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Abstract. The solution of linear discrete ill-posed problems is very sensitive to perturbations
in the data. Confidence intervals for solution coordinates provide insight into the sensitivity. This
paper presents an efficient method for computing confidence intervals for large-scale linear discrete
ill-posed problems. The method is based on approximating the matrix in these problems by a partial
singular value decomposition of low rank. We investigate how to choose the rank. Our analysis also
yields novel approaches to the solution of linear discrete ill-posed problems with solution norm or
residual norm constraints.
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1. Introduction. We are concerned with the solution of least-squares problems

min
x∈Rn

‖Ax− b‖, A ∈ Rm×n, b ∈ Rm,(1.1)

with a large matrix, whose singular values “cluster” at the origin. Problems of this
kind are referred to as linear discrete ill-posed problems; they arise, for instance, from
the discretization of linear ill-posed problems, such as Fredholm integral equations of
the first kind. We assume for notational simplicity that m ≥ n; however, our analysis
and the methods described can after minor modifications also be applied when m < n.
The vector b represents available data, which are assumed to be contaminated by an
error e ∈ Rm that can be modeled as white Gaussian noise. Thus,

b = btrue + e,(1.2)

where btrue represents an unavailable error-free vector associated with b. The linear
system of equations with the (unknown) error-free right-hand side,

Ax = btrue,(1.3)

is assumed to be consistent. We would like to determine its solution xtrue of minimal
Euclidean norm by computing an approximate solution of the available least-squares
problem (1.1). However, due to the clustering of the singular values of A at the
origin, the solution of (1.1) is very sensitive to the error e in b. Let A† denote the
Moore-Penrose pseudoinverse of A. Then the solution of (1.1),

A†b = A†btrue +A†e = xtrue +A†e,(1.4)

generally is dominated by the term A†e. Therefore, straightforward solution of (1.1)
typically does not yield a meaningful approximation of xtrue.

To gain insight into the sensitivity of the solution of (1.1) to the error e, one
can determine confidence intervals for the solution coordinates. This can be done by
solving constrained minimization problems of the form

min
x∈Rn

wTx subject to ‖Ax− b‖ ≤ ε, ‖x− d‖ ≤ δ.(1.5)
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This minimization problem was first discussed by Eldén [5]. Throughout this paper
‖ · ‖ denotes the Euclidean vector norm or the associated induced matrix norm. The
parameter ε > 0 is an a priori upper bound for ‖e‖, holding with some level of
confidence. Such a bound is assumed to be available or computable; see Section 2
for comments on how this parameter can be determined from the distribution of e.
The vector d is an a priori estimate of the solution, and the parameter δ > 0 bounds
the deviation of d from xtrue. The vector w is an arbitrary unit vector. We are
particularly interested in the case w = ±ej , where ej = [0, . . . , 0, 1, 0, . . . , 0]T denotes
the jth axis vector. Solving (1.5) with w = ±ej yields a confidence interval for the
jth coordinate of the solution xtrue of (1.3). We are interested in the situation when
the matrix A is large and confidence intervals for many coordinates of xtrue are to be
computed.

Eldén [5] presented an efficient solution method for minimization problems (1.5)
of small size. This method transforms the problem into a nonlinear root-finding
problem involving a sequence of quadratically constrained least-squares problems.
We review Eldén’s solution method in Section 2. A minimization problem related
to (1.5) was previously discussed by O’Leary and Rust [18]. More recently, Eldén et
al. [6] described a method for the solution of large-scale problems (1.5) based on the
LSTRS algorithm, which is designed to solve the quadratic minimization problems
that arise in large-scale trust-region computations; see [19]. An approach to the
solution of large-scale problems (1.5), in which bounds for certain matrix functionals
are computed inexpensively by using the connection between the Lanczos process and
Gauss quadrature, is described in [15].

The computational effort required by the available solution methods for large-
scale problems (1.5) is proportional to the number of vectors w for which the problem
is to be solved. These methods therefore can be quite expensive to use when solutions
for many vectors w are desired, as is the case when confidence intervals for many
coordinates of the solution xtrue of (1.3) are to be determined.

This paper presents a new solution scheme that is well suited for large-scale
problems (1.5) when solutions for many vectors w are desired. We propose to first
approximate A by a matrix of low rank, using a partial singular value decomposition
(SVD). A simple iterative method for computing such a decomposition is presented in
Section 6. Using this low-rank approximation of A, a lower bound for the minimum
(1.5) can be computed quite inexpensively for each vector w; see Section 2 for details.
We first approximate A by a matrix of rank one. The rank is increased only when for
some quadratic minimization problem a specified error level cannot be guaranteed, as
described in Section 4.

The determination of a partial SVD of A also may be useful for the problem of
computing an approximate solution of the least-squares problem (1.1) by the use of
Tikhonov regularization, i.e., by solving a penalized least-squares problem of the form

min
x∈Rn

{
‖Ax− b‖2 + µ‖x‖2

}
,(1.6)

where µ > 0 is known as the regularization parameter. The solution method for
(1.5) described in Section 4 uses the connection between quadratically constrained
minimization problems and Tikhonov regularization. We also consider the situation
when the value of µ is determined by the discrepancy principle, and illustrate that a
hybrid method combining low-rank approximation of A with Tikhonov regularization
can give higher accuracy than straightforward solution of (1.1) by truncated SVD
(TSVD). Bounds are provided for the norm of the difference between the exact solution
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of (1.6) and the approximate solution determined by our hybrid method.
This paper is organized as follows. Section 2 reviews the approach by Eldén [5]

for the solution of small-scale minimization problems (1.5) and describes how to apply
the method to large-scale problems by first replacing a large matrix A by a partial
SVD of low rank. In Section 3 we bound the error in certain functionals caused by
replacing the matrix A by a partial SVD in Tikhonov regularization, and Section 4
uses this analysis to derive a criterion for choosing the rank of the partial SVD of A
in the context of a constrained least-squares problem. This provides the theoretical
foundation of our solution method for (1.5). Section 5 presents a similar analysis
when the discrepancy principle is used to determine the parameter µ in Tikhonov
regularization (1.6), and Section 6 describes a few computed examples. Concluding
remarks can be found in Section 7.

2. Eldén’s method. We outline the method proposed by Eldén [5] for the solu-
tion of minimization problems of the form (1.5), after first commenting on the choice
of the parameter ε. Ideally, this parameter would represent a fairly tight bound for
the norm of the error e in b, i.e.,

‖e‖ ≤ ε.(2.1)

However, in applications such a bound might not be explicitly known. A typical
assumption is that the error e is random in nature. If available, knowledge of the dis-
tribution of the error can be used to determine a bound (2.1) holding with probability
p, where 0 < p < 1 is a confidence level specified by the user. For instance, if the
coordinates of e are independent, normally distributed random variables with mean
0 and variance σ2 (i.e., btrue has been corrupted by white Gaussian noise), then the
random variable ‖e‖2/σ2 belongs to the χ2 distribution with m degrees of freedom.
We therefore choose ε so that ∫ ε2/σ2

0

χ2
m(ρ)dρ = p(2.2)

holds, where χ2
m is the probability density function for the χ2 distribution with m

degrees of freedom. Assuming also that an upper bound δ for ‖xtrue − d‖ is available
(for simplicity, holding with probability 1), solving (1.5) with w = ±ej provides a
confidence interval for the jth coordinate of xtrue, holding with probability p; see
[18, 5, 6] for further discussions on this topic.

Eldén [5] transformed the minimization problem (1.5) into an equivalent problem
involving the solution of a nonlinear equation as follows. The minimum value θ :=
wTx attained in (1.5) is the smallest zero of the nonlinear function

f(θ) := L(θ)− ε2(2.3)

in the interval [θ∗, θ∗] := [wTd− δ,wTd + δ], where L is defined by

L(θ) := min
x∈Rn

‖Ax− b‖2 subject to ‖x− d‖ = δ, wTx = θ.

This result assumes that both constraints in (1.5) are “active” at the solution, i.e.,
that equality holds in both of the inequalities; otherwise the analysis and solution
of the problem are easier; see [5, 6] for details. Eldén determined the smallest zero
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of the function (2.3) by iterating in θ with a zero-finder, after making the following
simplifications. The substitution x′ = x− d yields the equivalent problem

L(θ) = min
x′∈Rn

‖Ax′ − b′‖2 subject to ‖x′‖ = δ, wTx′ = θ′,

where

b′ := b−Ad, θ′ := θ −wTd.

The linear constraint is eliminated with the substitution

x′ = θ′w +Hy,

where Q = [w, H] is an orthogonal matrix, which can be chosen to be a Householder
reflector. This yields the equivalent problem

L(θ) = min
y∈Rn−1

‖Āy − b̄‖2 subject to ‖y‖ = δ̄.(2.4)

where

Ā := AH,

b̄ := b′ − θ′Aw,

δ̄ :=
√
δ2 − (θ′)2.

To apply the techniques of Sections 3 and 4 to the problem (2.4), we would
like to be able to cheaply determine a partial SVD for each matrix Ā from one for A.
However, in general a partial SVD for a product of two matrices cannot be determined
from a partial SVD of each factor in a simple way. We therefore propose to remove
the matrix H from (2.4), and consider instead the function

L̃(θ) := min
y∈Rn

‖Ay − b̄‖2 subject to ‖y‖ = δ̄.(2.5)

Notice that the minimization problem (2.4) can be obtained by appending the min-
imization problem (2.5) with the additional constraint that y be in the range of H.
Since the residual ‖Ay − b̄‖ is minimized over a larger subset when solving (2.5), it
follows that for a given value of θ, the minimum attained in (2.5) cannot exceed the
minimum attained in (2.4); that is, L̃(θ) ≤ L(θ) for all values of θ. Recall that the
function L was shown to be continuous and convex in [6]. Moreover, as described
in [6], in the case of interest (when equality holds in both constraints for the x that
minimizes (1.5)), we have L(θ∗)−ε2 > 0. Thus, in the case of interest, L is decreasing
on the interval (θ∗, θzero), where θzero denotes the smallest zero of (2.3), or equivalently
the minimum value attained in (1.5). Assuming in addition that L̃(θ∗)−ε2 > 0 (which
holds in all examples discussed in Section 6), since L̃ is continuous and L̃ ≤ L, the
minimal zero θ̃zero of

f̃(θ) := L̃(θ)− ε2(2.6)

is a lower bound for θzero. Thus, in order to be able to utilize a partial SVD of A,
we compute a lower bound for the minimum attained in (1.5). In the context of
computing confidence intervals for components of a linear discrete ill-posed problem
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(1.1), elimination of H (that is, use of θ̃zero in place of θzero) results in potentially
looser bounds. We illustrate in Section 6 that for many problems, the elimination of
H only has a small impact on the quality of the computed bounds.

When L̃(θ∗) − ε2 > 0, since L̃ is continuous and convex (as shown for L in [6]),
assuming the existence of at least one zero of the function (2.6), application of the
secant method with initial approximate solutions θ0 and θ1 such that θ∗ = θ0 < θ1 �
θ∗ produces a sequence of iterates θi, i = 2, 3, . . ., that converge monotonically to the
smallest zero of f̃ , assuming that L̃ is evaluated exactly. Iteration is terminated when
an approximation of the smallest zero has been determined with sufficient accuracy,
i.e., as soon as ∣∣∣f̃(θi)

∣∣∣ < τε2(2.7)

holds for a user-specified parameter τ . We used τ = 0.1 in the computed examples
reported in Section 6.

Eldén [5] relies on complete factorization of A, affording very efficient solution of
the constrained least-squares problems (2.4). We are interested in the case when A
is so large that complete factorization is not feasible, and therefore propose to solve
each problem (2.4) arising in the solution of (1.5) by first replacing A by a partial
SVD of low rank. A simple iterative method for computing such a decomposition is
presented in Section 6. Other methods for computing a partial SVD are described in,
e.g., [1, 2, 12]. All these methods use A and AT only for the evaluation of matrix-
vector products. The solution of (1.5) for different vectors w does not require further
evaluations of matrix-vector products with A and AT if a partial SVD of sufficiently
high rank is available.

3. Truncation of Tikhonov regularization. The SVD of A is a factorization

A = UΣV T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and Σ is the, possibly
rectangular, diagonal matrix

Σ = diag[σ1, σ2, . . . , σn] ∈ Rm×n.

The diagonal entries σj , known as the singular values of A, are nonnegative and
decreasing as a function of their index. The rank-` partial SVD of A is defined as

A` := U`Σ`V T` ,(3.1)

where Σ` is the `× ` leading principal submatrix of Σ, and U` ∈ Rm×` and V` ∈ Rn×`
consist of the first ` columns of the matrices U and V , respectively. In our applications,
` is fairly small, and much smaller than m and n.

The normal equations associated with the Tikhonov minimization problem (1.6)
are given by (

ATA+ µI
)
x = AT b,(3.2)

where I denotes the identity matrix. Let, for µ > 0, the vector xµ be the unique
solution of (3.2) (and of (1.6)), and introduce the functions

ϕ(µ) := ‖xµ‖2,(3.3)
ψ(µ) := ‖Axµ − b‖2.(3.4)
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Replacing the matrix A in (1.6) by its rank-` approximant A` gives, analogously
to (3.2), (

(A`)
T
A` + µI

)
x = (A`)

T
b.(3.5)

We denote the solution of (3.5) for µ > 0 by x
(`)
µ and introduce the functions

ϕ`(µ) := ‖x(`)
µ ‖2 and ψ`(µ) := ‖A`x(`)

µ − b‖2.

Defining fµ(t) := t/(t+ µ)2 and inserting the SVD of A into (3.2) yields

ϕ(µ) =
(
AT b

)T (
ATA+ µI

)−2 (
AT b

)
(3.6)

=
(
UT b

)T
Σ
(
ΣTΣ + µI

)−2
ΣT
(
UT b

)
=

n∑
i=1

fµ(σ2
i )
(
uTi b

)2
.

Similarly, we obtain

ϕ`(µ) =
∑̀
i=1

fµ(σ2
i )
(
uTi b

)2
.(3.7)

For t > 0 and fixed µ > 0, we have f ′µ(t) = (µ − t)/(t + µ)3. Therefore, the
maximum value of fµ occurs at the point (µ, 1/(4µ)). Moreover, fµ is increasing for
t < µ and decreasing for t > µ. It follows that for `+ 1 ≤ i ≤ n, we have

fµ
(
σ2
i

)
≤ fµ,` := max

0≤x≤σ2
`

fµ(x) =
{ 1

4µ , σ2
` ≥ µ,

fµ
(
σ2
`

)
, σ2

` < µ.

Hence, the error ϕ(µ)− ϕ`(µ) satisfies

ϕ(µ)− ϕ`(µ) =
n∑

i=`+1

fµ(σ2
i )
(
uTi b

)2
≤ fµ,`

(
‖b‖2 −

∑̀
i=1

(
uTi b

)2)
=: E(`)

ϕ (µ).

(3.8)

By equations (3.6) and (3.7), we have ϕ`(µ) ≤ ϕ(µ), so that

ϕ−` (µ) := ϕ`(µ) ≤ ϕ(µ) ≤ ϕ`(µ) + E(`)
ϕ (µ) =: ϕ+

` (µ).(3.9)

Theorem 3.1. Let ϕ−` and ϕ+
` be as defined in (3.9). Then

ϕ−` (µ) ≤ ϕ−`+1(µ) ≤ ϕ(µ) ≤ ϕ+
`+1(µ) ≤ ϕ+

` (µ)

holds for all µ > 0 and ` ≥ 1.
Proof. It is clear from the representations (3.6) and (3.7) that

ϕ−` (µ) ≤ ϕ−`+1(µ) ≤ ϕ(µ)(3.10)
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holds for all ` ≥ 1 and µ > 0, where both inequalities are generically strict. Writing

ϕ+
` (µ) =

∑̀
i=1

fµ(σ2
i )
(
uTi b

)2
+ fµ,`

(
‖b‖2 −

∑̀
i=1

(
uTi b

)2)
,

the difference ϕ+
`+1(µ)− ϕ+

` (µ) satisfies

ϕ+
`+1(µ)− ϕ+

` (µ) =
(
fµ(σ2

`+1)− fµ,`
) (

uT`+1b
)2

+ (fµ,`+1 − fµ,`)

(
‖b‖2 −

`+1∑
i=1

(
uTi b

)2) ≤ 0,

so that, analogous to (3.10),

ϕ(µ) ≤ ϕ+
`+1(µ) ≤ ϕ+

` (µ)(3.11)

holds for all ` ≥ 1 and µ > 0, where both inequalities are generically strict.
A representation for ψ analogous to (3.6) is given by

ψ(µ) =
(
A(ATA+ µI)−1AT b− b

)T (
A(ATA+ µI)−1AT b− b

)
(3.12)

= µ2bT (AAT + µI)−2b

= µ2
(
UT b

)T
(ΣΣT + µI)−2

(
UT b

)
=

n∑
i=1

µ2

(σ2
i + µ)2

(
uTi b

)2
+

(
‖b‖2 −

n∑
i=1

(
uTi b

)2)

= ‖b‖2 +
n∑
i=1

(
µ2

(σ2
i + µ)2

− 1

)(
uTi b

)2
,

where we have used the identity

I −A(ATA+ µI)−1AT = µ(AAT + µI)−1,(3.13)

which can be shown, e.g., by multiplying (3.13) by AAT + µI. Similarly, we have

ψ`(µ) = ‖b‖2 +
∑̀
i=1

(
µ2

(σ2
i + µ)2

− 1

)(
uTi b

)2
(3.14)

and, therefore,

ψ`(µ)− ψ(µ) =
n∑

i=`+1

(
1− µ2

(σ2
i + µ)2

)(
uTi b

)2
≤

(
1− µ2

(σ2
` + µ)2

)(
‖b‖2 −

∑̀
i=1

(
uTi b

)2)
=: E(`)

ψ (µ).

This bound easily can be evaluated when the partial SVD of A (3.1) is available. The
sharper bound that would be obtained by replacing σ` by σ`+1 in E

(`)
ψ (µ) cannot be

computed without increasing ` in (3.1). We therefore do not use the latter.
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It follows from (3.12) and (3.14) that ψ`(µ) ≥ ψ(µ). Therefore,

ψ−` (µ) := ψ`(µ)− E(`)
ψ (µ) ≤ ψ(µ) ≤ ψ`(µ) =: ψ+

` (µ).(3.15)

Analogously to Theorem 3.1, we have the following result.
Theorem 3.2. Let ψ−` and ψ+

` be as defined in (3.15). Then

ψ−` (µ) ≤ ψ−`+1(µ) ≤ ψ(µ) ≤ ψ+
`+1(µ) ≤ ψ+

` (µ)

holds for all µ > 0 and ` ≥ 1.
Proof. It follows from the representations (3.12) and (3.14) that

ψ(µ) ≤ ψ+
`+1(µ) ≤ ψ+

` (µ)(3.16)

holds for all ` ≥ 1 and µ > 0, and similarly one can show that

ψ−` (µ) ≤ ψ−`+1(µ) ≤ ψ(µ).(3.17)

Again, all inequalities in (3.16) and (3.17) are generically strict.

4. Constrained minimization. We are interested in the solution of constrained
least-squares problems of the form

min
x∈Rn

‖Ax− b‖2 subject to ‖x‖ = δ,(4.1)

because they arise in the evaluation of L̃(θ) when b = b̄; cf. (2.5). It is easy to
show, e.g., by using a Lagrange multiplier, that the Tikhonov minimization problem
(1.6) for a suitable finite value of the regularization parameter µ = µδ > 0 yields
the solution xµδ of (4.1). Therefore, the constrained least-squares problem (4.1) is
equivalent to the nonlinear equation

ϕ(µ) = δ2,(4.2)

where ϕ is defined by (3.3). We also note that the minimization problem (4.1) is
closely related to the trust-region subproblem that arises in optimization methods;
see, e.g., [16, 19] for discussions of the latter.

The function ϕ is expensive to evaluate when the matrix A is large. Therefore,
we instead calculate ϕ−` for one or a few small values of `. We begin with ` = 1, and
increase ` only when necessary. In this section, the primary goal when solving (4.1)
is to evaluate ψ(µδ), since this is precisely the value of L̃(θ) in (2.5) when b = b̄.
We seek to bracket the solution µδ of (4.2), thereby bracketing ψ(µδ). This can be
accomplished as follows. We first determine approximations of the solutions µ−` and
µ+
` , respectively, of the equations

ϕ−` (µ) = δ2,(4.3)
ϕ+
` (µ) = δ2.(4.4)

From (3.7), (3.8), and (3.9), it follows that both ϕ−` (µ) and ϕ+
` (µ) are decreasing

functions of µ > 0. Therefore, since ϕ−` ≤ ϕ ≤ ϕ
+
` , we conclude that

µ−` ≤ µδ ≤ µ
+
` .(4.5)
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Moreover, since ϕ−` (µ) and ϕ+
` (µ) are continuous for µ > 0, the equations (4.3)-(4.4)

have unique bounded solutions whenever the inequalities

0 = lim
µ→∞

ϕ−` (µ) < δ2 < lim
µ→0

ϕ−` (µ) = ϕ−` (0),(4.6)

0 = lim
µ→∞

ϕ+
` (µ) < δ2 < lim

µ→0
ϕ+
` (µ) =∞(4.7)

hold. We begin by ensuring that the last inequality of (4.6) is valid by increasing ` if
necessary. The inequality

‖A†b‖ > δ.(4.8)

may be assumed to hold, because we will choose δ to be of the order ‖xtrue‖, while
‖A†b‖ typically is much larger; see the discussion following (1.4). Note that ϕ(0) =
‖A†b‖2. Since ϕ−` (0) = ϕ`(0) → ϕ(0) as ` increases, by (4.8) the last inequality of
(4.6) holds for all sufficiently large `. The inequalities (4.7) hold whenever 0 < δ <∞.

Since ϕ−` is decreasing and convex, application of Newton’s method or the zero-
finder discussed by Golub and von Matt [8, equation (74)] with an initial iterate
µ−`,0 < µ−` will produce a sequence of iterates µ−`,j , j = 1, 2, 3, . . . , that converge to
µ−` and satisfy

µ−`,0 ≤ µ
−
`,1 ≤ · · · ≤ µ

−
` .(4.9)

We terminate the iterations as soon as for some q = q` the inequality

ϕ−` (µ−`,q)− δ2

δ2
< ν(4.10)

holds for a user-specified parameter 0 < ν � 1. In the examples reported in Section
6, we let ν = 1× 10−5 and use the initial iterate µ−`0,0 := 0, where `0 is the first value
of ` for which both (4.6) and (4.7) hold. For ` > `0, we define µ−`,0 := µ−`−1,q. This
ensures that µ−`,0 ≤ µ

−
` by (3.10).

We turn to the solution of equation (4.4) and employ the monotonically and
quadratically convergent zero-finder described by Golub and von Matt [8, equations
(75)-(78)] with an initial iterate µ+

`,0 > µ+
` to obtain a sequence of iterates µ+

`,j ,
j = 1, 2, 3, . . . , that converge to µ+

` and satisfy

µ+
` ≤ · · · ≤ µ

+
`,1 ≤ µ

+
`,0.(4.11)

Iteration is terminated as soon as for some q the inequality

δ2 − ϕ+
` (µ+

`,q)
δ2

< ν(4.12)

holds. We choose an arbitrary initial iterate µ+
`0,0

such that ϕ+
` (µ+

`0,0
) < δ2. For

` > `0, we define µ+
`,0 := µ+

`−1,q. Then µ+
`,0 ≥ µ

+
` by (3.11).

It is clear from the representation (3.12) that the function ψ is increasing for
µ > 0. Therefore, it follows from (4.5) that ψ(µ−` ) ≤ ψ(µδ) ≤ ψ(µ+

` ). Moreover, by
(4.9) and (4.11), we have

ψ−` (µ−`,j) ≤ ψ(µ−`,j) ≤ ψ(µδ) ≤ ψ(µ+
`,j) ≤ ψ

+
` (µ+

`,j).
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Letting γ represent the maximum allowable relative error in the computed value
of ψ(µδ) (i.e., of L̃(θ)), we require

ψ+
` (µ+

`,q)− ψ
−
` (µ−`,q)

2ψ−` (µ−`,q)
< γ.(4.13)

We accept the approximation ψ(µδ) ≈ (ψ−` (µ−`,q) + ψ+
` (µ+

`,q))/2 when the inequality
(4.13) holds; otherwise we increase ` and repeat the above process. The inequality
(4.13) trivially holds for ` = n, at least for sufficiently small ν. In the case of interest,
i.e., when the matrix A and vector b have the properties described following (1.1), the
inequality (4.13) typically holds for some ` � n for reasonable values of γ. We use
γ = 0.01 in the examples reported in Section 6. The following algorithm summarizes
the computations.

Algorithm 4.1 (Solution of the minimization problem (1.5)).
Transform the problem (1.5) to (2.5);
` := `0 − 1;
while (4.10) does not hold do

` := `+ 1; Solve equation (4.3) for µ−`,q;
end while
` := `− 1;
while (4.12) does not hold do

` := `+ 1; Solve equation (4.4) for µ+
`,q;

end while
` := `− 1;
while (4.13) does not hold do

` := `+ 1; Solve equations (4.3) and (4.4) for µ−`,q and µ+
`,q, respectively;

end while 2

The average (ψ−` (µ−`,q) +ψ+
` (µ+

`,q))/2 furnished by the algorithm is our computed
approximation of (2.5).

5. Application of the discrepancy principle. This section is concerned with
the computation of an approximate solution of (1.4) using the discrepancy principle to
determine a suitable value of the regularization parameter in Tikhonov regularization.
The discrepancy principle can be applied when a bound (2.1) of the error in the data
b is available or can be estimated, e.g., by using (2.2). The discrepancy principle
prescribes that the regularization parameter µ > 0 in (1.6) be determined so that

ψ(µ) = α2ε2,(5.1)

where ψ is defined by (3.4) and α > 1 is a constant independent of ε. Thus, we require
the solution xµ of the Tikhonov minimization problem (1.6) to satisfy ‖Axµ−b‖ = αε.
Let µε denote the solution of (5.1). One can show that xµε → xtrue as ε↘ 0; see, e.g.,
[7, 14] for proofs in Hilbert space settings. The parameter α can be chosen arbitrarily
close to unity in these proofs. We set α = 1 in the computed examples as well as in the
remainder of this section. Perhaps a more intuitive motivation for the discrepancy
principle is the following. By premise, xtrue satisfies ‖Axtrue − b‖ = ‖btrue − b‖ =
‖e‖ ≤ ε. The discrepancy principle dictates use of the largest value of µ such that
‖Axµ− b‖ ≤ ε or, equivalently, the solution of the best conditioned problem (3.2) for
which this inequality holds.
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The function ψ is expensive to evaluate when the matrix A is large. Similarly as
in the previous section, we therefore replace A by a partial singular value decompo-
sition A` of low rank `. Hence, we apply the discrepancy principle to the Tikhonov
minimization problem (1.6) with the matrix A replaced by A`, i.e., we solve (3.5).
We refer to this as the Truncated Tikhonov (TT) method. The TT method provides
an alternative to the approximate solution of (1.1) by TSVD [7, 10], as well as to the
approximate solution of the Tikhonov minimization problem (1.6) by partial Lanczos
bidiagonalization of A; see, e.g., [4, 9]. The TT method can be cheaper to apply than
the latter scheme when the Tikhonov minimization problem (1.6) has to be solved
for many data vectors b. Moreover, the TT method yields, on the average, somewhat
more accurate approximations of xtrue than the TSVD method. This is illustrated in
Section 6. Further comments on the TSVD can be found at the end of this section.

We approximate the function ψ by ψ+
` and ψ−` similarly as in Section 4, and

start with ` = 1. The rank ` of A` is increased only if necessary. We seek to bracket
the solution µε of (5.1) in order to be able to bound the error in the computed
approximation of the solution xµε of (1.6) with µ = µε. Note that differently from
ϕ, the function ψ is not convex. This potentially makes the computation of the root
of (5.1) complicated, because root-finders for non-convex functions generally have to
be safeguarded, while this may not be required for root-finders for decreasing convex
functions. For instance, Newton’s method does not have to be safeguarded when
applied to such a function with a suitable initial iterate. We therefore make the
substitution λ := 1/µ and introduce

Ψ(λ) := ψ(1/λ) = ‖b‖2 +
n∑
i=1

(
1

(λσ2
i + 1)2

− 1

)(
uTi b

)2
,

Ψ+
` (λ) := ψ+

` (1/λ) = ‖b‖2 +
∑̀
i=1

(
1

(λσ2
i + 1)2

− 1

)(
uTi b

)2
,

Ψ−` (λ) := ψ−` (1/λ) = ‖b‖2 +
∑̀
i=1

(
1

(λσ2
i + 1)2

− 1

)(
uTi b

)2
−

(
1− 1

(λσ2
` + 1)2

)(
‖b‖2 −

∑̀
i=1

(
uTi b

)2)

=
1

(λσ2
` + 1)2

(
‖b‖2 −

∑̀
i=1

(
uTi b

)2)
+
∑̀
i=1

(
uTi b

)2
(λσ2

i + 1)2
.

All three of these functions are decreasing and convex. We first approximate the
solutions λ−` and λ+

` , respectively, of the equations

Ψ−` (λ) = ε2,
Ψ+
` (λ) = ε2,

which have unique bounded solutions whenever the inequalities

0 = lim
λ→∞

Ψ−` (λ) < ε2 < Ψ−` (0) = ‖b‖2,(5.2)

‖b‖2 −
∑̀
i=1

(
uTi b

)2
= lim
λ→∞

Ψ+
` (λ) < ε2 < Ψ+

` (0) = ‖b‖2(5.3)
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hold. We ensure that the inequalities (5.2) and (5.3) hold by increasing ` if needed.
One may reasonably assume that ‖e‖ < ‖b‖, in which case ε2 < ‖b‖2 holds and the
inequalities (5.2) are valid for all ε > 0 sufficiently close to ‖e‖. Let r denote the rank
of A. By assumption, btrue is in the range of A, or equivalently in the span of the first
r left singular vectors ui of A. Using (1.2), we obtain for ` sufficiently large that√

‖b‖2 −
∑`
i=1

(
uTi b

)2 = ‖(I − U`UT` )b‖

≤ ‖(I − U`UT` )btrue‖+ ‖(I − U`UT` )e‖ < ‖e‖,

where the last inequality holds with probability 1. To see this, first note that ‖(I −
U`U

T
` )btrue‖ vanishes for ` ≥ r. Moreover, since e is assumed to represent white

Gaussian noise, we have

uTi e 6= 0, 1 ≤ i ≤ `,

with probability 1. Therefore, when ε > 0 is sufficiently close to ‖e‖, there exists
(with probability 1) some ` ≤ r for which the inequality (5.3) holds. In fact, the
smallest ` for which (5.3) holds is the number of singular triplets (σi,ui,vi) required
by the TSVD when determining the truncation index by the discrepancy principle.
This method is discussed at the end of this section. As illustrated in Section 6, for
the problems of interest described following (1.1), the left inequality (5.3) typically
holds already for some `� r when ε is close to ‖e‖.

Because Ψ−` ≤ Ψ ≤ Ψ+
` and all three functions are decreasing for λ > 0, it follows

that λ−` ≤ λε ≤ λ+
` , where λε solves Ψ(λε) = ε2; equivalently, λε = 1/µε. In view

of that Ψ−` is convex, application of Newton’s method or the zero-finder discussed by
Golub and von Matt [8, equation (74)] with any initial iterate λ−`,0 < λ−` will produce
a sequence of iterates λ−`,j , j = 1, 2, 3, . . . , that converge to λ−` and satisfy

λ−`,0 ≤ λ
−
`,1 ≤ · · · ≤ λ

−
` .

We terminate the iterations as soon as for some q = q` the inequality

Ψ−` (λ−`,q)− ε2

ε2
< ν

holds, where 0 < ν � 1 is a user-specified parameter. This yields the upper bound
µ̂+
` := λ−`,q for µε. The initial iterate is chosen as λ−`0,0 := 0, where `0 is the smallest

value of ` such that both (5.2) and (5.3) are satisfied. For ` > `0, we let λ−`,0 := λ−`−1,q.
This ensures that λ−`,0 ≤ λ

−
` by (3.17).

Next we employ the monotonically and quadratically convergent zero-finder de-
scribed by Golub and von Matt [8, equations (75)-(78)] with an initial iterate λ+

`,0 > λ+
`

to obtain a sequence λ+
`,j , j = 1, 2, 3, . . . , that converges to λ+

` and satisfies

λ+
` ≤ · · · ≤ λ

+
`,1 ≤ λ

+
`,0.

Iteration is terminated as soon as the inequality

ε2 −Ψ+
` (λ+

`,q)
ε2

< ν

12



holds for some q, and we let µ̂−` := λ+
`,q (as this is a lower bound for µε). The initial

iterate λ+
`0,0

is chosen so that Ψ+
` (λ+

`0,0
) < ε2 holds. For ` > `0, we let λ+

`,0 := λ+
`−1,q,

which ensures that λ+
`,0 ≥ λ

+
` by (3.16).

Let γ represent the maximum allowable relative error in the computed approxi-
mation of xµε . Defining

µ(`)
ε :=

µ̂−` + µ̂+
`

2
,

we seek an upper bound for the error ‖x(`)

µ
(`)
ε

− xµε‖. This can be accomplished via∥∥∥x(`)

µ
(`)
ε

− xµε

∥∥∥ ≤ ∥∥∥x(`)

µ
(`)
ε

− x(`)
µε

∥∥∥+
∥∥∥x(`)

µε − xµε

∥∥∥ ,(5.4)

using the bound∥∥∥x(`)

µ
(`)
ε

− x(`)
µε

∥∥∥ ≤ max
{∥∥∥x(`)

µ̂+
`

− x
(`)

µ
(`)
ε

∥∥∥ ,∥∥∥x(`)

µ
(`)
ε

− x
(`)

µ̂−`

∥∥∥}(5.5)

and, following (3.8),∥∥∥x(`)
µε − xµε

∥∥∥2

= ϕ(µε)− ϕ`(µε)

=
n∑

i=`+1

fµε(σ
2
i )
(
uTi b

)2
≤

n∑
i=`+1

fµ̂−`
(σ2
i )
(
uTi b

)2
≤ fµ̂−` ,`

(
‖b‖2 −

∑̀
i=1

(
uTi b

)2)
.(5.6)

When the bounds (5.4), (5.5), and (5.6) together imply the last inequality of∥∥∥x(`)

µ
(`)
ε

− xµε

∥∥∥
‖xµε‖

≤

∥∥∥x(`)

µ
(`)
ε

− xµε

∥∥∥
‖xµ̂+

`
‖

≤ γ,

we accept x
(`)

µ
(`)
ε

as our approximation of xµε .
The TT method described above applies the discrepancy principle to Tikhonov

regularization by using a low-rank partial SVD of A. This method is an alternative to
applying the discrepancy principle in conjunction with the TSVD [7, 10]. The latter
method seeks an approximate solution of (1.1) of the form

x` :=
∑̀
i=1

uTi b

σi
vi,

where ` is chosen as small as possible so that ‖Ax` − b‖ < ε holds. We will refer
to this method as “TSVD discrepancy” for conciseness. The numerical examples of
Section 6 demonstrate that for some problems, the TT method yields a more accurate
approximation of xtrue than TSVD discrepancy.
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We applied the zero-finders described by Golub and von Matt [8] in this and
the previous sections. Zero-finders also are discussed by Moré and Sorensen [16] and
Morozov [17, Section 26]. When ` is not large, which is the situation of interest, the
computational effort required by the zero-finder is insignificant. We therefore do not
dwell on the choice of zero-finder further.

This section focused on the use of the discrepancy principle for determining a
value of the regularization parameter, because the discrepancy principle often yields
a suitable value. However, partial singular value decomposition of the matrix A also
can be used in conjunction with other methods for determining the regularization
parameter, such as the L-curve criterion, generalized cross validation, and the quasi-
optimality principle; see [7, 10, 13] for discussions on properties of these methods.

6. Numerical examples. The computed examples of this section illustrate the
performance of the methods described in Sections 4 and 5. All numerical experiments
were conducted in MATLAB R2011a with εmachine = 2.22×10−16. We consider 6 linear
discrete ill-posed problems that arise from the discretization of Fredholm integral
equations of the first kind with a smooth kernel. All problems were generated by the
functions baart, shaw, deriv2, phillips, foxgood, and heat from the MATLAB package
Regularization Tools by Hansen [11]. Each function was used to determine a matrix
A ∈ R1024×1024 and the desired solution xtrue. We let btrue := Axtrue and generated an
“error vector” e with normally distributed random entries with zero mean, scaled to
correspond to a prescribed relative error ‖e‖/‖btrue‖. The contaminated data vector
b was determined using (1.2).

Each partial SVD was computed with the aid of a simple algorithm based on
partial Lanczos bidiagonalization. Application of k steps of partial Lanczos bidi-
agonalization to the matrix A with random initial unit vector p1 ∈ Rn yields the
decompositions

APk = QkBk,
ATQk = PkB

T
k + rke

T
k ,

(6.1)

where Pk ∈ Rn×k satisfies PTk Pk = I, Qk ∈ Rm×k satisfies QTkQk = I, Pke1 = p1,
PTk rk = 0, and Bk ∈ Rk×k is upper bidiagonal. Reorthogonalization was used when
computing the columns of Pk and Qk. We assume for notational simplicity that no
breakdown occurs, i.e., that all diagonal and superdiagonal entries of Bk are non-zero;
see, e.g., [3] for further discussion on Lanczos bidiagonalization, and [1, 2] for more
details on the application of Lanczos bidiagonalization to the computation of singular
triplets. From (6.1) it follows that

ATAPk = PkB
T
k Bk + scalar · rkeTk ≈ PkB

T
k Bk,

AATQk = QkBkB
T
k +Arke

T
k ≈ QkBkB

T
k .

Let

Bk = ÛkΣ̂kV̂ Tk

be an SVD of Bk, where Σ̂k = diag[σ̂(k)
1 , . . . , σ̂

(k)
k ]. We use σ̃(k)

i := σ̂
(k)
i , 1 ≤ i ≤ `, as

approximations of the first ` singular values of A, provided that they do not change
much with k; see below. The corresponding approximate left and right singular vectors
ũ

(k)
i and ṽ

(k)
i of A are given by the ith columns of QkÛk and PkV̂k, respectively, for

i = 1, 2, . . . , `. If approximations of ` singular triplets (σi,ui,vi) are required, then k
14



is increased until (for some k ≥ `) the relative change in each of the ` first approximate
singular values σ̃(k)

i of A satisfies

|σ̃(k)
i − σ̃

(k−1)
i |

σ̃
(k)
i

< tol, 1 ≤ i ≤ `.

For all examples in this paper, we use tol = 1× 10−6.
This way of computing singular triplets is well-suited for problems in which the

number, `, of desired triplets is increased incrementally, as in the methods of Sections
4 and 5; see Table 6.1 for details regarding the computational expense and accuracy.
In order for the above method to be successful, the components vTi p1, 1 ≤ i ≤ k,
of the initial vector p1 must be sufficiently large in magnitude. In practice, random
initial vectors p1 for which the algorithm performs poorly are exceedingly rare. Each
result of Table 6.1 was computed using a different random initial vector.

Problem ` MVP MRE
baart 5 13 0
shaw 10 25 5.03e− 11
deriv2 43 123 4.59e− 07
phillips 16 53 1.36e− 11
foxgood 5 15 2.44e− 08
heat 49 121 1.52e− 09

Table 6.1
For each rank-` partial SVD reported in Table 6.7, the number of required matrix-vector products

(MVP) with either A or AT and the maximum relative error (MRE) over all computed singular
values for the algorithm described above.

6.1. Confidence intervals and constrained minimization. We begin with a
numerical example that exhibits the performance of the method described in Section 2
in the context of computing confidence intervals for components of the solution xtrue

of (1.1). Each problem (2.5) that arises when solving (2.6) in order to compute a
lower bound for the minimum attained in (1.5) is solved using the method described
in Section 4.

For each one of the 6 discrete ill-posed problems considered, bounds are computed
for 16 equally spaced coordinates of the solution, by computing a lower bound for the
minimum attained in (1.5), via solution of (2.6), with d = 0, δ = ‖xtrue‖, ε = ‖e‖,
and w = ±e64i for i = 1, 2, . . . , 16. In each case, the error is scaled to satisfy
‖e‖/‖btrue‖ = 1 × 10−3. We used the auxiliary parameters τ = 10−3 from (2.7),
γ = 10−4, and ν = 1× 10−7. Computed bounds are displayed in Figures 6.1-6.6 and
documented in Table 6.2. See Table 6.3 for details regarding cost and accuracy when
the quadrature-based method described in [15] is applied to the same problems, with
τ = 10−3 and the auxiliary parameters (in the notation of that paper) ν = 1× 10−2

and γ = 1 × 10−4. Note that the parameter ν is used to denote different quantities
in the algorithms of [15] and in this paper. Graphs on the right show the same
bounds as their counterparts on the left, only with a smaller viewing window. In
Tables 6.2 and 6.3, L-eval refers to the average number of evaluations of L or L̃,
respectively, required to solve (2.3) or (2.6), respectively, for each vector w; ∆− and
∆+ denote, respectively, the maximum error (over all 16 coordinates) of the computed
lower bound and the maximum error of the computed upper bound; ` refers to the
number of singular values required to compute all bounds in Table 6.2, or to the
average number of Lanczos bidiagonalization steps per minimization (1.5) in Table
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6.3; MVP refers to the number of matrix-vector product evaluations with either A or
AT required to compute all bounds.

The columns labeled cond(A) and rank(A) report the condition number and rank,
respectively, of each matrix A as computed by the MATLAB functions cond and rank.
In Figures 6.1-6.6, “a priori u.b.” and “a priori l.b.” denote the crude upper and
lower bounds for each coordinate, +δ and −δ, respectively, that would be obtained
by removing the first constraint in (1.5). It is clear that the use of both constraints
when solving (1.5) provides much tighter bounds. We remark that, as evidenced
by the fairly large number of singular triplets (and matrix-vector products) required
when applying our method to deriv2, the method may be expensive for some problems.
Nevertheless, even for such problems, our method may be cheaper than other available
methods when computing a large number of confidence intervals.

Problem cond(A) rank(A) ‖A†b‖ ` MVP L-eval ‖xtrue‖ ∆− ∆+

baart 1.34e + 019 13 1.10e + 09 6 49 30 1.25e + 0 1.95e − 1 2.02e − 1
shaw 2.11e + 020 20 3.66e + 10 11 59 29 3.19e + 1 3.13e + 0 2.92e + 0
deriv2 1.27e + 006 1024 2.85e + 03 258 721 29 5.77e − 1 1.35e − 1 1.07e − 1
phillips 2.90e + 010 1024 2.01e + 07 60 187 28 3.00e + 0 2.25e − 1 2.19e − 1
foxgood 3.13e + 020 30 2.59e + 10 7 53 29 1.85e + 1 1.15e + 0 1.14e + 0
heat 1.96e + 237 587 3.66e + 10 89 239 29 7.88e + 0 1.12e + 0 1.04e + 0

Table 6.2
Numerical results when computing confidence intervals for 6 discrete ill-posed problems, ob-

tained by computing a lower bound for the minimum attained in (1.5) by solving (2.6) with the
method of Section 4, using δ = ‖xtrue‖, ε = ‖e‖, and w = ±e64i, i = 1, . . . , 16.

Problem cond(A) rank(A) ‖A†b‖ ` MVP L-eval ‖xtrue‖ ∆− ∆+

baart 1.34e + 019 13 1.10e + 09 5 992 20 1.25e + 0 1.92e − 1 2.02e − 1
shaw 2.11e + 020 20 3.66e + 10 9 1760 20 3.19e + 1 2.43e + 0 2.42e + 0
deriv2 1.27e + 006 1024 2.85e + 03 20 3872 20 5.77e − 1 1.35e − 1 1.05e − 1
phillips 2.90e + 010 1024 2.01e + 07 13 2528 19 3.00e + 0 6.13e − 2 6.13e − 2
foxgood 3.13e + 020 30 2.59e + 10 4 800 20 1.85e + 1 5.57e − 1 5.58e − 1
heat 1.96e + 237 587 3.66e + 10 27 5216 19 7.88e + 0 5.01e − 1 5.01e − 1

Table 6.3
Numerical results when computing confidence intervals for 6 discrete ill-posed problems, ob-

tained by solving (1.5) via the method of [15], using δ = ‖xtrue‖, ε = ‖e‖, and w = ±e64i, i =
1, . . . , 16.

Fig. 6.1. Coordinates 64k, k = 1, . . . , 16 of xtrue, along with the upper and lower bounds com-
puted by solving (2.6) with the method of Section 4, with A ∈ R1024×1024 generated by baart. Here,
δ = ‖xtrue‖ = 1.25× 101 and ε = ‖e‖ = 2.90× 10−3.
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Fig. 6.2. Coordinates 64k, k = 1, . . . , 16 of xtrue, along with the upper and lower bounds com-
puted by solving (2.6) with the method of Section 4, with A ∈ R1024×1024 generated by shaw. Here,
δ = ‖xtrue‖ = 3.19× 101 and ε = ‖e‖ = 7.46× 10−2.

Fig. 6.3. Coordinates 64k, k = 1, . . . , 16 of xtrue, along with the upper and lower bounds com-
puted by solving (2.6) with the method of Section 4, with A ∈ R1024×1024 generated by deriv2. Here,
δ = ‖xtrue‖ = 5.77× 10−1 and ε = ‖e‖ = 4.60× 10−5.

6.2. Discrepancy principle. We now illustrate the performance of the TT
method described in Section 5 and compare it to the TSVD discrepancy method
outlined at the end of that section. We first apply the methods to the 6 linear
discrete ill-posed problems mentioned above with matrices A ∈ R1024×1024, using
ε = ‖e‖ and the auxiliary parameters γ = 1 × 10−2 and ν = 1 × 10−5. The relative
error σ := ‖e‖/‖btrue‖ assumes the values 1 × 10−k for k = 1, 2, 3. Tables 6.4 and
6.5 report the average error in the approximate solutions computed with the TT and
TSVD discrepancy methods, which we denote by

xTT := x
(`TT)

µ
(`TT)
ε

and xTSVD :=
`TSVD∑
i=1

uTi b

σi
vi,
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Fig. 6.4. Coordinates 64k, k = 1, . . . , 16 of xtrue, along with the upper and lower bounds com-
puted by solving (2.6) with the method of Section 4, with A ∈ R1024×1024 generated by phillips. Here,
δ = ‖xtrue‖ = 3.00× 100 and ε = ‖e‖ = 1.53× 10−2.

Fig. 6.5. Coordinates 64k, k = 1, . . . , 16 of xtrue, along with the upper and lower bounds com-
puted by solving (2.6) with the method of Section 4, with A ∈ R1024×1024 generated by foxgood.
Here, δ = ‖xtrue‖ = 1.85× 101 and ε = ‖e‖ = 1.43× 10−2.

respectively, for each problem and error level. The tables also display the average
number of singular values required for the computations. All averages are taken
over 104 properly scaled error vectors ‖e‖ with independent, normally distributed
entries with zero mean. Table 6.6 displays the entry-wise ratio of Tables 6.4 and 6.5.
For instance, the (5, 2) entry of Table 6.6 shows that for the problem foxgood with
‖e‖/‖btrue‖ = 1 × 10−2, the TT method produces (on average) only about 69% as
much error in the computed approximations of xtrue as TSVD discrepancy. Similarly,
the (5, 5) entry of the same table displays that the TT method requires (on average)
about 2.37 times as many singular values as TSVD discrepancy, although glancing
at Tables 6.4 and 6.5 reveals that the average number of singular values required by
the two methods differs only by about 3. Overall, the TT method determines more
accurate approximations of xtrue than TSVD discrepancy for 14 of the 18 problems
considered. It should be noted that, due to the fairly large number of singular triplets
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Fig. 6.6. Coordinates 64k, k = 1, . . . , 16 of xtrue, along with the upper and lower bounds com-
puted by solving (2.6) with the method of Section 4, with A ∈ R1024×1024 generated by heat. Here,
δ = ‖xtrue‖ = 7.88× 100 and ε = ‖e‖ = 1.50× 10−3.

required when applying the TT method to heat and deriv2, the method might not be
attractive to use for these problems.

In addition to the average results provided in Tables 6.4–6.6, we provide results for
a single, representative problem instance for each ill-posed problem with relative error
σ = 1 × 10−2 but the same auxiliary parameters as above. Table 6.7 compares the
true solution xtrue, the TT solution xTT, and the discrepancy principle solution xµε
obtained working with the SVD of A (computed using [U,S,V]=svd(A) in MATLAB)
and solving (5.1) within machine (relative) precision. In all cases, the relative error
‖xTT − xµε‖ /‖xµε‖ is smaller than σ = 1 × 10−2, as required. Moreover, notice
that in all cases, the error ‖xTT − xµε‖ caused by approximation of A by a partial
SVD, within Tikhonov regularization, is smaller than the error ‖xtrue − xµε‖ obtained
when using the discrepancy principle with Tikhonov regularization. The Figures 6.7–
6.9 display for some of the problem considered the TT approximation, the TSVD
discrepancy approximation, and the exact solution.

‖xTT − xtrue‖ `TT

Problem σ = 10−1 σ = 10−2 σ = 10−3 σ = 10−1 σ = 10−2 σ = 10−3

baart 0.28 0.20 0.15 4.98 5.17 5.89
shaw 5.05 2.52 1.50 9.57 9.99 10.0
deriv2 0.18 0.13 0.09 32.0 46.8 69.3
phillips 0.14 0.06 0.03 17.6 17.5 16.7
foxgood 0.89 0.41 0.16 5.47 5.50 5.73
heat 1.62 0.58 0.20 46.8 50.1 51.6

Table 6.4
On the left, the average error (over 104 experiments) in the TT discrepancy principle solution

xTT for relative error levels of σ = 1 × 10−k, k = 1, 2, 3. On the right, the average number of
singular values `TT required by the TT method for the corresponding relative error levels.

We finish our comparison of the two methods by presenting a problem for which
the TT method produces a much more accurate approximation of xtrue than TSVD
discrepancy. Consider the problem baart. The matrix A ∈ R1024×1024 has computed
rank 13 and ‖xtrue‖ = 1.25. Let e be the projection of a random vector with normally
distributed entries onto the orthogonal complement of the space spanned by the first
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‖xTSVD − xtrue‖ `TSVD

Problem σ = 10−1 σ = 10−2 σ = 10−3 σ = 10−1 σ = 10−2 σ = 10−3

baart 0.27 0.22 0.16 2.87 3.20 4.03
shaw 5.82 2.30 1.54 4.19 6.74 7.03
deriv2 0.20 0.14 0.09 5.41 11.5 24.5
phillips 0.10 0.07 0.03 6.98 7.39 11.1
foxgood 0.99 0.60 0.17 2.03 2.32 3.05
heat 1.96 0.72 0.23 12.0 19.2 27.6

Table 6.5
On the left, the average error (over 104 experiments) in the TSVD discrepancy solution xTSVD,

for relative error levels σ = 1 × 10−k, k = 1, 2, 3. On the right, the average number of singular
values `TSVD required by TSVD discrepancy for the corresponding relative error levels.

‖xTT − xtrue‖/‖xTSVD − xtrue‖ `TT/`TSVD

Problem σ = 10−1 σ = 10−2 σ = 10−3 σ = 10−1 σ = 10−2 σ = 10−3

baart 1.02 0.89 0.95 1.74 1.61 1.46
shaw 0.87 1.10 0.98 2.28 1.48 1.42
deriv2 0.93 0.94 0.94 5.91 4.08 2.83
phillips 1.34 0.82 1.01 2.51 2.36 1.51
foxgood 0.90 0.69 0.97 2.69 2.37 1.88
heat 0.83 0.80 0.87 3.89 2.61 1.87

Table 6.6
The entry-wise ratio of Tables 6.4 and 6.5.

Problem ‖A†b‖ ` ‖xµε‖ ‖xtrue − xµε‖/‖xµε‖
‚‚‚xTT − xµε

‚‚‚/‖xµε‖
baart 1.10e+ 09 5 1.23e+ 0 1.69e− 1 2.67e− 4
shaw 3.66e+ 10 10 3.16e+ 1 1.10e− 1 1.07e− 5
deriv2 2.85e+ 03 43 5.54e− 1 2.33e− 1 1.04e− 2
phillips 2.01e+ 07 16 3.00e+ 0 1.40e− 2 3.90e− 3
foxgood 2.59e+ 10 5 1.84e+ 1 3.23e− 2 2.05e− 4
heat 3.66e+ 10 49 7.77e+ 0 8.01e− 2 2.89e− 3

Table 6.7
Selected results for a single problem instance for 6 discrete ill-posed problems, with ε = ‖e‖,

σ = 1× 10−2, γ = 1× 10−2, ν = 1× 10−5.

Fig. 6.7. For an instance of the problem shaw, the true solution xtrue, the TT solution xTT,
and the TSVD solution xTSVD, using ε = ‖e‖, σ = 1 × 10−2, γ = 1 × 10−2, ν = 1 × 10−5. Here,
‖xTT − xtrue‖/‖xTSVD − xtrue‖ = 0.965, and accepted iterations were `TT = 10 and `TSVD = 6.

5 left singular vectors ui, scaled to satisfy ‖e‖/‖btrue‖ = 10−1. Using γ = 10−1 and
ν = 10−10, and carrying out 104 experiments with different error vectors e, the TT
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Fig. 6.8. For an instance of the problem phillips, the true solution xtrue, the TT solution xTT,
and the TSVD solution xTSVD, using ε = ‖e‖, σ = 1 × 10−2, γ = 1 × 10−2, ν = 1 × 10−5. Here,
‖xTT − xtrue‖/‖xTSVD − xtrue‖ = 0.637, and accepted iterations were `TT = 16 and `TSVD = 7. Only
the left part of the true and computed solutions are dispalyed.

Fig. 6.9. For an instance of the problem foxgood, the true solution xtrue, the TT solution xTT,
and the TSVD solution xTSVD, using ε = ‖e‖, σ = 1 × 10−2, γ = 1 × 10−2, ν = 1 × 10−5. Here,
‖xTT − xtrue‖/‖xTSVD − xtrue‖ = 1.030, and accepted iterations were `TT = 5 and `TSVD = 2.

method gave computed approximations of xtrue with an average error 0.1406, while
TSVD discrepancy determined approximate solutions with an average error 404.9.
The TT method required on average 7.1 singular triplets, while TSVD discrepancy
needed on average 5.1 singular triplets. Thus, TT produced on average much more
accurate approximations of xtrue. We remark that in this problem TSVD discrepancy
performs very poorly, rather than TT performing exceptionally well. Error vectors
that yield dramatic differences in the performance of the TT and TSVD discrepancy
methods may occur in application, but only with low probability.

7. Conclusion. The first part of Section 6 shows that, when sufficient knowledge
of the distribution of e and the norm of xtrue is available, the methods described in
Sections 2 and 4 can be used to compute lower and upper bounds for each coordinate
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of xtrue. Unlike previously available methods for solving large-scale problems (1.5),
our method of computing a lower bound for the minimum attained in (1.5) affords
the use of a single reduction, a partial SVD, for all confidence intervals. This offers
a significant reduction in computational cost when confidence intervals for many so-
lution components are to be determined. Our numerical examples demonstrate that
for many problems, the solution of (2.6) does not deviate significantly from that of
(2.3); in such cases, the present method yields bounds that are similar in quality to
those produced by available methods.

For some problems and error levels, TT offers significant improvement in accuracy
over TSVD discrepancy, with only a moderate increase in expense. Thus, for some
problems, TT offers a valuable second opinion, and a slightly more robust alternative
than the leading method.
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