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Abstract

A method to improve the signal-to-noise-ratio (SNR)of positron emission tomography (PET) scans
is presented. A wavelet-based image decomposition technique decomposes an image into two parts, one
which primarily contains the desired restored image and the other primarily the remaining unwanted
portion of the image. Because the method is based on a texture extraction model that identifies the
desired image in the space of bounded variation, these restorations are approximations of piecewise
constant images, and are referred to as the cartoon part of the image. Here an approximation using a
wavelet decomposition is used which allows solutions to be computed very efficiently. To process 3-D
volume data a slice by slice approach in all three directions is adopted. Using a redundant discrete
wavelet transform, 3-D restorations can be efficiently computed on standard desktop computers. The
method is illustrated for PET images which have been reconstructed from simulated data using the
expectation maximization algorithm. When post-processed by the presented wavelet decomposition they
show a significant increase in SNR. It is concluded that the new wavelet based method can be used
as an alternative to the well established de-noising of PET scans by smoothing with a Gaussian point
spread function. In particular, if the volume data are reconstructed using the EM algorithm with a larger
number of iterations than the number of iterations that would be used without post-processing, the 3-D
images are sharper and show more detail. A MATLAB R©based graphical user interface is provided that
allows easy exploration of the impact of parameter choices.

1 Introduction and background

Positron emission tomography (PET) is an image acquisition tool for non-invasively obtaining functional
images of an interior organ of interest from a patient [28]. A tiny amount of radioactive tracer is injected
into the patient’s body and emits gamma ray photons which are collected by multi-ring detector arrays [26].
The physical data, which are photon counts along lines between any two detectors, are contaminated with
Poisson noise and stored as a sinogram. The image showing the concentration of the radioactive tracer in
the brain is the output of an image reconstruction algorithm such as the expectation maximization (EM)
Algorithm, [32, 19, 38, 13]. The underlying process is ill conditioned and therefore yields very noisy and
blurred images [32]. Moreover, the noise in the reconstructed image no longer follows a Poisson distribution,
and the high noise level makes the quantitative interpretation .of the image difficult. This is especially
problematic if the image is to be used as input to a pattern classification algorithm, as might be the case
for disease detection. Possible applications include tumor detection, especially detection at an early stage
when the tumor is small [40], myocardial perfusion deficit [5] and hypometabolism of glucose in studies of
early diagnosis of Alzheimer’s disease [29, 21, 2, 34]. In such applications it is particularly important to have
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images that do not contain much noise and have sharp edges. Images with poor signal to noise ratios, or
which are blurred, can lead to mis-diagnosis.

Noise reduction, in particular for Poisson noise, has been addressed by a variety of methods [20, 23].
Traditionally, to reduce noise and artifacts, a de-noising method is applied to the EM reconstruction. The
most common method is to convolve the 3D PET reconstruction with a Gaussian point spread function
(PSF), which removes noise, but also introduces blur in the image, leading to a loss of fidelity for finding
small structures within the image. More recently, a 2-D wavelet thresholding approach which is based on
thresholding wavelet coefficients has been proposed, [18, 33], but presents only limited flexibility in removing
unwanted structures at different scales. Ideally, the de-noising technique should be able to preserve edges
in the images. In [31] the authors describe a de-noising method based on L1 minimization which is able to
preserve edges but is computationally very expensive. Although many advances have been made to decrease
the costs in recent years, see e.g. [16, 17, 36, 37, 39], the application to 3D volume data is still too expensive
and memory intensive because there is no explicit solution for the minimum L1 problem. Instead a numerical
optimization has to be performed.

Here a fast method, using a wavelet decomposition based on a model similar to that in [31] is presented.
It allows high flexibility in removing structures of different sizes and can be applied to 3D volume images
after reconstructing the image from the recorded data using the standard EM algorithm [32, 19]. For
examination of the proposed method we could compare with a number of existing approaches. For example,
we could contrast with noise level thresholding which also introduces the need to determine appropriate levels
of thresholds for all decomposition levels and directions. While such wavelet-thresholding is apparently
not yet a widely-adopted approach in the neuroimaging community, noise reduction using smoothing as
implemented in SPM is routinely used to increase the signal to noise ratios for neuroimaging data analyses.
We thus contrast with the smoothing using SPM, hence providing a useful means to validate the method
against a standard accepted by the neuroimaging community. We note also that as compared to wavelet
thresholding the proposed method reduces the number of free parameters to only three. The choices for these
parameters can easily be explored in an available graphical user interface (GUI) [35]. The GUI enables users
to easily load volume data in ANALYSE or NIFTI format and to explore the effect of different choices of
the parameters on the solution in real time. Moreover, under standard usage we anticipate that parameters
would be determined under standard conditions, for example these would include aspects of the given protocol
including imaging time, tracer concentration, and scanner resolution. Thus eliminating the need to estimate
appropriate parameter choices for each and every scan. Our major contribution is that we have extended
the method introduced in [12, 11] for potential practical impact in medical imaging. Originally this method
was introduced for application to 2D images and only tested on photographs. Here the method is applied
to to de-noise 3D PET data sets and is carefully contrasted with the standard medical approach which is to
apply smoothing using the SPM software package. To obtain reproducible results we apply both methods
to synthetic data. A careful and more comprehensive evaluation using real data is planned for the future.

The outline of the paper is as follows. Section 2 presents a brief history and introduction of a method
proposed for image processing in [31]. It should be noted that this method is not based on statistical
estimates but rather uses features of the expected signal, in particular sparseness properties of the gradient,
to remove unwanted portions of the image. The numerical implementation of the method and the processing
of 3D volume data is described in Sections 2.1 and 2.2, respectively. A detailed description of the medial
imaging restoration problem using simulated data is described in Section 3. It is concluded in Section 4 that
this novel approach to de-noising provides an easy way to improve the SNR of reconstructed PET images.

2 Image decomposition in Besov spaces using wavelets

Rudin et. al. [31] proposed a decomposition for 2D images f in the form u+ v using the assumption that u
is modeled in the space of BV functions (functions of bounded variation) and that the texture (noise) v is
in the L2 space. The space BV was proposed because functions with highly oscillatory contents including
noise have a large norm measured in BV . Restorations u using this model are piecewise constant and are
often referred to as the cartoon part.
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The decomposition is generated by minimizing the convex functional E(u) = ‖u‖BV + λ‖f − u‖L2 over
all u ∈ BV . Ideally, v should be found in a space dual to BV but because its dual space is not a function
space Meyer [25] proposed using the abstract space G, which is a Banach space of functions f such that
f = 4g with g ∈ L∞. This approach, however, is not practical and thus other ideas have been suggested
including use of the Sobolev space H−1 or more generally H−β , β ∈ R, [27, 24]. Most of these methods use a
convex optimization approach for minimizing the BV norm. These methods and numerical implementations
are very expensive, in part, because BV cannot be characterized by a countable basis. A modification of the
space BV to the slightly smaller (inhomogeneous) Besov space B1,1

1 , that can be characterized by wavelet
bases, was suggested in [12] for image reconstruction problems. Because a continuous function in B1,1

1 can
be characterized by discrete (wavelet) coefficients a faster algorithm results, of efficiency comparable to that
of the fast Fourier transform (FFT), (O(n2log(n2)) for a 2D image of n2 pixels. Thus, the near optimal
components u and v may be found by minimizing

E(u, v) = ‖f − (u+ v)‖2L2 + 2α‖u‖B1,1
1

+ γ‖v‖2H−1 , (1)

where a wavelet characterization for the Besov space B1,1
1 as well as for H−1 can be applied and α and γ

are two parameters that have to be chosen1.
To obtain a representation of (1) we introduce a wavelet decomposition of a function f . Let {ψλ}λ∈J be

a compactly supported wavelet system in 2D, which is generated from any suitably-supported Daubechies
wavelets, [10], or their bi-orthogonal correspondents [7] and λ = (i, k, j) be a multi index. Then the wavelet
decomposition of a function f is

f =
∑
λ∈J

〈f, ψ̃λ〉ψλ ≡
∑
λ∈J

fλ ψ̃λ,

where ψ̃λ forms a bi-orthogonal system and the inner product is chosen appropriately for the Hilbert space
that is considered. Its norm in Besov space Bβ,pp , p ≥ 1, β ∈ R, is equivalent to

‖f‖Bβ,pp ∼

(∑
λ∈J

2|λ|(β+1− 2
p )p |〈f, ψ̃λ〉|p

)1/p

, (2)

where |λ| is the level of the multi level decomposition. Because L2 = B0, 2
2 andH−1 = B−1, 22 , the functional in

(1) yields the discrete wavelet space representation with wavelet coefficients {fλ}, {uλ}, {vλ} corresponding
to their functions f , u and v, respectively,

S(u, v) =
∑
λ∈J

(
|fλ − (uλ + vλ)|2 + 2α |uλ|+ 2−2|λ| γ |vλ|2

)
. (3)

As shown in [11], S(u, v) is minimized by the closed form minimizer

ṽγ,α =
∑
λ∈Jj0

(1 + γ2−2|λ|)−1[fλ − Sα(22|λ|+γ)/γ(fλ)]ψλ and (4)

ũγ,α =
∑
λ∈Ij0

〈f, φj0,k〉φj0,k +
∑
λ∈Jj0

Sα(22|λ|+γ)/γ(fλ)ψλ, (5)

where the soft shrinkage operator S is given by

Sa(b) =
b

|b|
max(|b| − a, 0), (6)

and Jj0 is the set of all λ with |λ| < j0, Ij0 is the the set of all λ with |λ| = j0 and j0 is a fixed level, e.g. see
[14]. We use j0 = 0 for all numerical computations. Therefore we obtain an approximation of the minimum
of (1) by computing the inverse wavelet transform of (4)-(5). For greater flexibility we replace H−1 by a
class of Sobolev spaces Hβ with β < 0, [30] and [24].

1Further details on the derivation and usage of the space B1,1
1 are given in [6, 8, 25]
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2.1 Numerical implementation

We denote the vector representations of the continuous variables f , u and v by f , u and v, respectively. It
was demonstrated in [12] that solutions obtained by replacing the continuous wavelet transform in (4)-(5) by
the standard decimated discrete Fourier transform (DWT) show the strong presence of artifacts. Moreover,
when using the DWT the solution is not translation invariant, which means that a translation of f does
not result in a translation of u and v. To overcome these problems, cycle spinning of the wavelet basis was
proposed in [12, 11]. Here we propose to use the redundant DWT (RDWT) [3] which omits the step of
downsampling and performs instead an upsampling step of the low and high pass filters at each step of the
wavelet transform. This procedure is equivalent to keeping two sets of coefficients at each decomposition
level, corresponding to keeping either odd or even samples when downsampling the signal. At each level of
the reconstruction phase reconstructions obtained by using coefficients from either odd or even downsampling
are averaged. The RDWT is translation invariant, i.e., the wavelet transform commutes with the translation
operation, see [9, 22, 15], and is called redundant because it computes more coefficients than the original
signal. Hence, the orthogonal discrete wavelet basis in (4)-(5) is replaced by an over-complete wavelet frame.
It can be shown, using the RDWT, that there is a weaker norm equivalence than described in (2). Let fλ
be the image f transformed by the RDWT. Then

A ‖f‖2 ≤ ‖fλ‖2 ≤ B ‖f‖2.

It is shown in [15], that A = 2 and B = 2|λ| for a |λ| scale RDWT operator. The RDWT is also known by a
plethora of other names, as listed in [15], including stationary wavelet transform, Algorithme à trous, Quasi-
continuous wavelet transform, Translation invariant wavelet transform, Shift invariant wavelet transform,
Maximal overlap wavelet transform (MODWT) and Undecimated wavelet transform.

2.2 Extension to 3D

The volume data sets used in this study are inherently 3D. If the volumetric data sets were to be processed
simply slice by slice, it is likely that a cross section in the two directions perpendicular to the processing
direction might show unwanted artifacts. Unfortunately, there is no direct extension of the 2D method
described in Section 2. Consequently, a slice by slice approach, along each coordinate axis, for the processing
of the 3D images is adopted. Algorithm 1 describes a slice by slice approach in x-, y- and z-directions. The
three results from each direction are combined by computing their mean value at each voxel.

Algorithm 1 u + v decomposition of volume data

1. Given Volume data f ∈ Rnx×ny×ny .

2. For i = 1 to nx:

3. Process slice by slice in x-direction:

4. fλ ← RDWT(f(i, :, :)).

5. compute uλ and vλ by (4)-(5), where 2−2|λ| is replaced by 2β|λ|

and 22|λ| is replaced by 2−β|λ|

6. ux(i, :, :) ← iRDWT(uλ).

7. vx(i, :, :) ← iRDWT(vλ).

8. endFor.

9. Process in y-direction as in x-direction.

10. Process in z-direction as in x-direction.

11. u← 1
3 (ux + uy + uz).

12. v← 1
3 (vx + vy + vz).

13. Return u ∈ Rnx×ny×nz and v ∈ Rnx×ny×nz .
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(a) No noise (b) High noise

Figure 1: Sinogram generated from phantom data using (7). Two cases are illustrated (a) the sinogram
without noise and (b) the sinogram with high noise contamination (σ = 5 · 10−7).

3 Application in brain PET imaging

Piecewise constant restorations are desirable in the context of the PET scans, because it is expected that
voxel values are similar in similarly activated regions of the brain. We thus evaluate the effectiveness of
the new method by applying it to simulated PET data which are generated from the Zubal phantom data.
The data is a brain model and can be found in [41]. Each simulated PET slice is generated by computing
the sinogram s, adding Poisson noise and reconstructing using the EM algorithm with a fixed number of
iterations N . The noise-contaminated sinogram is given by

si = σP(
1

σ
(Aftrue)i), (7)

where A is a R49152×16384 transition matrix and P(·) is the realization of a Poisson process. Each point in
the image domain is projected to a point corresponding to a detector pair of the scanner. As a realization
of a Poisson process the noise in the recorded data si is dependent on the intensity of the signal at each
location. To model different noise levels we vary the intensity of the phantom by varying σ from 10−7 to
10−4. Figure 1 illustrates the recorded data si. In panel (a) the sinogram without noise is shown, i.e., Aftrue,
and in panel (b) the noise contaminated sinogram using σ = 5 · 10−7 in (7). For examining the algorithm
we denote the 3D-image reconstructed using the EM algorithm at iteration N as fNσ , and the noise free N th

iteration of the EM algorithm is denoted by fN∞.
To estimate the parameters for PET data the provided GUI is used. The data is read by pressing the

“load SPM volume” and displayed as 2D slices. The parameter values described in the previous paragraph
can be used to generate a 2D preview of u and v by pressing the “2D preview” button. The parameters are
then adjusted until the restoration has the desired noise and level of detail. After appropriate parameters
are found the “3D preview” button is pressed to generate the 3D restoration by applying Algorithm 1 to
the 3D data volume. The results are saved in ANALYSE format by pressing “save SPM volume”.

3.1 Evaluating the quality of the reconstruction

The SNR is typically used as a measure of the quality of a given restored signal in relation to a specific
reference signal. For a given restored signal f and reference signal f̂ related by f̂ = f + n, where n is
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the noise, the SNR measures the ratio between signal energy and noise energy by SNR(f̂) = 10 log10
f̂T f̂
nTn

.
Thresholding operations as in (6), however, not only decrease the noise energy but also change the signal
energy because the absolute values of the wavelet coefficients are reduced. This may therefore lead to an
inaccurate estimate of the SNR. Instead, to achieve a realistic estimate of the SNR the restored signal should
be scaled and shifted with respect to the reference image. In this way the noise is given by n = ν f̂ + τ − f ,
where variables ν and τ are the scaling and shifting variables needed to eliminate the effects of scaling and
shifting f . Chosing their values so as to maximize the SNR yields the modified SNR computed by

SNRf̂ (f) = 10 log10

fT f

(ν∗f̂ + τ∗ − f)T (ν∗f̂ + τ∗ − f)
, (8)

where ν∗ and τ∗ are the maximizers of (8) and are explicitly given by

τ∗ =
1T f − (f̂T f)(1T f̂)

1−N
, ν∗ =

fT f̂ − 1T f̂τ∗

f̂T f̂
. (9)

The vectors f and f̂ are assumed to be column vectors in Rnx·ny·nz . Note that if an unscaled f̂ , i.e. ν = 1
and τ = 0, is used in (8), the true SNR is under estimated.

Higher SNR values indicate a closer fit of the image f to the reference image f̂ . Figure 2 (a) shows 3
slices of the brain phantom generated using the Zubal phantom ftrue. Restorations of these phantom images
using σ = 10−4 after 20 and 100 iterations, and σ = 10−6 after 20 iterations are shown in Figures 2 (b)-(d).
The SNRs are evaluated using the true phantom image ftrue and the noise free but blurred reconstruction
fN∞.

After 20 iterations the reconstructions contain only a moderate amount of noise as compared to those
obtained after 100 iterations (SNRf20∞

(f2010−4) > SNRf100∞
(f10010−4)). However, f10010−4 is less corrupted by blurring

than is f2010−4 . This experiment suggests that, at least up to some unknown maximal number of iterations,
the errors in the reconstructions are of two types: i) a truncation error in the form of blurring, because of
a small number of iterations and ii) error due to the noise amplification caused by the ill-posedness of the
reconstruction problem. In the following we introduce the notation f1 := f10010−4 and f2 := f2010−6 .

3.2 Restoration by the u+ v decomposition

We restore the phantom data by applying Algorithm 1 to reconstructions f1 and f2 using fixed parameters
γ = 5 · 10−3, β = −0.1 and variable choices for α. Bayesian approaches have been used in the past to
estimate optimal thresholds for each decomposition level and direction [20, 4]. Here we investigate a method
that uses a minimal number of parameters, while allowing investigation of the effectiveness of the de-noising
method on PET data without using any parameter selection paradigm. It is argued in [12, 11] that the ratio
γ/α determines how much of the texture is moved from u to v, and the sizes of γ and α determine the
magnitude of the residual r := f − u − v. We therefore choose γ such that the residual r can be neglected
and only vary α. The choice β = −0.1 permits a large amount of the noise and only a small amount of the
brain structure to be moved to v.

It is intended that the u + v decomposition be employed as a post-processing SNR improvement step
to the EM reconstruction of the PET image. Improvement in SNR is achieved by both reducing the noise
in the signal and by increasing the level of detail in the reconstruction. Typically, the EM algorithm uses
a relatively small number of iterations so that the noise contamination is limited. Compare, for example,
the SNR of Figures 2(a) and (b). There are more details in Figure 2(b) but the noise contamination is also
greater. After the u + v decomposition the u part contains mostly the desired signal and most of the noise
is moved into v. Thus we expect that u is closer to the true solution and that the denominator in (8) is
small which generates a large SNR.

Figure 5 illustrates the SNR for the low noise case in Figure 2(b). The color shades represent SNRfN∞
(u),

with the x-axis being different choices of α and the y-axis the number of iterations of the EM algorithm. The
contour lines represent SNRftrue

(u). Small values of α (left side of the plot) correspond to less de-noising,
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(a) Phantom data ftrue (b) Reconstructed data f20
10−4

(c) Reconstructed data f100
10−6 (d) Reconstructed data f2 := f20

10−6

Figure 2: This figure illustrates the trade-off in the EM algorithm between few iterations and low noise
contamination as compared to a larger number of iterations and an image with more details. No post-
processing has been applied. Panel (a) shows images generated from the Zubal phantom without adding
blurring or noise. The intensity values are assigned to different brain regions according an approximate ratios
gray matter : white matter : CSF of about 2:1:0. Reconstructions using the EM algorithm at various noise
levels, generated by varying the intensity of the voxels of the phantom data, are shown. In (b) the case for
low noise level: σ = 10−4 after 20 iterations of the EM algorithm f2010−4 with SNRftrue(f

20
10−4) = 14.0dB and

SNRf20∞
(f2010−4) = 26.5dB. In (c) the low noise level case after 100 iterations f10010−4 for which SNRftrue(f

100
10−4) =

13.8dB and SNRf100∞
(f10010−4) = 16.5dB. In (d) the high noise level case: σ = 10−6 after 20 iterations of the

EM algorithm f2010−6 for which SNRftrue(f
20
10−6) = 8.7dB and SNRf12∞

(f2010−6) = 10.8dB.
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larger values to more de-noising. The plot illustrates a basic trade-off property of the EM algorithm: For
an increasing number of iterations (left of the plot, from top to bottom) SNRfN∞

(u) is decreasing due to
the increasing noise in reconstructions with increasing iterations, SNRftrue(u) is increasing first, because the
reconstructions become sharper with more iterations but start to decrease after about 50 iterations as the
noise begins to dominate the overall error. The plot shows that the u + v decomposition can be used to
increase SNRftrue(u), in particular, when more iterations are used. The u+v decomposition can therefore be
used to delay the onset of the high noise contamination when the EM algorithm is used for reconstruction.

Figure 3 illustrates the advantages of the wavelet method over traditional smoothing using a Gaussian
PSF with half-width 8mm using the SPM software [1]. Shown in this figure are the true image (a), the
noisy reconstructions f1 (b) and f2 (c) (from Figure 2), post-processing of f1 and f2 using SPM, (d) and
(g) respectively, and post-processing using the u + v decomposition, (e)-(f) and (h)-(i), respectively. The
u + v decomposition in panels (e)-(f) uses the parameters γ = 5 · 10−3, β = −0.1 and α = 0.0115. Thus
‖u1 +v1− f1‖2/‖f1‖2 = 10−4, and f1 ≈ u1 +v1. For (e) SNRftrue(u1) = 16.2dB, which is an improvement of
2.3dB as compared to SNRftrue

(f1). Panel (f) shows the content that has been removed from f1; it contains
mostly noise and no edge information. Thus the restoration u1 is much sharper than if f1 is smoothed by
SPM to remove the noise, see panel (d). For the case with higher noise, f2, the results illustrated in panels
(h)-(i) are obtained using the parameters γ = 5 · 10−3, β = −0.1 and α = 0.061. While (i) shows that some
portion of the brain outline and brain structure are still evident, indicating that some of the information has
been lost from (c), the restored image given in (h) is still sharper than the image obtained by smoothing with
SPM, illustrated in (g). In general, post-processing the images using the u+v decomposition yields sharper
and less noisy images than using smoothing with the standards used in SPM. Figure 4 shows a comparison of
different 1D slices of the images in Figure 3 to further illustrate the resolution gain of the proposed method.
The 1D slices indicate that the restorations using the wavelet method are sharper than those taken from
either the SPM-smoothed image, or from the original EM reconstruction without post-processing but with
a comparable noise level.

A MATLAB R©based GUI, shown in Figure 6, can be downloaded [35]. It allows the user to load SPM
ANALYSE volumes and explore different parameter choices. The implementation is fast enough to see the
effects of changes of the parameters in real time.

4 Conclusions

The reconstruction of 3D volumes from data collected by a PET scanner using the EM algorithm has been
considered. Usually the number of iterations of the EM algorithm is kept low in order to limit the am-
plification of noise in the data. A post-processing step using the u + v decomposition can significantly
increase the SNR of restorations. The method is based on the RDWT and can be computed very efficiently
using FFTs. Unlike methods that automatically estimate many thresholding parameters using Bayesian
estimators, the proposed method uses a user-guided approach to pick appropriate reconstruction parame-
ters. A MATLAB R©GUI that permits easy exploration of the impact of parameter choices of the u + v
decomposition for SPM volumes in ANALYSE format is available [35]. The code is implemented using the
MATLAB R©native distributed engine and can run on single CPU desktop computers as well as multi CPU
clusters. The u + v decomposition of two dimensional slices can be computed in real time and be used
to select appropriate parameters. In the current MATLAB R©implementation a full 3D decomposition of
a 128x128x128 scan can be performed on a desktop computer in about 2-3 minutes and about 20s on a
computer cluster system with 20 nodes.
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(a) Phantom (b) f1 (c) f2

(d) f1 8mm smoothing (e) u1 (f) v1

(g) f2 8mm smoothing (h) u2 (i) v2

Figure 3: This figure illustrates the impact of post-processing of images f1 and f2 using the wavelet de-
composition as compared to using SPM. Panels (a)-(c) are the original phantom, the simulated PET scan
already illustrated in Figure 2 (b) but with more detail, and the simulation with more noise, f2, respectively.
Panels (d)-(f) illustrate post-processing of the image in (b) using conventional smoothing with SPM and the
wavelet decomposition, while panels (g)-(i) show the corresponding results for panel (c).
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(a) low noise (b) high noise

Figure 4: One dimensional vertical slices of the images in Figure 3. Panel (a) shows the low noise case
corresponding to f1 and panel (b) shows the high noise case corresponding to f2. In each plot the thick
gray line shows the phantom data, the dashed line with the point markers shows the noisy signals f1 and f2
respectively, the thick blue line (gray in b/w) shows the 8mm SPM-smoothed solution, the thin black line
shows u1 and u2 respectively and the thin blue (gray in b/w) line shows the EM reconstruction truncated
such that the noise level in the signal is comparable to u1 and u2, respectively.

(a) low noise case (b) high noise case

Figure 5: SNR measurements of wavelet restoration. The color plot shows SNR measurements SNRfN∞
(u), the

contour lines show SNRftrue(u). The x-axis shows the parameters α and the y-axis the number of iterations
of the EM algorithm.
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