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Abstract

We propose in this paper a total variation based restoration model which incorporates the image
acquisition model z = h * u + n (h denotes the blurring kernel and n a white Gaussian noise) as
a set of local constraints. These constraints, one for each pixel of the image, express the fact that
the variance of the noise can be estimated from the residuals h * u — z if we use a neighborhood of
each pixel. This is motivated by the fact that the usual inclusion of the image acquisition model as
a single constraint expressing a bound for the variance of the noise does not give satisfactory results
if we wish to simultaneously recover textured regions and obtain a good denoising of the image.
We use Uzawa’s algorithm to minimize the total variation subject to the proposed family of local
constraints and we display some experiments using this model.
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1 Introduction

We assume that the image acquisition system may be modelled by the following image formation model

2(i,§) = hxuli-g) +n(i,j),  (i,5) € {1,...,N}? (1)
where v : IR?> — IR denotes the ideal undistorted image, h : IR?> — IR is a blurring kernel, z is the
observed sampled image which is represented as a function z : {1,..., N}? — IR, and n(4, j) is, as usual,

a white Gaussian noise with zero mean and standard deviation o.

Let us denote by Qy the interval ]0, N]2. As in most of works, in order to simplify this problem,
we assume that the functions h and u are periodic of period IV in each direction. That amounts to
neglecting some boundary effects. Therefore, we assume that h,u are functions defined in Qy. To fix
ideas, we assume that h,u € L?(2y), so that h * u is a continuous function in 2y [18] (which may be
extended to a continuous periodic function in IR?) and the samples h*u(i, j), (i,5) € {1,..., N}?, have
sense.

Our problem is to recover as much as possible of u, from our knowledge of the blurring kernel A,
the statistics of the noise n, and the irregular samples z.

The problem of recovering u from z is ill-posed due to the ill-conditioning of the operator Hu = h*u.
Several methods have been proposed to recover u. Most of them can be classified as regularization meth-
ods which may take into account statistical properties (Wiener filters), information theoretic properties
[13], a priori geometric models [31] or the functional analytic behavior of the image given in terms of
its wavelet coefficients [14].

The typical strategy to solve this ill-conditioning is regularization. Probably one of the first examples
of regularization method [33] consists in choosing between all possible solutions of (1) the one which
minimized the Sobolev (semi) norm of u

/Q |Du|? dz. (2)

Usually, the only information we know about the noise is statistical and limited to an estimate of its
mean and its variance. In that case, the model equation (1) is incorporated as a set of constraints for

(2):

N N

Z hxu(i,j) = Z 2(i,7), (3)
ij=1

ij=1
N

> hsu(i,f) — 2, 4)) < o>N?, (4)

ij=1
The first constraint corresponds to the assumption that the noise has zero mean, and the second
amounts to say that o is an upper bound of the standard deviation of n. As it is observed in [11],
assuming that h*x1 = 1 (energy preservation), it suffices to minimize (2) under the constraint (4), since
the constraint (3) is automatically satisfied [11]. Thus, in practice the above problem is solved via the
following unconstrained minimization problem

N
A1
minumaXAZO/ |Du|? dx + 5 | w2 Z \hoxu(i, §) — 2(i,5)* — 02|, (5)
2N ij=1

where A > 0 is a Lagrange multiplier.



This formulation was an important step, but the results were not satisfactory, mainly due to the
unability of the previous functional to resolve discontinuities (edges) and oscillatory textured patterns.
The smoothness required by the Dirichlet integral (2) is too restrictive and information corresponding
to high frequencies of z is attenuated by it. Indeed, functions in W2(Q) (i.e., functions u € L?(Q) such
that Du € L?(Q2)) cannot have discontinuities along rectifiable curves. These observations motivated
the introduction of Total Variation in image restoration problems by L. Rudin, S. Osher and E. Fatemi
in their work [31]. The a priori hypothesis is that functions of bounded variation (the BV model) ([4])
are a reasonable functional model for many problems in image processing, in particular, for restoration
problems ([31]). Typically, functions of bounded variation have discontinuities along rectifiable curves,
being continuous in some sense (in the measure theoretic sense) away from discontinuities. The discon-
tinuities could be identified with edges. The ability of total variation regularization to recover edges is
one of the main features which advocates for the use of this model (its ability to describe textures is
less clear, some textures can be recovered, but up to a certain scale of oscillation).

On the basis of the BV model, Rudin-Osher-Fatemi [31] proposed to solve the following constrained
minimization problem

Minimize / | Du| dx
Q

v (6)
> s, §) — 2(i, §))* < >N,
ij=1
Notice that the image acquisition model (1) is only incorporated through a global constraint. Notice
also that, assuming that A« 1 = 1 (energy preservation), the constraint (3) is automatically satisfied
[11].
In practice, the above problem is solved via the following unconstrained formulation

N

min, ma)g\>0/Q |Dul| dx + % % Z |h*u(i,j) — 2(i, ) > — o (7)

7,7=1
where A > 0 is a Lagrange multiplier. The appropriate value of A can be computed using Uzawa’s
algorithm [16] so that the constraint in (4) is satisfied. Recall that if we interpret A~! as a penalization
parameter which controls the importance of the regularization term, and we set this parameter to be
large, then homogeneous zones are well denoised while highly textured regions will loose a great part
of its structure. On the contrary, if A™! is set to be small, texture will be kept but noise will remain
in homogeneous regions. On the other hand, as the authors of [8] observed, if we use the constrained
formulation (6) or, equivalently (7), then the Lagrange multiplier does not produce satisfactory results
since we do not keep textures and denoise flat regions simultaneously, and they proposed to incorporate
the image acquisition model as a set of local constraints, adapted to the different regions of the image.
Let us mention that the use of local constraints on regions of the image was initially proposed in [30].
Following [8], let {Ox, ..., O,} be a partition of {1,..., N}? into regions, and let us denote

1

Io,(u) :=
|01

Y hwu(ig) = 260 (8)

(,5)€0;

where |O;| denotes the number of pixels in O;. In [8], the authors proposed to incorporate the image



acquisition model (1) as a set of local constraints, and to replace (6) by the problem

min/ | D

subject to Ip,(u) < o2, Vi=1,..,r,

whose unconstrained formulation can be written as

. 1< )
mina: | a3 Ao - o), (10)
where \;, [ = 1,...,r is a set of Lagrange multipliers associated to the constraints in (9) (and can

be solved with Uzawa’s method). Let us recall that the partition {O;}]_; can be obtained with the
simplified version [22] of the Mumford-Shah segmentation algorithm [27] applied to the image z. The
segmentation algorithm is stopped to ensure that regions O; have a sufficiently large area to ensure
that the sum in (8) gives a good estimate of o2 [8].

Our purpose in this paper is to further develop this idea and to get rid of the segmentation of
{1,...,N}? involved in this process. For that we propose to replace the family of constraints in (9) by

Gx(hxu—2)(i,7) <o?  V(i,j)€{l,...,N}, (11)

where G is a discrete convolution kernel such that G(i,j) > 0 for all (i,7) € {1,..., N}. The effective
support of G must permit the estimate of the variance of the noise with (11). Then we minimize the
total variation (or the functional fQN VB2 + |Dul?, B > 0) subject to the family of constraints (11),
plus eventually the constraint (3). In this paper we study the well-posedness of this problem and show
that it can be solved with Uzawa’s method [16].

Many numerical algorithms have been proposed to minimize total variation (or similar models)
subject to the constraint given in (6) [31, 19, 1, 6, 35, 11, 12, 15, 10]. Besides the work [8], let us
mention two of them related to our work. In [23] the authors combined total variation minimization
with a set of constraints of type [(h * u — z,9)| < 7 where 1 varies along an orthonormal basis of
wavelets (or a family of them) and 7 > 0. The aim was also to construct an algorithm which preserves
textures and has good denoising properties. As we will do here, these constraints were incorporated
using Uzawa’s algorithm. With the same spirit of denoising while preserving textures, in [20], the
authors proposed to minimize total variation subject to a family of local constraints which control
the local variance of the oscillatory part of the signal. The constraints are introduced via Lagrange
multipliers with an approach similar to the one used in [31]. This amounts to adding a spatially varying
fidelity term that locally controls the extent of denoising over image regions depending on their content.
Besides the fact that we use Uzawa’s algorithm and we try to address the problem of deconvolution
and denoising, the work [20] is quite similar to our approach. A different, though related, approach
was taken in [32] (see also [25]) where the regularization parameter is scale and space adaptive. In that
case the local parameter A(z,y) is on the regularization term, i.e. [, A(x,y)|Dul|. For edge dependent
adaptive restoration, A(z,y) is chosen in such a way that it is inversely proportional to |Du|, where 4 is
a previous estimation of the restored image u obtained using total variation restoration [32]. Weighted
total variation was also used in [25] with the purpose of controlling ringing effects in image restoration.

Let us finally say that we assume that the variance of the noise o2 is known. Otherwise, one could
use any of the different approaches to obtain accurate estimates of o2, in particular, those in [5, 17].
The paper [17] also provides an analysis of the relation between o2 and the regularization parameter



for linear restoration methods. The paper [21] proposes a set of local constraints on regions of the
image depending on the local variance of the region. The paper [26] proposes a Bayesian framework
for parameter estimation in restoration problems addressed from a Bayesian point of view.

Let us describe the plan of the paper. Section 2 contains some preliminaries on probability in order
to estimate the size of the kernel G needed to be able to estimate the variance of the noise from the
residuals h*u — z and correspondingly define the local constraints (11). In Section 3 we study the well-
posedness of minimizing total variation (and some related functionals) under the family of constraints
(11), and we propose a minimization algorithm based on Uzawa’s method. Our study will be conducted
in a discrete setting. Section 4 is devoted to the description of the data and the numerical experiments
performed using the proposed model. We end up in Section 5 with some conclusions.

2 Averaging reduces noise variance

If we consider, as we will do it in the next section, local estimates of the variance of the noise n, we
can be sure that our numerical implementation will approximate o2 with an error that is inversely
proportional to the square root of the area of the region considered. In other words, we can be sure
that if the region is big enough our estimate of the noise will be good enough.

Let us consider a discrete image model and write

2(i,7) = hxu(i, ) +n(i, j), (i,7) € {1,...,N}?,

as described in (1) where u denotes the ideal undistorted image, h is a blurring kernel, z is the observed
sampled image which is represented as a function z : {1,...,N}? — IR, and n(i,j) € N(0,0?) is a
white Gaussian noise with zero mean and variance o2. Let I be a subset of indexes in IN x IN, a;; > 0,
Z(i,j)e] aij = 1.
Sr=3 ay(x(i,5) — hxu(i,5)* = Y ayn(i,j)*

(i.9)€l (i.5)el
Then

E(S;) =0¢% and var(S;) = 20" Z a?j.

(i,5)el

By the Central Limit Theorem [28], we have

1
P | |S — o?| > V2x5?( Z a?j)l/Q — \ﬁ/ e 1244, (12)

(ig)el 2m >

In other words, the expression
aijn(iaj)2
Gg)el
1/2 )

represents o2 with an error proportional to (Z(i,j)e I afj) - In particular, if a;; = 7, then 57
represents o2 with an error proportional to ——. This has only a heuristic value, since it does not give

Vil

a precise estimate on the approximation error.

Remark 1 If a;; are obtained by discretizing a 2D Gaussian variable of standard deviation t, i.e., if
2 2 2 .
Gi(x,y) = 52ze~@ V)2 then we may estimate > iyer @ bY [g Jg Gi(@,y)? dedy = -



To get an idea of the size of the neighborhood where we have to average the noise, let us consider

the case a;; = ﬁ In this case
1
S, — .o 2’

(i,9)el

and, given « € [0, 1], we may write

2 2\ _ n(i, j)
P(|S;—0% >ac?) =P (.E)GI<U> — || > | | - (13)
Z’]

g

to the normal distribution [28], then the probability in (13) can be estimated by

ei=1-N (\/2|1|(1 Ta) — 2] - 1) TN (\/2|1|(1 “a) — 21— 1) .

where we denote

N2
Since Z =37 ; ier (”(W)) isa x2(|1), and for |I| > 30, \/2x2(]I|)—+/2|I| — 1 is a good approximation

L / ! e V2 4

Vor o g

If « = 0.1, and [ is a disk of radius 13 (resp. 14), then /2|I|(1 + ) — \/2|I| =1 ~ 1.606 (resp.
1.727), \/2|I\(1 —a) — /2]I| -1 = —1.657 (resp. —1.786) and e ~ 0.1031 (res. 0.0854). This only
provides a good estimate of the noise power when o2 is small, which is reasonable for satellite image
restoration. When o2 is large then the neighborhood becomes large and we have no advantage in using
this local method. For instance, if o = 20, if we want to estimate the noise power o? = 400 within
an interval with o = 0.05 (thus ao? = 20) and we take a disk of radius 20, then /2|I|(1+ a) —
V2T =1 =~ 1.2480, \/2|I|(1 — ) — \/2]I| = 1 ~ —1.2594 and e ~ 0.21. If I is a disk of radius 30,
then \/2[I[(1 + a) — \/2|T] — 1 =~ 1.8637, \/2|I|(1 — ) — \/2|I| — 1 = —1.8974 and e =~ 0.06. Thus, at
this level of approximation we need a disk of radius 30 and this may be too large for the structures
contained in the image. Finally, let us mention that in practice we have used a gaussian window Gy
with variance 2. Since f]R f]R Gi(z,y)? dedy = 2 we can think that it is equivalent to a disk of radius
R =2t.

N(z) =

3 A restoration model with pointwise local constraints

Our next purpose is to introduce a restoration model with local constraints and to explain the numerical
approach to solve it. For that, let us introduce some notation. We denote by X the Euclidean space
IRY*N " The Euclidean scalar product and the norm in X will be denoted by (-,-)x and | - |x,
respectively. Then the image u € X is the vector u = (u(i, 7))V Yj—1, and the vector field £ is the map

¢€:{1,...,N} x{1,...,N} — R% If u € X, the discrete gradient is a vector in Y = X x X given by

V& u = (Viu, Viu),

where u(i ) uij)
b oo Jui 1, if i<N
v oo Jouli,j+1)—u(i,j) if j<N
vutid) = { ) AN (15)



for 4,5 = 1,...,N. Other choices of the gradient are possible, this one will be convenient for the
developments below. We denote the euclidean norm of a vector v € IR? by |v].
Let us define the discrete functional

IJw= Y VETINTui )R, §20. (16)

1<ij<N

Notice that when 8 =0, Jg coincides with the discrete total variation.
For any function w € L?(2y), its Fourier coefficients are
- (lz+jy)
Wy g :/ w(zx,y)e 2™ N for (1,7) € Z>.
N’'N QN
As in [24], our plan is to compute a band limited approximation to the solution of the restoration
problem for (1). For that we define

B:={u € L*Qy) : 4is supported in {—3 + &,..., 1}%}.

We notice that B is a finite dimensional vector space of dimension N? which can be identified with
X. Both J(u) = fQN |Du| and J9(u) are norms on the quotient space B/IR, hence they are equivalent.
With a slight abuse of notation we indistinctly write u € B or u € X.

From now on, i will denote an integer in {1,..., N} and not the complex number /—1.

We assume that the convolution kernel h € L2(Qy) is such that  is supported in {(—3+4.....3)°
and h(0,0) = 1. If u € B, then we can compute h * u using the Fourier transform

(i I\ _i (L dN (L I
h*“<N’N>_h(N’N>“(N’N)‘

Let G € (*°(Z?) be a discrete convolution kernel periodic of period N. Assume that G(i,j) > 0
for all (i,7) € IN x IN. As we mentioned in the introduction, we propose to incorporate the image
acquisition model (1) as a set of local constraints

G (hxu—2)(,7) <a%,  V(i,j)€{l,...,N} (17)

Notice that we have used the value @ > 0 as an estimate of the standard deviation of the noise o.
We will make tests with @ = ¢ and also with values of & different from o. The effective support of
G must permit the statistical estimation of the variance of the noise with (17). Then we minimize
the functional Jg (u) on X subject to the family of constraints (11). Thus, we propose to solve the
optimization problem:

min J% (u)
ueB d (18)
subject to G * (hxu — 2)2(i,7) < 72 (i, 7).

Now, we observe that (18) can be solved with a gradient descent approach and Uzawa’s method. Indeed,
to guarantee that the assumptions of Uzawa’s method [16] hold we use a gradient descent strategy. For
that, let v € X and v > 0. At each step we have to solve a problem like

. B
min y|u — v[% + J5 (u)
ueB X d (19)
subject to G * (h*u — 2)2(4,7) < 72 v(i, j).



Lemma 1 (i) For any v, > 0, problem (19) has a solution. If v > 0, the solution is unique.

(i1) If y = 0, 8> 0, and we assume that h(0,0) # 0, infecr G * (z — ¢)2 > @2, then the solution of (18)
is unique. If v = 3 =0, the previous assumptions hold and u is a solution of (18), then hxw is unique.

Proof. (i) If u, is a minimizing sequence, then V**u,, is bounded in Y. Since G * (h * u,, — 2)? < 72,
and G > 0, then A * uy,(ig, jo) is bounded for some (i, jo). Since h > 0 and is not identically null, then
un (i, 7) is bounded for some (7, j). This implies that u, is bounded in X. Since the functional and the
constraints are convex, (18) has a solution. If v > 0, the functional is strictly convex and the solution
is unique.

(ii) Let u1,up € X be two solutions of (18), and let uw = “13%2. We have

(h *ul(ivj) - Z(iaj))Q + (h*u2(7’a]) - Z(iaj))z
2 2

(hx i, j) — 2(,5)) < W(i. )- (20)
If the equality in (20) holds for all (7, j), then h*wu; = h % ug. If the inequality is strict for some (i, jo)
then

G (hxui(i,g) — 2(i,5))* | G* (hxus(i,g) — 2(i,5))* _

G (hx(i,j) — 2(i,4))* < 5 + 5 <7

V(i j)-

Let t € [0,1) and u; = tu. Then since f(t) := G (h*u(i,5) — 2(i,7))? is continuous in ¢, then f(t) < 72
for ¢t near 1. In other words, u; satisfies the constraints in (18). Now, observe that J 5 (ug) < J 5 (u) and
the inequality is strict unless V' = 0. Since w is a minimum of (18), we have that V™ = 0, hence
(i, j) = c for some constant ¢ € IR. Now, we have G'* (h*7 — 2)? = G * (c— 2)? < &2, contradicting our
assumptions. We conclude that h % u; = h * us. Now, if 5 > 0, J 5 is strictly convex, and this implies
that V™ u; = VT rug, and, thus, u; = ug + ¢ for some constant ¢. Recalling that h % u; = h * ug, this
implies that u; = us. ]

Remark 2 The result in (4¢) also holds if we add the constraint @(0,0) = 2(0,0) and we minimize (21)
in {u € B:u(0,0) =2(0,0)}. In that case, we define u; = tu + ¢;, t € [0,1), where ¢; := (1 — )2(0,0)
and we observe that 1;(0,0) = 2(0,0). Again, since f(t) := G * (h * us(i,7) — 2(i,5))? is continuous
in ¢, then f(t) < @2 for t near 1. In other words, u; satisfies both constraints, the one in (18) and
1(0,0) = 2(0,0).

We solve (19) using the unconstrained formulation

; Y . 21
umglgr))\ng(}){ﬁ (u, {\};0), (21)

where \ = ()\(iaj))z]'?;=1 and

N
L(u, {A};0) = ylu— oy + I3 () + Y M@ 5)(Gx (hxu—2)2(,5) —5°).

3,j=1

Since, by Lemma 1, problem (19) has a solution, the classical existence result of saddle points (see
[16]) proves the existence of a solution of (21). Indeed the following result is classical and can be found,
for instance, in [16] (Theorems 4 and 5, pp. 59-60).



Theorem 1 Assume that z € hxB. Then for any (3, > 0 there is a solution (u,{\}) of (21), i. e., a
saddle point (u,{\}) of L7(-,-;v). If (u,{A}) is a solution of (21), then u is a solution of (19).

Remark 3 If z € hx B then z € h x B. Indeed, if 2 € h*x B, there is a sequence Up € B such that
zn = h*u, — z in L?(Qy). Since supp(2,) C S = {(r,s) € {—5 + +,...,5}? : h(r,s) # 0}, also
supp(2) C S. In that case we may solve the equation hit = % so that u € B.

We prove that the saddle point can be computed using Uzawa’s algorithm. For that we need the
following result whose proof is immediate.

Theorem 2 Assume that 3,y > 0, and G(i,7) > 0 for any (i,j) € IN x IN. Assume that z € h * B.
Then there is a solution u of
min £7(u, {\};0), (22)
ueX

for any values of A(i,7) >0, 1,5 € {0,...,N —1}. If v > 0, then the solution of (22) is unique.

Remark 4 Even if not needed in the sequel, let us observe that uniqueness also holds if v = 0 in the
following form:

a) If vy =0, 8> 0, A =0, then any two solutions differ in a constant. Hence, the solution is unique if
we minimize (21) in {u € B: 4(0,0) = 2(0,0)}.

b) If y =0, # > 0, A is not identically zero, then the solution is unique.

c) If y=p=0and A > 0 is not identically null, then h % u is unique (thus w is unique if Hu := h *u
is injective).

d) If y =0 =0and A =0, then u is a constant which is unique if we impose %(0,0) = 2(0,0).

We assume that 8 > 0, v > 0. We solve (19) with the Uzawa’s algorithm.
Algorithm: TV based restoration algorithm with local constraints
1. Set u = 0 or, better, u® = 2. Set n = 0.

2. Use Uzawa’s algorithm to solve the problem

i Y (u, {A}; u” 2
min max £ (u, {A}; u™), (23)

that is:

(a) Choose any set of values \°(i, j) > 0, (i,5) € {1,...,N}?, and u} = u™.
Iterate from p = 0 until convergence of AP the following steps:

(b) With the values of AP solve:
min L7 (u, {\P};u")

starting with the initial condition w,. Let u;; be the solution obtained.

(c) Update A in the following way:
AP (i, ) = max(0, (i, §) + p(G = (hx upyy — 2)%(5,5) =37)) ¥(i, ).
3. Let u"*! be the solution of (23). Stop iterations on n when convergence of u™.

Proposition 1 Assume that z € hx B, v > 0. Then Uzawa’s algorithm converges.



1/q
As usual, we denote by ||v||, = (vajzl |v(i,j)|q) for any v € X, 1 < ¢ < oco. We denote
[v]lco = max(; jyeqa,..., Ny [v(E 5)]-

Proof. Let us write R(u) = G* (h*u— z)2. Since v > 0, the assumptions of Uzawa’s algorithm [16] are
satisfied once we prove that R(u) is Lipschitz on bounded sets of X and we observe that the sequence
uy, constructed in Step 2 (and denoted u; there) of the above algorithm is bounded in X. Assume that
U C X is a bounded set. Let u,u € U. Since ||G||; < 1, we have

[17(uw) = R(@)| IGILlI(h o w = 2)* = (hx T — 2)?| x
2||zlloo|[P % (u = @) x + [ * (u + W) [0l * (u — ) || x

Dl -l x

IAIAIA

where D is a constant depending on the norms of h and z and on the bound for U. Now, to prove that
{up}p is bounded we observe that

L7(up, {N}0) < L7(u, {N};0),  VueX,
for all p. Choosing u € X such that z = h * u, we obtain that
wp = w3 + T3 (up) < yllu =% + T} (w),

hence {u,}, is bounded in X. Now, the Proposition follows from Theorem 5 in [16], Sect. 3.1. O

To justify the Algorithm, we prove the convergence of u™ as n — oo to a solution of (18). This type
of result was proved in the continuous case by L. Vese in [34], Theorem 5.4. Our proof will be based
on the techniques in [9].

Proposition 2 Let 3 > 0, v > 0. Assume that u® € X satisfies the constraints. Then u" tends to a
solution u of (18) as n — oo.

Proof. Let us write v = ﬁ, At > 0. Let C be the convex set of functions v € B such that
Gx (hxu—2)%(1,7) <32 V(l,7). Let 5c(u) = 0 if u € C and +oc otherwise. Then for each n u" is a

solution of

n+1 n

u"mtt —u
At
where we write the inclusion symbol 3 instead of the equality since 93¢ (u) and 8.J9(u) may be multi-
valued. Let @ € B be a solution of the stationary problem (18). Then we have

+ 05 (") 4+ 860 (u"Th) 30, (24)

8J (@) + 8¢ () 3 0,
and, therefore,
w4 AHDTE (WY — 8T8 (@) + AH30c(u™T) — 86c(T) 3 U — T (25)
Multiplying by u™*! — % and using that both 0.J; and dd¢ are maximal monotone operators, we have

n+1

™ —alk < Wt - T - ) x <t - alx ettt -,

hence
[ — 2l x < |lu” —llx, (26)
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and, thus, u" is bounded in X. Since u" is bounded in X, we may extract a subsequence u™ such that
u™ converges to some function u* in X

Now, multiplying (24) by Y4 taking scalar products, and adding the identities obtained we
have
p unttl 2 p P ) )
Z N _ Z J +5C ut ),un — >X
n=0 X n=0
p
< Z (J7 4+ 60)(u™) — (J9 + 6c) (™).
Hence,
"2
+ (I +80) ) < (] + 6c) (). (27)
X

+1

This estimate implies that v —u™ — 0 as n — oo.

Letting n — oo in (24) along the sequence n; we have that u* is a solution of
8% (u) + 80 (u) 3 0.
In other words, u* is a solution of DP. Replacing u by uv* in (26), we have
lu = uflx < u” (28)
for all n. This implies that v — u* as n — oc. O

It remains to explain the algorithm used to solve problem (23) in Step 2.(b) of the above Algorithm.
For that, observe that the Euler-Lagrange equation corresponding to (21) is

U —
At

+8Jd()+h*((G*)\)(h*ufz))30. (29)

In our experiments displayed below, we have considered the case 5 = 0 and we have solved (29) using
our extension of Chambolle’s algorithm [10] to the restoration case given in [3].

We have also experimented with the case § > 0 with comparable results (we shall display one
experiment with § = 1 in Figure 5). To give the numerical scheme for the case 5 > 0, let us define
the discrete divergence operator. For that, we use the Euclidean scalar product in Y is defined in the
standard way by

F.dy = Y. (b4, +07;4;)
1<ij<N

for every o= (p',p?), 7= (¢',¢?) € Y. The norm of 5= (p',p?) € Y is, as usual, ||p]ly = (}5’,;6};/2. By
analogy with the continuous setting, we introduce a discrete divergence div~ as the dual operator of
VT, ie., for every p€ Y and u € X we have

(—div™ ™ pupx = (5, VT u)y

11



One can easily check that div™™ is given by [10]
p'(i,j) —p'(i—1,5) if 1<i<N

divopli,j) = p'(i,7) if 0=
—pl(i —1,7) if i=N

(30)
p*(i,5) —p*(i,j—1) if 1<j<N
+ p?(i, ) if  j=
—p*(i,j — 1) if j=N

for every p'= (p',p?) €Y.

For 8 > 0 the > sign in (29) becomes an equality, &Ig(u) =div™ (%) for any u € X
ta

and we consider the following iterative scheme

vVt
AU = v 4+ Ath* (G * \)2) + Atdiv™™ in X (31)
V2 [VHtum]?

where

Au = u+ Ath x ((G * N)h *u), (32)

and any u? € X, m > 0. Observe that A is a positive symmetric linear operator on X whose inverse
A~!is a contraction in X, hence satisfies |A~!|| < 1 for any A > 0 where ||A~!|| denotes the norm of
A~!in X. In particular, (31) can be solved by means of a conjugate gradient algorithm. Now observe
that there is a unique solution u* of (29). Then

\VARRRTHL \VARRE T
div™™ —div™
VB VT VBV

AVARRRTRL \VARRE T
T VT2 N NZES AR

[T PR

X

IN

V&AL H NG

Y

since

ldivel% <slely  veey.

Finally, since

£ ¢ 1 / /
- <2 lE—¢€ ASTSR=R £
H VLI VEEIEl, T O e =<l
and
V5 rul} <sulk  Vue X,
we have
At
st =l < S -l vmzo
Assuming that
p
At < =
8

we deduce that ©v™ — u* as m — oo.

12



Remark 5 For the sake of completeness, let us point out the following algorithm for the case 5 > 0,
which is due to Bermudez-Moreno [7]. The Bermudez-Moreno algorithm for (29) (with w = 0 [7]) can
be written as:

Au™ = v+ Athx ((G* N)z) + AtdivE™  in X

33
E741(1,1) = Ga(VHHu(i,4) +a€™(0,)), in B2, ¥(i,J), )
where A is given in (32),
_ B8)—1
Ga::I (I—I—aoz@gp) 7 o> 0,

P& =vVR+E2,  ¢eR

In that case, assuming that {{(7, )} ; is already known, the first equation of (33) can be solved for
u™ by means of a conjugate gradient algorithm. Let us write €™ € IR? as one of the vectors £™(i, j),
i,j € {1,..., N} and, for simplicity, write V"™ instead of V*Tu™(i,j). Writing

oM = VT 4 af™ — ag™ T (34)

v

and using that 0¢” (v) = W7 after some simple computations, the second equation of (33) can be
v

written as
vm+1
T NN S AR L (35)

/62 + |Um+l|2

By squaring both members of this equality, we get

12 ) |,Um+1‘2 ‘vm+1|2 . )
m _ +..m m
G 52+\vm+1|2+20‘ ﬂ2+|vm+1‘2_‘v u” +ag™%,
which we solve using a Newton method to find [v™T!|2. Inserting this value in (35), we obtain v™*1
and consequently £™*! from (34).
Since (Au,u)x > ||lull%, if
1 2
0< — < =775,
« ||v+,+ ‘2

where ||V ]| denotes the norm of the operator V1 : X — Y, the convergence of Bermiidez-Moreno’s
algorithm was proved in [7], Proposition 3.1 and Corollary 3.2.

4 Experiments

First, we simulate a degraded image following the image acquisition model (1). For that we use the
modulation transfer function corresponding to SPOT 5 HRG satellite with Hipermode sampling (we
refer the reader to [2] for more details):

h(€,n) = e 4mB1lElg=4maV/E240% i o (2€) sine(2n) sine(€), &mel-1/2,1/2, (36)

where sinc(§) = sin(7€)/(7€), o = 0.58, and $; = 0.14. Then we add to the filtered image a white
noise of standard deviation ¢ = 1. See the reference image and the degraded one in Figure 1.

Since the results obtained are comparable, all the experiments displayed, except Figure 5 where we
use # = 1 and the scheme (31), will be done with the restoration model (18) and 5 = 0. We have solved
(29) using our extension of Chambolle’s algorithm [10] to the restoration case given in [3].
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Figure 1: Reference image and a filtered and noised image. The bottom image has been generated
applying filter (36) to the top image and adding a white Gaussian noise of standard deviation o = 1.
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Figure 2 displays two examples of restored images following the discrete version of the restoration
model (6), i.e. minimizing the discrete total variation with a global parameter that controls the impor-
tance of the data fidelity term. The image in Figure 2.a has been obtained with a parameter A = 10 that
permits to satisfy the constraint nyj:l(h xu(i,7) — 2(i,7))? = 02N2. In this case the attained mean
value of (h*u(i,j) — 2(4,7))? is mean(h * u — 2)?) = mean(G * (h* u — 2)?)) = 0.9947. For the purposes
of comparison with the case of using local constraints we have variance(G * (h * u — 2)?)) = 0.0699
using a gaussian G with o = 6.5. The root mean square error (RMSE) of the image in Figure 2.a
is RMSE = 9.4148. In particular, notice how the structure of the two big textured building is lost.
The image in Figure 2.b has been obtained with a parameter A = 40 which implies a stronger attach-
ment to the data. We recover part of the image textures but noise has been also deconvolved and
considered part of the data. In this case, mean(h * u — 2)?) = mean(G * (h * u — 2)?)) = 0.6327,
variance(G * (h * u — 2)?)) = 0.0069 with a Gaussian G with og = 6.5, and RMSE = 9.0970. Both
examples motivate our decision of using local Lagrange multipliers instead of a global one. Indeed,
to be able to recover textured regions while denoising smoother ones we need to adapt the Lagrange
multiplier to each region.

Figure 3 displays the restoration result obtained using the variational formulation (18) (with as
many constraints as pixels) with 72 = 02 = 1 applied to the image of Figure 1.b. Figure 3.a displays
the restored image obtained with a normalized Gaussian window of standard deviation og = 6.5. In
this case RMSE = 9.0739, mean(G * (hxu — 2)?) (that is, the average value of G'* (h*u— 2)?) is 0.9669,
and variance(G * (h*u — 2)?)) = 0.0012. Even if we have not imposed the constraint that the noise has
zero mean, in other words that the average value of u coincides with the average value of z, we have
obtained mean(G * (h*u — z)) = 0.0014. Figure 3.b displays the function A(4, j) obtained. We see that
the values of \(i, j) are correlated to the geometry of the image.

Figure 4.a displays the residual values |h * u — z| corresponding to the result displayed Figure 2.a.
For better visibility, we have re-scaled the residual to have values between 0 and 255. We see that some
structure is present in the residual. Figure 4.b displays the residual values |h % u — z| corresponding to
the result displayed in Figure 3.a. We see that in this case the residual has the appearance of noise.

For completeness, Figure 5 displays the restoration result obtained using (18) with 3 = 1,52 = 02 =
1 and og = 6.5 applied to the image of Figure 1.b. The numerical scheme used in this case is the scheme
(31). In this case RMSE = 9.2323, mean(G * (h * u — 2)?) = 0.9556, variance(G * (h*u — 2)?)) = 0.0025
and mean(G * (h * u — 2z)) = 0.0012. The result is comparable to the one in Figure 3.a.

Figure 6 displays two more restoration results obtained using our functional (18) with 32 = 02 =1
obtained using a Gaussian window of og = 3 (Figure 6.a) and og = 10 (Figure 6.b). For Figure 6.a
we have the values RMSE = 9.0178, mean(G * (h * u — 2)?) = 0.9484, variance(G * (h * u — 2)?)) =
0.0031, mean(G * (h * u — z)) = 0.0032. The corresponding values for Figure 6.b are RMSE = 9.1373,
mean (G * (h *u — 2)?) = 0.9730, variance(G * (h * u — 2)?)) = 0.0006, mean(G * (h * u — z)) = 0.00002.
Even if the results are quite comparable, when the value of o is small some small noise spots are
still present as can be seen in Figure 7.b, which represents a detail of Figure 6.a (cg = 3). Figure 7.a
displays the same detail corresponding to Figure 3.a.

Figures 8, 9 and 10 display some results obtained with a value of @2 in the constraint different from
the variance of the noise 0 = 1.

In Figure 8 we display the results obtained with @ = 1.1. Figure 8.a displays the result obtained
when o¢ = 3. For this Figure we have the values are RMSE = 9.2279, mean(G * (h*u — 2)?) = 1.1237,
variance(G * (h*u — 2)?)) = 0.0073 and mean(G * (h*u — 2z)) = 0.0034. Figure 8.b displays the results
obtained when og = 6.5. In this case, we have RMSE = 9.3193, mean(G * (h * u — 2)?) = 1.1378,
variance(G  (h * u — 2)?)) = 0.0050 and mean(G * (h * u — 2)) = 0.00014.
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Figure 2: Restored images with a global Lagrange multiplier (with 3 = 0). a) The top image has
been obtained using the global parameter A = 10 which gives a solution that satisfies the constraint
Z%‘ﬂ(h *u(i,j) — 2(i,5))* = 02N?%. The attained value for this quantity is mean(h * u — 2)?) =
mean(G * (h * u — 2)?)) = 0.9947 and variance(G * (h * u — 2)?)) = 0.0699 using a gaussian G with
o = 6.5. The RMSE between this result and the reference image is RMSE = 9.4148. b) The bottom
one has been obtained with a global parameter A\ = 40 which is bigger than the previous value that
permits to satisfy the constraint. In this case, mean(h * u — 2)?) = mean(G * (h * u — 2)?)) = 0.6327,

variance(G * (h * u — 2)?)) = 0.0069 with a Gaussian G of oG = 6.5, and RM SE = 9.0970.
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Figure 3: Restored image with local Lagrange multipliers. a) The top image corresponds to the restored
image obtained using functional (18) with 8 = 0, > = 02 = 1 using a Gaussian window with oG = 6.5.
RMSE = 9.0739, mean(G * (h * u — 2)?) = 0.9669, and variance(G * (h * u — 2)?)) = 0.0012. b) The
bottom one is the function A(%, j) obtained.
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Figure 4: Residual values h x u — z. a) The top image displays the residual values |h * u — z|, rescaled
between 0 and 255, corresponding to the image of Figure 2.a. b) The bottom one displays the residual
values corresponding to the image of Figure 3.a.
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Figure 5: Restored image with local Lagrange multipliers using scheme (31). We display the restored
image obtained using functional (18) with 3 =1, @ = ¢ = 1 and a Gaussian window with o = 6.5.
The numerical scheme is the one described in (31). We have obtained RMSE = 9.2323, mean(G * (h *
u — 2)?) = 0.9556, and variance(G * (h * u — 2)?)) = 0.0025.
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Figure 6: Restored image with local Lagrange multipliers. a) The top image corresponds to the restored
image obtained using functional (18) with 3 = 0, 32 = 0 = 1 using a Gaussian window with oG = 3.
The RMSE = 9.0178, mean(G * (h*u — 2)?) = 0.9484, and variance(G * (h*u — 2)?)) = 0.0031. b) The
bottom image is the restored image obtained using 3 = 0, > = 02 = 1, o = 10. In this case, we have
RMSE = 9.1373, mean(G * (h * u — 2)?) = 0.9730, and variance(G * (h * u — 2)?)) = 0.0006.
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Figure 7: A detail of Figures 3.a and 6.a. a) We display a detail corresponding to an enhanced version
of Figures 3.a. b) We display a detail corresponding to an enhanced version of Figures 6.a. The results
are comparable but we see a slight perturbation in the left centered part of the right image.

In Figure 9 we have taken o = 1.2. In Figure 9.a we display the result obtained when o = 3. For this
Figure we have the values are RMSE = 9.4652, mean(G*(h*u—z)?) = 1.3019, variance(G*(hxu—z)?)) =
0.0196 and mean(G * (h*u — z)) = 0.00015. Figure 9.b displays the results obtained when o = 6.5. In
this case, we have RMSE = 9.5763, mean (G * (h*u — 2)?) = 1.3228, variance(G * (h*u — 2)?)) = 0.0163
and mean(G * (h *u — z)) = —0.0020.

Figure 10 displays some results obtained taking the value @ = 0.9. Figures 10.a display the results
obtained when o = 6.5. In this case, we have the values RMSE = 8.9157, mean(G * (h * u — 2)?) =
0.7935, variance(G * (h*u— 2)?)) = 0.0004 and mean (G * (h*u — z)) = 0.0003. Figure 10.b displays the
results obtained when o = 10. The values obtained are RMSE = 8.9145, mean(Gx*(h*u—2z)?) = 0.7967,
variance(G * (h * u — 2)?)) = 0.00014 and mean(G * (h * u — z)) = 0.00007. In this case, if we choose
smaller values of o, as og = 3, we are not able to eliminate all noise.

As it is recognized in [23], penalization methods permit to enforce the constraint very quickly but
are ill-conditioned when the penalization parameter is large and we need many iterations to minimize
total variation. In contrast, Uzawa’s method is not as efficient as penalization to enforce the constraint
but they provide a neat tool when the numerical accuracy in the constraint is not necessarily needed.
This is in agreement with our experiments. The authors advocate for a final step of a few iterations
based on the penalization method starting with the result obtained with Uzawa’s method.

5 Conclusions

We have proposed a Total Variation based restoration model with local constraints. The inclusion of
the image acquisition model as a single constraint expressing that the variance of the noise is bounded
by o2 does not give satisfactory results if we wish to simultaneously recover textured regions and obtain
a good denoising of the image. For that we have proposed to include the image acquisition model as a
set of local constraints, one for each pixel of the image, expressing the fact that the variance of the noise
can be estimated from the residuals h x u — z if we use a neighborhood of each pixel. The minimization
of the total variation subject to this family of constraints can be accomplished by means of Uzawa’s
algorithm. We have displayed some experiments showing that the use of local constraints permits to
attain the desired objectives.
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Figure 8: Restored image with local Lagrange multipliers and @ = 1.1. a) The top Figure displays the
result obtained with 8 = 0, @ = 1.1 and og = 3. We have RMSE = 9.2279, mean(G * (h * u — 2)?)) =
1.1237, variance(G * (h * u — 2)?)) = 0.0073. b) The bottom Figure displays the result obtained
with 8 = 0, @ = 1.1 and og = 6.5. We have RMSE = 9.3193, mean(G * (h * u — 2)?)) = 1.1378,
variance(G * (h * u — 2)?)) = 0.0050.
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Figure 9: Restored image with local Lagrange multipliers and @ = 1.2. a) The top Figure displays the
result obtained with 8 = 0, @ = 1.2 and oG = 3. We have RMSE = 9.4652, mean(G * (h * u — 2)?)) =
1.3019, variance(G * (h * u — 2)?)) = 0.0196. b) The bottom Figure displays the result obtained
with 8 = 0, @ = 1.2 and og = 6.5. We have RMSE = 9.5763, mean(G * (h * u — 2)?)) = 1.3228,
variance(G * (h * u — 2)?)) = 0.0163.
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Figure 10: Restored image with local Lagrange multipliers and @ = 0.9. a) The top Figure displays the
result obtained with 3 =0, 7 = 0.9 and og = 6.5. We have RMSE = 8.9157, mean(G * (h*u — 2)?)) =
0.7935, variance(G * (h * u — 2)?)) = 0.0004. b) The bottom Figure displays the result obtained
with 3 = 0, & = 0.9 and og = 10. We have RMSE = 8.9145, mean(G * (h * u — 2)?)) = 0.7967,
variance(G * (h * u — 2)?)) = 0.00014.
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