the “uniform” asymptotics.

asymptotic approximation must be “uniform” in the sense of accuracy
when both parameters are large.

For many numerical applications of Fourier and other spectral expan-
sions, these uniform limits are very important because the optimum choice
of map parameter L varies with N (Boyd [7, 10, 9, 12], Cloot and
Weideman [20], Tang [41], Schumer and Holloway [39], Shen [40]). In
other words, the path of steepest descent with increasing N is not the
“horizontal limit” (L fixed, N — oo), but rather the “diagonal limit” in
which L? increases proportionally to N.

3.2. Oscillations and Envelopes

For many functions f(x) (and for almost all C*°-but-not-C¥ func-
tions), the spectral coefficients oscillate with degree as illustrated schemat-
ically in Fig. 6. One may always bound the coefficients rather tightly by
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Fig. 6. Solid: logarithm of the absolute value of the spectral coefficients of a geometrically-

converging series whose coefficients oscillate with degree n. Dashed: the “envelope” of the
spectral coefficients.

a monontically-decaying function which is the “envelope” of the spectral
series.

Fortunately, the asymptotic approximations to the coefficients a;,
derived below, are the product of the monotonically-decaying “envelope”
with an oscillatory factor. It is possible to minimize a particular coefficient
by choosing L so this coefficient is located at the dip of the curve. How-
ever, it is much more useful to minimize the envelope instead.

3.3. Goals: What Should be Minimized?

In the literature of spectral methods, error is estimated through sev-
eral quantities including:

(i) ENEH 3 q cos(jx)Hoo (13)
j=N+1
()  In= ) lajl (14)
j=N+1

(iii) Envelope of ay (15)
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Minimizing the truncation error is the obvious and also the most
desirable goal. X'y, which is the sum of the absolute value of all the coeffi-
cients neglected by truncation, is provably an upper bound on the trun-
cation error, but it is a tight bound only when all the coefficients are the
same sign. The envelope of the last retained coefficient is at the farthest
remove.

Unfortunately, we know only how to analytically calculate the asymp-
totic behavior of the spectral coefficients a;, and therefore of the enve-
lope of these coefficients. Numerically, it is straightforward to calculate the
truncation error |Ey|, but such numerical estimates have two faults. First,
they oscillate because it is impossible to disentangle the envelope factor
from the factor that oscillates with degree, as displayed in the analytical
asymptotics. Second, numerical results are much less efficient in predicting
a good choice of L than a simple analytical formula.

Therefore, as in earlier articles, we shall unrepentantly concentrate on
asymptotics for spectral coefficients. It is obvious that when the envelope
of ay is small, the truncation error will be small, too, even if we lack
a precise qunatification of the proportionality. Asymptotic approximations
to the spectral coefficients for fixed L are uncontroversial in any event.

However, in informal presentations of this work, we have been bom-
barded with criticism for deriving the envelope of the coefficients in the
diagonal limit. The complaint is that ay(L(N)) is not the Nth coefficient
of a Fourier series; rather, the coefficients a;(L) are defined only for fixed
map parameter. This complaint is correct but terribly misguided. First, in
the diagonal limit, we are primarily interested in the envelope, not the
complete coefficient, and that only as a proxy for the truncation error. Sec-
ond, Fig. 5 shows clearly that for optimum performance, we must vary
L with the truncation N. This in turn requires asymptotics in the simul-
taneous limit L and N go to infinity together. And so, as done in many
earlier articles dating back over twenty years(Boyd [7, 9, 10, 12], Cloot
and Weideman [20], Tang [41], Schumer and Holloway [39], Shen [40]),
we shall derive asymptotics for the envelope of ay(L(N)) without further
apology.

With these concepts explained, we can turn to asymptotic evalua-
tion of the Fourier coefficients integrals. In the next section, we describe
some simple exact transformations (integration-by-parts, etc.) which allow
the Fourier integrals for 7 (x) and Sw(x) to be expressed in terms of
a single integral, I™. After we have derived both the fixed-L and L-
varying (“uniform”) asymptotics for It in Secs. 5-7, the envelope of
the Fourier coefficients is simply the monotonic, exponentially-decaying
factor of the asymptotics of I, multiplied by constants, as exploited
in Sec. 8.
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4. EXACT TRANSFORMATIONS

Because 7 is symmetric with respect to zero, all its sine coefficients
are zero and the cosine coefficients can be computed by integrating over
half the interval and doubling the result:

2 ®
aj== /0 cos(j (/@ T (x: L. O)dx  j>0, [T] (16)
where

oo
T(:Lox. ©)=F+) aj cos(jlr/Ok). xe[-6.0] (1)
j=1

Note that we have specialized the width parameter of 7 by setting ¥ =0,
and thus slaving the width of the “bell” to the spatial period; the methods
described here can be easily extended to the general case where ¥ and ®&
are independent parameters, but since the general case has no interesting
applications, we have specialized ¥ in all the formulas below.

Similarly, all the cosine coefficients of the sawtooth function are zero.
Noting that only two copies of the pattern function are nonzero at a given
point, the sine coefficients of the smoothed sawtooth function are

20
bj= é / sin(j(r/O)x) {(xT (x)+{x —20}7T (x —20)} dx [Sw] (18)
0
where

Sw(x; L, x,0)=Y_ bjsin(j[r/O).,  xe[-O,0] (19)
j=1

To put these integrals into a form suitable for the steepest descent
method, it is helpful to

1. Integrate-by-parts with differentiation of the bell 7; the boundary
terms are zero.

2. Shorten the interval of integration to exclude the portions where
dT /dx (and therefore the integrand) is zero.

3. Invoke the differentiation identity j—v {erf(v)} = % exp(—v?).
Change coordinates to a new variable & €[—1, 1] which spans the
smoothing regions. (For the coefficients of 7, & is the image of x €
[x, ®]; for the sawtooth, it is the image of [x, ® + (©® — x)].
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The coefficient integrals are transformed without approximation to

e g (3 ) wr (5 0-5) )

[7; Non-overlapped Extension of f=1] (20)
po— CDITALO Ly (XY,
J 7_[3/2 ;' [ (]T[( _5>v )}

[Sawtooth; Overlapping Extension of f =x] 21)

where 17 (n; L) is the integral defined (and approximated) in the next three
sections.

5. THE METHOD OF STEEPEST DESCENTS

1 2 1
rtuity= [ de expling) exp <_L2li€2> a—epr P

To apply the method of steepest descent, it is convenient to rewrite
the rapidly-varying part of the integrand as an exponential:

1
I*(n; L)=/0 exp(P@(§)) h(§) dé (23)
where
£2
®(E;n, L)=ink —Lzl_éz (24)
and the slowly-varying, n-independent algebraic factor is
hE=(1-£H"" (25)

Both in the uniform limit that L increases with n and in the non-
uniform limit that L is fixed, the “phase function” @ varies more and
more rapidly as n— oo. This allows us to profit by deforming the contour
of integration in the complex plane so that it passes through one or more
“stationary points” of @ as illustrated in Fig. 7. These are local maxima of
the integrand along the integration contour. As n increases, the integrand
becomes more and more steeply peaked about the stationary point, and
the value of the integral is dominated by the contribution from that small
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Fig. 7. The thick line shows the steepest descent path; the disk is the relevant stationary
point. The thin lines are the contours of the rescaled phase function @, defined in Sec. 4.
The contour labels show (-100) times the isoline value (to avoid cluttering the figure with
minus signs and decimal points).

portion of the integration path which is close to the stationary point. This
allows us to approximate the integral by making a local approximation
of the integrand by a Gaussian function which can then be integrated
analytically.

The result is

. 1
integral ~ Z NG ) h(&s) exp(P(s)) (26)

where ®g¢ denotes the second derivative of @ with respect to & and the
sum is over all stationary points on the deformed contour of integration.
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(Note that the integration path does not explicitly appear in the answer:
although most texts lavish much attention on determining the precise
steepest descent contour, the path is irrelevant to the asymptotic approx-
imation except for the all-important issue of what stationary points lie
upon the integration curve.)

In our application, the deformed path is from the origin to ioco along
the imaginary axis, and then back to & =1 in a curving arc that passes
through a single stationary point. There is one minor technical complica-
tion: the integral along the imaginary axis is not zero and must be eval-
uated by a different asymptotic method. However, it is easy to show that
this integral is purely imaginary, and therefore makes no contribution to
M(IT). Another way to see the same thing is to note that the real part of
IT is symmetric with respect to £ =0. Therefore, the real part is just half
the result of integrating from & =—1 to & =1. The integral over the dou-
bled interval can be performed by two curving arcs from the endpoints to
ico, and an integral along the path from the origin to infinity along the
imaginary axis is unnecessary.

For both the uniform and non-uniform asymptotics, the equation
d®/dé =0 is a quartic polynomial in &. By the fundamental theorem of
algebra, there are four stationary points. However, only the two that are
on the path of integration, each making an identical contribution, are rel-
evant when integrating from § =—1 to § =1, and only a single stationary
point when the integration interval is restricted to & €[0, 1].

The method of steepest descent is ancient; its application to Fourier
and Chebyshev series coefficient integrals began with the pioneering work
of D. Elliott and his students: Elliott [24, 25], Elliott and Szekeres [26],
Elliott and Tuan [27], Nemeth [37] and Miller [36] in the mid-60’s. Boyd
has used the method to optimize a variety of spectral algorithms [7-10,
12, 13].

6. UNIFORM ASYMPTOTICS: DEGREE j; AND WIDTH L
SIMULTANEOUSLY INCREASING

The non-uniform asymptotics of the next section will approximate
I (n; L), and thus g, in the limit that L is fixed while j,n increase with-
out limit. To obtain the fastest convergence for a Fourier series truncated
with the Nth term, it is better to instead allow the width parameter L to
increase simultaneously with the scaled degree n so that

L>*=xn (27)



Asymptotic Fourier Coefficients & the Fourier Extension

for some constant A. Note that throughout this paper, the parameters x
and 6 are taken as fixed, independent of n and A. The phase is then

. &

Because the Fourier degree n appears only as a multiplicative factor, the
stationary points are independent of n, and vary only with A. It is conve-
nient to define the scaled phase function

s _P6) . &2
PE)=—"=i&— A 29
é) Y i§ 1—¢2 (29)
The stationary points are the roots of
dd 28
— =i - A — 30
g~ T a—gy (0
which can be written by clearing denominators as the quartic
g4 2624 2iE X +1=0 (31)

By numerically solving this quartic for many values of A and then
evaluating the real part of @ for each, one finds that @ has the largest
negative real part (and therefore, the jth Fourier coefficient is minimized)
when

2=0.53033  Loptimum=0.7282/n (32)

1
RUT (n; 1=0.53033) ~ T exp(—0.35355n)
n

x {—0.336.c0s(0.3061) + 1.0175in(0.306n) } (33)

7. ASYMPTOTIC COEFFICIENTS FOR FIXED WIDTH L
When L is fixed, the condition that d®/d& =0 becomes

jvo—25 (34)

(1-£2)?
where it is convenient to introduce the parameter
n

Vv L2

(35)
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because the stationary point equation is a function only of the ratio of n
to L?, and not upon these parameters independently of each other. For
fixed L and n — oo, v — oo. This makes it possible to solve the quartic

equation for the stationary point perturbatively in inverse powers of v—1/2
to obtain
1
£,=1—exp(—in/4)/v2 —7z + o(w=3"?) (36)
vV

where the stationary point on the integration contour is again that in the
first quadrant of the complex & plane. Evaluating @ (&;) through a similar
expansion gives

12
R{IT (L)) ~ ”2—L exp([3/4]L2) exp(—L/n)

x {cos(n) cos (L+/n) + sin(n) sin (Ly/n)} (37)

8. OPTIMIZATION OF THE WIDTH L FOR FOURIER
EXTENSION

The L-varying asymptotics of /™ implies that if the Fourier series is
truncated after degree j =N, the optimum width parameter is

Lo _]0911{/1—-x/© VN [7; Nonoverlapped Extension] (38)
optimum =) 1 59 /T—x/® N  [Sw: Overlapped Extension]

Note that these come from minimizing the “envelope” of the Fourier
coefficients, as defined in Sec. (3); that is, the monotonically-decaying-with-
degree factor is minimized while the oscillatory-with-degree factor in the
asymptotic approximation is ignored.

Strictly speaking, we have shown only that these choices of L are
optimal when f(x)=1 [for the non-overlapped method of extension, or
equivalently for the Fourier coefficients of the bell 7] and for f(x)=
x when extended into the sawtooth function through the overlapping
scheme. We conjecture that these choices are also optimal or near-optimal
for the extensions of general f(x).

Then

) —0.555(1—x/©) N + lower order terms [7]
loglay (Lopt(N)) | { —1.110(1 — x/®) N + lower order terms [Sw]

(39)

Figure 8 shows that the uniform asymptotic approximation is quite
good.
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Uniform approximation: L =0.913 sqrt(N)

—e— max(Truncation Error)
NS --- theory

10° | =
S
w

107 S

0 10 20 30 40 50
N

Fig. 8. The solid line with disks is the maximum error (Lo, error) in the Fourier approxi-
mation of T(x; L, x =0, =m) where L=0.913/N. The dashed line is exp(—0.555N)/N.

9. FIXED L ASYMPTOTICS: COMPARISON WITH ACTUAL
COEFFICIENTS

In the limit degree j — co with L, x, ® all fixed, the Fourier coeffi-
cients of the top-hat function are

21

aj ~ ) ; exp([3/4]L2) exp(—L+/m(1 —X/(H))/Z\fj)sin (]% [l—i—%})
x {cos(jn(l — x/©)/2) cos (L (= X/@)/z)
Fsin(j (1= x/©)/2) sin (L jn(l—x/@)/Z)} (40)

Figure 9 shows that the asymptotic approximation is indeed accurate
even for rather small degree j.

The crucial point is that when the width parameter L is fixed, the
coefficients (and truncation error) do still decrease exponentially with
degree. However, the exponential is now of the square root of degree rather
than degree itself. In the usual terminology Boyd [16], the “geometric”
rate of convergence of the uniform, L-varies-as-N'/2, asymptotics has been
replaced by a “subgeometric” rate of convergence. Although the propor-
tionality constant inside the exponential is larger (by a factor of two) for
the overlapped extension, i. e., the sawtooth, the rate is again subgeomet-
ric with coefficients proportional to the square root of degree.
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Comparison of Exact & Asymptotic Fourier Coefficients: L=2

100 ] '
—e—  Exact
- - Asymptotic
Error
10°
107°}
0 20 40 60 80

degree j

Fig. 9. The solid and dashed lines, labeled by disks and x’s, respectively, are the exact and
asymptotic Fourier coefficients for 7 (x; L =2, x =0, = ). These two curves are almost
indistinguishable except at the dips of their mutual oscillations; the dotted curve, well below
the others, is the absolute error.

10. OPTIMIZATION OF THE RATIO OF EXTENSION INTERVAL
TO PHYSICAL INTERVAL

The Fourier coefficients of 7 and the sawtooth function Sw both
converge most rapidly when the half-width of the physical interval x is
shrunk to zero as shown by our asymptotic approximations. The math-
ematics agrees with intuition: when the flat plateau where 7 =1 is zero,
the smoothing regions fill the entire extended interval and therefore are
as wide and as smooth as possible. Conversely, narrowing the smoothing
regions slows the rate of convergence of the Fourier series.

However, a “physical” interval of zero width defeats the whole pur-
pose of Fourier Extension! And how should x be chosen when more com-
plicated f(x) are extended?

The answer depends both on f(x), which is the function being
extended, and also on the purpose of the extension. For example, Israeli
et al. [32] solve uyy —u= f(x) subject to Dirichlet boundary conditions by
extending f(x) to a function f whose Fourier series is Z fiexp(ijx). A
particular solution is then up =3[ f;/(1+ iH]exp(ijx). The general solu-
tion is u = Aexp(x) 4+ Bexp(—x)+up where A and B are chosen to satisfy
the boundary conditions. Obviously, even if f(x) is a constant or a very
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simple function, it is undesirable to choose an arbitrarily large extension
interval [-®, ©]. To evaluate u p with M points within x €[—y, x] requires
a Fast Fourier Transform on M(®/x) points, Thus, an arbitrarily large
ratio of ®@/x, as is best for optimizing Fourier convergence, is not opti-
mum for Fourier summation.

When f(x) is a function with a lot of internal structure, such as
f =cos(Kx) where K is large, a large extension interval is a poor choice
because this improves the resolution of the bell function at the expense of
lowering resolution of f(x). For particular classes of functions, one could
in principle optimize Fourier extension by varying both L and x and per-
forming a steepest descent analysis. However, this would be restricted to
f(x) that are sufficiently simple that steepest descent is still possible.

For general f(x), the only guidance is the commonsense precept:
for smooth f(x), a large extension interval is best whereas for rapidly-
varying f(x), a smaller extension interval (that is, x/® close to one)
would be better.

11. CONCLUSION

Even though the error-function-smoothed top-hat function is only
C®°, we have shown that the error in approximating it by a Fourier series,
truncated at the Nth term, decreases as fast as exp(—0.55[1 — x/@]N) if
the width parameter is varied with N as L~0.9,/1—x/O+/N. If L is
fixed, then the error in the N-term truncated Fourier series decreases more
slowly as v/N.

If Fourier extension is performed in a more sophisticated way by
overlapping the relaxation zones, then the rate of Fourier convergence for
the extension f of a smooth f(x) can be greatly increased relative to
the non-overlapped extension. We show this by deriving the asymptotic
Fourier coefficients, both in the fixed and L-varying-with-N limits, for the
extension of f(x)=ux, the “sawtooth” function.

The mathematics is clear, but why is it good to increase L with
the truncation? As this width parameter increases, the derivative of 7 at
the center of each smoothing region becomes larger. We seem almost to
have gone round in a circle: choosing a functional form to smooth away
the discontinuity of the top-hat function, and then increasing L so as
to return closer and closer to the original discontinuous function as N
increases.

The reason for this apparent paradox is that the smoothed top-hat
function is nearly discontinuous at the center of each smoothing region
and weakly singular at the boundaries of each smoothing region for all
L. As L increases, the effects of the essential singularities at x £ y, £y
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are weakened because 7 becomes flatter and flatter in the neighborhood
of these singularities. However, the derivative is steepening in the center of
each smoothing interval.

As N increases, the N-term Fourier series is able to resolve steeper
and steeper gradients in the center of each smoothing region. It then
becomes a good “trade-off” to weaken the effects of the essential singu-
larities by increasing L.

The major defect of our attempt to optimize Fourier extension meth-
ods is the fixing of the size of the “physical” interval (where f= f(x)) at a
predetermined width yx. For arbitrary f(x), the convergence of the N-term
Fourier series of the extended function f is best for some pair of values
(L, x). However, as explained above, the choice of optimal physical inter-
val width x (relative to the size of the extended, periodic interval @) is
highly dependent on the particular f(x) which is being extended to a peri-
odic function. The only general advice that can be given is: broad extension
interval is best for smooth f(x) [as displayed explicitly in our asymptotic
Fourier coefficients for constant or linear f] whereas a narrow extension is
best when f(x) is a rapidly-varying or nearly singular function.

The steepest descent approach can be extended directly to other forms
of Fourier extension such as the “odd-sine” scheme popular in wavelets.
Steepest descent can also in principle be applied to more general classes of
functions-to-be-extended f(x). The practical difficulty is that it is hard to
find f that are sufficiently general to be interesting and yet simultaneously
so simple that steepest descent is analytically successful.
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