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Abstract

Pseudospectral Methods based on global polynomial approxima-
tion yield exponential accuracy when the underlying function is ana-
lytic. The presence of discontinuities destroys the extreme accuracy
of the methods and the well-known Gibbs phenomenon appears. Sev-
eral types of postprocessing methods have been developed to lessen the
effects of the Gibbs phenomenon or even to restore spectral accuracy.
The most powerful of the methods require that the locations of the dis-
continuities be precisely known. In this work we discuss postprocessing
algorithms that are applicable when it is impractical, or difficult, or
undesirable to pinpoint all discontinuity locations.

keywords: Fourier, Chebyshev, Pseudospectral, Gibbs, Spectral filter-
ing, Digital Total Variation filtering.

1 Introduction

Pseudospectral methods are based on global, interpolating, orthogonal poly-
nomial expansions of the form

INf(x) =
∑

k

ak φk(x). (1)

The expansion coefficients are denoted by ak and the basis functions φk(x)
can be standardized to the interval Ω = [−1, 1]. The expansion satisfies
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INf(xi) = f(xi) at N + 1 interpolation sites xi. Interpolation means that
f(x), the function that is being approximated, is a known function (at least
at the interpolation sites) while the terms collocation and pseudospectral

are applied to methods based on the expansion (1) for solving differential
equations for an unknown function f(x). We refer to both situations as
spectral approximation or spectral methods. Detailed information on spec-
tral methods may be found in the standard references [1, 2, 8, 18]. When
the underlying function is periodic trigonometric (Fourier) polynomials are
employed as basis functions while a popular choice for non-periodic prob-
lems are the Chebyshev polynomials. Spectral methods are exponentially
accurate when the underlying function is sufficiently smooth. However, the
presence of discontinuities in the function or in its derivatives reduces the
accuracy of the methods. The reduced accuracy is visible in the form of
oscillations that characterize the well-known Gibbs phenomenon which re-
duces accuracy to first order away from discontinuities and to O (1) in the
neighborhoods of jumps.

A number of methods have been suggested for the purpose of reducing or
eliminating the Gibbs phenomenon. They include: spectral filtering, phys-
ical space filtering using mollifiers, digital total variation filtering, rational
reconstruction, and a variety of direct and indirect reprojection methods.
The most powerful methods need to know the exact location of all discon-
tinuities (or edges). Methods to locate edges in spectral data are developed
in references [5, 6, 7]. Computational efficiency in higher dimensions is also
an issue with some of the postprocessing methods. An overview of spectral
postprocessing methods may be found in reference [16].

Edge detection algorithms may have difficulty pinpointing the exact loca-
tion of discontinuities in several situations that include: the underlying func-
tion having jumps of various magnitudes, and discontinuities being present
in both the function and its derivative. Additional difficulty is added in two
dimensions when the edges are not aligned with the cartesian grid. The
cartesian grid problem is discussed further in [4]. When edges are unable
to be located precisely many of the postprocessing algorithms are rendered
useless or at least suffer a severe loss of accuracy. Methods that require
one or more function dependent parameters in each smooth region present
additional difficulties, especially in higher dimensions.

In this work we present a computationally efficient edge detection free al-
gorithm that requires only three global parameters. The method combines
spectral filtering, which theoretically recovers spectral accuracy at points
sufficiently away from discontinuities, with Digital Total Variation (DTV)
filtering. Computational evidence indicates that DTV filtering is superior
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to spectral filtering in neighborhoods of discontinuities. A built-in smooth-
ness indicator in the DTV algorithm determines which method is used at
each point. In reference [4] a hybrid method was developed that uses the
Gegenbauer reconstruction method in neighborhoods of discontinuities and
a spectral filter away from the discontinuities. The main purpose of the
hybrid Gegenbauer/spectral filter method was to reduce the high compu-
tational cost of the Gegenbauer method by using the less computationally
expensive spectral filter in regions away from edges. However, the hybrid
Gegenbauer/spectral filter method needs to know the exact location of edges
to be effective.

Theoretical results support the use of spectral filters for Fourier and
Chebyshev methods. Thus we focus on these two methods. There is es-
sentially no theory to support the use of spectral filters in general polyno-
mial expansions beyond Fourier and Chebyshev polynomials. However much
computational evidence exists supporting that spectral filters are effective
for other polynomial expansions as well. Recently some progress has been
made to quantify the effects of spectral filtering on Legendre expansions [9].
The hybrid spectral/DTV filtering algorithm is applicable to any orthogonal
polynomial expansion for which the use of spectral filtering is justifiable.

Next we summarize spectral and DTV filtering and then describe the
hybrid algorithm and present numerical examples.

2 Spectral Filters

Spectral filters [19] lessen the effects of the Gibbs phenomenon by working
in transform space as

FNf(x) =
∑

k

σ(k/N) ak φk(x). (2)

A spectral approximation can be postprocessed efficiently by a spectral filter
in O (N log N) floating point operations using the Fast Fourier Transform.
The convergence rate of the filtered approximation is determined solely by
the order, ρ > 1, of the filter and the regularity of the function away from the
point of discontinuity. If ρ is chosen increasing with N , the filtered expansion
recovers exponential accuracy away from a discontinuity. Assuming that
f(x) has a discontinuity at x0 and setting d(x) = x − x0, the estimate

|f(x) −FN (x)| ≤
K

d(x)ρ−1Nρ−1
(3)
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holds where K is a constant. If ρ is sufficiently large, and d(x) is not too
small, the error goes to zero faster than any finite power of N , i.e. spectral
accuracy is recovered. When x is close to a discontinuity the error increases.
If d(x) = O(1/N) then the error estimate is O(1).

The spectral filter that we have used in the hybrid algorithm is the ρth

order Vandeven filter

σ(ω) = 1 −
(2ρ − 1)!

(p − 1)!

∫ |ω|

0
tρ−1(1 − t)ρ−1dt (4)

which is known to have some optimal properties among all spectral filters
[19]. However, other spectral filters could be used in the hybrid method as
well.

3 Digital Total Variation Filtering

The Total Variation (TV) de-noising model is a popular image processing
method to remove noise from a digital image. The model formulates a
minimization problem which leads to a nonlinear Euler-Lagrange PDE to be
solved by numerical PDE methods. In [3, 13] the authors develop a discrete
version of the TV model on a graph and refer to it as Digital Total Variation
(DTV) filtering. Viewing an oscillatory function as an image with noise, the
DTV method was used to postprocess spectral approximations in [14] and
Radial Basis Function approximations in [15]. The method works with point
values in physical space and not with the spectral expansion coefficients as
the spectral filter does. The DTV method does not need to know the location
of edges. The point values may be located at scattered, non-structured
sites, in complex geometries. While the method does mitigate the effects
of the Gibbs phenomenon it does not make any claims of restoring spectral
accuracy.

General points in the computational domain are denoted by α, β, · · · .
The notation α ∼ β indicates that α and β are neighbors. All the neighbors
of a point α are denoted by

Nα = {β ∈ Ω |β ∼ α}. (5)

In one dimension, Nα consists simply of the points to the left and right of
the point being postprocessed. In two space dimensions there is more than
one way [16] to define Nα. In this work we use an eight point neighborhood
(figure 1),

N8
α = {αi,j+1, αi+1,j+1, αi+1,j , αi+1,j−1, αi,j−1, αi−1,j−1, αi−1,j , αi−1,j+1}.
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The graph variational problem is to minimize the fitted TV energy

ETV
λ (u) =

∑

α∈Ω

|∇αu|a +
λ

2

∑

α∈Ω

(uα − u0
α)2 (6)

where u0 is the spectral approximation containing the Gibbs oscillations and
λ the user specified fitting parameter. The unique solution to this problem
is the solution of the nonlinear restoration equation

∑

β∼α

(uα − uβ)

(

1

|∇αu|a
+

1

|∇βu|a

)

+ λ(uα − u0
α) = 0 (7)

where the regularized location variation or strength function at any point α
is defined as

|∇αu|a =





∑

β∈Nα

(uβ − uα)2 + a2





1/2

. (8)

The regularization parameter a is a small (we have used a = 0.0001 in the
numerical examples) value used to prevent a zero local variation and division
by zero.

To solve the nonlinear system, time marching with the explicit Euler
method is used to advance a preconditioned form of the (7)

duα

dt
=

∑

β∼α

(uα − uβ)

(

1 +
|∇αu|a
|∇βu|a

)

+ λ |∇αu|a (uα − u0
α) (9)

to a steady state. Typically less 100 time steps are required. An effective
stopping criteria for the time marching is for the relative L1 residual between
two consecutive time steps to be less than some tolerance, i.e.,

∥

∥u[k+1] − u[k]
∥

∥

L1

∥

∥u[k]
∥

∥

L1

≤ tol. (10)

Equation (9) is essentially a local finite difference approximation with each
time iteration taking O (N) floating point operations. Thus, the DTV fil-
tering algorithm is computationally efficient as long as not too many time
marching steps are taken.

An optimal value of the fitting parameter is not known. However, a large
range of values for the fitting parameter results in a “good” postprocessing.
In general, stronger oscillations are best handled with a small fitting pa-
rameter (< 10) while weaker oscillations require a larger value of the fitting
parameter. More details on selecting the value of the fitting parameter can
be found in reference [14].

5



(i,j)

(i,j+1)

(i,j−1)

(i−1,j) (i+1,j)

(i−1,j+1) (i+1,j+1)

(i−1,j−1) (i+1,j−1)

Figure 1: 2d DTV neighborhood N8
α

4 Hybrid DTV-Spectral Filter

In the hybrid DTV-Spectral filter method, the initial evaluation of the
strength function (8) from the DTV method is normalized

S =
|∇αu|a

max |∇αu|a
(11)

and used to determine which method is applied. If S[f(x)] < Smax the spec-
tral filter is applied at x. Otherwise the DTV postprocessed approximation
is used. This allows the DTV filter to be applied in the neighborhood of
discontinuities where the spectral filter is not as effective. Around discon-
tinuities a strong spectral (small ρ) filter rounds off sharp corners while a
weaker filter does not remove the Gibbs oscillations. The spectral filter is
applied away from discontinuities where it can restore spectral accuracy.
Three global parameters must be specified in the hybrid method: the spec-
tral filter order ρ, the DTV fitting parameter λ, and Smax. The parameters
ρ and λ should be specified just as they are in the non-hybrid application of
the filters while computational evidence indicates that setting Smax in the
range 0.005 ≤ Smax ≤ 0.035 leads to good results. Due to the global nature
of the DTV method the entire solution must be DTV postprocessed. Then,
based on the DTV strength function, the spectral filter only needs to be
computed at the points where the DTV filtered solution is not used.

5 Numerical Examples

All example functions and PDE solutions are benchmark examples from the
Matlab Postprocessing Toolbox [16]. The first example is a one-dimensional
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Figure 2: Left: Fourier approximation. Middle: spectral filter postpro-
cessed, ρ = 10. Right: DTV filtered postprocessed, 200 time steps with
λ = 15.

slice of the modified Shepp-Logan brain phantom from the Matlab Image
Processing Toolbox. In the left image of figure 2 the oscillatory N = 250
Fourier approximation is evaluated at M = 398 evenly spaced points. The
example has jumps of various magnitudes as well as jumps that are close
together. Both situations make it difficult for edge detection algorithms to
accurately locate all the edges.

The spectral filtered and DTV filtered approximations are shown in fig-
ure 2 and the errors in figure 4. The results are typical of both methods.
The weak spectral filter greatly improves accuracy away from the edges but
leaves oscillations around the discontinuities. A stronger filter would have
rounded off the sharp corners at the discontinuities. The DTV filter does
better around the jumps but does not recover as much accuracy away from
the edges as the spectral filter does. In the hybrid method, the normalized
DTV strength function (right image of figure 3) is used to determine where
each filter is applied. At points where S[f(x)] < Smax = 0.005 the spectral
filter is applied. Otherwise the DTV postprocessed approximation is used.
The postprocessing took 0.09 seconds using the algorithm implemented in
Matlab running on a desktop computer that is representative of current
computer technology.

It is inevitable that the hybrid postprocessed solution has small dis-
continuities at transition points between postprocessing methods. Blending
schemes could be implemented to ease the transitional discontinuities. One
approach would be to simply average the spectral filtered and DTV postpro-
cessed solutions at points around transitions where the normalized strength
function S is such that S1 ≤ S ≤ S2 where S1 ≤ Smax ≤ S2. The param-
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Figure 3: Left: Hybrid spectral/DTV filter with Smax = 0.005. The darker
segments of the graph indicate where spectral filtering has been applied.
Right: normalized DTV strength function (11)

eters S1 and S2 would be user specified and problem dependent. However,
the requirement of additional user defined parameters seems to take away
from the main strength of the hybrid method. Unless the small transitional
jumps are unacceptable in applications, it seems best to accept the small
transitional jumps in order to maintain the simplicity and ease of application
of the hybrid method.

The next two examples involve the Chebyshev Pseudospectral method
for PDEs. The physical space grid point locations are the non-uniformly
spaced points [11]

xj =
arcsin[−γ cos(πj/N)]

arcsin(γ)
, j = 0, 1, . . . N, 0 < γ < 1. (12)

The first example is the Chebyshev pseudospectral approximation of the
linear advection equation

∂u

∂t
+

∂u

∂x
= 0

on a grid determined by N = 256 and γ = 0.99 in (12). A piecewise
constant initial condition is advanced to time T = 2 with inflow-outflow
boundary conditions applied and with a fourth-order Runge-Kutta method
using ∆t = 0.002 (left image of figure 5). The hybrid DTV/spectral filtered
approximation is shown in the left image (and postprocessed error in the
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Figure 4: Left: hybrid error. Middle: spectral filter error. Right: DTV
error.

right image) of figure 6 with the graph of the postprocessed solution being
thicker where the spectral filter has been applied. The spectral filter is of
order ρ = 10. The DTV filter with λ = 20 was applied at points where
S[u(x)] < Smax = 0.01.

The second Chebyshev example uses a Chebyshev Super Spectral Vis-
cosity method on a grid determined by N = 512 and γ = 0.999 on the
interval [−1, 1] to approximate the density variable of Sod’s problem [17]
for the Euler equations of gas dynamics. The addition of a very weak spec-
tral viscosity is necessary to stabilize the Chebyshev pseudospectral method
when it is applied to nonlinear hyperbolic conservation laws. The particular
super spectral viscosity operator [12] used to stabilize the method is

(

CN1−2s
)

(−1)s+1

[

√

1 − x2
∂

∂x

]2s

INu

with C = 1 and s = 5. The solution (right image of figure 5) is advanced to
to time T = 2 using ∆t = 0.002 with a fourth-order Runge-Kutta method.
The spectral viscosity method can be interpreted as the application of a
very weak spectral filter. In this case, a second application of a spectral
filter is unable to improve on the DTV filter in any region of the domain
and the hybrid method has no advantage over the DTV method. The DTV
postprocessed solution, using 200 time steps and λ = 100, and error are
shown in figure 7. The postprocessing took 0.06 seconds of computer time.

The performance of the DTV method near the contact discontinuity
at x = 0 is rather unimpressive. However in this example, as well as in
other numerical experiments, DTV filtering does produce a more accurate
postprocessed solution than does spectral filtering near discontinuities in the
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Figure 5: Left: Chebyshev pseudospectral approximation of the linear ad-
vection equation, N = 256. Right: Chebyshev Super Spectral Viscosity
approximation of the density variable from Sod’s problem for the Euler
equations of gas dynamics, N = 512.

derivative.
To illustrate the effects of the fitting parameter λ, and that a large range

of fitting parameters produce good results, we perform the postprocessing
again with λ = 10 (upper images of figure 8) and λ = 300 (lower images
of figure 8) rather than λ = 100. Using λ = 300 results in some small
oscillations remaining in the immediate location of discontinuities in the
postprocessed solution. With λ = 10 some smearing of sharp edges is no-
ticeable in the postprocessed solution. Even at these two largely differing
values of the fitting parameter the two postprocessed solutions are remark-
ably similar except for right at the discontinuities. Additionally, a large
range of fitting parameter around λ = 100, for example 20 ≤ λ ≤ 180, will
result in a postprocessed solution that is visibly free of both oscillatory and
smearing effects around discontinuities.

The first 2d example is the periodic piecewise defined function

f(x, y) = a(x, y) − b(x, y) (13)

where

a(x, y) =

{

sin[π(x + y)] |x| + | y| ≤ 0.5
0 otherwise

(14)
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Figure 6: Left: Hybrid spectral-DTV postprocessed Chebyshev pseudospec-
tral approximation. Right: Hybrid postprocessing error (lower) vs. Cheby-
shev pseudospectral error.

and

b(x, y) =

{

sin[π(x + y)] |x| + | y| > 0.75
0 otherwise.

(15)

A contour plot of function (13) is shown in the upper left image of figure
9 and its Fourier approximation in the upper right image of the figure. The
function features discontinuities that are not orthogonal to the cartesian grid
and edge detection algorithms may have difficulty pinpointing the exact lo-
cation of the edges. The function has many subintervals of smoothness of
various sizes. Postprocessing methods, such as the Gegenbauer reprojection
method, that require two function dependent parameters in each subinterval
would be difficult to accurately apply to this example. The hybrid postpro-
cessed approximation is shown in the lower left image of figure 9. The DTV
normalized strength function which indicates which method of the hybrid
method is applied is in the lower right image of the figure 9.

The final example is the full two-dimensional modified Shepp-Logan
brain phantom, that we considered a one-dimensional slice of in a previ-
ous example. The results of applying the hybrid algorithm to the phantom
are summarized in figure 10. A close-up of a small circle and a small circle
intersecting a larger circle is in figure 11. The blown-up region would be
challenging for edge detection algorithms. Postprocessing at the 250,000
points of the image took less than 10 seconds.

11



−1 −0.5 0 0.5 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

−1 −0.5 0 0.5 1
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Figure 7: Left: DTV postprocessed Chebyshev super spectral viscosity ap-
proximation. Right: DTV postprocessing error (lower) vs. Chebyshev pseu-
dospectral error.

The DTV filter sharply resolves discontinuities while the spectral filter
recovers spectral accuracy at points sufficiently away from the discontinu-
ities. The hybrid DTV/Spectral filter results can be compared to other
attempts to postprocess the brain phantom. A hybrid Gegenbauer repro-
jection/spectral filter method, which requires that the exact locations of all
discontinuities be pinpointed, was applied in [4]. The Fourier representation
of the brain phantom was postprocessed in [10] using the Inverse Polyno-
mial Reprojection method that needs the locations of the edges to be known
precisely. However, the authors state that “The edge locations are assumed
as known quantities in this work so that the edge effect is minimized”. The
results in [10] illustrate how powerful many of the methods are that require
the exact location of discontinuities. However, locating the exact location of
all edges in a complicated two-dimensional function is non-trivial. Since the
hybrid DTV/spectral filter does not require that edge locations be known,
the method is very attractive for this type of problem.

6 Summary

The hybrid DTV/spectral filter combines the best of two computationally
efficient edge detection free postprocessing methods for spectral approxima-
tions. One method works in transform space with the spectral coefficients
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while the other method work in physical space with point values. The hybrid
algorithm uses the DTV strength function to determine whether the spectral
or DTV filters are used as the postprocessing method. The hybrid algorithm
is more accurate away from discontinuities, than is DTV filtering alone, and
is more accurate than spectral filtering alone in the neighborhoods of dis-
continuities. Spectral viscosity methods, in which a weak spectral filter has
been applied to stabilize the pseudospectral methods are an exception. Fur-
ther spectral filtering is usually unable to recover more accuracy than the
DTV filter alone.

In one dimension, the hybrid algorithm is well suited for use in situa-
tions where edge detection methods have difficulty. This is the case when
the underlying function has jumps of various magnitudes or has jumps in
both the function and its derivative. Additional difficulties may be encoun-
tered in two dimensions if discontinuities are not orthogonal to the cartesian
grid. Our numerical examples indicated that the hybrid methods performs
well in this case also. Many postprocessing methods that use edge detection
also require that function dependent parameters must be specified in each
smooth subregion. In practice, it proves virtually impossible to get an ac-
curate postprocessing of a complicated function when so many parameters
must be chosen. The hybrid spectral-DTV filter needs only three global
parameters. Since the spectral filter is only activated away from discontinu-
ities, a large range of filter orders ρ give good results. The choice of ρ should
be coordinated with Smax, as for fixed N , a stronger spectral filter will have
a more noticeable effect around a discontinuity that a weaker filter. A large
range of values for the fitting parameter λ produces good results. The lack
of critical dependence on only a small number of global parameters makes
the hybrid spectral-DTV filter a near black box algorithm for mitigating the
effects of the Gibbs Phenomenon in spectral approximations.
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Figure 8: Upper: λ = 10. Lower: λ = 300. Left: DTV postprocessed
Chebyshev super spectral viscosity approximation vs. exact. Right: DTV
postprocessing error (lower curve) vs. Chebyshev pseudospectral error.
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uniform grid. Lower left: Hybrid postprocessed, ρ = 8, λ = 8, and Smax =
0.03. Lower right: DTV filter application area (red), spectral filter (blue).
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Figure 10: Upper left: 500 × 500 contour plot of the modified Shepp-Logan
brain phantom. Upper right: 384×384 Fourier approximation evaluated on
a 500 × 500 uniform grid. Lower left: Hybrid postprocessed, ρ = 2, λ = 12,
and Smax = 0.035. Lower right: DTV filter application area (black), spectral
filter (white).
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Figure 11: Close up surface plot of a region of detail centered around the
point (0,0.1) of the hybrid postprocessed approximation from the lower left
image of figure 10
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