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Abstract We present an algorithm to generate application-specific, global reduced order quadratures (ROQ) for mul-
tiple fast evaluations of weighted inner products between parameterized functions. If a reduced basis (RB) or any other
projection-based model reduction technique is applied, the dimensionality of integrands is reduced dramatically; how-
ever, the cost of approximating the integrands by projection still scales as the size of the original problem. In contrast,
using discrete empirical interpolation (DEIM) points as ROQ nodes leads to a computational cost which depends lin-
early on the dimension of the reduced space. Generation of a reduced basis via a greedy procedure requires a training
set, which for products of functions can be very large. Since this direct approach can be impractical in many applica-
tions, we propose instead a two-step greedy targeted towards approximation of such products. We present numerical
experiments demonstrating the accuracy and the efficiency of the two-step approach. The presented ROQ are expected
to display very fast convergence whenever there is regularity with respect to parameter variation. We find that for the
particular application here considered, one driven by gravitational wave physics, the two-step approach speeds up the
offline computations to build the ROQ by more than two orders of magnitude. Furthermore, the resulting ROQ rule is
found to converge exponentially with the number of nodes, and a factor of ∼ 50 savings, without loss of accuracy, is
observed in evaluations of inner products when ROQ are used as a downsampling strategy for equidistant samples using
the trapezoidal rule. While the primary focus of this paper is on quadrature rules for inner products of parameterized
functions, our method can be easily adapted to integrations of single parameterized functions, and some examples of
this type are considered.

1 Introduction

Many application areas deal with parameterized problems. Throughout this paper, we consider these to be a set of
functions

FW := {hµ : Ω → C | µ ∈ P, hµ ∈ C (Ω)},
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where Ω, P denote the physical and parameter domains, respectively, C is the set of complex numbers, C (Ω) is the set
of continuous functions on a compact domain Ω ⊂ R and FW ⊂ HW denotes a compact subset of the Hilbert space
HW := L2

W (Ω). In general, both Ω and P are multi-dimensional and can be irregular domains. Here we assume P to
be compact in RN and take the scalar product and norm between two functions f, g ∈ HW to be

〈f, g〉L2
W

:=

∫
Ω

f∗(x)g(x)W (x)dx, ‖f‖2L2
W

:= 〈f, f〉L2
W
, (1)

with 0 < W ∈ C (Ω) some weight function and f∗ denoting complex conjugation. We absorb the weight above into
each integrand function through1

f(x)→W
1
2 (x)f(x) ,

with x ∈ Ω, and define the set of functions

F = {hµ
√
W ∈ C (Ω) | hµ ∈ FW } ,

which is now a compact subset of the Hilbert space H := L2(Ω). This allows us, without loss of generality, to use the
standard L2 inner product and the corresponding norm for elements of H, i.e.,

〈f, g〉 =
∫
Ω

f∗(x)g(x) dx, ‖f‖2 := 〈f, f〉 . (2)

Furthermore, the discrete L2 inner product and the corresponding norm are here denoted by

〈f, g〉d =
M∑
k=1

ωkf
∗(xk)g(xk), ‖f‖2d = 〈f, f〉d , (3)

where {xk, ωk}Mk=1 are arbitrary quadrature points and weights. Additionally, we often denote discrete objects and
vectors through bold notation, for example, f =

(
f(x1), . . . , f(xM )

)T and ω = (ω1, . . . , ωM )T . More details about
the notation used throughout this paper are given in Table 1.

There are several challenges associated with parameterized problems and Reduced Order Modeling (ROM). One
of them, when the set of functions F is not known a priori but requires expensive numerical simulations, is how to
select “on the fly” which parameters to solve for in a nearly optimal way, and a compact –application-specific spectral–
representation for every element in F . Reduced Basis (RB) [1] is a leading candidate for such problems. We refer to
Section 3.1 for details about it; for the purposes of this paper it suffices to describe in that section the algorithm and
some of its key features. Another often desired aspect of any approach to parameterized problems is, once a reduced
basis has been built, the ability to accelerate the computation of a particular quantity of interest. This can be fast online
prediction of new solutions by solving a reduced problem [1] or, as in the case of this paper, fast online evaluations of
inner products between elements of F . Additional benefits may be gained from an interpolation-based approximation.
The leading candidates for this are the Empirical Interpolation Method (EIM) [2,3] and its discrete counterpart, the
Discrete Empirical Interpolation Method (DEIM) [4,5]. Again, for the purposes of this paper it suffices to summarize
the algorithm in Section 3.2 and some of its properties.

The specific goal of this paper is to build application-specific global quadratures for inner products of functions
(such as those appearing in convolutions, matched filtering, Markov Chain Monte Carlo simulations, etc.) combining
both ROM and the DEIM, which for briefness we refer to as reduced order quadratures (ROQ). Here we explicitly
consider RB for ROM, but the approach remains the same for other choices of bases generated using, for example,
Proper Orthogonal or Singular Value Decompositions (POD, SVD) [6].

The construction of ROQ is somewhat similar in spirit to that one of Gaussian quadratures: the function to be
integrated is approximated by a truncated expansion in a reduced basis, this expansion is replaced by interpolation (here
DEIM) at special nodal points and, finally, the interpolant integrated to compute effective quadrature weights for any
scalar product of functions in the set of interest F . For many applications of interest, there are several advantages of
ROQ with respect to Gaussian quadratures, though. First, regularity with respect to parameter variation, not with respect
to the integration variable, is exploited to provide very fast (in many cases of interest, exponentially fast) convergence.
For example, for the gravitational wave test cases considered in this paper, ROQ prove to be more efficient than Gaussian

1 For generic target applications we envision these functions not to be polynomials, and the weights not to be standard ones. In particular,
our proposed reduced order quadrature construction does not rely on classical orthogonal polynomial theory for which the precise form of the
weight W is essential.
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quadratures (see Fig. 9). In addition, the method is adaptive by nature, and the quadrature nodes are hierarchical. Our
approach also gives, when acquiring data from experiments or observations, a nearly optimal way of downsampling it
for matched filtering [7,8] or other purposes, while at the same time preserving the accuracy in computing integrals with
the full data set. All these benefits of ROQ come at the cost of a potentially expensive offline procedure to pre-assemble
both the basis and the ROQ rule. For many applications where multiple fast evaluations are required, especially if they
are needed online or in real time, this tradeoff is indeed desirable.

To the best of our knowledge, leveraging the advantages of the Empirical Interpolation Method for fast numerical
integration was first suggested by Maday et al [2] (see also Refs. [9,10]) and further investigations were carried out by
Aanonsen [10]. However, our approach differs from previous ones in several respects. First, the empirical interpolant
coefficients are usually found by carrying out a potentially costly (compared to a competitive quadrature rule) matrix-
vector multiplication. Here we absorb this cost into an offline computation of the reduced order quadrature weights and
explicitly write the ROQ rule as a vector-vector product (see Eq. (10) in Section 2). Additionally, the RB-DEIM model
reduction used here allows for a natural factorization of the parameter and physical dependences. Finally and most
important, our main objective here is fast computation of inner products of the form 〈hµi , hµj 〉. While this is closely
related to the integration of single functions in F , for large problems there are practical and serious obstacles towards a
reduced basis representation of products of functions, denoted here as

F̃ = {h∗µihµj ∈ C (Ω) | hµi , hµj ∈ F} , (4)

in terms of very large training spaces. To address this we suggest a simple two-step approach targeted towards such
products which reuses the algorithms necessary for reducing the underlying lower order space F , with dramatic savings
in the offline stage. Without this two-step procedure, building ROQ would be simply not possible in many realistic
application problems driving our work, even if carried out offline and using large supercomputers.

This paper is organized as follows. Section 2 provides an overview of the main ideas to be developed as well as brief
preliminary discussions on quadrature rules, RB-DEIM, and reduced order quadratures. Section 3 collects necessary
results and algorithms required for developing ROQ. In particular, in Section 3.1 we describe a RB-greedy model
reduction algorithm to generate a set of basis vectors which are subsequently interpolated at a set of points chosen by
the DEIM algorithm as summarized in Section 3.2. The main difficulties in constructing a reduced basis for F̃ , as well
as our approach for overcoming them, are considered in Section 3.3. Fast integrations using the reduced model and
ROQ are constructed in Section 4.1, along with some error estimates in Section 4.2. Straightforward extensions of the
ROQ algorithm for resampled functions are discussed in Section 4.3. Two numerical experiments are documented in
Section 5. To compare with well known results in one and two dimensions, our first experiment considers polynomials
on the standard interval [−1, 1] as basis, and integration of single functions. The second example draws from a non-
trivial problem in gravitational wave physics and showcases the potential savings of ROQ to compute scalar products in
large problems. In Section 6 we summarize the results of this paper, and comment on their possible extensions.

2 Overview and main ideas

The main goal of this paper is to efficiently compute approximations to integrals such as those in Eq. (2). We refer to
the exact, continuum one as Ic,

Ic(i, j) := 〈hµi , hµj 〉 , (5)

where {µi, µj} are any two values in the parameter space P . Next we discuss different approximations to Ic.

Integration by quadrature: Let us recall a typical quadrature rule, since the proposed ROQ of this paper follow a
somewhat similar pattern. With {xk, ωk}Mk=1 denoting an arbitrary set of quadrature points and weights, respectively,
we can approximate the integral (5) as

Ic(i, j) ≈ Id(i, j) := 〈hµi , hµj 〉d =
M∑
k=1

ωkh
∗
µi(xk) hµj (xk) . (6)

Many integration rules can be written in the form of Eq. (6), including the extended trapezoidal rule, Gaussian quadra-
tures, and integration using domain decomposition. Among these many choices an optimal strategy should allow for a
given target integration accuracy with the smallest number of operations. However, if M is large (perhaps the functions
are sharply peaked, have different length scales and/or many cycles) and/or many evaluations of Ic are needed (perhaps
in real-time), computing the approximations Id can become very costly. Problems which depend on a high dimensional
spaces constitute such cases. In addition, if the target functions {hµj} come from acquired data, each function hµj is
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usually sampled at equally spaced or scattered points and the integrations are usually carried out using an extended
trapezoidal rule, with slow convergence in general.

Integration in a reduced space: A preliminary reduced order approximation to Id(i, j) would involve using an expan-
sion in basis vectors {e`}n`=1. Without loss of generality we can assume that the basis is orthonormal with respect to the
discrete 2 inner product 〈·, ·〉d. Then any function hµ ∈ F can be approximated by

hµ ≈ Pnhµ :=
n∑
`=1

〈e`, hµ〉de` ,

where we have introduced the orthogonal projection operator Pn, and an approximation to (6) would be

Id(i, j) ≈ 〈Pnhµi ,Pnhµj 〉d =
n∑
k=1

〈hµi , ek〉d〈ek, hµj 〉d . (7)

Now, computing the approximation (7) requires knowledge of the projection coefficients
{
〈hµi , ek〉d

}
. Modulo the

latter, performing an integration via Eq. (7) is of improved computational cost (n multiplications and n − 1 additions)
whenever the number of basis elements is smaller than the number of quadrature points, n < M . A greedy construction
of a reduced basis (see Sec. 3.1), as opposed to a standard basis choice such as Jacobi polynomials, involves the use of
a problem-dependent training space. If the functions to be integrated, namely hµi and hµj , are members of this training
space, the projection coefficients have been precomputed offline while building the basis (see Section 3.1). The more
interesting case in practice is that one in which hµi and hµj were not members of the training space, or one is unable to
store the set of projection coefficients.

Integration with reduced order quadratures (ROQ): We advocate an application-specific quadrature scheme for
efficiently evaluating the discrete integral in (6), with essentially no loss of accuracy, with a computational cost that
depends only on the reduced basis space dimension, and without requiring projection coefficients. This new approach
combines the flexibility of quadrature rules with powerful dimensionality reduction. We seek to approximate integrands
of the form gij = h∗µihµj ,

gij ≈ P̃mgij :=
m∑
`=1

〈ẽ`, gij〉dẽ` , (8)

with gij ∈ F̃ , and a truncated expansion is carried with a set of basis vectors {ẽ`}m`=1 approximating elements in
F̃ . As before, we are faced with computing 〈ẽ`, gij〉d, the cost of which can in principle be expensive. The empirical
interpolation method (EIM) offers an attractive alternative: consider these m basis {ẽ`}m`=1, let {p̃`}m`=1 ⊂ {xk}

M
k=1 be

a set of points (the generation of which will be described later), and let the EIM interpolant of gij be

Ĩm[gij ] :=
m∑
`=1

c̃`ẽ` s.t.
m∑
`=1

c̃`ẽ`(p̃k) = gij(p̃k), k = 1, . . . ,m ,

where the coefficients {c̃`}m`=1 solve the interpolation problem. If the interpolant is accurate then gij ≈ Ĩm[gij ] and,
substituting this into Eq.(6), our approximation to the quadrature rule {xk, ωk}Mk=1 becomes

Id(i, j) ≈
M∑
k=1

ωkĨm[gij ](xk) =
M∑
k=1

ωk

m∑
`=1

c̃`ẽ`(xk) =
m∑
`=1

 M∑
k=1

ωk ẽ`(xk)

 c̃` . (9)

Written in this way, the bracketed expression in the last term of Eq. (9) is seen to be the integration of the basis. Later
on (cf. Eq.(23)) we show that this expression can be rewritten in a more recognizable form

Id(i, j) ≈ IROQ(i, j) :=
m∑
`=1

ωROQ
` h∗µi(p̃`)hµj (p̃`) =

m∑
`=1

ωROQ
` gij(p̃`) . (10)

Eq. (10) is our proposed Reduced Order Quadrature, which has an online evaluation cost of O(m). The interpolation
points {p̃`}m`=1 ⊂ {xk}

M
k=1 are outputs of the EIM algorithm. Both these points and the weights ωROQ

` only depend on

2 In carrying out the RB-greedy algorithm we resolve all the integrals involved within machine precision, so for all practical purposes within
that context the discrete and continuum scalar products agree with each other.
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F : set of target functions.
µ: parameter in set P .
hµ: a sample target function in F .
F̃ : set of product of target functions.
gµ: a sample target function in F̃ .
µ̃: parameter in Cartesian product set P × P

{e`}n`=1: basis whose span Fn approximates F .
Pn: orthogonal projection to Fn.
In[]: empirical interpolation associated with Fn.

{ẽ`}m`=1: basis whose span F̃m approximates F̃ .
P̃m: orthogonal projection to F̃m.
Ĩm[]: empirical interpolation associated with F̃m.
M : number of samples to evaluate discrete inner products.
n: number of EIM points (and reduced basis) to approximate elements in F .
m: number of EIM points (and reduced basis) to approximate elements in F̃ . Number of ROQ points.

Ftrain: training space sampling F .
K: number of elements in Ftrain.
K2: number of training space elements in principle needed to directly sample F̃ .
n2: number of training space elements used in our two-step greedy approach to sample F̃ . In general n2 � K2.

Table 1 NOTATION. Notice that tildes refer to approximations or quantities related to F̃ , defined in Eq. (4).

the underlying quadrature rule given by {xk, ωk}Mk=1 and on the choice of reduced basis vectors ẽ`; they are precomputed
off-line and do not depend on the integrand gij . Note that the ROQ rule (10) achieves our efficiency requirements
whenever m < M . In many cases one can expect exponential convergence of IROQ → Id with respect to m, and
for Id ≈ Ic we expect this convergence rate to be inherited by the limit to the continuum IROQ → Ic. Furthermore,
even though this might be problem-dependent, in our numerical experiments (see Section 5.2) we have found that
m ∼ 2n � M (the equality m = 2n exactly holds for polynomial bases). For the case m = M , when all degrees
of freedom have been exhausted, consistency requires both quadrature rules {p̃`, ω

ROQ
` }m`=1 and {xk, ωk}Mk=1 to be

identical. Indeed, in this case the quadratures points trivially coincide and one can show ωROQ = ω (see Corollary 1).
A straightforward and largely self contained blueprint to generate the quadrature rule {p̃`, ω

ROQ
` }m`=1 is given in

Algorithm 2.

Approximation of products with a two-step greedy: The ROQ rule requires an approximation of integrands, which
is where the main challenge lies; namely, in integrating products of target functions and not individual ones. A greedy
construction of a reduced basis space approximating F involves the use of a training set TK := {µi}Ki=1 ⊂ P of size K
which densely samples the continuum P . If a faithful approximation of F requires a training set TK of sizeO(K) then a
training set for F̃ would in principle be of size O(K2). Since for large problems O(K) can already be computationally
challenging, this direct approach might be unfeasible in some applications, even when building the basis is an offline
and parallelizable calculation.

A greedy algorithm for F returns a set of n greedy points {µ`}n`=1 and orthonormal reduced basis {e`}n`=1. The
basic idea of the two-step greedy approach is to take advantage of the observation that all integrands can be accurately
approximated by

h∗µihµj ≈ (Pnhµi)
∗ Pnhµj =

 n∑
k=1

〈ek, hµi〉dek

∗ n∑
l=1

〈el, hµj 〉del

 ,

which involves a sum of n2 terms of the form e∗kel. We then carry out a second layer of dimensional reduction – a
second greedy for the products {e∗kel}

n
k,l=1. The training set for this second greedy is of size O(n2), as opposed to

O(K2) (with, usually, n2 � K2). One may also consider a training set for F̃ given by the Cartesian product of greedy
points {µi}ni=1 thereby sampling F̃ is a smarter way. Both ideas are more thoroughly explored in Sec. 3.3.

3 Reduced basis and the empirical interpolation method

The ROQ rule proposed here requires an accurate interpolation representation for all integrands in the space of interest.
In the next two subsections we describe the necessary RB-greedy and EIM algorithms to achieve this. Here we favor
an RB-greedy approach, since it is able to handle very large problems, such as those that we are interested in. Our
proposal is also applicable to other basis choices such as those found through a Proper Orthogonal/Singular Value
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Decomposition [6]. In Sec. 3.3 we propose a two-step RB-greedy approach for large sets of products of functions.
Without loss of generality we assume all functions to be normalized with respect to the discrete inner product 〈·, ·〉d.

3.1 Greedy construction of a reduced basis

The RB approach, combined with a greedy algorithm to generate the basis, provides a way to construct an application-
specific expansion, where the basis elements are members of the space under consideration itself. Here the sets of interest
are F and F̃ . For definiteness in notation we will describe the approach for F , since an approach for F̃ or any other
space is identical; we will refer to this approach applied to F̃ as a direct or one-step RB-greedy.

A greedy approach is highly efficient in practice. It yields a nested basis set that is hierarchically constructed. As is
customary for spectral expansions, having an orthonormal basis {e`}n`=1 simplifies computing the orthogonal projection
Pnhµ with respect to 〈·, ·〉d of a function hµ ∈ F onto the span Fn of the basis,

Fn := span{e1, . . . , en} .

We recall (see, for example, [11]) that the Kolmogorov n-width of F in H

dn(F ;H) := inf
dimXn≤n

sup
hµ∈F

inf
f∈Xn

∥∥hµ − f∥∥ = inf
dimXn≤n

sup
hµ∈F

∥∥hµ − Pnhµ∥∥ , (11)

measures the error of the best n-dimensional subspace Xn ⊂ H approximating F , and the last equality follows from
H being a Hilbert space. Computation of the n-width dn, or any basis achieving it, is in most practical applications not
possible (however, see [11] for some cases where it can be done). Nevertheless, obtaining a convergence rate for the
n-width provides valuable information towards understanding the approximability of a space by greedy algorithms.

We summarize a greedy strategy to build a reduced basis {e`}n`=1, with an approximation error

σn(F ;H) := sup
hµ∈F

∥∥hµ − Pnhµ∥∥ , (12)

which is nearly optimal with respect to the Kolmogorov n-width defined in Eq. (11). Then we will state some of
the available convergence rates for the greedy error σn(F ;H) based on [12,13], which make precise the quoted near
optimality, under the assumption that up to machine precision

∥∥hµ − Pnhµ∥∥ ' ∥∥hµ − Pnhµ∥∥d. While the greedy error
(12) has been defined over F , in practice one samples the continuum using a training set TK := {µi}Ki=1 ⊂ P of size K
and a training space Ftrain of associated normalized functions {hµi}Ki=1. Typically, if there is redundancy, the number
of reduced basis needed to represent the training space is much smaller than the number of samples: n� K.

Next let ε > 0 be a user-specified error tolerance. Its role is to guarantee that the approximation error ensured by the
RB-Greedy algorithm is strictly bounded as

σn(Ftrain;H) := sup
hµ∈Ftrain

∥∥hµ − Pnhµ∥∥d ≤ ε . (13)

To a-priori ensure that the training space Ftrain is a faithful approximation of the continuum F is, in general, difficult.
Construction and adaptive management of the training space Ftrain is an area of active research; see, for example, [14,
9,15,16]. A good choice is dictated by the problem, further details for our application are given in the numerical results
Section 5.2. To check that the reduced basis space Fn is a faithful approximation of F we typically do convergence
tests with respect to the number of samples K in TK , and Monte Carlo reconstruction studies of the continuum; see for
example [17,18,19] and Section 5.2. For any given tolerance ε > 0, the Algorithm 4 of Appendix A ensures the strict
bound (13) over the entire training space. However, a-posteriori validation has allowed us to establish a more impressive
bound in all of our applications in gravitational wave physics so far [17,18,19],

‖hµ − Pnhµ‖d ≤ σn(F ;H) . ε ∀µ ∈ P . (14)

Such observation is obviously problem-dependent, and in general it should read σn(F ;H) ≤ ε̃ where in principle ε̃ ≥ ε.
For any ε > 0 and training set TK the greedy algorithm to build a reduced basis is given in App. A. This algorithm

returns a nested, hierarchical set of n greedy points {µ`}n`=1 and orthonormal reduced basis {e`}n`=1 which are nearly
optimal with respect to the n-width (11), in the following sense. Recall from [13, Corollary 3.3] that if the n-width
defined in (11) decays exponentially, then

dn(F ;H) ≤ Ce−c0n
α

→ σn(F ;H) ≤
√
2Ce−c1n

α

, (15)
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whence the greedy error in (12) decays exponentially, where C, c0, α, and c1 := 2−1−2αc0 are positive constants.
Similar statements can be made if the Kolmogorov n-width decays with a polynomial order,

dn(F ;H) ≤ Can−β → σn(F ;H) ≤ 25β+1Can
−β , (16)

where Ca, β are positive constants.
In Section 5.2 we summarize the observed exponential decay of the greedy error for a particular family of grav-

itational wave solutions. We have also found that for a fixed representation error and parameter domain P we can
reconstruct any member function in F with a finite number of basis elements. That is, as the size of TK increases, a
finite asymptotic number of basis is needed to represent it; see [20,21,18,17,19] for further studies.

Remark 1 While it is obvious that dn(F ;H) ≤ σn(F ;H), a direct comparison obtained in [13, Corollary 3.3] reads
σn (F ;H) ≤

√
2 dn/2 (F ;H) for any n-width decay rate. If dn/2 (F ;H) decays exponentially, then one gets (15).

Similarly, if dn/2 (F ;H) decays with a polynomial order, then one has (16).

We now turn to some immediate applications of the reduced space expressed with matrix-vector notation, which
will prove convenient throughout the remainder of this paper. Let

V := [e1, . . . , en] ∈ CM×n ,

where the `th column of the matrix V is e` =
(
e`(x1), . . . , e`(xM )

)T ∈ CM ; i.e., it corresponds to the `th reduced basis
e` sampled at the set of quadrature points {xi}Mi=1 used in the greedy algorithm3. In matrix-vector notation Pnhµ =

V
[
V†(ω ◦ hµ)

]
and the reduced discrete integral (7) becomes

Id(i, j) ≈ 〈Pnhµi ,Pnhµj 〉d =
n∑
k=1

〈hµi , ek〉d〈ek, hµj 〉d =
(
V†(ω ◦ hµi)

)† (
V†(ω ◦ hµj )

)
, (17)

where V† denotes the conjugate transpose of V and ◦ denotes the Hadamard (pointwise) product between the vector
components. Here we have reduced the overall dimensionality of the problem to n, but two issues remain. First, the
number of {hµ(xk)}Mk=1 functional evaluations depends on M (Sec. 3.3 of Ref. [4] discusses the issue for a variety of
nonlinear parametrized functions). Second, the dominant operation count for the approximation is seen to be of order
O(Mn). We will return to these issues shortly.

3.2 The empirical interpolation method

The main idea behind the EIM is to replace an expensive approximation by projection with a relatively inexpensive
interpolation, without sacrificing accuracy. The algorithm identifies a set of basis-specific interpolation points through
a greedy selection criteria. When applied to several physical dimensions, irregular shaped domains, and rather generic
parameterized spaces, the EIM [2,10,9] and its discrete counterpart, the DEIM [4,5], and points have shown remarkable
robustness and efficiency.

Suppose we have a set of basis vectors. In particular, the algorithm applies to the reduced basis for the space Fn or
the space F̃m to be constructed in Sec. 3.3. The algorithm selects the DEIM points in physical space Ω and builds an
associated interpolation matrix P. This matrix P interpolates the columns of the matrix V introduced in Sec. 3.1 (see
Appendix A.2). The columns of P are unit vectors with a single unit entry at the location of the empirical interpolation
points and zero elsewhere. For example, the first column of P has a unit entry at the location argmax |e1| (see step 2 of
Algorithm 5). Furthermore, PThµ extracts an n-subvector which is exactly equivalent to evaluating hµ at n empirical
interpolation points {pi}ni=1. The algorithm to generate P and {pi}ni=1 is given in App. A.

With {pi}ni=1 the DEIM approximation is [4]

hµ ≈ In[hµ ] := V(PTV)−1PThµ , (18)

which is indeed an interpolant PT In[hµ ] = PT (V(PTV)−1PThµ) = PThµ . Note that PTV is invertible when the
columns of V are linearly independent. Substituting In[hµ ] from Eq. (18) into Eq. (6) gives

Id(i, j) ≈ 〈In[hµi ], In[hµj ]〉d ≈
(
(PTV)−1PThµi

)† (
(PTV)−1PThµj

)
. (19)

3 For certain applications it may be desirable to evaluate the functions at a different set of points {yi}M
′

i=1, see Section 4.3 for details.
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As we only have to evaluate PThµ ∈ Cn, with n < M in many applications, we have reduced the complexity (that
is, the number of required functional evaluations) to O(n) (compare with (17)). However, due to the two matrix-vector
multiplications an evaluation cost of O(n2) has appeared. Such unacceptable scaling arises when approximating the
individual functions hµ instead of the products (integrands) h∗µihµj directly. We consider the generation of a reduced
basis for products of functions next.

3.3 Two-step greedy approach for the approximation of product of target functions

↗ Path #1−−−−−−→ ↘

F̃ −−−−−−−−→
Path #2 (i)

Fn2 −−−−−−−−→
Path #2 (ii)

F̃m (20)

As discussed at the end of Secs. 3.1 and 3.2, we seek to approximate all possible integrands gij = h∗µihµj ∈ F̃ ,
where F̃ is a subset of the Hilbert space H = L2(Ω). A natural approach, which we refer to as a direct one, is to build
a reduced basis for F̃ through a greedy algorithm as described in Algorithm 4 and is marked as Path #1 in (20). In
that case the results of Secs. 3.1 and 3.2 are directly applicable, with F and Fn replaced by F̃ and F̃m respectively. In
Sections 2 and 5.2 we argue that this direct approach can be impractical for some applications. Advanced algorithms for
sampling or building the training space, perhaps adaptively [14,9,15,16], might overcome this issue, though, and allow
for a direct approach to such large problems.

In Sec. 2 we motivated a two-step greedy approach via Path #2 in (20). In the first step (Path #2 (i) in (20)) we
generate, through a first greedy as in Algorithm 4, a reduced basis whose span Fn approximates F . Next one might
construct a set Fn2 , consisting of all n2 products e∗kel/‖e

∗
kel‖d. Another option, and indeed the one used in our numerical

experiments, is to use a training set T 2
n := {(µi, µj)}ni,j=1 and associated normalized products h∗µihµj/‖h

∗
µihµj‖d to

define Fn2 , where {µi}ni=1 are the greedy points identified by the first greedy algorithm when approximating F by Fn.
In other words, we do not necessarily use an orthonormal reduced basis for Fn (see Remark 2, below). In either case, we
approximate Fn2 through a second RB-greedy (Path 2 (ii) in (20)), carried out again as in Algorithm (4) but with Fn2

as the training space. The result is an orthonormal set of m reduced basis {ẽi}mi=1 such that F̃m := span{ẽ1, . . . , ẽm}
accurately approximates Fn2 , and in turn the full set F̃ .

To summarize, the second step of our proposed two-step greedy algorithm to build F̃m is given by Algorithm 1, and
for simplicity we choose the tolerance for the second greedy step to be equal to the first one (ε in Eq.(13)). To better
present the algorithm it will be useful to introduce new notation for elements of T 2

n . Define µ̃k(i,j) := (µi, µj) to be a

re-indexing of the array {(µi, µj)}ni,j=1 into {µ̃k}n
2

k=1, where k is a one-to-one function which takes two integers i and
j and returns a unique integer k(i, j).

Remark 2 The first greedy returns both the greedy points {µi}ni=1, an orthonormal basis {ei}ni=1, and the greedy basis
functions {hµi}ni=1, serving as a non-orthonormal basis set for the same space Fn. As discussed above, from either
{hµi}ni=1 or {ei}ni=1 one can build the set Fn2 . In our numerical experiments we choose {hµi}ni=1 as basis, partly
because we need not store the orthonormal basis vectors {ei}ni=1 but only the greedy points {µi}ni=1. Clearly the
implementation and interpretation of Algorithm 1 will depend on this choice. For example, when using {hµi}ni=1 it
makes sense to discuss the selected greedy parameter points µ̃k while for {ei}ni=1 no such interpretation holds; instead
one should view Step 5d as returning a column index when Fn2 is thought of as an M × n2 matrix.

Algorithm 1 (Two-step RB-Greedy approximation for F̃m)[
{ẽ`}m`=1, {µ̃`}

m
`=1

]
= Two-step RB-Greedy (ε, {µi}ni=1, {ei}

n
i=1)

Comment: {ei}ni=1 are either orthonormal or greedy basis functions (cf. remark 2)

(1) Let T 2
n = {(µi, µj)}ni,j=1

(2) Let Fn2 = {e∗i ej/‖e
∗
i ej‖d}

n
i,j=1

(3) Set m = 0 and define σ0(Fn2 ;H) := 1

(4) Choose an arbitrary g ∈ Fn2 and set ẽ1 := g Comment: ‖g‖d = 1

(5) do, while σm(Fn2 ;H) ≥ ε
(a) m = m+ 1

(b) σm(g) :=
∥∥∥g − P̃mg∥∥∥

d
for all g ∈ Fn2
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(c) σm(Fn2 ;H) = supg∈Fn2

{
σm(g)

}
(d) µ̃m+1 := argsupg∈Fn2

{
σm(g)

}
(greedy sweep)

(e) ẽm+1 := gµ̃m+1
− P̃mgµ̃m+1

(Gram-Schmidt)
(f) ẽm+1 := ẽm+1/‖ẽm+1‖d (normalization)

A DEIM approximation for the integrand leads to an efficient and simple reduced order quadrature rule (10) and is
the subject of the next Section.

4 Reduced order quadratures (ROQ)

In classical theory of Gaussian quadratures one seeks to maximize the exactness for the integration of polynomials. Here
the goal is to empirically maximize the accuracy of inner products between elements of F . Notice that an approximation
of (discrete) inner products may be carried out in either a reduced space Fn ≈ F or F̃m ≈ F̃ . In Sec. 3.2 we noted
that working in Fn leads to a pessimistic O(n2) cost for inner products (see the discussion below Eq. (19)). Thus, for
applications where one needs fast evaluations of many scalar products the approximation space F̃m is preferable. For
the construction of F̃m we refer to (20).

Section 4.1 focuses on a ROQ stemming from F̃m, although only very minimal changes are needed to adapt Algo-
rithm 2 for obvious variations. Indeed, one such variation is considered in our first numerical experiment. In Section 4.3
we consider extensions of the ROQ construction to situations where one might only be able to evaluate integrands at a
set of points {yi}M

′

i=1 which do not correspond to the nodes used in the quadrature rule {xk, ωk}Mk=1. In Section 4.2.1
we present the DEIM interpolation error estimates, followed by some ROQ error estimates in Section 4.2.2.

4.1 ROQ Algorithm

Suppose we are given a set of functionsF and an arbitrary quadrature rule {xk, ωk}Mk=1 for the discrete inner product (6).
The following algorithm generates the ROQ nodes and weights.

Algorithm 2 (Construction of Reduced Order Quadratures)[
{p̃`, ω

ROQ
` }m`=1

]
= ROQ (ε, TK , {xk, ωk}Mk=1)

(1) Approximation of F̃ : We have two options to approximate F̃ by F̃m, (cf. (20)).

Path #1 Consider the training set T 2
K = {(µi, µj)}Ki,j=1 and apply the Greedy Algorithm 4, with obvious modifica-

tions, to generate F̃m = span{ẽ`}m`=1 and greedy points {µ̃`}m`=1 ⊂ T
2
K such that any product h∗µihµj ∈ F̃

can be approximated by its projection P̃m as:∥∥∥h∗µihµj − P̃m (h∗µihµj)∥∥∥
d
≤ ε , ∀

(
µi, µj

)
∈ T 2

K .

Note: This direct approach can be expensive; we therefore advocate the following two-step procedure.

Path #2 (i) Approximation of F : Consider the training set TK = {µi}Ki=1 and apply the Greedy Algorithm 4
to generate Fn = span{e`}n`=1 and greedy points Tn = {µ`}n`=1 ⊂ TK such that any hµ ∈ F can
be approximated by its projection Pn as:∥∥hµ − Pnhµ∥∥d ≤ ε , ∀µ ∈ TK .

(ii) Construction of Fn2 : Define the training set T 2
n = Tn × Tn = {(µi, µj)}ni,j=1 and training space

Fn2 =
{
e∗i ej/‖e

∗
i ej‖d

}n
i,j=1

. Another choice for Fn2 is
{
h∗µihµj/‖h

∗
µihµj‖d

}n
i,j=1

, we refer to
Remark 2 for justification.

(iii) Approximation of F̃ : Apply the Greedy Algorithm 1 to generate F̃m = span{ẽ`}m`=1 and {µ̃`}m`=1 ⊂
T 2
n ⊂ T 2

K such that any product e∗i ej ∈ Fn2 can be approximated by its projection P̃m as:∥∥∥e∗i ej − P̃m (e∗i ej)∥∥∥
d
≤ ε .
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(2) Define the matrix Ṽ = [ẽ1, . . . , ẽm] ∈ CM×m where, for example, the `th column is ẽ` =
(
ẽ`(x1), . . . , ẽ`(xM )

)T .
(3) Generation of empirical interpolation points: Apply the DEIM Algorithm 5 with Ṽ as an input to compute the

DEIM points {p̃`}m`=1 ⊂ {xi}
M
i=1 and the interpolation matrix P̃.

(4) Compute the ROQ weights by (
ωROQ

)T
:= ωT Ṽ(P̃T Ṽ)−1 . (21)

Step 4 deserves a bit more explanation. With the interpolation matrix P̃ from Step 3 we first build an expression for
the DEIM interpolant of some product g ∈ F̃

g ≈ Ĩm[g] := Ṽ(P̃T Ṽ)−1P̃Tg . (22)

The reduced order weights are then found by substituting this expression into Eq. (6) to produce the desired approxima-
tion with g = h∗µi ◦ hµj ,

Id(i, j) = ωTg ≈ ωT Ĩm[g] =
[
ωT Ṽ(P̃T Ṽ)−1

]
P̃Tg =

m∑
i=1

ωROQ
i g(p̃i) . (23)

Notice that the term P̃Tg is just evaluation of g at the DEIM points {p̃i}mi=1 (which need not be ordered, but can be if
desired). Furthermore, the weights are explicitly parameter independent and for less accuracy we might consider using
the first m′ ≤ m functional evaluations of g

ωT Ĩm′ [g] ≈
m′∑
i=1

αROQ
i g(p̃i) ,

which, as this is equivalent to carrying out the computation in an m′-dimensional subspace of F̃m, is also a valid
integration rule. In general the weights αROQ

i associated with this m′ point quadrature rule will not be a subset of the
weights ωROQ

i computed for them point rule. Notice that the hierarchical nature of the empirical interpolation set allows
one to build application-specific nested quadratures of arbitrary order and depth (i.e. more than one embedded method).
For example, suppose m = 20; one might combine the 10-point, 15-point, and 20-point ROQ rules to yield a nested
quadrature scheme.

Remark 3 (FLOP-Count) Let K be the number of parameters in the training space to approximate F by Fn. If m̂ and
m denote the number of reduced basis for direct (Path #1) and two-step greedy (Path #2) respectively, then numerically
we observe that m ≈ m̂. The cost of ROQ Algorithm 2 using a direct and a two-step greedy is O(K2Mm̂) and
O(n2Mm+KMn), respectively. This implies that for K � n (as is observed in our numerical experiments), the
two-step greedy is highly efficient. For the details of FLOP counts we refer to Appendix B.

Next we state some results which highlight the importance of using an accurate quadrature rule {xk, ωk}Mk=1; these
will be verified in Section 5.1.

Theorem 1 Integration of the basis functions {ẽ`}m`=1 with either of the quadrature rules {xi, ωi}Mi=1 or {p̃`, ω
ROQ
` }m`=1

yield identical results.

Proof The integration of basis {ẽi}mi=1 using ROQ (cf. (21), (23) in vector notation) is

IROQ =
(
ωROQ

)T
P̃T ẽi = ωT Ṽ(P̃T Ṽ)−1P̃T ẽi , i = 1, . . . ,m .

Recalling that Ṽ = [ẽ1, . . . , ẽm], integration of all the basis {ẽi}mi=1 can be written as
(
ωROQ

)T
P̃T Ṽ = ωT Ṽ, where

ωT Ṽ is precisely the integration of all the basis vectors {ẽi}mi=1 with the quadrature rule {xk, ωk}Mk=1.

Corollary 1 (Consistency of ROQ rule) When m = M the quadrature rules {xi, ωi}Mi=1 and {p̃`, ω
ROQ
` }m`=1 are

identical up-to ordering of the quadrature points.

Proof Using Theorem 1, we have
(
ωROQ

)T
P̃T Ṽ = ωT Ṽ. Apply Ṽ−1 on the right to deduce

(
ωROQ

)T
P̃T = ωT .
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Remark 4 If the quadrature rule {xi, ωi}Mi=1 integrates the basis functions {ẽ`}m`=1 exactly then ROQ built using Algo-
rithm 2 also integrates those basis functions exactly.

Remark 5 As a special case consider F̃ to be a space of polynomials of degree m− 1 with weight W = 1 and suppose
the basis is specified by an ordered set of Legendre polynomials. Then the m-point ROQ rule will exactly integrate any
polynomial of at most degree m− 1 provided the quadrature rule {xk, ωk}Mk=1 is at least m− 1 exact.

4.2 Convergence Estimates

4.2.1 DEIM Convergence

We shall first state a DEIM interpolation error estimate with respect to the discrete L∞-norm. Then we will recall the
DEIM error estimate with respect to the discrete L2-norm from [4] and, finally, combine this estimate with those for the
RB-greedy basis construction from [13].

Theorem 2 (discrete empirical interpolation method) Let the set of reduced basis {e`}n`=1 be orthonormal with
respect to the discrete inner product defined in (3) and hoptµ ∈ Fn be the optimal approximation of hµ with respect to
the discrete L∞-norm. Then for every µ ∈ P and xk, with k = 1, . . . ,M ,

max
1≤k≤M

∣∣hµ(xk)− In[hµ](xk)∣∣ ≤ (1 + Λn,∞) max
1≤k≤M

∣∣∣hµ(xk)− hoptµ (xk)
∣∣∣ , (24)

where Λn,∞ = |||In|||∞ = |||V(PTV)−1PT |||∞ denotes the Lebesgue constant.
In the case of the discrete L2-norm, hoptµ = Pnhµ and we have for all µ ∈ P∥∥hµ − In[hµ]∥∥d ≤ Λn,2∥∥hµ − Pnhµ∥∥d , (25)

where Λn,2 = |||In|||2 = |||V(PTV)−1PT |||2
4

Proof The proof of (24) and (25) are straightforward and are omitted. Furthermore, (25) follows from [4, Lemma 3.2],
but we state it for completeness. Since In[hoptµ ](xk) = hoptµ (xk) for k = 1, . . . ,M , we get∥∥hµ − In [hµ]∥∥d =∥∥∥(I− In) [hµ − hoptµ ]

∥∥∥
d

≤ |||In|||2
∥∥∥hµ − hoptµ

∥∥∥
d
,

where the last equality follows from the fact that |||I− In|||2 = |||In|||2 (see, for example [22,23]).

Remark 6 Notice that the DEIM Algorithm 5 seeks to minimize the interpolation error as measured by a discrete L∞-
norm (cf. Step 6, Algorithm 5), for which an error bound of the type (24) is closely related. The RB-greedy Algorithm
4, however, exactly minimizes the term

∥∥hµ − Pnhµ∥∥d on the right hand side of the error bound (25) and is therefore
computable. Observing that Λn,2 ≤ |||V|||2 |||(P

TV)−1|||2 (because |||PT |||2 = 1), one might consider directly mini-
mizing the error

∥∥hµ − In [hµ]∥∥d by minimizing the norm |||(PTV)−1|||2 . Indeed, whenever V†V = 1n×n we have
exactly Λn,2 = |||(PTV)−1|||2 which is more efficient to compute than |||V(PTV)−1PT |||2. Throughout the numerical
experiments section 5, in addition to the error bound (25) we monitor

‖hµ − In[hµ]‖d ≤ |||V|||2 |||(P
TV)−1|||2

∥∥hµ − Pnhµ∥∥d , (26)

which we have written here for future reference.

4 The 2-norm and∞-norm of a matrix Q ∈ CM×n is defined by

|||Q|||2 := max
u 6=0

‖Qu‖d
‖u‖d

=
(
λmax(Q

†Q)
)1/2

, |||Q|||∞ := max
1≤k≤M

n∑
`=1

|qk`| ,

where qk` denotes the (k, `) entry of Q.
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Corollary 2 (RB-Greedy-DEIM error bounds) The following practical RB-greedy-DEIM estimate holds

‖hµ − In[hµ]‖d . Λn,2ε, ∀hµ ∈ F .

Furthermore, if the Kolmogorov n-width decays exponentially (with order α) as in (15), then the error (25) decays with
the same order,

‖hµ − In[hµ]‖d .
√
2CΛn,2e

−c1nα ,

whereas if the Kolmogorov n-width decays algebraically with order β as in (16), then (25) again decays with the same
order β

‖hµ − In[hµ]‖d . 25β+1CaΛn,2n
−β ,

where Ca > 0 and β > 0 are some constants.

Proof Consider (14) and (25) and apply (15) and (16).

4.2.2 ROQ Convergence

Next we present the error estimate for the case in which the reduced basis {ẽ`}m`=1 for F̃ are generated through a direct
approach via Path #1 in (20).

Theorem 3 (approximation error ROQ (direct approach)) Let ε > 0 be an error tolerance and P̃m : F̃ → F̃m be the
projection operator defined in Algorithm 2 (Path #1), with accuracy ε > 0 in the discrete L2-norm‖·‖d. Furthermore,
let Ĩm : F̃ → F̃m be a DEIM operator built using Step (3) (RB-greedy-DEIM) of Algorithm 2. Given two arbitrary
functions hµi , hµj ∈ F , the following estimate holds∣∣Id(i, j)− IROQ(i, j)

∣∣ . ε
(
|Ω|d |||Ĩm|||2

)∥∥h∗µihµj∥∥d .
Proof We recall that given hµi , hµj ∈ F , with µi, µj ∈ P , we have a discrete quadrature rule Id(i, j) given in Eq. (6).
On the other hand, we have the following expression for the ROQ integral

IROQ(i, j) =
M∑
k=1

ωkĨm[h∗µihµj ](xk) .

An application of Cauchy-Schwarz implies

∣∣Id(i, j)− IROQ(i, j)
∣∣ ≤ M∑

k=1

∣∣∣ωk (h∗µi(xk)hµj (xk)− Ĩm[h∗µihµj ](xk)
)∣∣∣

≤ |Ω|d
∥∥∥h∗µihµj − Ĩm[h∗µihµj ]

∥∥∥
d
.

Next the fact that Ĩm
[
P̃m[h∗µihµj ]

]
= P̃m[h∗µihµj ], implies

h∗µihµj − Ĩm[h∗µihµj ] =
(
I− Ĩm

) [
h∗µihµj − P̃m[h∗µihµj ]

]
Finally using |||I− Ĩm|||2 = |||Ĩm|||2 (cf. [22,23]), we get∣∣Id(i, j)− IROQ(i, j)

∣∣ ≤ |Ω|d |||Ĩm|||2 σm (F̃ ;H)∥∥h∗µihµj∥∥d .
Then the greedy estimate Path #1 in Algorithm 2 gives the required estimate.

Corollary 3 (ROQ error bound) The following practical ROQ error estimate holds for every µi, µj ∈ P∣∣Ic(i, j)− IROQ(i, j)
∣∣ . ∣∣Ic(i, j)− Id(i, j)∣∣+ ε

(
|Ω|d |||Ĩm|||2

)∥∥h∗µihµj∥∥d . (27)

Our numerical examples indicate the ROQ built from a two-step greedy (using Path #2) has an error bound as in
Theorem 3, but proving such bound is beyond the scope of this paper.
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4.3 ROQ at new quadrature points

Consider the scenario in which the integrands are available at a set of points which is different from the ones used to
build the reduced basis. A typical example would be the case in which Gaussian quadratures are used in the RB-greedy
algorithm but data is given at equally spaced samples. We continue denoting the set of points and quadrature rule used
to build the basis as {xk, ωk}Mk=1, and the second rule {yi, τi}M

′

i=1. Therefore, it is not unreasonable to assume that
M ′ > M . Our goal here is to generate an ROQ with respect to {yi, τi}M

′

i=1 under this scenario.

Algorithm 3 (Construction of ROQ for {yi, τi}M
′

i=1)[
{p̃`, τ

ROQ
` }m`=1

]
= ROQ-NEW

(
{µ̃`}m`=1,{yi, τi}M

′

i=1

)
(1) Orthogonalize the (ordered) product of functions {gµ̃`}

m
`=1 using the quadrature rule {yi, τi}M

′

i=1 and let the resulting
vectors form the columns of a matrix Ṽ = [ẽ1, . . . , ẽm] ∈ CM

′×m where, for example, the `th column is ẽ` =(
ẽ`(y1), . . . , ẽ`(yM ′)

)T .
(2) Apply Steps 3 and 4 from Algorithm 2 to generate the ROQ points {p̃`}m`=1 ⊂ {yi}

M ′

i=1, interpolation matrix P̃ and
ROQ weights (τROQ)T := τT Ṽ(P̃T Ṽ)−1.

Accuracy and conditioning of the resulting ROQ rule are guaranteed provided (i) we are able to carry out the or-
thogonalization in Step 1 up to a certain tolerance and (ii) the new quadrature rule is accurate enough such that∥∥hµ − Pnhµ∥∥τ . ε.

5 Numerical examples

Here we discuss two sets of numerical experiments. As a first example we compare ROQ using orthogonal polynomials
on the interval [−1, 1] as basis (that is, the basis is not built through a greedy approach) with the well known case of
Gaussian quadratures and, in particular, integration of Runge’s function. This study reveals several important features:
i) ROQ are well conditioned, ii) ROQ and Gaussian quadrature rules have a similar point and weight distribution, iii)
the importance of an accurate quadrature rule {xi, ωi}Mi=1 (cf. Theorem 1), iv) the ROQ rule’s efficiency, compared to
Gaussian quadratures, is expected to increase with the number of spatial dimensions.

Next we turn to a challenging example drawn from gravitational wave physics, namely the calculation of overlaps
between “chirp” gravitational waves for compact binary coalescences. Details on implementation, error bounds, and
a discussion of computational cost are provided, as well as the physical motivation of the problem. In particular, we
find that ROQs exhibit exponential asymptotic convergence in the calculation of overlaps, with a profile of the error
function in terms of quadrature points qualitatively similar to the greedy error curve of the training space in terms of
the number of reduced basis elements. We emphasize that this exponential convergence in computing overlaps is, as
expected, present even when the function is sampled at equally spaced quadrature points. In particular, this means
that reduced order quadratures can be used as an efficient down-sampling strategy when function evaluations from
experimental observations are given at (for example) fixed intervals.We also show the staggering offline savings of our
two-step greedy approach compared to a direct one.

5.1 Comparison with Gauss-Legendre quadratures

In order to highlight the essential features of our approach, in this subsection we use Legendre polynomials {P`(x)}m`=1

defined on x ∈ [−1, 1] as an orthonormal basis (with respect toW (x) = 1) instead of a reduced basis as generated in Step
1 Algorithm 2. Steps 3 and 4 of Algorithm 2 require specifying an underlying quadrature rule, which in this subsection
will be either anM point Gauss-Legendre or extended trapezoidal rule. The resulting ROQ point and weight distribution
(see Subsection 5.1.1), conditioning (see Subsection 5.1.2) and application to Runge’s function (see Subsection 5.1.3)
are considered next.

5.1.1 Point and weight distribution of ROQ

To build the ROQ points and weights an extended trapezoidal rule is used and all m = 24 Legendre polynomials
are sampled at M = 1, 000 equidistant points. Fig. 1(a) compares the distribution of points and weights for the Gauss-
Legendre quadrature (red dots) and ROQ (blue crosses). Both weight and point distributions are similar, and in particular
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the points are not equally spaced but instead cluster towards the end points at x = ±1. One of the ROQ weights is equal
to −0.00496089441576999 at 0.775775775775776. Negative weights can be problematic in quadrature rules due to
roundoff errors leading to poorly conditioned formula [24]. We turn to this issue next.
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Fig. 1 The top left scatter plot shows the weight ωk and point distributions for Gauss-Legendre and ROQ usingm = 24 Legendre polynomials
as a basis (see Subsection 5.1.1 for more details), whereas the bottom left one shows just the point locations. The right plot gives the condition
number

∑m
k=1 |ωk| for an m-point Gauss-Legendre and ROQ rule, with m ∈ [2, 200] (see Subsection 5.1.2 for more details).

5.1.2 Conditioning of ROQ

Consider the absolute condition number
∑
k |ωk| of a quadrature formula which, on the integration domain x ∈ [−1, 1],

is exactly 2 if all the weights ωk are positive as can be seen by integration of unity. If some weights are negative then
the condition number is necessarily larger than 2. A classic example of ill-conditioning is the Newton-Cotes rule, where∑
k |ωk| > 2 and grows without bound when using more than 8 nodes [24]. Fig. 1(b) shows the absolute condition

number
∑
k |ωk| for a Gauss-Legendre (dashed red line) and reduced order (solid blue line) quadrature. The dashed red

line shows the optimal value of 2, which is achieved by the Gauss-Legendre quadrature case. The condition number for
ROQ remains below 2.25 for the first 200 Legendre polynomials (see Subsection 5.1.1) and has no noticeable growth
trend. This plot was generated using M = 1, 000 equally spaced points on x ∈ [−1, 1]: this resolution is sufficient for
demonstrating well conditioning, but the resulting ROQ integration rule would be of low accuracy. We have considered
up to 100, 000 points, always obtaining behavior similar to that one of Fig. 1(b).

5.1.3 Integration of Runge’s function

Many general features of ROQ can be ascertained by integration of Runge’s function∫ 1

−1

1

(1 + x2)
dx = 2 tan−1(1) ,

which is a classic example of oscillatory errors due to high-order interpolation. In the following experiment, integra-
tion of Runge’s function is carried out with three different ROQ rules built from a basis consisting of m Legendre
polynomials. In each case the Legendre polynomials are evaluated at M1 = 10, 000 equally spaced and M2 = 400
Gauss-Legendre points, and the integration errors are computed as |2 tan−1(1)− IROQ|.

First, integration of Runge’s function is carried out using an m-point ROQ-trapezoidal rule which is built from an
M1-point extended trapezoidal rule and the m DEIM point selections. The resulting integration error is given by the
dash-dot black line in Fig. 2. Notice that the ROQ-trapezoidal error curve flattens out around 10−9. Beyond this value
the 10, 000 point trapezoidal rule is unable to accurately integrate the Legendre polynomials of degree higher than∼ 20,
thereby limiting the ROQ accuracy (see Theorem 1).
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Fig. 2 Convergence of the integral
∫ 1
−1

(
1 + x2

)−1
dx to 2 tan−1(1) using three different ROQ rules whose generation (using Legendre

polynomials as basis) is described in Sec. 5.1.3. Integration error from a ROQ-trapezoidal constructed with a M1 = 10, 000 point extended
trapezoidal rule is given by the dash-dot black line. Due to the extended trapezoidal rule’s inability to accurately integrate higher order Legendre
polynomials this curve flattens out around 10−9. If we exactly integrate these basis functions by setting ωT Ṽ = [

√
2, 0, . . . , 0] in Eq. (21)

while continuing to use the ROQ-trapezoidal’s quadrature points the accuracy is restored as seen from the ROQ-equidistant error curve (solid
blue). Integration error from an ROQ constructed with a M2 = 400 point Gauss-Legendre is given by the dashed red line.

Next we show how accuracy may be restored in this particular case. Notice that the factor ωT Ṽ in Eq. (21) for the
ROQ weights is precisely the numerical integration of m Legendre polynomials. Furthermore, we know that the first
Legendre polynomial integrates to

√
2 while all others integrate to zero. Hence, in this particular case we may integrate

them “by hand" by setting ωT Ṽ = [
√
2, 0, . . . , 0], while continuing to generate interpolation points by way of the DEIM

algorithm. The resulting ROQ rule, denoted in the figure as ROQ-equidistant, is then used to integrate Runge’s function
with an error given by the solid blue line in Fig. 2. This highlights the importance of accurate integration of the basis
functions which, in a general setting where the basis vectors are selected by a greedy algorithm, should be carried out
with a good underlying quadrature rule.

Lastly, an ROQ rule is constructed from a M2 = 400 point Gauss-Legendre rule (dashed red line of Fig. 2) and
shows excellent agreement with the ROQ-equidistant case. Of particular noteworthiness, all three ROQ rules clearly
show exponential convergence with the number of quadrature points and no apparent issues stemming from Runge’s
phenomena. Notice that the dashed red and solid blue lines are nearly indistinguishable, confirming the expectation that
if the basis functions are sampled densely enough (a statement which certainly depends on m) and integrated accurately
enough by the underlying quadrature rule, the resulting rules perform similarly.

5.1.4 Higher dimensional integrals

Let d ≥ 1 be the space dimension and consider the integrals

I1 =

∫
Ω

[
(x− µ1)2 + 0.12

]−1/2
dx , I2 =

∫
Ω

[
(x− µ1)2 + (y − µ2)2 + 0.12

]−1/2
dx dy , (28)

for the following two cases: i) d = 1, Ω = [−1, 1] and µ1 ∈ [−.1, .1] and ii) d = 2, Ω = [−1, 1]2 and µ =
(µ1, µ2) ∈ [−.1, .1]2. In the first case , numerical integration is carried out using an M1 ≤ 150 point Gauss-Legendre
rule and an ROQ rule built from the 150-point GQ rule. For the second case, numerical integration is carried out using an
M2 ≤ 1502 point tensor product Gauss-Legendre rule and an ROQ rule built from the 1502-point GQ rule. Basis vectors
are selected by the greedy algorithm in both cases. From Fig. 3 one can see that ROQ provide a factor of ∼ 4 savings
in the 1-dimensional case for a maximum error below 10−4, while the savings in the 2-dimensional case is greater
than ∼ 12. For many problems the expected ROQ savings will continue to increase when compared to quadrature rules
arising from tensor product grids whose computational cost (also the cost incurred while building the basis) scales like
Md for d spatial dimensions. On the other hand, an ROQ nodal set is formed by scattered point distributions tailored to
the problem.
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Fig. 3 Error curves for the 1-dimensional (case i) and 2-dimensional (case ii) numerical integrals of Eq. (28) using Gauss-Legendre and ROQ
rules. Errors are computed by taking a maximum over the entire training set. The ROQ savings increase from ∼ 4 to ∼ 12 as the number of
spatial dimensions is increased from one to two. As discussed in Sec. 5.1.4, further savings are expected as the number of spatial dimensions
increase.

5.2 Gravitational waves

The inspiral and merger of neutron stars (NSs), black holes (BHs) or mixed pairs, known generically as compact binary
coalescences, is believed to be one of the main sources of gravitational waves to be detected by the upcoming generation
of earth-based observatories [25,26,27,28,29,30]. A passing wave distorts the length between any two points separated
by a non-zero spatial distance. These distortions are measured by gravitational wave detectors as an effective strain
hµ(x), where x denotes either time or frequency. In this problem the parameter µ depends on quantities such as the mass
and spin of the compact objects, or detector orientation. In principle hµ is obtained by numerically solving Einstein’s
equations, which are a set of parameterized quasilinear hyperbolic-elliptic equations [31,32,33,34]. However, due to the
cost of these simulations and the properties of the target system, simplified models are often used.

Here we focus on testing our proposed ROQ on the post-Newtonian (PN) approximation [35], under which the
gravitational waves in the leading order Stationary Phase Approximation (SPA) are given by [36,37,38],

hMc
(f) = Af−7/6 · exp

(
i

{
−π
4
+

3

128

(
π · G

c3
· f · Mc

)−5/3
})

, (29)

where f denotes the frequency, G Newton’s gravitational constant [39], c the speed of light, and A an overall amplitude
that depends on quantities such as the distance to the compact binary coalescence. We will refer to Eq. (29) as a grav-
itational waveform, two representative examples are shown in Fig. 4. The single parameter µ in this model is the chirp
massMc := (m1m2)

3/5(m1+m2)
−1/5 [38], withmi the individual mass of each object. All quantities here use MKS

units.
There are various reasons one might need to repeatedly compute inner products between waveforms. One setting

where this occurs is in gravitational wave searches using matched filtering [40,41,42,38]. Given data s recorded by
a detector, a matched filtering search is carried out by computing all possible inner products of the data s against
waveforms drawn from a (usually large) catalog. It can be shown [43,44] that the optimal matched filtering strategy
requires one to compute inner products with a weight given by the reciprocal of the detector’s power spectral density
S(f) = W−1. As a representative example we use S(f) from the initial Laser Interferometer Gravitational Wave
Observatory (LIGO) [45], which can be modeled by the curve [46]

S(y) = 9× 10−46
[
(4.49y)−56 + 0.16y−4.52 + 0.52 + 0.32 · y2

]
, y =

f

150Hz
. (30)

To ensure that no signals are missed and that the parameters are correctly estimated many inner products are needed for
each segment of data [18,47,48,49]. These significant computational costs motivate a need for faster ways of performing
these integrals, often in real-time [50,51,52].
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Fig. 4 Gravitational waveforms hA (left) and hB (right) correspond to the smallest (A = 2.611651689888372M�) and largest (B =
26.11651689888372M�) chirp masses of the training set TK defined in (31). Waveforms are complex valued, but for clarity we do not show
the imaginary part of hA.

In the following series of experiments we consider gravitational waves of the form given by Eq. (29), gener-
ated by inspiralling binary black hole (BBH) systems with mass components in the interval mi ∈ [3, 30]M�, where
1M� = 1.98892 × 1030Kg is the astrophysical unit of mass known as a solar mass. Therefore the parameter domain
under consideration is P = [A,B], where A = 2.611651689888372M� and B = 26.11651689888372M�. The phys-
ical domain frequency interval is given by Ω = [40, 366.3383434841933]Hz. Here the lower value is set by the Earth’s
seismic noise which decreases the detector’s sensitivity. The upper bound is set by the limitations of the PN approxi-
mation which breaks down at frequencies corresponding to the Innermost Stable Circular Orbit. While this is a mass
dependent frequency, for simplicity we choose the upper limit as the maximum over the mass range here considered.

Our primary goal in the forthcoming sections is to describe the construction and performance of an ROQ rule for
computing inner products between gravitational waveforms given by Eq. (29). These steps are conveniently summarized
in Algorithm 2. The first step, an approximation for F̃ ≈ F̃m, can be carried out either by means of a direct greedy (Path
#1) or two-step greedy (Path #2). Due to a significantly reduced offline cost we advocate the two-step greedy approach,
which in turn requires an intermediate approximation F ≈ Fn. Results for this intermediate approximation are con-
sidered in Section 5.2.1. We contemporaneously remark on the performance of the DEIM algorithm when applied to
single functions to facilitate a better understanding of this algorithm in a simpler setting. In Sections 5.2.2 and 5.2.3 we
complete the second half of the two-step greedy approximation, identify the interpolation points and finally generate
an ROQ rule. In this section we also answer the fundamental question: Do the direct and two-step greedy approaches
give comparable results and is the former much more expensive than the latter? As we will see, we have strong numer-
ical evidence that, as predicted by our estimates, the two-step greedy gives enormous computational savings without
sacrificing the accuracy or compactness of the reduced basis.

5.2.1 RB-greedy and DEIM for single functions

Here we consider experiments focused on approximations of the set of functions F = {hMc
(f) : Mc ∈ P}; with

hMc
as in Eq. (29) and the range P = [A,B] for the chirp massMc –serving here as the parameter µ– as described

above. We find the DEIM points and numerically confirm the DEIM error bounds from Sec. 4.2.2. This subsection is
also precursor to Sections 5.2.2 and 5.2.3, where ROQs are constructed for waveform inner products.

Reduced Basis: We begin by building a reduced basis space Fn approximating F by using the RB-greedy approach.
Since the number of cycles is proportional to an inverse power ofMc, we have found it advantageous to populate the
training space with a logarithmic spacing between the samples, thereby clustering more points at low values of Mc.
More precisely, a training set of size K is here given by

TK =

A
(
B

A

) i
K−1

| i = 0, . . . ,K − 1

 , (31)
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and an associated training space of normalized waveforms

Ftrain = {hMc
(f) | Mc ∈ TK}.

Through numerical experiments we have found that for this problem the number of basis for any given greedy error
saturates with at most K = 3, 000 training space elements, with – for example – 178 RB elements {ei}178i=1 needed to
achieve a tolerance5 of ε2 = 10−12. Therefore, the results shown below use 3, 000 training space samples. Fig. 5(a)
shows the distribution of points selected by the greedy algorithm. They cluster at lowMc, which corresponds to more
lower-frequency oscillations in Eq. (29). Such clustering is expected, since the number of cycles in a frequency range
f ∈ [fmin, fmax] is given to lowest post-Newtonian approximation order by (graphically seen from Fig 4)

Ncycles (Mc) = N (fmin;Mc)−N (fmax;Mc) ,

where (see Eq. (4.23), and Eq. (5.247) from Ref. [44])

N (f ;Mc) = 1/(32π8/3)
(
GMc/c

3
)−5/3

f−5/3 .

The truly interesting aspect is that the distribution of greedy points closely matches the functional form ofNcycles (Mc).
The solid black lines labeled “projection error" in both plots of Figure 6 show the square of the greedy error

σn(Ftrain;H), defined in Eq. (12), over the training space Ftrain, as a function of the number of RB elements. Af-
ter a slow decay, the error decays with a very fast exponential falloff, a feature that we have found in this family of
inspiral gravitational waveforms and generalizations thereof [18,19].
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Fig. 5 The left figure (a) shows the parametersMc selected by greedy Algorithm 4. The right figure (b) shows the frequency points selected
by DEIM Algorithm 5 out of 20, 000 equidistant frequency sample points. We see from the histograms that both the chirp masses selected
and the frequency interpolating points cluster at small values. This is intuitively expected, because smaller chirp masses correspond to a larger
number of waveform cycles in Eq. (29).

Empirical Interpolation: Since the reduced basis set {ei}178i=1 generated above is application-based (as opposed to,
say, Jacobi polynomials), an appropriate set of interpolation points is in principle not known, and that is where the
DEIM algorithm of Section 3.2 enters the game. We now generate a hierarchical set of DEIM points for the reduced
basis built (these results are not used in the construction of ROQ for inner products), choosing the maximum number
of interpolating points which equals the dimension of the RB space. That is, using n = 1, 2, 3, . . . , 178 reduced basis
elements, we sequentially computed the equivalent number of DEIM points. We recall that the RB-greedy approach
selects points in parameter space, in this case the chirp mass, while the DEIM generates interpolating points in physical

5 Our numerical experiments are carried out with double precision arithmetic. This translates into a double precision computation of the
quantity

∥∥hµ − Pnhµ∥∥2d found in step 3b of Algorithm 4 (RB-Greedy Algorithm), and hence an accuracy of about 10−7 in the computation
of its square root. These observations motivate a choice for the greedy error tolerance to be ε = 10−6. Refs. [53,54] address this issue in
greater detail and propose alternatives for improving error computations.
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space (here frequency), and that both methods are hierarchical. That is, a seed choice for the first parameter value defines
the first RB element, and from it the first interpolating point can be computed. Next, the greedy method chooses a second
parameter value and the second RB element. By applying the DEIM to this new set (of so far two basis elements), the
second interpolating point can be computed. And so on. Equivalently (the output is exactly the same), one can generate
the whole RB first, up to the desired representation error tolerance, and then generate all of the interpolation points. Put
differently, if there are n RB elements, up to n DEIM points can be generated, and generating some n1 < n DEIM only
requires the first n1 RB elements. This discussion, though perhaps trivial, might be helpful to keep in mind when later
discussing the results from Fig. 6.

As input to the DEIM algorithm we must provide the RB functions sampled on some set of frequency points. Two
cases are here considered: i) the basis vectors are sampled at 1, 701 Gauss-Legendre points, which was the integration
rule used to build the reduced basis in Subsection 5.2.1, ii) the basis vectors are sampled at 20, 000 equidistant points 6.
Figure 5(b) depicts the frequency distribution of selected points for the equidistant sampling case, which is of particular
practical importance when one seeks to downsample experimental data. The overall structure for the Gauss-Legendre
points case was found to be essentially identical, and is therefore not shown.

Next, we randomly pick 10, 000 waveforms, not necessarily in the training space, and represent each of them as a
DEIM interpolant (that is, using Eq. (22)). Both sampling at Gauss-Legendre and equidistant points are considered. For
each waveform the DEIM error is calculated as ‖hµ−In[hµ]‖2d . Fig. 6 compares the largest DEIM error over all 10, 000
waveforms (solid blue line) with the greedy error (solid black line). Notice that the black line lies strictly below the blue
line; for waveforms in the training space this is guaranteed by the optimality of the L2 orthogonal projection Pnhµ. In
turn, the DEIM interpolation error is bounded, again as expected, from above by the a-priori theoretical error estimates
given in by Eq. (25) (red line) and Eq. (26) (purple line). In principle these two error estimates strictly hold only for
waveforms in the training space, but our numerical results show that they evidently continue to hold for waveforms
between elements of the training space when the latter is sufficiently dense. The red line provides a sharper bound
on the error but it is also more expensive to calculate (cf. Remark 6). Finally, notice that, at least for elements in the
training space, the asymptotic convergence rate of the DEIM is predicted to be bounded by the RB-greedy representation
error (with the Lebesgue constant as a proportionality constant), see Corollary 2 . From the figure we can see that the
similar asymptotic convergence rates for the DEIM and reduced basis representation continue to hold for waveforms not
necessarily in the training space.
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Fig. 6 Maximum projection and interpolation errors, as well as the predicted error bounds, for single waveforms as a function of the number of
reduced basis (equal to the number of DEIM points) used. In both figures “projection error" plots the square of the greedy error σn(Ftrain;H)
and “interpolation error" plots a maximum error ‖hMc − In

[
hMc

]
‖2d taken over 10, 000 randomly drawn values ofMc not necessarily

in the training space. The DEIM interpolant error curves found in the left (right) figures correspond to the Gauss-Legendre (equidistant) cases
described in Sec. 5.2.1. Error bounds given by Eq. (26) (error bound 1, magenta) and Eq. (25) (error bound 2, red) are identical up to numerical
accuracy when equidistant samples are used (cf. remark 6). For both cases the maximum interpolation error is nearly identical, as expected.

6 See the discussion in Section 4.3 related to the subtleties involved when sampling the RB functions at a set different from those used to
compute the underlying quadratures to build the RB itself.
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5.2.2 Direct and two-step greedy: results and comparison

5 10 15 20 25

5

10

15

20

25

Mc

M
c

Direct and two−step greedy points for products of waveforms

 

 
Two−step

Direct

50 100 150 200 250 300 350
10

−12

10
−9

10
−6

10
−3

10
0

# RB

m
ax

 p
ro

je
ct

io
n 

er
ro

rs

max error for product of waveforms

 

 

projection error, Direct

projection error, Two−step

Fig. 7 Selected chirp mass Mc values (left) and square of the greedy error (right) for both the direct and two-step greedy approaches.
Each approach seeks to compress a training space which consists of normalized products of waveforms. However, these training spaces are
constructed in very different ways. The two-step training space is built from a Cartesian product of greedy points identified while building an
RB space for waveforms (as opposed to their products) and thus has 1782 members. A direct greedy uses a training space from the Cartesian
product of the TK defined in Eq. (31) and has 30002 members. Remarkably, despite these differences, we find that exactly 339 basis vectors
are needed to achieve an error tolerance of ε2 = 10−12 for both the two-step and direct greedy. The left figure shows the point distribution is
slightly different with more clustering at lower masses for the two-step process (black circles) as compared with the direct one (red squares).

In the previous subsection we constructed an approximation space Fn ≈ F . It was found that 178 basis elements are
needed to represent any member of a 3000 member training set given by (31) with an accuracy better than ε2 = 10−12.
We continue following Algorithm (2) with an aim towards approximating F̃ . Results for both the two-step and direct
greedy algorithms are given, followed by a short discussion.
Two-step greedy results: As discussed in Sec. 3.3 a second RB-greedy is used to build a space F̃m which approximates
F̃ . Following the prescription outlined there, we begin by building a training set T 2

n = {(µi, µj)}ni,j=1 and a training
space Fn2 of associated normalized products {h∗µihµj/‖h

∗
µihµj‖d}

n
i,j=1, where {µi}ni=1 are the greedy points identified

by the first greedy approximation F ≈ Fn carried out in Sec. 5.2.1. Our definition of Fn2 is not the only choice and, in
particular, one may build a training space from normalized products of the orthogonalized basis {ei}178i=1 (cf. Remark 2).

Through numerical experiments we have found that 339 reduced basis elements are needed to achieve a tolerance
of ε2 = 10−12 for approximating Fn2 . Fig. 7 (left) shows the distribution of points selected by the greedy algorithm
(the two-step greedy results are denoted by black circles). As expected they cluster towards lower values of Mc (see
Sec. 5.2.1). The solid blue line labeled “projection error, Two-step" in Fig. 7 (right) plots the square of the greedy error
σm(Fn2 ;H), defined in Eq. (12), over the training space of Fn2 , as a function of the number of reduced basis elements.
Furthermore, through Monte Carlo sampling of the continuum we find any waveform to be accurately represented (see
“interpolation error" of Fig. 8, right) by these same 339 basis elements.
Direct greedy results: One may consider direct approximation of F̃ through a single RB-greedy (Path # 1 in Al-
gorithm 2). For most problems this will be prohibitively expensive even as an offline computation. Nevertheless, we
provide details on it here mainly for comparison with the two-step approach (Path # 2 in Algorithm 2). We take our
training set to be a Cartesian product T 2

K = {(µi, µi)}Ki,j=1 of the K = 3000 element training set given by (31) and a
training space FK2 to be the associated normalized products h∗µihµj/‖h

∗
µihµj‖d. To achieve an approximation tolerance

of ε2 = 10−12 we have found that 339 RB elements were needed. Fig. 7 (left) shows the distribution of points selected
by the greedy algorithm (the direct greedy results are denoted by red squares). The dashed black line labeled “projection
error, Direct" in Figure 7 (right) shows the square of the greedy error σm(FK2 ;H), defined in Eq. (12), over the training
space FK2 , as a function of the number of RB elements.
Discussion and comparison of two-step and direct greedy: We first notice that when building Fn2 from products of
basis waveforms (as opposed to products of orthonormal basis vectors (cf. Remark 2)) one has Fn2 ⊂ FK2 . In light of
this observation one may view the two-step greedy as a smarter choice of sampling F̃ . Furthermore, to better assist with
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our comparison, in the numerical experiments carried out above we have initialized both the two-step and direct greedy
algorithms with the same seed.

Remarkably, despite the differences in the two approaches in terms of computational cost, we find that the greedy
error curves are nearly identical and in both cases exactly 339 basis vectors are needed to achieve an error tolerance
of ε2 = 10−12 (the greedy errors are defined with respect to different training spaces, however). In both cases after a
slowly decaying region we observe very fast exponential convergence of the form Ce−c0n

α

. For the two-step greedy,
σm(Fn2 ;H) can be fitted by

C = 4.19× 10−3, c0 = 0.981, and α = 0.923,

while for the direct one σm̂(FK2 ;H) can be fitted by

Ĉ = 3.98× 10−3, ĉ0 = 1.07 and α̂ = 0.875.

The number m of basis found to be needed so that F̃m represents F̃ within machine precision, m = 339, is
remarkably close to twice that one needed so that Fn represents F with the same accuracy, n = 178. If we were
dealing with polynomials, it would be exactly m = 2n. From a practical perspective, with the two-step greedy approach
we remove significant redundancy amongst elements of Fn2 where the dimensionality of the space to represent products
of waveforms is compressed from n2 to ∼ 2n, with a compression ratio of about 90 for this problem.

Notice the savings in the offline stage when building the reduced basis space F̃m using our two-step greedy approach,
compared to a direct one. For the problem here considered, which is not particularly large in terms of the number of
physical parameters (typically an 8 dimensional parameter space for a faithful description of compact binary coales-
cences [19]), we needed 3, 000 training space points to build Fn. Using a direct approach to build F̃m one needs 9×106

training space points, compared to the 1782 needed in the two-step greedy, with offline savings when building F̃m of
∼ 284. At the end of the day, both basis are able to accurately represent any waveform product and hence perfectly well
suited for an ROQ construction. Clearly the two-step is preferable when considering these costs; we refer to Remark 3.

Remark 7 The savings for larger problems, for example when using a lower cutoff frequency of 10Hz, as estimated for
the upcoming generation of earth-based detectors, or including spins in the modeling of each compact objects would be
considerably larger (even in the absence of precession). For such cases we have typically used ∼ 106 elements in the
training space in order to build a high accuracy RB, with less than∼ 2, 000 RB elements needed to represent Fn [17,18,
19]. For those cases a direct RB-greedy construction of F̃m would in principle require ∼ 1012 training space elements
– our two-step greedy would then save the offline cost by a factor of ∼ 105.

5.2.3 DEIM and ROQ for overlap/inner-product integration

In the previous subsection we constructed the approximation space F̃m ≈ F̃ using a direct and two-step greedy al-
gorithms. While both approaches identify an accurate and compact reduced basis set {ẽi}339i=1 approximating F̃ , the
two-step one has a much smaller computational cost (see Remark 3). We now continue with Algorithm (2). The results
shown are for a reduced basis generated from the two-step greedy.

Discrete Empirical Interpolation: We now generate the corresponding set of interpolation points using the DEIM
algorithm of Section 3.2. Results for Gauss-Legendre sampling (case 1) are shown in Figure 8, equidistant sampling
is qualitatively similar. A distribution of selected DEIM points is depicted in the leftmost plot. Notice that the overall
structure is very similar to the single waveform case shown in Figure 5(b).

For 20, 000 randomly sampled normalized waveform products g ∈ F̃ , not necessarily in the training space, the
DEIM interpolant is evaluated using Eq. (22). The DEIM interpolation error is calculated as ‖g−Ĩm[g]‖2d . Fig. 8 (right)
compares the largest DEIM interpolation error over all 20, 000 products (solid blue line) with the square of the greedy
error σm (Fn2 ;H) (solid black line). Notice that the DEIM interpolation error is bounded from above by the a-priori
error estimates Eq. (25) (red line) and Eq. (26) (purple line). These two error estimates strictly hold for waveforms in the
training space, and evidently continue to hold for waveforms outside of the training space when the latter is sufficiently
dense. The red line provides a sharper bound on the error, but its also more expensive to compute (cf. Remark 6).

Reduced Order Quadratures: Having assembled a set of basis vectors and empirical interpolation points for products,
we compute the reduced order quadrature weights ωROQ

i with Eq. (21) to complete the ROQ rule. Like the previous
experiments of this section, we randomly sample 20, 000 inner products (with normalized integrands) to compute, and
monitor the maximum error from this computation.

Figure 9 compares accuracy versus computational degrees of freedom (number of quadrature nodes) for a variety
of integration schemes. The black and blue lines denote trapezoidal and Gauss-Legendre quadratures, respectively. Two
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Fig. 8 The left figure shows the distribution of empirical interpolation points selected by the DEIM algorithm with the basis vectors sampled
at 1, 701 Gauss-Legendre points. The right figure shows maximum projection and interpolation error (and error bounds) for products of
waveforms as a function of the number of reduced basis used; notice that the profile is similar to that one of Fig. 6. On the right figure
“projection error" plots the square of the greedy error σm(Fn2 ;H) and “interpolation error" plots a maximum error ‖g − Ĩm [g] ‖2d taken
over 20, 000 randomly drawn normalized products g ∈ F̃ . A-priori interpolation error bounds given by Eq. (25) (error bound 2) and Eq. (26)
(error bound 1) are also shown. Results for equidistant sampling are qualitatively similar to the Gauss-Legendre case.

cases are considered within reduced order quadratures. The ROQ leading to the red line stems from a reduced basis space
{ẽi}339i=1 and a 1, 701 point Gauss-Legendre quadrature rule. The magenta one, in turn, uses a 20, 000 point trapezoidal
rule. One can see that ROQ have a factor of ∼ 2 of savings when compared to Gauss-Legendre points for a maximum
error below 10−2 − 10−1, while the savings compared to the extended trapezoidal rule at high resolutions are greater
than 50. The Gauss-Legendre comparison provides a benchmark test against the best quadrature for smooth functions
and already provides benefits for applications that may take days or weeks to run (e.g. parameter estimation studies with
Markov chain Monte Carlo). The more relevant comparison, however, for data driven applications is with the trapezoidal
rule. Real data (e.g. measurements taken at GW observatories or, more broadly, signal detection) will not be given at
Gauss-Legendre points but rather equally spaced ones and in this setting ROQ significantly outperforms its counterpart.

6 Final remarks

Numerical integration is a well studied topic (see Refs. [55,24] for excellent introductions). One may wish to identify
when Reduced Order Quadratures (ROQ) are likely to be a competitive option over alternative, more standard integration
methods. First and foremost, the set of functions to be integrated should be well approximated by a relatively compact
basis. Although we have here focused on bases obtained through the Reduced Basis-greedy approach, ROQ apply un-
changed to any other basis sets; for example, those obtained through a Proper Orthogonal/Singular Value decomposition.
Second, since the cost of building the reduced basis either by a RB-greedy or POD/SVD is potentially large, it should be
done offline. For larger problems, however, a direct reduced order modeling approach might be unfeasible, even when
building the basis is an offline and parallelizable calculation. To overcome this we proposed a two-step greedy targeted
towards approximation of products of functions (such as those appearing in weighted inner products) which, for the
problem considered here, accelerated offline ROQ computations by two orders of magnitude. Finally, and crucially, one
should determine which online costs to reduce. Benefits of ROQ are greatest when multiple fast evaluations of weighted
inner products (or perhaps simply weighted integrals) are required between parametrized functions. Are the functional
evaluations themselves costly? Quadrature rules which are designed for high-order integration of polynomials might
lead to significantly more functional evaluations compared to an ROQ rule. Can one sample the function at arbitrary
points or is the data sampling specified? In our numerical experiments with gravitational waves the savings were mod-
erate (a factor of ∼ 2) when we were able to dictate the sampling location whereas they were much greater (a factor
of ∼ 50) when the function was sampled at equally spaced points. This suggests the possibility of using ROQ in data
analysis applications such as matched filtering and Bayesian parameter estimation.

There are many potential applications of ROQ which deserve further consideration. As pointed out in Ref. [2], em-
pirical interpolation is remarkably versatile in its handling of multi-dimensional problems on irregular domains, and a
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Fig. 9 We randomly draw 20, 000 normalized pair products g ∈ F̃ and for each compute an accurate inner product (whose error is smaller than
10−6) which we take to be its exact value Ic. Next, for each product we compute an inner product using a i) Gauss-Legendre quadrature (blue
line), ii) trapezoidal rule (black line), iii) ROQ built from Gauss-Legendre quadratures (red line), and iv) ROQ built from the trapezoidal rule
(pink line). In each of the four cases we monitor the maximum errors |Ic−Id| (for the Gauss-Legendre and trapezoidal rules) and |Ic−IROQ|
(for the ROQ accelerated Gauss-Legendre and trapezoidal rules). Once the underlying product is well resolved by the empirical interpolant
we see very fast exponential convergence of IROQ → Ic (compare with “interpolation error" plotted in the right panel of Figure 8). Notice
that both ROQ rules perform similarly, which is to be expected whenever the underlying integration scheme is able to accurately integrate the
reduced basis (cf. the discussion following Algorithm 2 and Fig. 2). After an error of about 10−1 both ROQ rules outperform their discrete
counterparts and in some cases significantly so. The right figure is a semi-log “zoom-in" plot to clearly show the exponential convergence
along with error bounds given by Eq. 27. Results for ROQ (trapezoidal) are qualitatively similar and omitted for clarity on the right figure.

natural application of ROQ would be to such problems. Discontinuous functions (in physical space) with smooth varia-
tion with respect to parameters might admit a reduced basis approximating to the full space with fast convergence, and
if so it might be possible to generate fast converging ROQ for families of discontinuous or noisy functions. Furthermore,
as pointed out in Sec. 4, the hierarchical construction of ROQ node locations allows for very natural application-specific
nested quadrature rules of arbitrary order and depth.
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A Greedy and EIM algorithms

A.1 Greedy algorithm

For any ε > 0 and training set TK the greedy algorithm to build a reduced basis is as follows:

Algorithm 4 (RB Greedy Algorithm)[
{e`}n`=1, {µ`}

n
`=1

]
= RB-Greedy (ε, TK )

(1) Set n = 0 and define σ0(Ftrain;H) := 1

(2) Choose an arbitrary µ1 ∈ TK and set e1 := hµ1 Comment: ‖hµ1‖d = 1

(3) do, while σn(Ftrain;H) ≥ ε
(a) n = n+ 1

(b) σn(hµ) :=
∥∥hµ − Pnhµ∥∥d for all µ ∈ TK

(c) σn(Ftrain;H) = supµ∈TK
{
σn(hµ)

}
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(d) µn+1 := argsupµ∈TK
{
σn(hµ)

}
(greedy sweep)

(e) en+1 := hµn+1 − Pnhµn+1 (Gram-Schmidt Orthogonalization)
(f) en+1 := en+1/‖en+1‖d (normalization)

Remark 8 In step 3b the error is computed exactly as
∥∥hµ − Pnhµ∥∥d. In the setting of PDEs, RB methods avoid exact error computations by

using parametric error estimators and without computing full solutions. In the context of the empirical interpolation method Ref. [2] suggests
using σ̂(hµ) = ‖hµ − In[hµ]‖d, where In[hµ] is the empirical interpolant. Indeed, for applications limited by computational resources
using σ̂(hµ) could be desirable. Within the Hilbert space setting described in this paper, however, an exact error σ(hµ) computation results
in a reduced basis space which will more accurately approximate the full space (either F or F̃ ) and should be used whenever possible.

A.2 EIM algorithm

Algorithm 5 (Selection of DEIM Points)[
P, {pi}ni=1

]
= DEIM (V, {xk}Mk=1) Comment: the column vectors of V must be linearly independent

(1) j = argmax |e1| Comment: here argmax takes a vector and returns the index of its largest entry
(2) Set U = [e1], P = [êj ], p1 = xj Comment: êj is a unit column vector with a single unit entry at index j
(3) for i = 2, . . . , n do

(4) Solve (PTU)c = PT ei for c
(5) r = ei −Uc
(6) j = argmax |r|
(7) Set U = [U r], P = [P êj ], pi = xj

The DEIM algorithm described above is nearly identical to the one given in Ref. [4] with the exception of Step 7 which is U = [U ei]
in that reference. In Appendix C we show these algorithms to be equivalent and, furthermore, we show a relationship between DEIM and
Gauss-elimination with partial pivoting. Owing to the lower triangular form of PTU, in Appendix B we show that Algorithm 5 has a reduced
computational cost.

B Asymptotic FLOP Count

B.1 DEIM FLOP Count

In Algorithm 5 as PTU is a lower triangular matrix therefore (after m iterations) Step (4) costsO(m3), Step (5) costsO(Mm) subtractions
andO(Mm2) matrix vector multiplications, where latter is the dominant one. The improvement in our implementation of Algorithm 5 as com-
pared to [4] is that the our implementation scales asO(m3) as compared toO(m4) in [4]. Therefore the total DEIM cost isO(Mm2 +m3).

B.2 ROQ FLOP Count

The dominant cost (assuming M > m) of computing reduced order quadrature weights
(
ωROQ

)T
= ωT Ṽ

(
P̃T Ṽ

)−1
in (21) is

O(Mm2). Here we used the fact that the operation P̃T Ṽ is equivalent to selecting m rows corresponding to DEIM points {p̃`}m`=1.
Then the overall cost to compute ROQ using one-step (Algorithm 4 [Path #1] with modified Gram-Schmidt in greedy is:

O(K2Mm̂+Mm̂2)

and two-step (Algorithm 4 [Path #2] is:
O(n2Mm+KMn+Mm2) .

Herem, m̂ denote the number of reduced basis used in approximation of F̃ via two-step and direct approach respectively and n is the number
of reduced basis used to approximate F .

C DEIM and LU Decomposition with Partial Pivoting

The original DEIM described in [4] has as Step 7
U = [U ei], i = 2, . . . n .

Since the columns of U are linearly independent, PTU is always invertible, but in this form the matrix PTU can be dense. Next we show
that with a slight modification to the original DEIM, we get Algorithm 5 and at every iteration i = 2, . . . , n with ri := r,

U := [U ri] ,

gives the same result. One of the advantages of looking at DEIM in this format is that the matrix PTU is lower triangular, therefore the system
can be solved for c withO(n2) operations, as compared to using ei, which gives a dense matrix requiringO(n3) operations.

Next we prove that we get the same result using both formats.
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Proposition 1 In [4], Step 7 of Algorithm 5 was presented as U = [U ei], i = 2, . . . , n, we can replace it by

U = [U ri], i = 2, . . . , n,

where ri := r, at every iteration, and r is as given in Step 5 of Algorithm 5.

Proof Step 4 of Algorithm 5, at i = n, gives the coefficient matrix

PTU =


e1(p1) e2(p1) · · · en−1(p1)
e1(p2) e2(p2) · · · en−1(p2)
e1(p3) e2(p3) · · · en−1(p3)

...
...

. . .
...

e1(pn−1) e2(pn−1) · · · en−1(pn−1)

 . (32)

Next we write the row reduced echelon form using forward Gaussian elimination for (PTU)T , where the first step implies

e1(p1) 0 · · · 0

e1(p2) r2(p2) · · · en−1(p2)−
en−1(p1)

e1(p1)
e1(p2)

e1(p3) r2(p3) · · · en−1(p3)−
en−1(p1)

e1(p1)
e1(p3)

...
...

. . .
...

e1(pn−1) r2(pn−1) · · · en−1(pn−1)−
en−1(p1)

e1(p1)
e1(pn−1)


.

The final row reduced echelon form for (PTU)T is
e1(p1) 0 · · · 0
e1(p2) r2(p2) · · · 0
e1(p3) r2(p3) · · · 0

...
...

. . .
...

e1(pn−1) r2(pn−1) · · · rn(pn−1)

 . (33)

Hence the proposition.

Remark 9 Algorithm 5 has a flavor of Gauss elimination with row pivoting. We showed the elimination part in Proposition 1. Now we show
that the DEIM points {p1, . . . , pn} are in fact the pivots. Our goal is to arrive at (33) row echelon form of (PTU)T with with partial pivoting.
Consider the matrix (32). Let the location of the first pivot, i.e., the maximum of the absolute value of the first column be p1 (this is the same as
Step 1 in Algorithm 5). Apply the first step of forward elimination as in the proof of Proposition 1. Next compute the second pivot p2, which
is the maximum of the absolute value of the so-obtained second column. Following in this manner we arrive at the matrix in (33).
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