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preliminary study of the supra-convergence of finite volume
schemes for conservation laws with geometrical source terms

– upwind interfacial discretizations for nonuniform time/space grids
– inconsistent characteristics of the (local) truncation error
– notion of (global) consistency, related to the well-balance property
– convergence theory at optimal rates according to Wendroff &White

– computational performance as adaptive meshing yields an extra
stabilization against the nonlinear response over shock regions
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formal analysis for scalar (linear) advection/transport balance equations

∂tu + ∂xA(u) + b(u) z ′(x) = 0 , t ∈ R+, x ∈ R
u(0, x) = u0(x) ∈ Lp(R)∩L∞(R), 1≤p<+∞

where a(u)=A′(u) = a > 0 , z ′∈Lp(R)∩L∞(R) and b∈C 1(R)

and the stationary solutions are described by

D(u(x)) + z(x) = C st , D ′(u) =
a(u)

b(u)
∈ L∞(R)

(with D strictly monotonic for the existence of a unique Lipschitz
continuous steady state)

difficulties and limits : restriction to geometrical source terms for the extended
notation as (non conservative) fluxes; physical applications with negligible
fluxes (groundwater models, nonlinear age-dependent population dynamics,
stochastic processes with multiplicative noise); improvements by mesh
adaptivity may reduce because modified schemes loose critical features
(conservation form, well-balancing, ...)
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numerical issues : accurate computation of non-constant steady states,
occurring for the balance between source term and internal forces;
unstructured grids required for multi-dimensional problems incorporating
composite physical geometries

• B.D. Rogers, A.G.L. Borthwick, P.H. Taylor, Mathematical balancing of flux gradient and
source terms prior to using Roe’s approximate Riemann solver, J. Comput. Phys. (2003)
• M.J. Castro, P. Garcia-Navarro, The application of a conservative grid adaptation technique
to 1D shallow water equations, Math. Comput. Modelling (2001)
• S. Karni, A. Kurganov, G. Petrova, A smoothness indicator for adaptive algorithms for
hyperbolic systems, J. Comput. Phys. (2002)

analytical studies : recent theoretical advances on adaptive techniques
for mesh refinement; consistency properties of finite volume schemes
setting on nonuniform grids with respect to (strong) convergence

• G. Puppo, M. Semplice, Numerical entropy and adaptivity for finite volume schemes,
Commun. Comput. Phys. (2011)

• C. Arvanitis, A.I. Delis, Behavior of finite volume schemes for hyperbolic conservation laws
on adaptive redistributed spatial grids, J. Sci. Comput. (2006)
• C. Arvanitis, Ch. Makridakis, N.I. Sfakianakis, Entropy conservative schemes and adaptive
mesh selection for hyperbolic conservation laws, J. Hyperbolic Differ. Equ. (2010)

©2021 Chiara Simeoni. All rights reserved.



numerical simulations for smooth data with periodic boundary conditions

experimental errors at time T =1.5 , with a=0.5 , b=1.0 and CFL=0.9

the nonuniform meshes for the computation are arbitrarily generated
(not compatible with some Lp-type regularity condition)

cells ||e(t)||L1 ||e(t)||L2 ||e(t)||L∞
rates rates rates

30 0.313172E-01 0.365947E-01 0.596413E-01

60 0.147558E-01 1.105 0.174315E-01 1.109 0.251566E-01 1.173

120 0.724135E-02 1.071 0.777632E-02 1.073 0.138610E-01 1.132

240 0.350149E-02 1.055 0.374801E-02 1.056 0.556219E-02 1.111

480 0.181983E-02 1.043 0.198378E-02 1.042 0.264091E-02 1.108

960 0.732448E-03 1.023 0.781343E-03 1.029 0.824566E-03 1.089

Table: standard (first order) scheme on highly nonuniform grids

– nonuniform mesh with strong inhomogeneity of the cells’ size :

h>0 , γ>>1 , ∆xi =

{
h i =2 k
γ h i =2 k+1

, k ∈ Z
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accuracy test for the Saint-Venant equations of shallow waters
through the kinetic scheme with reflections
• B. Perthame, C. Simeoni, A kinetic scheme for the Saint-Venant system with a
source term, Calcolo (2001)

Figure: continuous solutions with discontinuity in the derivatives

cells ||e(t)||L1 ||e(t)||L2 ||e(t)||L∞
rates rates rates

50 0.2251 0.0768 0.0460
100 0.1870 0.2673 0.0637 0.2682 0.0466 -0.0198
200 0.0927 1.0126 0.0309 1.0456 0.0224 1.0590
400 0.0492 0.9134 0.0163 0.9218 0.0113 0.9849
800 0.0259 0.9254 0.00874 0.8976 0.00570 0.9863

1600 0.0157 0.7197 0.00627 0.4802 0.00388 0.558

Table: experimental errors at time T =1.0 for parabolic source term
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finite volume schemes because of the conservation property, possible
discrete versions of the entropy inequalities, and implementation with
low regularity external fields (integral formulation)

non-degeneracy constraint for nonuniform grids :

∃ α , β > 0 / α∆xi+1 ≤ ∆xi ≤ β∆xi+1 , ∀i ∈Z

variable time-step ∆tn = tn+1 − tn , n∈N
cell-centered discrete unknowns

vn
i ≈ 1

∆xi

∫
Ci
u(tn, x)dx = u(tn, xi ) +O(h2)

characteristic parameters h = maxi∈Z ∆xi and ∆t = supn∈N ∆tn
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the simplest explicit (three points) interfacial upwind (and eventually
well-balanced) scheme reads

vn+1
i − vn

i

∆tn
+ a

vn
i − vn

i−1

∆xi
+ b(vn

i )
zi − zi−1

∆xi
= 0

together with initial data and boundary conditions

– the standard CFL-condition on the (local) ratio ∆tn/∆xi guarantees
the numerical stability (adjusted to include the numerical source term)
• S. Osher, R. Sanders, Numerical approximations to nonlinear conservation laws with locally
varying time and space grids, Math. Comp. (1983)

– extension to multi-dimensional finite volumes through the splitting
of one-dimensional schemes (with application to linear systems)

• M. Ben-Artzi, J. Falcovitz, An upwind second-order scheme for compressible duct flows,
SIAM J. Sci. Statist. Comput. (1986)
• P.L. Roe, Upwind differencing schemes for hyperbolic conservation laws with source terms,
Lecture Notes in Math. (1987)
• A. Bermudez, M.E. Vazquez, Upwind methods for hyperbolic conservation laws with source
terms, Computers & Fluids (1994)
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for the cell-averages gi = 1
∆xi

∫
Ci
g(x)dx of any function g ∈W 2,p,

1≤p<+∞ , thanks to the symmetry of cell-centered integrals

gi = g(xi ) +
1

∆xi

∫
Ci

g ′′(ξ(x))
(x − xi )

2

2
dx

= g(xi− 1
2
) + g ′(xi− 1

2
)

∆xi
2

+O(h, ‖g ′′‖Lp )

gi − gi−1 = g ′(xi )
(∆xi−1

2
+

∆xi
2

)
+

1

∆xi

∫
Ci

g ′′(η(x)) Θ(x) dx

with Θ(x)=(ξ(x)− xi )
(
(x − xi− 3

2
)−∆xi−1

∆xi
(x − xi− 1

2
)
)

for some ξ(x), η(x)∈Ci∪Ci−1

providing the correct approximation on nonuniform meshes

– formal estimations about the consistency error
– additional condition b(u)>0 for the stationary equations
– smooth solutions for which expansions can be performed
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the (local) truncation error is evaluated by returning the analytical
solution into the discrete formulation, with uni = u(tn, xi )

T n
i = ∂tu

n
i +

∆xi−1 + ∆xi
2 ∆xi

[
a ∂xu

n
i + b(uni )z ′(xi )

]
+O(∆t, h)

revealing a lack of consistency with the underlying balance equation

the space-step ∆xi could be very different from the length of
an interfacial interval |xi − xi−1|= ∆xi−1

2 + ∆xi
2 , and the pointwise

consistency error does not vanish : unless the spatial mesh is
quasi-uniform, namely ∆xi−1 = ∆xi +O(h2), it seems that
convergence by the Lax theorem cannot be expected, or at least
a significant reduction in the rates occurs...

• J.D. Hoffman, Relationship between the truncation errors of centered finite-difference
approximations on uniform and nonuniform meshes, J. Comput. Phys. (1982)
• E. Turkel, Accuracy of schemes with nonuniform meshes for compressible fluid flows,
Appl. Numer. Math. (1986)
• J. Pike, Grid adaptive algorithms for the solution of the Euler equations on irregular
grids, J. Comput. Phys. (1987)
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formal accuracy of finite volume schemes is actually maintained on
nonuniform meshes, because of the supra-convergence phenomenon

– investigated first for homogeneous hyperbolic conservation laws
• A.N. Tikhonov, A.A. Samarsky, On the theory of homogeneous difference schemes,
Outlines Joint Sympos. Partial Differential Equations (Novosibirsk, 1963)
• H.-O. Kreiss, T.A. Manteuffel, B. Swartz, B. Wendroff, A.B. White Jr., Supra-convergent
schemes on irregular grids, Math. Comp. (1986)
• B. Wendroff, A.B. White Jr., A supraconvergent scheme for nonlinear hyperbolic systems,
Comput. Math. Appl. (1989)

??? (fully discrete) convergence at optimal rates for smooth solutions
of upwind schemes for linear equations on two-dimensional triangulations
• B. Després, Lax theorem and finite volume schemes, Math. Comp. (2004)
• B. Després, An explicit a priori estimate for a finite volume approximation of linear
advection on non-Cartesian grids, SIAM J. Numer. Anal. (2004)

??? comprehensive interpretation of a priori error estimates, based on
the Kuznetsov’s theory, for (scalar) nonlinear problems with low regularity
• B. Cockburn, P.-A. Gremaud, A priori error estimates for numerical methods for scalar
conservation laws. II. Flux-splitting monotone schemes on irregular Cartesian grids,
Math. Comp. (1997)
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the discrete unknowns (and external fields) are replaced by

vn
i ≈

1

∆xi

∫
Ci

[
u(tn, x) +

∆xi
2
∂xu(tn, x)

]
dx , n ∈ N , i ∈ Z

with a first order correction to compensate the truncation error, since it
represents precisely the discrepancy between cell-centered and interfacial
averages, which do not coincide for nonuniform grids
• D. Bouche, J.-M. Ghidaglia, F. Pascal, Error estimate and the geometric corrector for the upwind
finite volume method applied to the linear advection equation, SIAM J. Numer. Anal. (2005)

the modified equation of the scheme for the new reconstruction reads

Rn
i = ∂tu

n
i + a ∂xu

n
i + b(uni )z ′(xi ) +

+
∆xi−1

2

[
a ∂xxu

n
i + b(uni )z ′′(xi )

]∆xi−1 + ∆xi
2 ∆xi

+

+
∆xi

2

[
∂txu

n
i + b′(uni )z ′(xi )∂xu

n
i

]
+O(∆t, h)

for uni = u(tn, xi ), with extra terms involving (admissible) higher
regularity of the solution, and bounded through the mesh’s condition
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first order approximation justifies to use

E n
i =vn

i −u(tn, xi )−
∆xi

2
∂xu(tn, xi ) , Sn

i =zi−z(xi )−
∆xi

2
z ′(xi )

as reference quantities for error analysis : fixing b(u)=b>0 to avoid
inessential technicality, the typical stability equation of the scheme

E n+1
i = E n

i − a
∆tn
∆xi

(
E n
i − E n

i−1

)
− b

∆tn
∆xi

(
Sn
i − Sn

i−1

)
−∆tn R

n
i

provides convergence with optimal rates for (regular) nonuniform grids

– diffusive and dispersive characteristics of the numerical method

– the truncation error always vanishes for the simulation of steady
states, for the well-balance property (besides an overall stability)

– conservative schemes perform substantially better on unstructured
meshes in comparison to those not preserving some special structures
even for uniform meshes
• O.V. Vasilyev, High order finite difference schemes on non-uniform meshes with good
conservation properties, J. Comput. Phys. (2000)
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for many applications to real systems, the advection may become negligible, so
that the external fields dominate over the fluxes...

cells ||e(t)||L1 ||e(t)||L2 ||e(t)||L∞
rates rates rates

30 0.208333E+01 0.143466E+01 0.151412E+01
60 0.229167E+01 -0.138 0.152438E+01 -0.088 0.275635E+01 -0.860

120 0.260417E+01 -0.161 0.151382E+01 -0.039 0.253439E+01 -0.370
240 0.255208E+01 -0.098 0.155620E+01 -0.039 0.144264E+01 0.023
480 0.252604E+01 -0.069 0.157700E+01 -0.034 0.202358E+01 -0.105
960 0.248698E+01 -0.051 0.159362E+01 -0.030 0.176882E+01 -0.045

Table: standard (first order) scheme on highly nonuniform grid for a = 0.005

cells ||e(t)||L1 ||e(t)||L2 ||e(t)||L∞
rates rates rates

30 0.308642E-01 0.156844E+00 0.254948E-01
60 0.169753E-01 0.862 0.887122E-01 0.818 0.164315E-01 1.108

120 0.925926E-02 0.868 0.424803E-01 0.939 0.787522E-02 1.093
240 0.462963E-02 0.912 0.216954E-01 0.953 0.384303E-02 1.075
480 0.231481E-02 0.934 0.127825E-01 0.905 0.189368E-02 1.062
960 0.115138E-02 0.949 0.739794E-02 0.882 0.698813E-02 1.055

Table: modified (first order) scheme on highly nonuniform grid for a = 0.005

• Th. Katsaounis, C. Simeoni,Three-points interfacial quadrature for geometrical source
terms on nonuniform grids, Calcolo (2011)
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steady states for sinusoidal source term : adaptive techniques
customarily generate quasi-uniform grids, and the well-balance
property significantly improve the numerical accuracy

Figure: cells sizes after mesh refinement (green) over uniform mesh

• C. Arvanitis, Mesh redistribution strategies and finite element schemes for hyperbolic
conservation laws, J. Sci. Comput. (2008)
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cells ||e(t)||L1 ||e(t)||L2 ||e(t)||L∞
rates rates rates

30 0.195000E-02 0.232276E-02 0.419508E-02

60 0.569572E-01 1.820 0.679157E-01 1.819 0.123060E-02 1.814

120 0.218606E-01 1.619 0.260709E-01 1.618 0.470566E-01 1.619

240 0.960606E-00 1.484 0.114540E-01 1.484 0.206341E-01 1.485

480 0.450752E-00 1.391 0.537440E-00 1.391 0.967720E-00 1.392

960 0.221537E-00 1.234 0.294508E-00 1.233 0.461213E-00 1.234

Table: experimental well-balance error = 0.224508E−02

– the well-balance error is predominant for finer grids, and higher rates
are observed at longer times for the smoothing effects of mesh refinement

– difficulties are undervalued in the simulation of stationary solutions, so
that testing the convergence rates may not be really effective...

– counter-examples for well-balanced schemes with centered fluxes on
strongly or adaptive nonuniform meshes (uniform block-structured grids)

– (theoretical) convergence does not mean accurate pointwise simulation
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the general (finite volume) Upwind Source at Interface scheme reads

∆xi
∆tn

(vn+1
i − vn

i ) + (An
i+ 1

2
− An

i− 1
2
) + Bn,+

i− 1
2

+ Bn,−
i+ 1

2

= 0

and the numerical source term does not take a conservative form,

Bn,±
i+ 1

2

= B±
(
∆xi ,∆xi+1, v

n
i , v

n
i+1, zi+1 − zi

)
the minimal (global) consistency requirement, for KB>0 constant,∣∣∣∣B−(h, k , u, u, λ) + B+(h, k , u, u, λ)

λ
− b(u)

∣∣∣∣ ≤ KB λ

is actually a structural property (not derived from the modified equation)
and thus it could fail the truncation error to vanish for nonuniform grids
• B. Perthame, C. Simeoni, Convergence of the upwind interface source method for hyperbolic
conservation laws, Hyperbolic problems: theory, numerics, applications, 61-78, Springer, Berlin,
2003 (invited paper)

well-balanced schemes are consistent (Godunov solvers, VFRoe schemes,

relaxation and central methods, kinetic schemes) for the supra-convergence
• F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and
well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser (2004)
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??? ??? ???

influence of the non-uniformity of grids on the convergence’s rates =
effect of grid irregularity on the accuracy of finite volume algorithms

– alternative technique for rigorous proofs, because entropy methods
following the Kružkov’s theory do not provide the rates of convergence
(and BV-bounds for strong convergence hold uniquely for uniform grids)
• M.G. Crandall, A. Majda, Monotone difference approximations for scalar conservation
laws, Math. Comp. (1980)
• R. Sanders, On convergence of monotone finite difference schemes with variable spatial
differencing, Math. Comp. (1983)

– thanks to an explicit formulation in terms of numerical derivatives,
mesh-dependent extensions of the Lax-Wendroff method (on staggered
grids) retrieve conservation form and standard (local) consistency
• M. Dumbser, A. Hidalgo, M. Castro, C. Parés, E.F. Toro, FORCE schemes on unstructured
meshes II : Non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Engrg. (2010)
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