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Abstract

In this paper we consider Runge-Kutta discontinuous Galerkin (RKDG) schemes for
Vlasov-Poisson systems that model collisionless plasmas. One-dimensional systems are
emphasized. The RKDG method, originally devised to solve conservation laws, is seen to
have excellent conservation properties, be readily designed for arbitrary order of accuracy,
and capable of being used with a positivity-preserving limiter that guarantees positivity
of the distribution functions. The RKDG solver for the Vlasov equation is the main
focus, while the electric field is obtained through the classical representation by Green’s
function for the Poisson equation. A rigorous study of recurrence of the DG methods
is presented by Fourier analysis, and the impact of different polynomial spaces and
the positivity-preserving limiters on the quality of the solutions is ascertained. Several
benchmark test problems, such as Landau damping, the two-stream instability, and the
KEEN (Kinetic Electro static Electron Nonlinear) wave, are given.

Keywords: Vlasov-Poisson, discontinuous Galerkin methods, recurrence, positivity-preserving,
BGK mode, KEEN wave.

1 Introduction

The Vlasov-Poisson (VP) system is an important equation for modeling collisionless plasmas,
one that possesses computational difficulties of more complete kinetic theories. Thus, it serves
as an important test bed for algorithm development. The VP system describes the evolution
of f = f(x, v, t), the probability distribution function (pdf) for finding an electron (at position
x with velocity v at time t) with a uniform background of fixed ions under a self-consistent
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electrostatic field. In particular, the non-dimensionalized VP system (with time scaled by the
inverse plasma frequency ω−1

p and length scaled by the Debye length λD) is given by

∂tf + v · ∇xf − E · ∇vf = 0 Ω× (0, T ]

−∆xΦ = 1−
∫
Rn
f dv Ωx × (0, T ] (1)

E = −∇xΦ Ωx × (0, T ] .

Here the domain Ω = Ωx × Rn, where Ωx can be either a finite domain or Rn. The boundary
conditions for the above systems are summarized as follows: f → 0 as |x| → ∞ or |v| →
∞. If Ωx is finite, then we can impose either inflow boundary conditions with f = f in on
ΓI = {(x, v)|v · νx < 0}, where νx is the outward normal vector, or more simply impose
periodic boundary conditions. For simplicity of discussion, in this paper, we will always
assume periodicity in x. Also, we add that when the VP system is applied to plasmas the
total charge neutrality condition,

∫
Ωx

(∫
Rn f dv − 1

)
dx = 0, is imposed.

The following physical quantities associated with this system are related to its conservation
properties:

charge density ρ(x, t) =

∫
Rn
f(x, v, t) dv ,

momentum density j(x, t) =

∫
Rn
vf(x, v, t) dv , (2)

kinetic energy density ξk(x, t) =
1

2

∫
Rn
|v|2f(x, v, t) dv ,

electrostatic energy density ξe(x, t) =
1

2
|E(x, t)|2 .

Indeed, it is well-known that the VP system conserves the total electron charge
∫

Ωx
ρ(x) dx,

momentum
∫

Ωx
j(x) dx, and energy

∫
Ωx

(ξk(x) + ξe(x)) dx. Moreover, any functional of the

form
∫

Ω
G(f) dxdv is a constant of motion. In particular, this includes the k-th order invariant

Ik =
∫

Ω
fk dxdv and the entropy S = −

∫
Ω
fln(f) dxdv. Sometimes the functional I2 is also

called the enstrophy, and all of these invariants are called Casimir invariants (see, e.g., [34]).
The VP system has been studied extensively for the simulation of collisionless plasmas.

Popular numerical approaches include Particle-In-Cell (PIC) methods [6, 24], Lagrangian par-
ticle methods [4, 17], semi-Lagrangian methods [8, 45], the WENO method coupled with
Fourier collocation [58], finite volume (flux balance) methods [7, 18, 19], Fourier-Fourier spec-
tral methods [27, 28], continuous finite element methods [49, 50], among many others. In this
paper, we will focus on the discontinuous Galerkin (DG) method to solve the VP system. The
original DG method was introduced by Reed and Hill [42] for neutron transport. Lesaint and
Raviart [32] performed the first convergence study for the original DG method. Cockburn and
Shu in a series of papers [14, 13, 12, 11, 15] developed the Runge-Kutta DG (RKDG) method
for hyperbolic equations. The RKDG methods have been used to simulate the VP system in
plasmas by Heath, Gamba, Morrison and Michler [23, 22] and for the gravitational infinite
homogeneous stellar system by Cheng and Gamba [9]. Theoretical aspects about stability, ac-
curacy and conservation of those methods are discussed in [22, 23] and more recently in [3, 2]
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for energy conserving schemes. Such methods have excellent conservation properties, can be
readily designed for arbitrary order of accuracy, and have the potential for implementation on
unstructured meshes with hp−adaptivity. To ensure the positivity of the solution, one can use
a maximum-principle-satisfying limiter that has been recently proposed by Zhang and Shu in
[52] for conservation laws on cartesian meshes, and later extended on triangular meshes [56].
This limiter has been used to develop positivity-preserving schemes for compressible Euler
[53, 55], shallow water equations [48], and Vlasov-Boltzmann transport equations [10]. It has
also been employed recently in the framework of semi-Lagrangian DG methods [43, 41] for the
VP system.

The scope of the present paper is as follows: we focus on a detailed study of the RKDG
scheme for the Vlasov equation from both the numerical and analytical points of view. Since
we are only considering one-dimensional problems, we use the classical representation of the
solution by Green’s function to compute the Poisson equation; therefore, the electric field is
explicitly given as a function of the numerical density. This removes all discretization error
from the Poisson equation and lets us more accurately investigate our DG solver for the Vlasov
equations. We rigorously study recurrence, which is an important numerical phenomenon that
commonly appears with many solvers. We use Fourier analysis and obtain eigenvalues of the
amplification matrix, and then investigate the impact of different polynomial spaces on the
quality of the solution by examining conserved quantities as well as convergence to BGK states
[5] for some choices of initial states. We consider benchmark test problems such as simulations
of Landau damping phenomena for the linearized and nonlinear Vlasov Poisson systems, two-
stream instability, and their long time BGK states and the formation of KEEN waves, both
for the nonlinear system as well.

The remaining part of the paper is organized as follows: in Section 2, we describe the
numerical algorithm and summarize its conservation properties. In Section 3, we study the
recurrence phenomena that occurs for linear Vlasov type transport equations discretized by
DG methods with various polynomial orders. Sections 4.1 and 4.2 are devoted to discussions of
simulation results for the linearized and nonlinear VP system, respectively, for diverse choices
of initial data and external drive potentials. We conclude with a few remarks in Section 5.

2 Numerical methods

In this section we first describe the proposed DG numerical algorithm and then discuss some
of its basic conservation properties related to the quantities of (2). This is done for both the
fully nonlinear VP system of (1) and the linearized VP system obtained by linearizing about
the homogeneous equilibrium feq(v), with corresponding vanishing electric equilibrium field.
Periodic boundary conditions in x are assumed.

Thus, setting f(x, v, t) = feq(v) + δf(x, v, t) and expanding the system to first order ap-
proximation, the perturbation δf satisfies the Linear Vlasov-Poisson (LVP) system,

∂tf + v · ∇xf = E · ∇vfeq Ω× (0, T ]

∆xΦ =

∫
Rn
f dv Ωx × (0, T ] (3)

E = −∇xΦ Ωx × (0, T ] ,
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where δf has been replaced by f to ease the notation. We find it convenient and efficient to
intertwine the discussion of our algorithms for the VP and LVP systems. To avoid confusion
in Section 2.1 we underline the words linear and nonlinear, signaling where discussions specific
to each apply.

2.1 Numerical algorithm

For one-dimensional problems, we use a mesh that is a tensor product of grids in the x and
v directions, because this simplifies the definitions of the mesh and polynomial space for the
Poisson equation. Specifically, the domain Ω is partitioned as follows:

0 = x 1
2
< x 3

2
< . . . < xNx+ 1

2
= L, −Vc = v 1

2
< v 3

2
< . . . < vNv+ 1

2
= Vc,

where Vc is chosen appropriately large to guarantee f(x, v, t) = 0 for |v| ≥ Vc. This is a
reasonable assumption, because of the well-posedness of the one-dimensional Vlasov-Poisson
system as indicated in [21]. The grid is defined as

Ii,j = [xi− 1
2
, xi+ 1

2
]× [vj− 1

2
, vj+ 1

2
],

Ji = [xi−1/2, xi+1/2], Kj = [vj−1/2, vj+1/2] , i = 1, . . . Nx, j = 1, . . . Nv,

where xi = 1
2
(xi− 1

2
+ xi+ 1

2
) and vj = 1

2
(vj−1/2 + vj+1/2) are center points of the cells.

We will make use of several approximation spaces. For the x-domain, we consider the
piecewise polynomial space of functions ξ : Ωx → R,

Z l
h = {ξ : ξ|Ji ∈ P l(Ji), i = 1, . . . Nx},

where P l(Ji) is the space of polynomials in one dimension of degree up to l. For the (x, v)
space, we consider two approximation spaces of functions φ, ϕ : Ω→ R,

V l
h = {φ : φ|Ii,j ∈ Ql(Ii,j), i = 1, . . . Nx, j = 1, . . . Nv}

and
W l
h = {ϕ : ϕ|Ii,j ∈ Pl(Ii,j), i = 1, . . . Nx, j = 1, . . . Nv} ,

where Ql(Ii,j) = P l(Ji) ⊗ P l(Kj) = span{xl1 vl2 ,∀ 0 ≤ l1 ≤ l, 0 ≤ l2 ≤ l} denotes all
polynomials of degree at most l in x and v on Ii,j, and Pl(Ii,j) = span{xl1 vl2 ,∀ 0 ≤ l1 + l2 ≤
l, l1 ≥ 0, l2 ≥ 0}. These two spaces are widely considered in the DG literature for multi-
dimensional problems. A simple calculation shows that the number of degrees of freedom of
Ql(Ii,j) is (l + 1)2. For l ≥ 1 this is larger than the number of degrees of freedom of Pl(Ii,j),
which is (l + 1)(l + 2)/2.

First we describe the RKDG scheme for the linear Vlasov equation. We seek fh(x, t) ∈ V l
h

(or W l
h), such that∫

Ii,j

(fh)tϕh dxdv −
∫
Ii,j

vfh(ϕh)x dxdv +

∫
Kj

(v̂fhϕ
−
h )i+ 1

2
,v dv

−
∫
Kj

(v̂fhϕ
+
h )i− 1

2
,v dv =

∫
Ii,j

Ehf
′

eqϕh dxdv (4)
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holds for any test function ϕh(x, t) ∈ V l
h (or W l

h). Here and below, we use the following
notations: Eh is the discrete electric field, which is to be computed from Poisson’s equation,
(ϕh)

±
i+1/2,v = limε→0 ϕh(xi+1/2 ± ε, v), (ϕh)

±
x,j+1/2 = limε→0 ϕh(x, vj+1/2 ± ε), and v̂fh is a nu-

merical flux. We can assume that in each Kj, v has a single sign by properly partitioning the
mesh. Then, the upwind flux is defined as

v̂fh =

{
vf−h if v ≥ 0 in Kj

vf+
h if v < 0 in Kj

. (5)

The scheme for the nonlinear Vlasov equation is similar. We seek fh(x, t) ∈ V l
h (or W l

h),
such that∫

Ii,j

(fh)tϕh dxdv −
∫
Ii,j

vfh(ϕh)x dxdv +

∫
Kj

(v̂fhϕ
−
h )i+ 1

2
,v dv −

∫
Kj

(v̂fhϕ
+
h )i− 1

2
,v dv

+

∫
Ii,j

Ehfh(ϕh)v dxdv −
∫
Ji

(Êhfhϕ
−
h )x,j+ 1

2
dx+

∫
Ji

(Êhfhϕ
+
h )x,j− 1

2
dx = 0 (6)

holds for any test function ϕh(x, t) ∈ V l
h (or W l

h). The upwind flux for v̂fh has been defined
in (5) and the new flux needed for the nonlinear case is given by

Êhfh =

{
Ehf

−
h if

∫
Ji
Ehdx ≤ 0

Ehf
+
h if

∫
Ji
Ehdx > 0

. (7)

The above descriptions coupled with a suitable time discretization scheme, such as the
TVD Runge-Kutta method [44], completes the RKDG methods. For example, suppose the
semi-discrete schemes in (4) and (6) are written in the compact form∫

Ii,j

(fh)tϕh dxdv = Hi,j(fh, Eh, ϕh)

where for the linear Vlasov of (4)

Hlin
i,j (fh, Eh, ϕh) =

∫
Ii,j

vfh(ϕh)x dxdv −
∫
Kj

(v̂fhϕ
−
h )i+ 1

2
,v dv

+

∫
Kj

(v̂fhϕ
+
h )i− 1

2
,v dv +

∫
Ii,j

Ehf
′

eqϕh dxdv ,

while for the nonlinear Vlasov of (6)

Hnonlin
i,j (fh, Eh, ϕh) =

∫
Ii,j

vfh(ϕh)x dxdv −
∫
Kj

(v̂fhϕ
−
h )i+ 1

2
,v dv +

∫
Kj

(v̂fhϕ
+
h )i− 1

2
,v dv

−
∫
Ii,j

Ehfh(ϕh)v dxdv +

∫
Ji

(Êhfhϕ
−
h )x,j+ 1

2
dx−

∫
Ji

(Êhfhϕ
+
h )x,j− 1

2
dx .
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The third order TVD-RK method implements the following procedure for going from tn to
tn+1: ∫

Ii,j

f
(1)
h ϕh dxdv =

∫
Ii,j

fnhϕh dxdv +4tHi,j(f
n
h , E

n
h , ϕh) ,∫

Ii,j

f
(2)
h ϕh dxdv =

3

4

∫
Ii,j

fnhϕh dxdv +
1

4

∫
Ii,j

f
(1)
h ϕh dxdv +

4t
4
Hi,j(f

(1)
h , E

(1)
h , ϕh) , (8)∫

Ii,j

fn+1
h ϕh dxdv =

1

3

∫
Ii,j

fnhϕh dxdv +
2

3

∫
Ii,j

f
(2)
h ϕh dxdv +

24t
3
Hi,j(f

(2)
h , E

(2)
h , ϕh) .

Poisson’s equation is used to obtain En
h , E

(1)
h , and E

(2)
h . Beyond periodicity, we need to

enforce some additional conditions to uniquely determine Φ. For example, we can set one end
of the spatial domain to ground, i.e. set Φ(0, t) = 0. In the one-dimensional case, then the
exact solution can be obtained if we enforce Φ(0) = Φ(L). For the nonlinear system we obtain

Φh =

∫ x

0

∫ s

0

ρh(z, t) dzds−
x2

2
− CEx,

where CE = −L/2 +
∫ L

0

∫ s
0
ρh(z, t) dzds/L, and

Eh = −(Φh)x = CE + x−
∫ x

0

ρh(z, t) dz , (9)

while for the linear system Poisson’s equation gives

Φh =

∫ x

0

∫ s

0

ρh(z, t)dz ds− CEx,

where CE =
∫ L

0

∫ s
0
ρh(z, t) dzds/L, and

Eh = −(Φh)x = CE −
∫ x

0

ρh(z, t) dz . (10)

From (9) and (10), we see that if fh ∈ V l
h (or W l

h), then ρh =
∫ Vc
−Vc fh dv ∈ Z

l
h; hence, Eh ∈

Z l+1
h

⋂
C0. The above approach uses the classical representation of the solution by Green’s

function and will be referred to as the “exact” Poisson solver. It is valid only for the one-
dimensional case. For higher dimensions, a suitable elliptic solver needs to be implemented,
such as those discussed in [23]. Here we use the exact solver to entirely eliminate discretization
error from Poisson’s equation and, thereby, spotlight the performance of the Vlasov solver.

Below we describe positivity-preserving limiters, as summarized in [54]. We only use such
a limiter to enforce the positivity of fh for the nonlinear VP system. For each of the forward
Euler steps of the Runge-Kutta time discretization, the following procedures are performed:

• On each cell Ii,j, we evaluate Ti,j := min(x,v)∈Si,j fh(x, v), where Si,j = (Sxi ⊗ Ŝ
y
j )
⋃

(Ŝxi ⊗
Syj ), and Sxi , S

y
j denote the (l + 1) Gauss quadrature points, while Ŝxi , Ŝ

y
j denote the

(l + 1) Gauss-Lobatto quadrature points.
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• We compute f̃h(x, v) = θ(fh(x, v)− (fh)i,j)+(fh)i,j, where (fh)i,j is the cell average of fh
on Ii,j, and θ = min{1, |(fh)i,j|/|Ti,j− (fh)i,j|}. This limiter has the effect of maintaining
the cell average, while “squeezing” the function to be positive at all points in Si,j.

• Finally, we use f̃h instead of fh to compute the Euler forward step.

This completes the description of the numerical algorithm.

2.2 Scheme Conservation properties

In the following, we will briefly review and discuss some of the conservation properties of the
above RKDG scheme for the nonlinear VP equations without the positivity-preserving limiter.
Some of those results have been reported in [22] and [3].

Proposition 1 (charge conservation) For both the V l
h and W l

h spaces,∑
i,j

Hnonlin
i,j (fh, Eh, 1) = Θ(fh, Eh, 1)

which implies∑
i,j

∫
Ii,j

fn+1
h dxdv =

∑
i,j

∫
Ii,j

fnh dxdv +
2

3
4t
(
Θ(f

(2)
h , E

(2)
h , 1)

+
1

4
Θ(f

(1)
h , E

(1)
h , 1) +

1

4
Θ(fnh , E

n
h , 1)

)
for the fully discrete scheme (8). Here,

Θ(fh, Eh, ϕh) =
∑
i

∫
Ji

(Êhfhϕh)x,Nv+ 1
2
dx−

∑
i

∫
Ji

(Êhfhϕh)x, 1
2
dx

denotes the contribution from the phase space boundaries located at v = ±Vc, and should be
negligible if Vc is chosen large enough.

Remark: Charge conservation (or mass conservation or probability normalization as it
is sometimes called) states that the total charge will be preserved on the discrete level up to
approximation errors associated with the phase space boundaries. The proof is straightforward
and, therefore, omitted. The same conclusion can be proven for the linearized system. The
positivity preserving limiter does not destroy this property because it keeps the cell averages
unchanged.

Proposition 2 (Semi-discrete L2 stability – enstrophy decay) For both the V l
h and W l

h spaces,∑
i,jHnonlin

i,j (fh, Eh, fh) ≤ 0. Hence,

d

dt

∑
i,j

∫
Ii,j

f 2
hdxdv ≤ 0.
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The proof, for an arbitrary field Eh, can be found in [10], Theorem 4, which applies directly
here by setting the collisional form Qσ ≡ 0 in that proof.

For the remainder of this subsection we will assume the DG solution satisfies the ve-
locity boundary conditions fh(x,±Vc, t) = 0. This is a reasonable assumption when Vc is
large enough. In particular, this will guarantee exact charge conservation, which implies that∫ L

0
ρh(x, t)dx is constant in time t. Therefore, using the definition of Eh in (9), we can obtain

periodicity in Eh, i.e, Eh(0) = Eh(L). Without this assumption the propositions below contain
multiple boundary terms and the proof becomes technical.

Proposition 3 (Momentum conservation) Assuming fh(x,±Vc, t) = 0, for both the V l
h and

W l
h spaces when l ≥ 1,

∑
i,jHnonlin

i,j (fh, Eh, v) = 0, which implies

∑
i,j

∫
Ii,j

fn+1
h v dxdv =

∑
i,j

∫
Ii,j

fnh v dxdv

for the fully discrete scheme.

Proof. Choosing ϕh = v in (6), we have

∑
i,j

Hnonlin
i,j (fh, Eh, v) =

∑
i,j

(∫
Ii,j

vfh(v)x dxdv −
∫
Kj

(v̂fhv)i+ 1
2
,v dv +

∫
Kj

(v̂fhv)i− 1
2
,v dv

−
∫
Ii,j

Ehfh dxdv +

∫
Ji

(Êhfhv)x,j+ 1
2
dx−

∫
Ji

(Êhfhv)x,j− 1
2
dx

)
= −

∑
i,j

∫
Ii,j

Ehfh dxdv = −
∑
i

∫
Ji

Ehρh dx ,

and using the exact Poisson solver together with the periodicity of Eh and Φh yields the
following: ∑

i

∫
Ji

Ehρh dx =
∑
i

∫
Ji

Eh(ρh − 1) dx+
∑
i

∫
Ji

Eh dx

= −
∑
i

∫
Ji

Eh(Eh)x dx+
∑
i

∫
Ji

Eh dx

= −(E2
h(L)− E2

h(0))/2− Φ(L) + Φ(0) = 0 ,

which completes the proof. �

Remark: The above proof holds for the linearized system as well. Note, however, it
relies on the use of the exact Poisson solver. For a full numerical DG Poisson solver, such as
that developed in [23] for the discretization Poisson equation, exact momentum conservation
remains true, as was proven in [22] by means of the DFUG method developed there for dealing
with the discretized Poisson equation. However, the positivity-preserving limiter we use here
will destroy this property because it was not designed to conserve the numerical momentum.
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Proposition 4 (Semi-discrete total energy equality) Assuming fh(x,±Vc, t) = 0, for both the
V l
h and W l

h spaces when l ≥ 2,

d

dt

(
1

2

∑
i,j

∫
Ii,j

fhv
2 dxdv +

1

2

∑
i

∫
Ji

E2
h(x) dx

)
= A(fh,Φh) = A(fh − f,Φh − P (Φh)) ,

where the operator A(w, u) :=
∑

i,j

∫
Ii,j

(
wuxv − (w)tu

)
dxdv, and P is any projection such

that P (Φh) ∈ Z l
h and P (Φh) = Φh at xi+1/2, for i = 0, 1, . . . , Nx.

Proof. Choosing ϕh = v2/2 in (6) yields

d

dt

∑
i,j

1

2

∫
Ii,j

fhv
2 dxdv +

∑
i,j

∫
Ii,j

Ehfhv dxdv = 0

and

d

dt

∑
i

1

2

∫
Ji

E2
h(x) dx =

∑
i

∫
Ji

Eh(Eh)t dx = −
∑
i

∫
Ji

(Φh)x(Eh)t dx

=
∑
i

∫
Ji

Φh(Eh)xt dx =
∑
i

∫
Ji

Φh(1− ρh)t dx

= −
∑
i

∫
Ji

Φh(ρh)t dx = −
∑
i,j

∫
Ii,j

Φh(fh)t dxdv ,

where in the second line, we have used the periodicity and continuity of Eh and Φh. Therefore,
we have proven that

d

dt

(
1

2

∑
i,j

∫
Ii,j

fhv
2dxdv +

1

2

∑
i

∫
Ji

E2
h(x)dx

)
= A(fh,Φh) .

On the other hand, upon choosing ϕh = P (Φh) in (6) and using the periodicity and continuity
of P (Φh), we can verify that A(fh, P (Φh)) = 0. The exact solution f obviously satisfies
A(f,Φh − P (Φh)) = 0 from the continuity and periodicity of Φh − P (Φh), and therefore we
are done. �

The above proof indicates that the variation in the total energy will be related to the
error of the solution, fh − f , together with the projection error, Φh − P (Φh). In [22, 23],
error estimates for DG schemes with NIPG methods for the Poisson equations are provided
for multiple dimensions. In [3], optimal accuracy of order l + 1 for the semi-discrete scheme
with Ql spaces has been proven under certain regularity assumptions. We remark that in
[3] conservation of the total numerical energy is proven when the Poisson equation is solved
by a local DG method with a special flux. Unfortunately, no numerical simulations of linear
Landau damping or of the nonlinear VP system, such as those done in [23] or in Section 4 of
this present manuscript, have been performed up to this date by the scheme proposed in [3],
so a comparison is not possible.
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3 On recurrence

In this section we study recurrence, a numerical phenomenon that is known to occur in simu-
lations of Vlasov-like equations. Its study is important because it provides information about
the numerical accuracy of a scheme. Recurrence was observed in the semi-Lagrangian scheme
of Cheng and Knorr [8], where a simple argument for its occurrence was provided. In this
section, we carry out a detailed study of recurrence for the DG method.

We study recurrence of our algorithm applied to the linear advection equation ft+vfx = 0
on [0, L = 2π/k]× [−Vc, Vc], since it is tractable and contains the basic recurrence mechanism;
results for the full Vlasov system tend to be quite similar. The initial condition we consider
is f0(x, v) = A cos(kx)feq(v), and the equilibrium distribution feq(v) is taken to be either the
Maxwellian or Lorentzian distribution, viz.

fM =
1√
2π
e−v

2/2 or fL =
1

π

1

v2 + 1
.

For the Maxwellian equilibrium, fM , we take Vc = 5, and for the Lorentzian equilibrium, fL,
we take Vc = 30.

The exact solution for the advection equation is f(t, x, v) = f0(x− vt, v). Hence, a simple
calculation shows ρ(x, t) = A cos(kx)e−k

2t2/2 for the Maxwellian distribution; similarly, for the
Lorentzian, ρ(x, t) = A cos(kx)e−kt. Thus, we see how the density for each case should decay
to zero. The failure of decay and the occurrence of recurrence noted for the semi-Lagrangian
scheme of [8] stems from the finite resolution in the velocity space and, indeed, the recurrence
time depends on the mesh size in v.

To be specific, we repeat the definition of DG scheme for this equation, which amounts to
(6) with Eh set to zero: we find fh(x, t) ∈ V k

h (or W k
h ) , such that∫

Ii,j

(fh)tϕh dxdv −
∫
Ii,j

vfh(ϕh)x dxdv +

∫
Kj

(v̂fhϕ
−
h )i+ 1

2
,v dv −

∫
Kj

(v̂fhϕ
+
h )i− 1

2
,v dv = 0 (11)

holds for any test function ϕh(x, t) ∈ V k
h (or W k

h ). Again v̂fh is the upwind numerical flux
of (5). In the analysis below, we always assume time to be continuous, because recurrence is
mainly a phenomenon that comes from the spatial and velocity discretization.

3.1 The case of l = 0

For the piecewise constant case, the DG method is equivalent to a simple first order finite
volume scheme and we can derive rigorously the behavior for ρ. Suppose we define fh = fij on
cell Iij, and assume uniform grids in both directions. Moreover, we assume Nv to be even for
simplicity. With this assumption, the location of the cell center is vj = (j − Nv+1

2
)4v. Now

(11) simply becomes
dfij
dt

+ vj
fij−fi−1,j

4x = 0 if vj ≥ 0,

dfij
dt

+ vj
fi+1,j−fij
4x = 0 if vj < 0.

(12)

10



The initial condition chosen is clearly equivalent to fij(0) = Re
(
Aeikxifeq(vj)

)
. We prove that

the scheme above gives
fij(t) = Re

(
Aeikxi+sjtfeq(vj)

)
(13)

where sj is given in (14) below.
Upon plugging (13) into (12), we have

sjfij + vj
1−e−ik4x
4x fij = 0 if vj ≥ 0

sjfij + vj
eik4x−1
4x fij = 0 if vj < 0 .

Hence,

sj =


−vj 1−e−ik4x

4x = vj
cos(k4x)−1
4x − vj sin(k4x)

4x i if vj ≥ 0

−vj e
ik4x−1
4x = −vj cos(k4x)−1

4x − vj sin(k4x)
4x i if vj < 0 ,

which can be summarized as

sj = |vj|
cos(k4x)− 1

4x
− vj

sin(k4x)

4x
i . (14)

Therefore, the real part of sj is always negative, this means the magnitude of fij will always
damp, but because of the j-dependence it does so at different rates for different cells. Since
the density

ρ(xi) =
∑
j

fij4v = Re

(∑
j

Aeikxi+sjtfeq(vj)

)
4v ,

the density will damp at a rate between 4v
2

cos(k4x)−1
4x and Vc−4v

2
cos(k4x)−1
4x . Another impor-

tant fact is that recurring local maxima of the density will have a period TR that satisfies
4v
2

sin(k4x)
4x TR = π. If we define k′ = sin(k4x)

4x , then TR = 2π
k′4v . When 4x→ 0, k′ → k, and this

coincides with the recurrence time obtained in [8].
Next we compare the above theoretical prediction with numerical results. In all of the

calculations below, we take A = 1, k = 0.5 and the mesh size to be 40× 40. In Figure 1, we
display results for numerical runs using piecewise constant polynomials and time discretization
using TVD-RK3. (We use the third order method to minimize the time discretization error.)
We plot ρmax(t) = maxx ρ(x, t) in Figure 1. First, we notice the pattern of ρmax has the
expected periodic structure with damping for both Maxwellian and Lorentzian equilibria.
For the Maxwellian distribution, a simple calculation yields TR = 50.47. Similarly, with the
formulas above, the smallest damping rate is −0.49× 10−2, while the biggest is −9.3× 10−2.
For the Lorentzian distribution, TR = 8.41, and the smallest damping rate is −2.94 × 10−2,
while the biggest is −5.58× 10−1. From Figure 1, by using the second to the fourth peak, the
actual computed value of TR for Maxwellian is 50.32 and the damping rate is −1.02 × 10−2;
while for Lorentzian, from the second to the tenth peak, TR is 8.40 and the computed damping
rate is−3.19× 10−2. These numbers agree well with the theoretical prediction.

In conclusion, our analysis explains the behavior of the first order DG solution. At t = TR,
the numerical density obtains a local maximum; hence, clearly at this time the numerical

11



solution can no longer be trusted. The numerical decay deviates from the theoretical decay
well before t = TR. To achieve a larger TR, according to the formula, we can refine 4v. On
the other hand, refining 4x will not change TR by much.
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(a) Maxwellian, P0
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Figure 1: Computations of the advection equation for piecewise constant polynomials showing
local maxima of the density ρmax as a function of time. The mesh is 40× 40 with 4x = π/10.
For the Maxwellian equilibrium 4v = 1/4, while for the Lorentzian equilibrium 4v = 3/2.

Remark: Using the same methodology, it is easy to perform a similar analysis for any type
of finite difference method. The real part of sj will be negative if there is numerical dissipation,
and the imaginary part will always approximate vjk due to the differential operator v ∂

∂x
. This

means that for such schemes, the recurrence time TR will always be close to 2π
k4v .

3.2 Higher order polynomials

In this subsection, we consider higher order polynomials. For the V 1
h space, it takes four point

values in each cell to represent a Q1 polynomial. This technique was developed in [51] for
analyzing piecewise linear DG solutions in one dimension. As in Section 3.1, we use a uniform
mesh, i.e. 4xi ≡ 4x and 4vj ≡ 4v. Without loss of generality, we consider (11) for the case

of v ≥ 0 only, then v̂fh = vf−h , which means we only consider cells Ii,j with j ≥ Nv
2

+ 1.
In each computational cell Ii,j, we can always use the following form to represent fh:

fh = fi− 1
4
,j+ 1

4
χ1(x, v) + fi− 1

4
,j− 1

4
χ2(x, v) + fi+ 1

4
,j+ 1

4
χ3(x, v) + fi+ 1

4
,j− 1

4
χ4(x, v),
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where

χ1(x, v) = −4

(
x− xi
4xi

− 1

4

)(
v − vj
4vj

+
1

4

)
χ2(x, v) = 4

(
x− xi
4xi

− 1

4
)

)(
v − vj
4vj

− 1

4

)
χ3(x, v) = 4

(
x− xi
4xi

+
1

4

)(
v − vj
4vj

+
1

4

)
χ4(x, v) = −4

(
x− xi
4xi

+
1

4

)(
v − vj
4vj

− 1

4

)
are the basis functions in Q1 and fi±1/4,j±1/4 = fh(xi±1/4, vj±1/4) are the point values. By
choosing the test function in (11) to be ϕh = χ`, ` = 1, 2, 3, 4, we obtain four relations.
Letting fij = (fi−1/4,j+1/4, fi−1/4,j−1/4, fi+1/4,j+1/4, fi+1/4,j−1/4)T , then corresponding to each of
the four terms in (11), we have

M
dfij
dt
−Bfij + Cfi,j −Dfi−1,j = 0,

where

M =
4x4v

144


49 −7 −7 1
−7 49 1 −7
−7 1 49 −7
1 −7 −7 49

 ,

B =
4v
12


−(24v + 7vj) vj −(24v + 7vj) vj

vj 24v − 7vj vj 24v − 7vj
24v + 7vj −vj 24v + 7vj −vj
−vj −24v + 7vj −vj −24v + 7vj

 ,

C =
4v
48


24v + 7vj −vj −(64v + 21vj) 3vj
−vj −24v + 7vj 3vj 64v − 21vj

−64v − 21vj 3vj 184v + 63vj −9vj
3vj 64v − 21vj −9vj −184v + 63vj

 ,

and

D =
4v
48


−64v − 21vj 3vj 184v + 63vj −9vj

3vj 64v − 21vj −9vj −184v + 63vj
24v + 7vj −vj −64v − 21vj 3vj
−vj −24v + 7vj 3vj 64v − 21vj

 .

After simple algebraic manipulation, we obtain

dfij
dt

=
4v
4x

(Smfij + Tmfi−1,j) ,
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where

Sm =


−49

96
− 7m

8
7
96

− 7
32
− 3m

8
1
32

− 7
96

49
96
− 7m

8
− 1

32
7
32
− 3m

8
77
96

+ 11m
8

−11
96

−21
32
− 9m

8
3
32

11
96

−77
96

+ m
8

− 3
32

21
32
− 9m

8

 ,

Tm =


−35

96
− 5m

8
5
96

35
32

+ 15m
8

− 5
32

− 5
96

35
96
− 5m

8
5
32

−35
32

+ 15m
8

7
96

+ m
8

− 1
96

− 7
32
− 3m

8
1
32

1
96

− 7
96

+ m
8

− 1
32

7
32
− 3m

8

 ,

and m = 2j −Nv − 1 = 1, 3, 5 . . . are positive and odd integers. Therefore, the amplification
matrix is given by

Gj =
4v
4x

(
Sm + Tme

−ik4x) .
With the initial condition fij(0) = Re(AeikxiΥ), where

Υ =
(
e−ik4x/4feq(vj+ 1

4
), e−ik4x/4feq(vj− 1

4
), eik4x/4feq(vj+ 1

4
), eik4x/4feq(vj− 1

4
)
)T

,

it is clear that the general expression for the numerical solution is

fij(t) = Re

(
eikxi

4∑
α=1

aαVα e
ηαt

)
.

Here ηα are the eigenvectors of Gj with Vα the corresponding eigenvectors, aα are constants
such that fij(0) = Υ, and all these quantities are dependent on j (or equivalently m =
2j −Nv − 1). The collective behaviors of the eigenvalues ηα will influence the behavior of the
density as a function of time. We focus on the matrix Λm = Sm + Tme

−ik4x, which with some
algebraic manipulation can be seen to have the form

Λm = W ⊗ V,

where W and V are the following 2× 2 matrices:

W =

(
−3m− 7

4
1
4

−1
4

−3m+ 7
4

)
,

V =

(
1
2

+ 5
24
î −1

2
− 5

8
î

−1
2
− 1

24
î 1

2
+ 1

8
î

)
,

and î = e−ik4x − 1 = −ik4x + O(4x2). This nice structure is due to the tensor product
formulations of the mesh and the space Ql. We compute the eigenvalues of the matrix V ,

obtaining λ1 = (3 + î −
√

9 + 12̂i+ î2)/6 = 1
6
ik4x − 1

12
k24x2 + O(4x3) and λ2 = (3 + î +√

9 + 12̂i+ î2)/6 = 1 − 1
2
ik4x + O(4x2), and the eigenvalues of W , obtaining −3m ±

√
3.

Hence, by simple linear algebra, the four eigenvalues of the matrix Λm are obtained
ξ1 = (−3m−

√
3)λ2

ξ2 = (−3m+
√

3)λ2

ξ3 = (−3m−
√

3)λ1

ξ4 = (−3m+
√

3)λ1

 .
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It is easy to show that the eigenvectors corresponding to these eigenvalues are independent of
m, since the eigenvectors of V and W are independent of m. We conclude that the eigenvalues
of Gj are 

η1 = (−3m−
√

3)λ24v/4x
η2 = (−3m+

√
3)λ24v/4x

η3 = (−3m−
√

3)λ14v/4x
η4 = (−3m+

√
3)λ14v/4x

 ,

and therefore,

4∑
α=1

aαVα e
ηαt = e−3m(λ24v/4x)t

(
a1V1 e

−
√

3(λ24v/4x)t + a2V2 e
√

3(λ24v/4x)t
)

+e−3m(λ14v/4x)t
(
a3V3 e

−
√

3(λ14v/4x)t + a4V4 e
√

3(λ14v/4x)t
)
.

Since η1 and η2 have nontrivial negative real parts, the damping for those two modes will be
strong. Consequently, the main behavior of the density will be dominated by the eigenmodes
of η3 and η4. Recall

ρ(xi± 1
4
, t) =

∑
j

∫
Ij

fh(xi± 1
4
, v, t)dv =

∑
j

(fi± 1
4
,j+ 1

4
+ fi± 1

4
,j− 1

4
)4v ,

and, therefore, the behavior of ρ(xi±1/4, t) is dominated by∑
m

e−3m(λ14v/4x)t
(
c3 e

−
√

3(λ14v/4x)t + c4 e
√

3(λ14v/4x)t
)
,

where c3 and c4 are constants that do not depend onm. Since λ1 = 1
6
ik4x− 1

12
k24x2+O(4x3),

we have−3m(λ14v/4x) = −k4v
2
mi−m4v4xk2

4
+O(4v4x2). Hence, with an argument similar

to that of Section 3.1 for the piecewise constant case, when t ≈ TR = 2π
k4v the imaginary parts

of all modes will return to mπi, and this will correspond to a local maximum of ρmax as a
function of time. The remaining term, c e−

√
3ik4v/6t +d e

√
3ik4v/6t, corresponds to the envelope

of the wave, and the negative real part of the eigenvalues indicates numerical dissipation.
In Figure 2, we plot the evolution of ρmax as a function of time for the Q1 and Q2 spaces.

From Figures 2(a) and 2(b), we observe the behavior predicted by our analysis for the Q1

elements. From Figures 2(c) and 2(d), we find that the solutions using the Q2 polynomials
share similar structures, except that small oscillations can be observed for the Maxwellian
case. Also we note that the Q2 discretizations can follow the exact solutions longer in time,
in the sense that the minimum value achieved before ρmax starts to deviates from the exact
solution is on the order of 10−6 compared to 10−4 in the Q1 case. This is expected due to the
higher order accuracy of the scheme. For the Q2 polynomials, we deduce that the amplification
matrix G is a 9× 9 matrix. Thus, for this case there, there will be nine eigenvalues and more
modes than for the Q1 space. In Table 1, we verify the recurrence time TR numerically; good
agreement between the predicted values and the observed values are seen.

Note, the trace Tr(Sm) = −4m,m = 1, 3, 5 . . ., while a similar calculation for cells when
v < 0 yields Tr(Sm) = 4m,m = 1, 3, 5 . . .. Therefore, we conclude that our semi-discrete
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Table 1: The location of local maxima of the density ρmax compared with the predicted
recurrence time TR. The TR values for the Maxwellian equilibrium are computed using the
average of the first three peaks, while for the Lorentzian they are computed using the average
of the first seven peaks.

Predicted TR = 2π
k4v Numerical value of Q1 Numerical value of Q2

Maxwellian 50.26548245743669 50.265482457450 50.265482457450
Lorentzian 8.37758040957278 8.37787960887962 8.37787960887760

algorithm has an incompressible vector field and thus possesses a version of Liouville’s theorem
on conservation of phase space volume. Liouville’s theorem for finite difference and Fourier
discretization of fluid and plasma equations is well known and has been used in statistical
theories of turbulence (see e.g. [40, 31, 29, 26]). We also note that we have performed the
analysis for the semi-discrete DG schemes. For fully discrete RKDG schemes, one could
use a similar method, as proposed in [57] for the wave equation, to write the fully discrete
amplification matrices, but we do not pursue this in this paper.

We close this section with a few comments. An analysis similar to that of this section for
P1 elements yields a 3× 3 matrix; however, this basis does not yield the nice form possessed
by Q1 because of the loss of the tensor structure. Figure 3 shows the temporal behavior of
ρmax using the Pl elements. Observe that, although the local maxima still are located near
TR = 2π

k4v , there appear to be several small local maxima instead of one main maximum, and

overall the long time dissipation seems to be stronger than that for Ql. We also noted that
the P2 basis follow the exact solution longer than Pl, but shorter than Q2 cases, because for
P2 elements, the minimum value that the solution achieves before it deviates from the exact
solution is on the order of 10−4. In summary, we conclude that increasing the polynomial order
does not change TR by much. However, higher order accuracy seems to improve the time that
the numerical solution can follow the exact solution. For Ql elements, the amplification matrix
can be written as a tensor product of two small matrices, and this made possible our direct
analysis for the recurrence time. For Pl elements, we lose this tensor structure, and the solution
is more dissipative.

Finally we remark that since the linearized equation involves an operator Ef ′eq(v), where the
electric field depends on the distribution function f on all cells, it is not trivial to generalize the
analysis to the LVP system. However, it was proven in [38, 35] that there exists a generalization
of the Hilbert transform that maps the solution of the advection equation to the solution of
this LVP system, so we expect similar type of recurrence behavior for the LVP system, and
this is verified by numerical calculation in Section 4.1.

4 Vlasov numerical results

Now we turn to some numerical tests of our method for both the VP and LVP systems.
For the LVP system we consider the standard tests of linear and nonlinear Landau damping,
which have been studied in many references in the contexts of various numerical techniques
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since [8] (see [23] for an extended list), but we also consider a test that heretofore does not
appear to have been done, viz., we monitor the linearized energy that is conserved by the LVP
system [30, 38, 35]. Similarly, for the nonlinear VP system we consider the standard tests
of nonlinear Landau damping and a symmetric version of the two-stream instability (also see
[23] for references). In addition, for the VP system we consider an example that is initialized
by a driving electric field, resulting in a dynamically accessible initial condition as described
in [36, 37, 38], which has been observed to approach nonli near BGK [5] states that have been
termed KEEN waves in Ref. [1, 25] (see also [22, 46]).

4.1 Linearized VP system

Associated with the LVP system of (3) is the well-known plasma dispersion function [20],

ε(k, ω) = 1− 1

k2

∫ +∞

−∞

f ′eq(v)

v − ω/k
dv, (15)

which (with the appropriate choice of contour) will be used to benchmark the accuracy of
the Landau damping rate and oscillation frequency obtained from our DG solver with choices
for the various polynomial spaces. The LVP system conserves not only the total charge and
momentum, but also the linear energy [30, 38, 35], which is defined as

HL = −1

2

∫
Ω

vf 2

f ′eq
dxdv +

1

2

∫
Ωx

E2 dx . (16)

As noted above, we monitor this quantity and check for its conservation. In addition, we
monitor the shift of energy to the first term of (16) as the second decays in time in accordance
with Landau damping, consistent with the discussion of [38].

Linear Landau damping

For this classical test problem, we choose the usual initial condition f0(x, v) = A cos(kx)fM(v),
with A = 0.01 and k = 0.5. For the Maxwellian distribution function the dispersion relation
becomes

ε(k, ω) = 1 +
1

k2

{
1 +

ω√
2k
Z

(
ω√
2k

)}
,

where the plasma Z-function is defined as

Z(z) =
1√
π

∫ ∞
−∞

e−t
2 dt

t− z
= 2ie−z

2

∫ iz

−∞
e−t

2

dt.

From this relation, the predicted damping rate is computed to be 0.153359 and the predicted
oscillation frequency to be 1.41566.

In Figures 4, we plot the evolution of the maximum of the electric field Emax using various
polynomial spaces. In Table 2, we compare the theoretical and numerical values of damping
rate and frequency as a measurement of accuracy. We see that refining the mesh always
gives better approximations. The piecewise constant polynomials P0 give much larger error
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Table 2: The damping rate and frequency for linear Landau damping. The numerical values
are computed using the fourth to the tenth peak and the predicted value is obtained from the
plasma dispersion function (15) with a Maxwellian equilibrium.

Predicted value Mesh P0 P1 P2 Q1 Q2

Damping rate 0.153359
40× 40 0.227489 0.153536 0.153375 0.153425 0.153379
80× 80 0.191702 0.153366 0.153363 0.15369 0.153363

Frequency 1.41566
40× 40 1.38249 1.41643 1.41643 1.41643 1.41643
80× 80 1.40056 1.41576 1.41576 1.41576 1.41576

compared to higher order polynomials. While the difference between the Pl and Ql spaces is
not significant. Observe from Figure 4 how similar the recurrence behavior is for this LVP
problem to that of the advection equation.

As for conservation properties, the charge and momentum are well conserved as predicted
by Propositions 1 and 3. However, the linear energy HL demonstrates different behaviors
depending on the polynomial spaces. Figure 5 shows that HL decays significantly for all Pl
spaces even upon mesh refinement. On the other hand, the Ql seems to conserve it much
better. We note that Q1 conserves HL much better than P2, although the former is a subspace
of the later.

Also, note from Figure 6 that the electrostatic energy for both choices of polynomial
spaces damps at a rate given by twice the Landau damping rate. This is to be expected for
the linear theory, since after integration over space the oscillatory component is removed and
E ∼ exp(−2γt). Therefore, if the energy is conserved numerically this damped electrostatic
energy must be converted into the relative kinetic energy that is represented by the first term
of (16). Thus, conservation of HL serves as a global measure of the ability of an algorithm to
resolve fine scales in velocity space. That this transference must take place for the linear VP
system was proven in Section IV of Ref. [38].

4.2 Nonlinear VP system

In this section, we consider the nonlinear VP system. As noted above, we benchmark the
solver against three test cases: the nonlinear Landau damping, two-stream instability, and an
external drive problem with dynamically accessible initial condition.

The n-th Log Fourier mode for the electric field E(x, t) [23] is defined as

logFMn(t) = log10

 1

L

√∣∣∣∣∫ L

0

E(x, t) sin(knx) dx

∣∣∣∣2 +

∣∣∣∣∫ L

0

E(x, t) cos(knx) dx

∣∣∣∣2
 .

We will use this quantity to plot data from our various runs.
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Nonlinear Landau damping

For this case we choose f0(x, v) = fM(v)(1 + A cos(kx)) with A = 0.5, k = 0.5, L = 4π, and
Vc = 6. We implement the scheme on a 100 × 200 mesh and integrate up to T = 100 using
three methods: P2, P2 with the positivity-preserving limiter, and Q2. In Figure 7, we plot
the evolution of the first four Log Fourier modes as a function of time. All three methods
give qualitatively similar results that compare well with other calculations in the literature.
We observe initial damping (until t ≈ 15), followed by exponential growth (until t ≈ 40), and
finally saturation of the modes. Note the predicted recurrence times TR for each of the modes
are as follows: for logFM1, TR = 209.44; for logFM2, TR = 104.72; for logFM3, TR = 69.81;
and for logFM4, TR = 52.36. Since the bounce time is about 40, we have some confidence that
the solution is resolved at least up u ntil nonlinearity becomes important. Although, the role
played by TR for the nonlinear evolution is not clear since nonlinearity could remove the fine
scales generated by linear phase mixing.

In Figure 8, we plot the conserved quantities of Section 2.2. The charge and momentum
are well conserved for all methods, while the enstrophy has decayed by about 15% at T = 100
for all three methods. This result agrees with our analysis in Section 2. We remark that
the limiter has an effect on charge conservation, due to its modification of the solution on
the boundary. The total energy is conserved much better without the positivity-preserving
limiter. When we use the limiter, the total energy grows by about 0.3% at T = 100.

Two-stream instability

For this case we choose f0(x, v) = fTS(v)(1 + A cos(kx)), where fTS(v) = 1√
2π
v2e−v

2/2, A =
0.05, k = 0.5, L = 4π, and Vc = 6. The mesh size we take is 100 × 200. In Figure 9, we
plot the evolution of conserved quantities. For this example, charge and momentum are well
conserved by all methods, so are not plotted. The enstrophy decays by about 4% at T = 100,
while the total energy is well conserved even with the limiter. The plots of the log Fourier
modes show an early exponential growth followed by oscillation. Figure 10 provides evidence
that the system has relaxed into a BGK mode. Here, the relation defined by the ordered pair
(ε = v2/2 + Φ(x, T ), f(x, v, t))) is plotted at various times t. The use of this kind of plot
as a diagnostic was first reported in [23] for electrostatic VP equations and later in [9] for
the gravitational VP equations. Here, the evolution clearly indicates convergence to a BGK
equilibrium.

Dynamically accessible excitations–KEEN waves

Motivated by experiments performed for understanding aspects of laser-plasma interaction
[33], several authors have considered numerical solution of the VP system with a transitory
external driving electric field (see, e.g., [1, 25] ), rather than just specifying an ad hoc initial
condition for f , as is usually done. Such drive generated initial conditions are examples of those
proposed and discussed in [36, 37, 38], where they were termed dynamically accessible (DA)
initial conditions. DA initial conditions are important because they have a Hamiltonian origin
and preserve phase space constraints. Moreover, since ultimately any perturbation of charged
particles within the confines of VP theory is in fact caused by an electric field, it is physically
very natural to consider DA initial conditions. We consider two numerical examples and
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compare our results with those of [1, 25], w here the authors observed saturation to nonlinear
traveling BGK-like states that they termed KEEN waves, standing for kinetic electrostatic
electron nonlinear waves. We note that the calculations of [1] were duplicated in [22] and
allied work was given in [46, 47].

Specifically, the system is driven by a single prescribed frequency and wavelength, where
the driven Vlasov equation,

ft + vfx − (E + Eext)fv = 0 ,

is solved. Here, Eext(x, t) = Ad(t) sin(kx − ωt) is the external field, where Ad is a temporal
envelope that is ramped up to a plateau and then ramped down to zero. For our two examples
we consider the following two ramping profiles:

AJd (t) =



Am sin(tπ/100) if 0 < t < 50

Am if 50 ≤ t < 150

Am cos
(
(t− 150)π/100

)
if 150 < t < 200

0 if 200 < t < T

, (17)

with Am = 0.052 as used in [25] and

AAd (t) =


Am

1
1+e−40(t−10) if 0 < t < 60

Am

(
1− 1

1+e−40(t−110)

)
if 60 ≤ t < T

, (18)

with Am = 0.4 as used in [1]. In practice, the system is initialized on f(0, x, v) = fM(v), then
ramped according to (17) or (18) to prepare the DA initial condition. The system is then
evolved after Eext is turned off and seen to approach asymptotic states. For both cases the
computational domain is of size [0, 2π/k]× [−8, 8], and we take k = 0.26 and ω = 0.37.

Following [25] with the drive AJd of (17) with Am = 0.4 we obtain for latter times a
translating BKG-like state, a snapshot of which is depicted in the phase space portrait of
Fig. 11. This structure moves through the spatial domain giving rise to the central periodic
electric field signal, E(0, t), depicted in Fig. 12. The period of this signal coincides with the
propagation speed of the BKG-like state, which in agreement with [25] is about 1.35. Figure
13 shows the first four Fourier modes and indicates saturation.

Next, we increase the drive to compare with results of [1]. With the stronger drive of AAd
with Am = 0.4, the system does not approach a uniformly translating state, but approaches
a structure with more complicated time dependence as seen in the phase contour plots of
Fig. 14. These figures are in good agreement with those of [1].

The electric field in the middle of the spatial domain, E(0, t), is plotted in Fig. 15, which
shows more complicated behavior, which surprisingly heretofore has not been plotted. In the
top part of this figure we see that there is regular periodic behavior at long times and from
the bottom part of the figure we see that there is period-4 modulation of a basic periodic
structure similar to that of Fig. 12. Closer examination of phase space plots shows that this
modulation is cause by the existence of additional smaller BGK-like structures. We note,
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that the existence of multiple BGK-like states is not new; for example, they were seen in the
simulations of [16]. Thus, we propose that KEEN waves can be interpreted as the interaction
of multiple BGK-states, which can also be interpreted as an infinite-dimensional version of
Lyapunov-Moser-Weinstein periodic orbits in Hamiltonian systems (see, e.g. [39]). This will
be the subject of a future publication, so we do not pursue it further here.

Finally, in Fig. 16 we see from the evolution of log Fourier modes. Prior to t = 10 the
solution remains roughly at Maxwellian equilibrium. However, at around t = 45 we can
observe the formation of the KEEN wave, which continues to execute the behavior of Fig. 15
well after the external field has been turned off at t=60. We see from this figure the effects of
mesh refinement and the use of different polynomial bases, as indicated in the figure.

5 Conclusion

In this paper, we considered the RKDG method for the VP system. We focused on two
common solution spaces, viz., those with Pl and Ql elements. Ignoring boundary contributions,
the scheme can preserve the charge and momentum, and maintain the total energy up to
approximation errors when the polynomial order l is taken big enough. However, when the
positivity-preserving limiter was used, some examples gave relatively large errors for the total
energy. A rigorous study of numerical recurrence was performed for the Ql elements, and the
eigenvalues of the amplification matrix were explicitly obtained. DG schemes of higher order
were shown numerically to give a recurrence time that is close to the classical calculation TR =

2π
k4v . The qualitative behaviors of the Pl and Ql spaces were similar for most computational

examples, except the linear energy HL was much better conserved using the Ql space. The
schemes were used to compute the test cases of Landau damping, the two-stream instability
and the KEEN wave, and results comparable to those in the literature were obtained.
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Figure 2: Computations of the advection equation for the polynomial spaces Q1 and Q2

showing local maxima of the density ρmax as a function of time. The mesh is 40 × 40 with
4x = π/10. For the Maxwellian equilibrium 4v = 1/4, while for the Lorentzian equilibrium
4v = 3/2.
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Figure 3: Computations of the advection equation for the polynomial spaces P1 and P2 showing
local maxima of the density ρmax as a function of time. The mesh is 40× 40 with 4x = π/10.
For the Maxwellian equilibrium 4v = 1/4, while for the Lorentzian equilibrium 4v = 3/2.
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Figure 4: Depiction of linear Landau damping showing recurrence in the maxima of the electric
field, Emax, as a function of time for various polynomial spaces.
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Figure 5: Evolution of the linear energy HL of (16) as a function of time, while the Vlasov
system undergoes linear Landau damping. Various polynomial spaces and mesh sizes were
used, as indicated.

Figure 6: Evolution of the electrostatic energy (red), linear energy (blue) and the first term
in the linear energy (green) as a function of time, while the Vlasov system undergoes linear
Landau damping. Here Q2 was used with a 80× 80 mesh.
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Figure 7: Evolution of the first four Log Fourier mode as a function of time for nonlinear
Landau damping. Various values of the numerical damping/growth rate are marked on the
graphs. Here the P2 space with the positivity-preserving limiter was used on a 100×200 mesh.
The predicted recurrence time TR for logFM1 is 209.44, for logFM2 is 104.72, for logFM3 is
69.81, and for logFM4 is 52.36.
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Figure 8: Evolution of conserved quantities as a function of time during the course of nonlinear
Landau damping for various computational methods. A mesh of 100× 200 was used.
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Figure 9: Depiction of the first four Log Fourier modes during the nonlinear evolution of the
two-stream instability. Also depicted is the evolution of energy and enstrophy as a function
of time for various methods.
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(a) t = 0 (b) t = 50

(c) t = 100 (d) t = 200

Figure 10: Plots of the distribution f(x, v, t) versus ε = v2

2
− Φ(x, t) for the two-stream

instability at the times t indicated, showing saturation to a BGK state. Here the P2 space
with the positivity-preserving limiter was used on a 100× 200 mesh.
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Figure 11: Phase space contour at T = 1000 for with DA initial condition with drive AJd .
The plot suggests saturation to a moving BGK-like state. Here the Q1 element was used on
a 200× 400 mesh.
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Figure 12: The electric field E(0,t) at the center of the spacial domain at late times for the
drive AJd . The periodicity matches the propagation of the BGK-like state through the domain.
Here the Q1 element was used on a 200× 400 mesh.
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Figure 13: The first four Log Fourier Modes for the drive AJd , indicating saturation. Here the
Q1 element was used on a 200× 400 mesh.
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(a) t = 0 (b) t = 15 (c) t = 30

(d) t = 45 (e) t = 60 (f) t = 90

(g) t = 105 (h) t = 120 (i) t = 135

(j) t = 160 (k) t = 225 (l) t = 300

Figure 14: Phase space contour plots for the KEEN wave at the times indicated. A large
amplitude drive of Am = 0.4 was used, along with the P2 basis and a positivity-preserving
limiter on a 200× 400 mesh.
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Figure 15: (top) The electric field E(0,t) at the center of the spacial domain at later times for
the drive AAd . The periodic structure is due to multiple interacting BGK-like states. (bottom)
Blow up indicating a period-4 modulation of a central hole such as that of Fig. 12). The
simulation was done with P2 elements with a limiter on a 200× 400 mesh.
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Figure 16: Evolution of the first four Log Fourier modes as a function of time for the drive of
Eq. (18). The simulation used P2 elements with a limiter on a 200× 400 mesh.
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