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Extension to the Euler Equations
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An efficient, high-order, conservative method named the spectral difference
method has been developed recently for conservation laws on unstructured
grids. It combines the best features of structured and unstructured grid meth-
ods to achieve high-computational efficiency and geometric flexibility; it utilizes
the concept of discontinuous and high-order local representations to achieve
conservation and high accuracy; and it is based on the finite-difference formu-
lation for simplicity. The method is easy to implement since it does not involve
surface or volume integrals. Universal reconstructions are obtained by distrib-
uting solution and flux points in a geometrically similar manner for simplex
cells. In this paper, the method is further extended to nonlinear systems of con-
servation laws, the Euler equations. Accuracy studies are performed to numeri-
cally verify the order of accuracy. In order to capture both smooth feature and
discontinuities, monotonicity limiters are implemented, and tested for several
problems in one and two dimensions. The method is more efficient than the
discontinuous Galerkin and spectral volume methods for unstructured grids.

KEY WORDS: High-order; conservation laws; unstructured grids; spectral
difference; spectral collocation method; Euler equations.

1. INTRODUCTION

A new, high-order, conservative, and efficient method named the
spectral difference (SD) method has been recently developed by Liu et al.

1 Department of Aerospace Engineering, Iowa State University, 2271 Howe Hall, Ames, IA
50011, USA. E-mail: zjw@iastate.edu

2 NASA Ames Research Center, Mail Stop T27B-1, Moffett Field, CA 94035, USA.
E-mail: liu@nas.nasa.gov

3 Department of Aeronautics and Astronautics, Stanford University, Durand Building, 496
Lomita Mall, Stanford, CA 94305-4035, USA.

4 To whom correspondence should be addressed. E-mail: zjw@iastate.edu

45

0885-7474/07/0700-0045/0 © 2006 Springer Science+Business Media, LLC



46 Wang et al.

[15,16] for conservation laws on unstructured grids. In the present study,
the SD method is further extended to the Euler equations. The primary
motivation for developing another numerical method is to seek a sim-
pler to implement and more efficient method than the current state of
the art—the discontinuous Galerkin (DG) method [2,5,6], and the spec-
tral volume (SV) method [17,27–30], to name just a few high-order meth-
ods for conservation laws on unstructured grids. As a matter of fact, the
DG, SV, and SD methods are similar in that they share the same the
solution space, i.e., the space of piece-wise discontinuous polynomials, and
some Riemann solvers [11,18,19] are used at the element interfaces to pro-
vide solution coupling between the discontinuous elements and appropri-
ate numerical dissipation necessary to achieve stability. In addition, all
of them are conservative locally at the element level, making them suit-
able for problems with discontinuities. They do differ on how solution
unknowns or degrees-of-freedom (DOFs) are chosen, and how the DOFs
are updated. In a DG method, the DOFs are either the expansion coeffi-
cients for a given set of polynomial basis functions or solutions at selected
locations within the element. In a SV method, however, the DOFs are
subcell averaged solutions, while in the SD method, the DOFs are the
solutions at (usually) the Gauss quadrature points. The difference between
the DG, SV, and SD methods is similar to the difference between the
Galerkin finite element (FE), finite volume (FV), and finite difference (FD)
methods.

In the DG method, a Galerkin finite-element method is employed to
update the unknowns within each cell. This requires (usually) the inver-
sion of a mass matrix, and the use of quadratures of roughly twice the
order of accuracy of the reconstruction to evaluate the surface integrals
for non-linear flux functions and additional volume integrals. In the SV
method, the integral conservation law is used to update volume averages
over subcells defined by a geometrically similar partition of each grid cell.
As the order of accuracy increases, the partitioning for a 3D simplex cell
requires the introduction of a large number of parameters, whose optimi-
zation to achieve convergence becomes increasingly more difficult. Also,
the large number of interior facets, and the additional increase in the num-
ber of quadrature points for each facet increase the computational cost
significantly. Because there are no volume or surface integrals in the SD
method, it is easier to implement in multiple dimensions than the DG
and SV methods. For the same reason, it will be shown later that the SD
method is indeed more efficient than the DG and SV methods.

In the SD method, the number of DOFs in each cell is the
number of nodal values required to support a reconstruction of a given
order of accuracy. Their locations are chosen so that a quadrature
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approximation for the volume integral exists at least to the same order of
accuracy. The fluxes are calculated at a different set of nodes, whose num-
ber supports a reconstruction of one order higher, since the flux deriva-
tives are used to update the conservative unknowns. They are located so
that quadrature approximations for surface integrals over the cell bound-
aries exist to a required order of accuracy. In addition, the locations of the
solution points and the flux points must be such that the integral conser-
vation law is satisfied for the cell to the desired order of accuracy. If the
points are distributed in a geometrically similar manner for all cells, the
reconstruction and discretization become universal, and can be expressed
as the same weighted sums of the products of the local metrics and fluxes.
These metrics are constants for the line, triangle, and tetrahedron ele-
ments, and can be computed analytically for curved elements. We can also
show that the number of flux points is less than the number of quadra-
ture points in the SV method. Since all unknowns are decoupled, no mass
matrix inversion is required.

Conventional unstructured FD [24] and FV [1,7] methods require
data reconstructions based on the least-squares formulation using neigh-
boring point or cell data. Since each unknown employs a different stencil,
one must repeat the least-squares inversion for every point or cell at each
time step, or store the inversion coefficients. In a high-order, 3D compu-
tation, the former would involve impractically large CPU time, while for
the latter the memory requirement becomes prohibitive. In addition, the
FD method does not usually satisfy the integral conservation in general.
In contrast, the DG, SV, and SD methods employ a local, universal recon-
struction of a given order of accuracy in each cell in terms of internally
defined conservative unknowns. This is the main reason why high-order
DG, SV, and SD methods are more efficient than a high-order finite vol-
ume method.

The SD formulation is similar to the pseudo-spectral or collocation
spectral method [3] in that both employ nodal solutions as the DOFs
and both formulations are based on the differential form of the govern-
ing equations. In fact, the multi-domain spectral method developed by Ko-
priva [12,13] and the SD method degenerate to a similar method in one
dimension. The SD method can be viewed as an extension of the multi-
domain spectral method to a simplex unstructured grid.

The paper is organized as follows. In the next section, the basic idea
of the SD method is presented in the physical domain. Its efficient imple-
mentation and conservation property are discussed in Sec. 3. Discontinu-
ity capturing and data limiters are discussed in Sec. 4. Sample numerical
results including a numerical accuracy study are presented in Sec. 5. Con-
clusions and possible future work are outlined in Sec. 6.
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2. BASIC IDEA OF THE SPECTRAL DIFFERENCE METHOD

Consider the unsteady 2D Euler equations in conservative form
written as

∂Q

∂t
+ ∂f

∂x
+ ∂g

∂y
=0, (1a)

where Q is the vector of conserved variables, f and g are the inviscid
fluxes given below:

Q=

⎧
⎪⎨

⎪⎩

ρ

ρu

ρv

E

⎫
⎪⎬

⎪⎭
, f =

⎧
⎪⎪⎨

⎪⎪⎩

ρu

ρu2 +p

ρuv

u(E +p)

⎫
⎪⎪⎬

⎪⎪⎭

, g =

⎧
⎪⎪⎨

⎪⎪⎩

ρv

ρuv

ρv2 +p

v(E +p)

⎫
⎪⎪⎬

⎪⎪⎭

, (1b)

where ρ is the density, u and v the velocity components in x and y-direc-
tions, p the pressure, and E is the total energy. The pressure is related to
the total energy by

E = p

γ −1
+ 1

2
ρ(u2 +v2) (1c)

with a constant ratio of specific heats γ =1.4 for air. Define a flux vector
with two components, i.e., F = (f, g). Equation (1a) can be expressed in
the following divergence form

∂Q

∂t
+∇ •F =0. (1d)

Equation (1) is to be solved on a non-overlapping simplex grid with
proper initial and boundary conditions. Within each cell or element, we
define two different sets of grid points, i.e., the solution points and flux
points. The solution points are the locations where the nodal values of the
conservative variables Q are specified (usually Gauss quadrature points).
Flux points are the locations where the nodal values of fluxes F are com-
puted. The solution unknowns or degrees of freedom in the SD method
are the conservative variables at the solution points. Figure 1 displays
the placements of solution and flux points for the first to third-order SD
schemes [16]. These nodal sets were computed using Mathematica [32] fol-
lowing ideas presented in [14], and the Lebegue constant is found to be
comparable to that of other nodal sets published in the literature [4,10]
(if any reader is interested in obtaining the nodal sets, please e-mail the
authors). Let the position vector of the j th solution point at cell i be
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Fig. 1. Placement of solution (•) and flux (�) points for a triangular element.
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denoted by rj,i , and the kth flux point at cell i be denoted by rk,i . Denote
Qj,i the solution at rj,i . Given the solutions at rj,i , an element-wise degree
p polynomial can be constructed using Lagrange-type polynomial basis,
i.e.,

Qi(r)=
Np∑

j=1

Lj,i(r)Qj,i , (2)

where Lj,i(r) are the cardinal basis functions and Np is the number of
basis functions required to support a degree p polynomial reconstruction,
and can be easily derived with Mathematica. Obviously, the locations of
the solution rj,i uniquely determine the cardinal basis functions Lj,i(r).
With the polynomial distribution given in (2), the solutions of Q at the
flux points rk,i can be computed easily from

Q(rk,i)=
Np∑

j=1

Lj,i(rk,i)Qj,i . (3)

Since the solutions are element-wise polynomials, they are discontinuous
across element boundaries. As a result, the fluxes at the element interfaces
are not uniquely defined, for example, at the corner and face points shown
in Fig. 2.

At the corner point, five solutions exist from all the cells (A, B, C,
D, and E) sharing the point. At the face point between cells C and D,

A B

C

D

E

Fig. 2. Illustration of multi-dimensional Riemann problems at the corner and face point.
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two solutions exist. The naı̈ve approach is to compute an averaged solu-
tion from these multiple solutions and then determine the flux based on
the averaged solution. However, it is well known that this naı̈ve approach
is equivalent to central differencing and is not stable. An alternative
approach is to find the physical solution Q at the corner and face points
at time t = 0+ with the discontinuous solutions as the initial condition
for the Euler equations at t = 0. This idea is of course due to Godunov
[8], who pioneered the well-known Godunov-type finite volume methods,
which become the standard method for conservation laws [25]. Unfor-
tunately, this “multi-dimensional Riemann problem” shown in Fig. 2 is
very difficult to solve, either analytically or numerically. Simpler approx-
imate Riemann solvers must be found to determine these fluxes. We again
turn to the FV method to look for inspirations. Obviously, in order to
ensure conservation, the normal component of the flux vector on each
face should be identical for the two cells sharing the face. Physically this
means a mass flux going out of a cell must completely enter the neigh-
boring cell without mass generation or loss. To ensure conservation, a one
dimensional Riemann solver is employed in the face normal direction to
compute the common normal flux. Consider the face flux point shown in
Fig. 3, and denote the outgoing normal from cell C to cell 1 n1. For this
interface point, QL is computed from cell C and QR is computed from
cell 1. Then the common normal component of the flux can be computed
with any Riemann solvers such as the Rusanov [19] or Roe [18] flux. In
the case of the simpler Rusanov flux, the normal component is computed
from

Fn =Fn(QL,QR,n)= 1
2

{ [F(QL)+F(QR)]•n − (v̄n + c̄)(QR −QL)} , (4)

where v̄n is the average normal velocity and c̄ is the average speed of
sound computed from the left and right solutions. Since the tangential
component of the flux does not affect the conservation property, we have
the complete freedom in determining it at the face point. In fact, it is not
strictly necessary to have a unique tangential component physically at the
face point (e.g. think of a contact discontinuity in which density is dis-
continuous). Let the unit vector in the tangential direction be l. Here
we offer two possibilities. One is to use a unique tangential component by
averaging the two tangential components from both sides of the face, i.e.,

Fl =Fl(QL,QR, l)= 1
2

{ [F(QL)+F(QR)]• l} . (5)

The other possibility is to use its own tangential component from the
current cell, allowing the tangential component to be discontinuous.
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Fig. 3. Flux computation for a corner (◦) and a face (�) point using one-dimensional
Riemann solvers.

Therefore, the tangential component of the flux on either side is not
modified. For the left cell, the tangential and normal components are
(F(QL)• l,Fn), and for the right cell, they become (F (QR)• l, Fn).

For a corner flux point in cell C, two faces (from cell C) share the
corner point, as shown in Fig. 3. Let the unit normals of the two faces
be n1 and n2. Once again, the normal components of flux Fn1 and Fn2 in
n1 and n2 directions are computed with a 1D Riemann solver in the nor-
mal directions. The full flux vector can then be uniquely determined from
the two normal flux components

F •n1 =Fn1, (6a)

F •n2 =Fn2. (6b)

It is important to emphasize here that fluxes at cell corner points do not
have unique values for all the cells sharing the corner. In spite of that, local
conservation is guaranteed because neighboring cells do share a common
normal flux at all the flux points. Once the fluxes at all the flux points are
re-computed, they are used to form a degree p +1 polynomial, i.e.,

Fi(r)=
Np+1∑

k=1

Mk,i(r)Fk,i , (7)
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where Mk,i(r) are the set of cardinal basis functions defined by rk,i and
Fk,i =F(rk,i). Obviously, the divergence of the flux at any point within the
cell can be computed using

∇ •Fi(r)=
Np+1∑

k=1

∇Mk,i(r)•Fk,i . (8)

To update the solutions at the solution points rj,i , we need to evaluate the
divergence at these points, which can be easily computed according to

∇ •Fi(rj,i )=
Np+1∑

k=1

∇Mk,i(rj,i )•Fk,i . (9)

Finally the semi-discrete scheme to update the solution unknowns can be
written as

dQj,i

dt
+

Np+1∑

k=1

∇Mk,i(rj,i )•Fk,i =0. (10)

For time integration, high-order TVD (or SSP) Runge–Kutta schemes
[21,23] are employed.

3. EFFICIENT IMPLEMENTATION AND CONSERVATION
PROPERTY

In the last section, we avoided the implementation and conservation
issues in order to focus on presenting the basic idea of the SD method.
The reconstruction formulas for the solution and flux presented in (2), (7)
may give the readers the impression that each cell has a different set of
reconstruction coefficients. It will be shown that for triangles with straight
edges (most of the cells except curved wall boundary cells), the recon-
struction coefficients are universal for all triangles. This is true because
any triangle can be transformed to a standard triangle as shown in Fig. 4
through the following linear transformation:

r = r0,i + ξ(r1,i − r0,i )+η(r2,i − r0,i ), 0� ξ, η�1 and ξ +η�1, (11)

where r0,i , r1,i , and r2,i are the three vertices of cell i. If the solution
points rj,i and flux points rk,i are distributed in a geometrically simi-
lar manner for all cells, they all have the same local position ξ j and ξ k
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Fig. 4. Transformation from a physical element to the standard element.

with ξ = (ξ , η). It is shown in [16] that a universal reconstruction can be
written as

Qi(ξ)=
Np∑

j=1

Lj (ξ)Qj,i, (12)

where the cardinal basis functions Lj (ξ) are universal for all triangles.
Therefore the solution at the flux points can be computed using

Qk,i ≡Qi(ξ k)=
Np∑

j=1

lkj Qj,i, (13)

where lkj =Lj (ξ k). Similarly the reconstruction polynomial for the flux can
be written as

Fi(ξ)=
Np+1∑

k=1

Mk(ξ)Fk,i, (14)

where Mk(ξ) are the universal cardinal basis functions based on the flux
points. It is then straightforward to show that the gradient of F on the
computational domain (standard element) takes the following universal
form for all cells

∇Fi(ξ)=
Np+1∑

k=1

∇Mk(ξ)Fk,i . (15)
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From (15), the gradients of the flux at the solution points can be com-
puted according to

∂Fi(ξ j )

∂ξ
=

Np+1∑

k=1

mjk,ξ Fk,i, (16)

∂Fi(ξ j )

∂η
=

Np+1∑

k=1

mjk,η Fk,i. (17)

where mjk,ξ = ∂Mk(ξ j )

∂ξ
and mjk,η = ∂Mk(ξ j )

∂η
. By applying the chain rule, we

can easily relate the divergence of F in the physical domain to the gradi-
ents of the flux in the computational domain

∇ •Fi(r) = ∂fi(r)
∂x

+ ∂gi(r)
∂y

= ∂fi(ξ)

∂ξ
ξx,i + ∂fi(ξ)

∂η
ηx,i + ∂gi(ξ)

∂ξ
ξy,i

+∂gi(ξ)

∂η
ηy,i. (18)

For the linear transformation given in (11), it is easy to show that
[

ξx,i ξy,i

ηx,i ηy,i

]

= 1
2Vi

[
y2,i −y0,i −x2,i +x0,i

−y1,i +y0,i x1,i −x0,i

]

, (19)

where Vi is the volume of cell i. Let aξ and aη be the inward-pointing area
vectors of face 02 and face 01 in Fig. 4. Obviously, we have

(ξx,i , ξy,i)= aξ
i

2Vi

, (ηx,i , ηy,i)= aη
i

2Vi

. (20)

Equation (18) can be more concisely written as

∇ •Fi(r)= 1
2Vi

[
∂Fi(ξ)

∂ξ
•aξ

i + ∂Fi(ξ)

∂η
•aη

i

]

. (21)

Finally (10) becomes

dQj,i

dt
+ 1

2Vi

[
∂Fi(ξ j )

∂ξ
•aξ

i + ∂Fi(ξ j )

∂η
•aη

i

]

= dQj,i

dt
+ 1

2Vi

⎡

⎣aξ
i •

Np+1∑

k=1

mjk,ξFk,i +aη
i •

Np+1∑

k=1

mjk,ηFk,i

⎤

⎦=0.

(22)
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Note that for all triangles (with straight faces), only the two vectors
aξ
i

2Vi
,

aη
i

2Vi
need to be stored. The computation of the flux gradients on the

computational domain is universal for all triangles. Obviously this formu-
lation is much simpler than that of the DG and SV methods, and is much
easier to implement too.

In order to prove conservation, we need to show that the integral
form of (1) is satisfied in each cell, i.e.,

∫

Vi

(
∂Q

∂t
+∇ •F

)

dV = d

dt

∫

Vi

QdV +
∮

∂Vi

F •n dS =0. (23)

The volume and surface integrals are computed using quadrature for-
mulas based on the solutions at the solution points and fluxes at the flux
points

∫

Vi

QdV =Vi

Np∑

j=1

wjQj,i, (24)

∮

∂Vi

F •n dS =
3∑

l=1

⎛

⎜
⎜
⎝nl •

∫

Sl
i

F dS

⎞

⎟
⎟
⎠=

3∑

l=1

⎛

⎝Sl
i •

Np+1∑

k=1

wl
kFk,i

⎞

⎠, (25)

where wj is the volume integral quadrature weights, and wl
k are the sur-

face integral quadrature weights for face l, and Sl
i is the outward area vec-

tor of face l. Using the fact that the area vectors form a closed surface,∑3
l=1 Sl

i = 0, or S3
i = −S1

i − S2
i , and S1

i = −aξ , S2
i = −aη, (25) can be fur-

ther written as

∮

∂Vi

F •n dS =−
⎛

⎝aξ
i •

Np+1∑

k=1

w
ξ
kFk,i +aη

i •
Np+1∑

k=1

w
η
kFk,i

⎞

⎠ . (26)

where w
ξ
k =w1

k −w3
k , and w

η
k =w2

k −w3
k . Obviously, only flux points at ele-

ment interfaces are used in the surface integral. Therefore, for all inte-
rior flux points, the weights should be zero. Substituting (22) into (24), we
obtain
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d

dt

∫

Vi

QdV =Vi

Np∑

j=1

wj

dQj,i

dt
=−1

2

Np∑

j=1

wj

Np+1∑

k=1

Fk,i • (mjk,ξ aξ
i +mjk,ηaη

i )

=−
⎛

⎝aξ
i • 1

2

Np+1∑

k=1

Np∑

j=1

wjmjk,ξFk,i +aη
i • 1

2

Np+1∑

k=1

Np∑

j=1

wjmjk,ηFk,i

⎞

⎠.

(27)

Comparing (26) and (27), the conservation conditions are

w
ξ
k =−1

2

Np∑

j=1

wjmjk,ξ and w
η
k =−1

2

Np∑

j=1

wjmjk,η. (28)

Since these equations depend only on the locations of the solution
and quadrature points, they can be satisfied by properly placing the solu-
tion and flux points. In fact, these conditions are satisfied for all the place-
ments shown in Fig. 1.

4. DISCONTINUITY CAPTURING AND DATA LIMITING

Hyperbolic conservation laws admit solutions that develop dis-
continuities in finite time, even if the initial data is smooth. Enabling the
computation of numerical solutions without spurious oscillations at dis-
continuities is essential in the construction of high-order schemes for these
types of equations. It is well known that monotone linear schemes are at
most first order accurate. A monotone higher order scheme must neces-
sarily be nonlinear, which usually takes the form of limiter functions that
depend on the current solution. For many high-order schemes, such as the
DG method [6] and the SV method [28–30] limiters based on the minmod
function have proved quite successful, and have led to convergence proofs
in the total-variation-diminishing (TVD) [9] or total-variation-bounded
(TVB) [20] framework. We use a similar general approach, which is out-
lined in the following for one and two space dimensions. Consider the
reconstructed solution Qi(x) inside a cell i, denote its volume average by
Qi , and define

δQi+1/2 =Q(xi+1/2)−Qi,

δQi−1/2 =Qi −Q(xi−1/2),

ΔQi+1/2 =Qi+1 −Qi,

(29)
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where the cell interfaces are denoted by subscripts i +1/2 and i −1/2. In
order to compute the fluxes at these interfaces one may construct the lim-
ited states as

Qi+1/2 =Qi +minmod
(
δQi+1/2,ΔQi+1/2,ΔQi−1/2

)
,

Qi−1/2 =Qi −minmod
(
δQi−1/2,ΔQi+1/2,ΔQi−1/2

)
,

(30)

where the minmod function is given by

min mod (y1, y2, y3)=
⎧
⎨

⎩

s ·min(|y1| , |y2| , |y3|),
0,

if sign(y1)= sign(y2)

= sign(y3)= s,

otherwise.
(31)

If the limiter is active, the remaining reconstruction can be restricted to a
lower order approximation, requiring consistency with the volume average
and the limited left and right states, which can be accomplished by a sec-
ond order polynomial, or a linear slope, if only the more restrictive state
at the boundary is matched by the new reconstruction. A rigorous TVD
theory exists for numerous schemes combined with this limiting method-
ology. To avoid reduction of the accuracy at smooth extrema, inherent to
the TVD limiting procedure, the minmod function is modified to be inac-
tive at smooth extrema. This leads to TVB schemes, which retain the nom-
inal accuracy for all smooth solutions:

m(y1, y2, y3)=
{

y1,

min mod (y1, y2, y3),

if y1 <Mh2,

otherwise.
(32)

We deviate slightly from the standard approach in order to exploit the
resolution available by the nodal data representation within each cell. If
we wish to compute the flux at flux node k, we limit the differences

δQk,l =Q(xf,k)−Q(xu,j ),

δQk,r =Q(xu,j+1)−Q(xf,k),
(33)

where Q(xu,j ) and Q(xu,j+1) are the neighboring solution collocation
nodes to the left and right, respectively. Note that the index j is a generic
global index for the solution nodes. For interior flux nodes k, the left and
right neighbors will be solution nodes in the same cell, otherwise the next
neighbors in the adjacent cells are chosen. We have

Qk,l =Q(xu,j )+m
(
δQk,l,ΔQj+1,ΔQj

)
,

Qk,r =Q(xu,j+1)−m
(
δQk,r ,ΔQj+2,ΔQj+1

)
,

(34)
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where now ΔQj =Q(xu,j )−Q(xu,j−1). This approach has certain advan-
tages. Most importantly we have sub-cell resolution in the sense that it
is possible to limit the reconstruction at each flux node individually as
opposed to using a limited state at cell boundaries only, which necessitates
the explicit reduction of the order of reconstruction for some of the cells.
Dissipation can be introduced at interior nodes in case of very steep gra-
dients or discontinuities inside the cell, while the cell boundaries may be
smooth. A disadvantage is that there is no TVD or TVB theory available
at this point for this approach.

The 2D TVD limiter follows a similar idea. The limiter is imple-
mented in the following steps:

1. Compute the cell averaged state variables for each cell {Q̄i}.
2. Compute local minimum and maximum mean variables for cell i, Q̄i,min,

and Q̄i,max using a local stencil of cells sharing nodes.
3. Compute Q at the flux points Qk,i .
4. If any of the solution Qk,i is outside (Q̄i,min,Q̄i,max), cell i is limited.

Q is assumed linear and takes the following form

Qi(r)= Q̄i +φ ∇Qi • (r − ri ), (35)

where ∇Qi is the original gradient computed at the cell centroid, and
ri is the location of the cell centroid and φ isa limiter function in [0,
1] which makes the solution bounded by [Q̄i,min,Q̄i,max], similar to that
in [16].

5. NUMERICAL RESULTS

5.1. Quasi-1D Nozzle Flow

The quasi-1D Euler equations can be written

∂Q

∂t
+ ∂f

∂x
+S =0,

where

Q=
⎛

⎝
ρ

ρu

E

⎞

⎠, f =
⎛

⎝
ρu

ρu2 +p

u(E +p)

⎞

⎠, S = 1
A

dA

dx

⎛

⎝
ρu

ρu2

u(E +p)

⎞

⎠

and A is the cross-section area. For all the test cases considered below the
flow conditions at the inflow and outflow are subsonic (for transonic cases
the flow is decelerated by a normal shock before leaving the computational
domain). At the inflow we impose boundary conditions by extrapolating
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Table I. Isentropic Nozzle Flow: Accuracy in Mesh Refinement for the Third-Order
Scheme with CUSP Flux

No. of Cells L∞ Order L∞ L2 Order L2

6 1.13E −05 – 6.53E −06 –
10 2.90E −06 2.66 1.48E −06 2.91
16 7.08E −07 3.00 3.47E −07 3.08
24 2.02E −07 3.09 9.62E −08 3.16
30 1.02E −07 3.07 4.75E −08 3.16
40 4.19E −08 3.09 1.92E −08 3.14
50 2.11E −08 3.08 9.60E −09 3.12
60 1.20E −08 3.08 5.46E −09 3.10

the outgoing Riemann invariant and fixing the total enthalpy and entropy,
while at the outflow the entropy and total enthalpy are extrapolated and
the pressure is fixed. All computations use the CUSP flux [11] at cell
interfaces.

A.1 Smooth Flow

We first consider smooth subsonic flow in a symmetric nozzle, where
A(x) is defined on the interval [0,1] by the relation

A(x)=1− (1−dt )
sin (ξ)+1

2

and ξ =π/2(4x −1). The nozzle throat area is given by dt =0.875. A noz-
zle exit Mach number of M = 0.3 is chosen, which leads to entirely sub-
sonic, isentropic flow, so that one may choose the steady-state entropy as
a measure of error. Tables I and II show the results of a mesh refinement
study using the third and fourth order schemes. It can be seen that the
entropy error decreases at the nominal rate in both L2 and L∞ norms.

A.2 Transonic Shocked Flow

We now turn to an asymmetric nozzle configuration with the aim of
computing transonic flow with a shock in the diverging part of the nozzle.
We define the area on the interval [0, xout =10] by the relation

A(x)=
⎧
⎨

⎩

din + ξ(x)2(3−2ξ(x))(dt −din), x �xt ,

dt +η(x)2(3−2η(x))(dout −dt ), x >xt ,
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Table II. Isentropic Nozzle Flow: Accuracy in Mesh Refinement for the Fourth-Order
Scheme with CUSP Flux

No.of Cells L∞ Order L∞ L2 Order L2

6 1.55E −06 – 7.97E −07 –
10 1.71E −07 4.32 8.21E −08 4.45
16 2.56E −08 4.03 1.20E −08 4.09
24 5.14E −09 3.96 2.36E −09 4.02
30 2.09E −09 4.03 9.65E −10 4.00
40 7.84E −10 3.40 3.11E −10 3.94

where ξ(x) = x/xt , and η(x) = (x −xt ) / (xout −xt ). The coordinate xt =
3.75 is the location of the nozzle throat, while the nozzle area at the
inlet, outlet and throat are given by din = 1, dout = 1.25, and dt = 0.875,
respectively.

Figure 5 shows the solution in terms of the density for the exit Mach
number M =0.6, using the third-order Spectral Difference scheme. The fig-
ure shows a shock standing in the diverging part of the nozzle, and clearly
demonstrates the excellent shock capturing capabilities of the scheme with
the TVB limiter. We also consider the entropy distribution for this test
case. The entropy behind the shock is different from that ahead of the
shock, caused by the shock jump conditions. Since the shock position can-
not be captured exactly, there is a first-order error proportional to the
mesh size. Therefore the entropy error behind the shock is not expected to
decrease with order-refinement (or p-refinement). The results for schemes
of order 3 through 6, shown in Fig. 6, confirm that good shock capturing
is combined with high accuracy in smooth regions. A mesh of 40 spectral
cells has been used for this study.

A.3 Polynomial Refinement Study

The natural limit of the SD scheme, when operating on only one
cell in one dimension, is a nodal spectral method on a staggered grid
(there are no cell interfaces in this case). Since the scheme is primar-
ily intended for use on higher-dimensional unstructured meshes, using
local approximations of medium order, we shall not explore this particu-
lar limit here. However, we demonstrate in this section that spectral con-
vergence can be obtained for a fixed mesh and increasing local polynomial
accuracy.
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Fig. 5. Density solution for transonic quasi-1D nozzle flow.

Fig. 6. Entropy error for transonic quasi-1D nozzle flow.

We have chosen a symmetric nozzle configuration on the interval [0,1]
for this test case, where the area on the interval [0,1/2] is given by

A(x)=
{

1, x �0.375,

1− (a1ξ
5 +a2ξ

6 +a3ξ
7 +a4ξ

8 +a5ξ
9), x >0.375.

Here ξ = (x −0.375)/0.125 and the area on the interval [1/2,1] is obtained
by symmetry. Obviously the first four derivatives of the polynomial expres-
sion for the nozzle throat vanish at the intersection with the constant part
of the geometry definition. The remaining coefficients are chosen such that
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Fig. 7. Entropy error in p-refinement for smooth nozzle flow (16 cells), where p is the
polynomial order, and Np =p +1 is the order of the scheme.

the nozzle throat is given by dt =0.85, and all derivatives up to order four
correspond to a circle with radius r =1−dt at the throat. Figure 7 shows
the convergence of the entropy error with increasing order of the scheme
on a mesh with 16 cells. Over a wide range of polynomial refinement the
convergence can be seen to be spectral (i.e., exponential).

5.2. Accuracy Study in 2D

The vortex propagation problem has an exact solution for the Euler
equations, and was used by Shu [22]. The mean flow is {ρ,u, v,p} =
{1,1,1,1}. An isotropic vortex is then added to the mean flow, i.e., with
perturbations in u, v, and temperature T = p/ρ, and no perturbation in
entropy S =p/ργ :

(δu, δv)= ε

2π
e0.5(1−r2)(−ȳ, x̄),

δT =− (γ −1)ε2

8γπ2
e1−r2

,

δS =0,

where r2 = x̄2 + ȳ2, x̄ = x − 5, ȳ = y − 5, and the vortex strength ε = 5.
If the computational domain is infinitely big, the exact solution of the
Euler equations with the above initial conditions is just the passive convec-
tion of the isotropic vortex with the mean velocity (1, 1). In the following
accuracy study, the computational domain is taken to be [0,10] × [0,10],
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Fig. 8. Irregular “10×10×2” Grid.

with characteristic inflow and outflow boundary conditions imposed on
the boundaries.

The numerical simulations were carried out until t = 2 on a set of
irregular meshes. The coarsest mesh is shown in Fig. 8. The finer meshes
are generated recursively by cutting each coarser grid cell into four finer
grid cells. The Rusanov flux was used in the simulations. The L1 and L∞
norms in density are presented for SD schemes of second and third order
in Table III. The errors presented in the tables were made time step inde-
pendent by using sufficiently small time steps. Note that all the simula-
tions have reached roughly the desired order of accuracy in the L1 and
L∞ norms. The third-order scheme is about 0.3–0.4 orders from order
3. The SD method is about 25% faster than the SV method for this
case.

A simpler density wave problem was also run with the third-order
scheme on a set of regular triangular grids generated from cutting uni-
form Cartesian grids into triangles to see whether we could achieve
closer to third-order accuracy. The problem has the following analytical
solutions

ρ =2.+ sin(x +y −0.3t),

u=1,

v =−0.7,

p =1.
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Table III. Accuracy on the Vortex Propagation case (t =2) (Irregular Grids), Rusanov Flux

Order of accuracy Grid L1 error L1 order L∞ error L∞ order

2 10×10×2 6.97e−3 1.01e−1
20×20×2 1.80e−3 1.95 3.42e−2 1.56
40×40×2 5.01e−4 1.85 9.08e−3 1.91
80×80×2 1.30e−4 1.95 2.38e−3 1.93

160×160×2 3.28e−5 1.99 6.36e−4 1.90
3 10×10×2 1.94e−3 – 5.43e−2 –

20×20×2 3.55e−4 2.45 7.50e−3 2.86
40×40×2 5.97e−5 2.57 1.32e−3 2.51
80×80×2 9.79e−6 2.61 1.94e−4 2.77

160×160×2 1.52e−6 2.69 3.22e−5 2.59

Table IV. Accuracy on the Density wave Problem at t =1 (Regular Grids), Rusanov Flux

Order of accuracy Grid L1 error L1 order L∞ error L∞ order

3 10×10×2 1.69e−3 – 4.52e−3 –
20×20×2 3.45e−4 2.29 9.64e−4 2.23
40×40×2 5.66e−5 2.61 1.72e−4 2.49
80×80×2 7.87e−6 2.85 2.50e−5 2.78

160×160×2 1.02e−6 2.95 3.24e−6 2.95

The computational domain is [−π,π ] × [−π,π ], and the simulation
was carried out until t = 1. The L1 and L∞ density errors are presented
in Table IV. Note that the numerical orders of accuracy in both the
L1 and L∞ norms have reached a full third order on the finest two
meshes.

5.3. Double Mach Reflection

This problem is also a standard test case for high-order methods [31]
and has been studied extensively by many researchers. The computational
domain for this problem is chosen to be [0,4] × [0,1]. The reflecting wall
lies at the bottom of the computational domain starting from x =1/6. Ini-
tially a right-moving Mach 10 shock is positioned at x = 1/6, y = 0 and
makes a 60◦ angle with the x-axis. For the bottom boundary, the exact
post-shock condition is imposed for the region from x = 0 to x = 1/6
and a solid wall boundary condition is used for the rest. For the top
boundary of the computational domain, the solution is set to describe



66 Wang et al.

Fig. 9. Density contours for the double Mach reflection problem.

the exact motion of the Mach 10 shock. The left boundary is set as
the exact post-shock condition, while the right boundary is set as out-
flow boundary. Two triangular grids were generated with 133,480, and
533,920 triangular cells, respectively. All the simulations were carried until
t =0.2 using the CUSP flux and TVB limiter similar to the one developed
for the SV method [30]. Figure 9 shows the density contours computed
with the third-order SD scheme on the coarse, and fine grids. This case
clearly demonstrates the capability of crisp shock capturing on triangular
meshes.

5.4. Subsonic Flow over a NACA0012 Airfoil

As a final demonstration for a more realistic geometry, subsonic flow
around a NACA0012 airfoil at Mach = 0.4, and angle of attack of five
degrees is simulated. In this simulation, the computational results using
the third-order SD scheme on a coarse mesh with 72×24×2 triangles are
compared with those using a second-order MUSCL type FV method [26]



Spectral Difference Method for Euler Equations 67

on a much finer mesh with 192 × 64 × 2 triangles. Therefore the number
of DOFs in the FV simulation is 24,576 while it is 20,736 in the SD sim-
ulation. The entropy production in the solution is used as the indicator
for the solution accuracy. For the third-order SD scheme, the boundary is
approximated with 72 piece-wise quadratic segments. For the second-order
FV scheme, the airfoil surface is approximated with 192 linear segments.
The computational meshes used for both the SD and FV methods are dis-
played in Fig. 10. The outer boundary is 20 chords away from the cen-
ter of the airfoil. The computed Mach contours computed with both the

rd  3 SD grid (b)

(a) 2nd FV grid 

Fig. 10. Computational grids for subsonic flow around a NACA0012 airfoil.
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(a) 2nd order FV 

(b) 3rd order SD 

Fig. 11. Comparison of Mach contours between the FV and SD methods.

SD and FV schemes are plotted in Fig. 11. Note that the agreement is
very good. The average entropy error with the second-order FV method
is 1.04e − 5, while the average entropy error with the third-order SD
scheme is 4.86e − 6, which is more than a factor of 2 smaller. The
entropy errors along the airfoil surface are plotted for both computational
results in Fig. 12. Note that although the second-order FV scheme used
a much finer grid, the solution quality of the third-order SD scheme is
superior.
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Fig. 12. Comparison of entropy error along the airfoil surface.

6. Conclusions

In this paper, the spectral difference method has been successfully
extended to Euler equations on unstructured grids. The method combines
the best features of structured and unstructured grid methods in which the
structured distribution of discrete variables in each unstructured cell main-
tains computational efficiency and geometric flexibility. It utilizes the con-
cept of discontinuous and high-order local representations to achieve con-
servation and high accuracy. Universal reconstructions are obtained by dis-
tributing unknown and flux points in a geometrically similar manner for all
unstructured cells. The flux derivatives needed to update the conservative
unknowns are expressed as universal weighted sums of the fluxes, leading
to great computational efficiency. An important aspect of the method is
that the number of Riemann solvers per unknown decreases as the order
of accuracy increases, reducing the cost for higher order. Placements of the
unknown and flux points with various orders of accuracy are given for tri-
angular elements. Accuracy studies of the method are carried out with the
vortex propagation problem and the order of accuracy is numerically ver-
ified. A monotonicity solution limiter has been implemented for disconti-
nuity capturing, successfully employed to simulate 1D shock in a nozzle,
and a double Mach reflection problem. The method is also applied to high-
order boundary representations, and satisfactory results have been obtained
for a subsonic flow around the NACA0012 airfoil. The third-order SD was
shown to produce more accurate results than a second-order FV method on
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a much coarser grid with fewer solution unknowns. Future research areas
in the SD method include extension to even higher order of accuracy, and
to the Navier-Stokes equations and three dimensions.
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