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Viscous fluid-structure interaction is treated with an arbitrary Lagrangian-
Eulerian formulation. The spatial discretization is performed by the spectral
element method for the fluid part where the Navier-Stokes equations are inte-
grated and in the solid part where transient linear elasticity is described by
the Navier equations. Time marching algorithms are second-order accurate in
time in both the fluid and the solid. The algorithm is applied to the flow in
a plane channel partially obstructed by a solid component able to move under
the action of the fluid flow.
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1. INTRODUCTION

Fluid-structure interaction (FSI) has been studied for several decades in
many applications as aerodynamics, hydrodynamics or haemodynamics
[1, 2]. Major algorithmic developments were achieved like the arbitrary
Lagrangian-Eulerian (ALE) formulation [3], the mesh adaptation [4] or the
fictitious domain techniques [5, 6]. A fixed point method can be used [1, 2,
7] to improve the stability. The FSI has been treated mostly by finite vol-
ume or finite element methods. We investigate a fluid-structure algorithm
to assess the feasibility of the spectral element method in this context fol-
lowing the methodology developed by Ho for free surface flows [8]. We
tackle the problem by the spectral element method (SEM) for the fluid
and solid parts. The state of the art for SEM fluid flow problems is given
in [9] while for elasticity the reader is referred to the papers [10, 11]. In
the long run we want to simulate the flow through an aortic valve. To this
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Fig. 1. Geometry of the problem.

end, Fig. 1 shows the relevant geometry. The fluid flows in the x direc-
tion into a plane channel with fixed horizontal walls. Inside the channel
we observe a solid object which can turn around its fixed center of mass.

To solve this viscous fluid-structure interaction we will use the ALE
technique [12]. From the methodological point of view, the problem is set
up in three stages. First, for the fluid model we will consider an incom-
pressible viscous Newtonian fluid and the Navier–Stokes equations are
used. Second, for the solid model, we will solve the dynamics equations
for an elastic structure. We assume that the coupled problem is isother-
mal. In the third step, the interaction equation between the fluid and the
structure leads to special Neumann and Dirichlet conditions at the fluid-
structure boundary interface. Due to the fact the fluid equations are clas-
sically expressed in the Eulerian framework while the structure equations
are given in the Lagrangian framework, the strategy consists in combin-
ing both previous points of view in the ALE formulation to match the
nodes of the structure and the fluid at the interface. In the last part, we
will present the numerical results.

2. NAVIER–STOKES PROBLEM

2.1. Equations in a Moving Domain: The Mathematical Model

The incompressible Navier–Stokes equations in the fluid domain Ωf

are

ρf

Dv
Dt

= ∇ ·σ f +ρf bf (1)
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and the incompressibility constraint

∇ · v = 0, (2)

where

σ f =−pI +µf (∇v + (∇v)T )=−pI +2µf D(v), (3)

D/Dt is the material time derivative, p the pressure, I the identity tensor,
v the velocity vector, T indicates the transpose, µf is the dynamic shear
viscosity, bf the body force, D the rate-of-deformation tensor and ρf the
fluid volumetric mass. We also note ΓD (respectively, ΓN ) the boundary of
Ωf where Dirichlet (respectively, Neumann) conditions are applied.

On ΓD we have

v = v̄|ΓD
(4)

with v̄|ΓD
given on ΓD. In the particular case of (Fig. 1), we can divide

ΓD such as

ΓD =Γin
D ∪Γwall

D ∪ΓI , (5)

ΓI denotes the fluid-structure interface, Γin
D the inflow boundary with a

velocity Poiseuille profile and Γwall
D the boundary part of the external fixed

walls. At the outflow section, we impose a stress-free boundary condition.
In the ALE framework [13, 14], we introduce a reference configura-

tion Ω
f

0 with X coordinates. The domain Ω
f
t is the actual configuration

with x coordinates. Hence, we define the mapping At

At :Ωf

0 ⊂Rd →Ω
f
t ⊂Rd ,

X →x(X, t)=At (X),
(6)

d is the space dimension and t the time in the interval I = [t0, T ].
The ALE velocity w is defined

w = ∂At

∂t
(X) X = ∂x(X,t)

∂t X
. (7)

The ALE time derivative of the velocity v is

∂v
∂t X = ∂v

∂t
+w ·∇v. (8)
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Inserting Eq. (8) in Eq. (1) yields

ρf

(
∂v
∂t X + (v −w) ·∇v

)
= −∇p +2µf ∇ ·D(v)+ρf bf , (9)

Eqs. (9) and (2) are used to solve the fluid flow in our application. The
weak formulation to solve Eq. (9) is obtained with the test functions Φ̂∈
H 1

0,D
(Ω

f

0 ) such as

H 1
0,D

(Ω
f

0 )d = {u ∈H 1(Ω
f

0 )d : u|ΓD
=0}. (10)

Therefore we want to find v in the following space

H 1
D(Ω

f
t )d = {u ∈H 1(Ω

f
t )d : u|ΓD

given}. (11)

The ALE conservative formulation reads:

Find (v, p)∈H 1
D(Ω

f
t )d ×L2(Ω

f
t ), t ∈ I such as

d

dt

∫

Ω
f
t

ρf v · (Φ̂◦A−1
t ) dΩ+

∫

Ω
f
t

ρf {∇ · (v ⊗ (v −w))} · (Φ̂◦A−1
t ) dΩ

=
∫

Ω
f
t

ρf p∇ · (Φ̂◦A−1
t )−2µf ∇v : D(Φ̂◦A−1

t )+ρf bf · (Φ̂◦A−1
t ) dΩ,

∀Φ̂∈H 1
0,D

(Ω
f

0 )d ,∫

Ω
f
t

(∇ · v)(Ψ̂◦A−1
t ) dΩ=0, ∀Ψ̂∈L2(Ω

f

0 ).

(12)

2.2. Space and Time Discretizations of the Navier–Stokes Equations

We discretize the ALE conservative formulation (12) cutting Ω
f
t

in non-overlapping sub-domains (Ω
f
t )k such as Ω

f
t =∪E

k=1(Ω
f
t )k. For

instance, in the 2D case the (Ω
f
t )k are quadrilaterals where we adopt

the following mapping [8] linking the physical coordinates xk = (x, y)k ∈
(Ω

f
t )k into the parent coordinates r= (r, s)∈ [−1,1]2. In order to solve the

Navier–Stokes equations, the choice of the PN − PN−2 discretization [15]
avoids the presence of spurious pressure modes. The notation PN repre-
sents the space of polynomial of degree less or equal to N in each space
direction. The weak formulation of problem (9) and the application of
the Galerkin method discretized using a Gauss-Lobatto-Legendre (GLL)
quadrature rule for the velocity and a Gauss-Legendre quadrature for the
pressure, one obtains using the same symbols as in [9] with the point of
view of the ALE formulation

d
dt

(Mv) = −C(v,w)v −Kv +DT p +F,

Dv = 0,
(13)
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where K is the stiffness matrix, M the mass matrix, D the discrete diver-
gence, DT the discrete gradient, C the convective term depending on the
ALE velocity w and F the source term.

For the time marching scheme, in a first attempt, a backward differ-
entiation formula of order 2 is used for the linear Stokes operator where
the time dependent term is approximated as

d
dt

(Mv) = 1
τ

Mn+1( 3
2 vn+1 −2vn + 1

2 vn−1) (14)

with τ the time step. The convective term is handled by an extrapolation
of order 2 and we use a block LU decomposition scheme with a pressure
correction as was proposed in [16, 17].

3. THE SOLID MECHANICS PROBLEM

3.1. The Dynamic Equation

We introduce the dynamic equation of the linear infinitesimal elastic-
ity. This equation uses the assumption of small deformations. Therefore,
the material time derivative is linearized and contains the acceleration
written as the second-order partial derivative with respect to time of the
displacement denoted by u. We can write

∇ ·σ s +ρsbs =ρs

∂2u
∂t2

. (15)

Here, σ s is the Cauchy stress tensor, bs and ρs the body force and the
solid volumetric mass in the structure. Hooke’s law gives the constitutive
relationship between the stress tensor σ s and the strain tensor ε

σ s =λ tr ε I +2µε, (16)

where λ and µ are the Lamé coefficients. The strain tensor can be
expressed in terms of the displacement by the relation

ε = 1
2
(∇u + (∇u)T ). (17)

We will rewrite the second-order time problem as a system of first-order
differential equations expressed by three fields: the displacement u, the
velocity u̇ = v and the acceleration ü =a, with the convention that the dot
denotes the time derivative.
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3.2. The Newmark Method and the Space Discretization

The global system to solve in the solid is expressed as following

ρsa −∇ ·σ s(u)−ρsbs = 0,

v = u̇,

a = v̇.
(18)

The Newmark form taken by (18) in the particular case of the trapezoi-
dale rule is

H(an+1)+G(un+1)−Fn+1 =0,

un+1 =un + 1
2τ(vn + vn+1),

vn+1 = vn + 1
2τ(an +an+1),

(19)

where τ is the time step and n the time level. H, G and Fn+1 are respec-
tively, the weak form of the term depending on the acceleration

H(an+1)=
∫

Ωs
0

ρsan+1 ·Φ dx (20)

the weak form of the strain tensor depending on the displacement

G(un+1)=
∫

Ωs
σ (un+1) :∇Φ dx (21)

and the weak form of the source term depending on the body force and
the Neumann contribution g on the boundary with Neumann conditions
ΓN

Fn+1 =
∫

Ωs
ρsbs ·Φ dx +

∫

ΓN

g ·Φ ds. (22)

This method is second-order accurate in time.
We transform again (19) in order to solve a predictor-corrector algo-

rithm in the same way as [18]. At each time level n, we begin with a pre-
diction on the three kinematic fields to compute

up

n+1 = un + τvn + τ 2

2 an,

vp

n+1 = vn + τan,

ap

n+1 = an.

(23)

To form the final system, we introduce three corrector fields denoted by
δu, δv, and δa and defined as

δu = un+1 −up

n+1,

δv = vn+1 − vp

n+1,

δa = an+1 −ap

n+1.

(24)
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Now, let us replace the predictor fields in (24) by their expression in (23),
we have

δu = un+1 −un − τvn − τ 2

2 an,

δv = vn+1 − vn − τan,

δa = an+1 −an.

(25)

Therefore plugging the two last equations of (19) in (25) yields

⎧⎪⎨
⎪⎩

δu = 1
2τ(vn + vn+1)− τvn − τ 2

2 an

δv = 1
2τ(an +an+1)− τan

δa = an+1 −an

⇐⇒

⎧⎪⎨
⎪⎩

δu = 1
2τ(vn+1 − vn)− τ 2

2 an

δv = 1
2τ(an+1 −an)

δa = an+1 −an

⇐⇒

⎧⎪⎨
⎪⎩

δu = 1
2τ( 1

2τ(an +an+1))− τ 2

2 an

δv = 1
2τ(an+1 −an)

δa = an+1 −an

⇐⇒

⎧⎪⎨
⎪⎩

δu = 1
4τ 2δa,

δv = 1
2τδa,

δa = an+1 −an.

We deduce the link between δv, δa, and δu

δv = 2δu
τ

,

δa = 4δu
τ 2 .

(26)

Finally, we replace these last relations in the first equation of (19) to form
the variational formulation on δu ∈ V ={v ∈H 1(Ωs)d : v|Γgiven} and using
Φ ∈ V0 = {v ∈ H 1(Ωs)d : v|Γ = 0} as test function where Γ is the boundary
with Dirichlet conditions

4ρs

τ 2

∫

Ωs
δu ·Φ dx +2µ

∫

Ωs
ε(δu) :ε(Φ)dx

+λ

∫

Ωs
(∇ · δu)(∇ ·Φ)dx −〈F,Φ〉=0, ∀Φ∈V0, (27)

where 〈F,Φ〉= ∫
Ωs ρs(bs −ap

n+1) ·Φ dx − ∫
Ωs σ (up

n+1) :∇Φ dx + ∫
ΓN

g ·Φ ds.
The addition of the corrections to the predicted fields gives the new

fields at step n+1 according to (24). Before beginning the Newmark solu-
tion we compute the initial acceleration

∫

Ωs
0

ρsa0 ·Φdx =
∫

Ωs
0

ρsbs ·Φdx +
∫

ΓN

g ·Φds −
∫

Ωs
0

σ (u0) :∇Φdx (28)

with Dirichlet conditions.
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In the case of the fluid-structure interaction we want to emphasize
how the integral in the natural boundary has to be understood

∫

ΓN

g ·Φds =
∫

ΓN/ΓI

g ·Φds +
∫

ΓI

g ·Φds (29)

with the notation ΓI for the interface. Frequently on ΓN/ΓI , we will
assume g =0. On ΓI , we will impose the Neumann condition

∫

ΓI

g ·Φds =
∫

ΓI

σ sn ·Φds =−
∫

ΓI

σ f n ·Φds. (30)

This equation produces a relation that links the fluid and the structure at
the interface.

The space discretization of the variables u, v, and a is made in the PN

space. This choice for these fields is consistent from the mechanical point
of view with that of the fluid velocity and allows an easy communication
between the fluid and solid parts of the problem.

4. FLUID-STRUCTURE CALCULATION

4.1. Fluid-Structure System

The complete system to solve the fluid-structure interaction can be
summarized in the fluid domain Ωf by Eqs. (1) and (15) in the structure.
At the interface ΓI , we solve the velocity continuity and the equality of
the contact forces

(I )

{
σ f n = σ sn,

v = u̇.
(31)

We have solved this problem considering in the fluid domain the
motion due to the structure. We move each node of the grid and compute
the Jacobian and the inverse of the Jacobian matrix on the deformed ele-
ments. No function was directly available to modify the mesh at each time
step [9,16]. Thus, we have modified some function of SPECULOOS [19]
which was only able to generate the grid in relation with the initial fixed
nodes. Henceforth, SPECULOOS is able to take into account the motion
of the mesh only modifying the values of the coordinates. The Jacobian
and the inverse of the Jacobian matrix are computed automatically with
these new coordinates.
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4.2. ALE Field Computation

When the structure is deformed, the fluid domain undergoes the same
deformation. We assume that a portion of the fluid domain remains fixed
and another part can have a motion computed with an elliptic system
to obtain a moving field. This grid moves at each time step and brings
the field velocity mesh w as in Eqs. (1) and (8). Therefore we solve a
Laplacian or an elastostatic operator as in Ho[8]

∇X · σ̃ (w)=0, (32)

where appropriate boundary conditions for the stress are imposed. Know-
ing the velocity field w, we can deduce the new ALE grid in the fluid
domain by solving (7). To update the ALE grid, we use the second-order
time accurate trapezoidal rule

xn+1 =xn + τ

2
(wn+1 +wn). (33)

If we note by xs the coordinate field in the structure, the structural mesh
can be updated with

xn+1
s =xn

s +un+1. (34)

In this paper we consider that the structure position is updated to the step
n+1 independently of the n+1 fluid step. Other methods resort to a mesh

Fig. 2. Fluid-structure algorithm.
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update by subcycling the fluid integration to compute a better correction
of the mesh structure in order to improve the geometric conservation law
or to adapt the improved serial staggered (ISS) procedure [20] in order to
obtain a second-order time-accurate system [13].

4.3. The General Algorithm

The FSI algorithm works as follows. In a first step, we initialize the
Newmark method through (28). Then, we compute a first stationary solu-
tion of the Navier–stokes problem keeping the structure fixed. The fluid
part solution sends a Neumann condition to the structure which allows to
define the new ALE velocity w and its associated mesh. So we know the
new velocity Dirichlet condition to impose on the fluid at ΓI . This algo-
rithm is summarized in Fig. 2.

Fig. 3. The vx field with isolines of the vorticity ω (top) and stream function Ψ (bottom) at
t =10−2.
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5. NUMERICAL RESULTS

5.1. Visualization of Simulations

We impose a steady-state Poiseuille flow at the entry for a Reynolds
number Re = 10. In order to avoid a symmetric solution, we disturb the
initial position of the structure by titling it with an angle of 0.05 rad.
The calculation is performed on a cluster of Pentium IV PCs using
eight processors during for about 60 hours. The fluid mesh contains 2184
(∼ 42×60) elements, the structure mesh 620 (∼ 38×18) and we have
chosen N = 4 as polynomial degree in each direction. We show two solu-
tions time steps of the problem with τ = 10−3 at times t = 10−2 (Fig. 3)
and t = 3 10−1 (Fig. 4). These figures display the vx velocity field with
the associated isolines of the vorticity ω = curl v and the stream func-
tion Ψ.

Fig. 4. The vx field with isolines of the vorticity ω (top) and stream function Ψ (bottom) at
t =3×10−1.
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5.2. Norm Analysis of the Solution

We have computed the following expression
‖vn+1−vn‖

L2
τ

as an approx-
imation of the acceleration norm on the fluid domain to check the evolu-
tion of the non-stationary problem when the structure stays fixed during
the first 1000 time steps (top) and subsequently when the structure is in
motion (bottom)(Fig. 5).

The top curve of the Fig. 5 shows the fluid flow reaches the station-
ary state while in the next sequence the flow goes away from it when the
structure inside the channel is allowed to move. We have also compared
the norm of the acceleration when the time step is changed to τ = 2.5 ×
10−3 and we have compared the computations until t = 2.5 × 10−1. One
observes a discrepancy between the two curves due to the fact the compu-
tation began with different stationary states as exhibited in Fig. 6. Never-
theless, the evolution in the next time steps is similar.
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Fig. 5.
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versus time.
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Fig. 6. Comparison of
‖vn+1−vn‖

L2
τ

with respect to the time step between the case τ = 10−3

(dashed) and the case τ =2.5×10−3 (full).

6. CONCLUSIONS

In this paper, we presented a numerical method based on SEM and
second-order time marching schemes for fluid and solid domains, respec-
tively. The FSI is segregated in the time scheme. The solution of a channel
flow with the presence of a solid object moving under the action of the
fluid has demonstrated the feasibiliy of the method.
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