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Abstract We propose a new image denoising algorithm when the data is con-
taminated by a Poisson noise. As in the Non-Local Means filter, the proposed
algorithm is based on a weighted linear combination of the observed image.
But in contract to the latter where the weights are defined by a Gaussian ker-
nel, we propose to choose them in an optimal way. First some ”oracle” weights
are defined by minimizing a very tight upper bound of the Mean Square Error.
For a practical application the weights are estimated from the observed image.
We prove that the proposed filter converges at the usual optimal rate to the
true image. Simulation results are presented to compare the performance of
the presented filter with conventional filtering methods.

Keywords Poisson noise · Mean Square Error · oracle estimate · Optimal
Weights Filter

1 Introduction

In a variety of applications, ranging from nuclear medicine to night vision and
from astronomy to traffic analysis, data are collected by counting a series of
discrete events, such as photons hitting a detector or vehicles passing a sensor.

Qiyu JIN
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Many such problems can be viewed as the recovery of the intensity from the
indirect Poisson data. The measurements are often inherently noisy due to
low count levels, and we wish to reconstruct salient features of the underlying
phenomenon from these noisy measurements as accurately as possible.

There are many types of methods to reconstruct the image contaminated by
the Poisson noise. The most popular method is performed through a Variance
Stabilizing Transform (VST) with the following three-step procedure. First,
the variance of the Poisson distribution is stabilized by applying a VST. So that
the transformed data are approximately homoscedastic and Gaussian. The
VST can be an Anscombe root transformation (Anscombe [3] and Borovkov
[6]), multiscal VSTs (Bardsley and Luttman [33]), Conditional Variance Sta-
bilization (CVS) (Jansen [14]), or Haar-Fisz transformation (Fryzlewicz and
Nason [10, 11]). Second, the noise is removed using a conventional denois-
ing algorithm for additive Gaussian white noise, see for example Buades, Coll
and Morel (2005 [7]), Kervrann (2006 [17]), Aharon and Elad and Bruck-
stein (2006 [2]), Hammond and Simoncelli (2008 [12]), Polzehl and Spokoiny
(2006 [26]), Hirakawa and Parks (2006 [13]), Mairal, Sapiro and Elad (2008
[20]), Portilla, Strela, Wainwright and Simoncelli (2003 [27]), Roth and Black
(2009 [29]), Katkovnik, Foi, Egiazarian, and Astola (2010 [16]), Dabov, Foi,
Katkovnik and Egiazarian (2006 [8]), Abraham, Abraham, Desolneux and Li-
Thiao-Te (2007 [1]), and Jin, Grama and Liu (2011 [15]). Third, an inverse
transformation is applied to the denoised signal, obtaining the estimate of the
signal of interest. Makitalo and Foi (2009 [21] and 2011 [22]) focus on this last
step, and introduce the Exact Unbiased Inverse (EUI) approach. Zhang, Fadili,
and Starck (2008 [33]), Lefkimmiatis, Maragos, and Papandreou (2009 [18]),
Luisier, Vonesch, Blu and Unser (2010 [19]) improved both the stabilization
and the inverse transformation.

Regularization based on a total variation seminorm has also attracted sig-
nificant attention, see for example Beck and Teboulle (2009 [5]), Bardsley and
Luttman (2009 [4]), Setzer, Steidl and Teuber (2010 [31]). Nowak and Ko-
laczyk (1998 [24] and 2000 [25]) have investigated reconstruction algorithms
specifically designed for the Poisson noise without the need of VSTs.

In this paper, we introduce a new algorithm to restore the Poisson noise
without using VST’s. We combine the special properties of the Poisson dis-
tribution and the idea of Optimal Weights Filter [15] for removing efficiently
the Poisson noise. The use of the proposed filter is justified both from the
theoretical point of view by convergence theorems, and by simulations which
show that the filter is very effective.

The paper is organized as follows. Our main results are presented in Section
2 where we construct an adaptive estimator and give an estimation of its rate
of convergence. In Section 3, we present our simulation results with a brief
analysis. Proofs of the main results are deferred to Section 4.
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2 Construction of the estimator and its convergence

2.1 The model and the notations

We suppose that the original image of the object being photographed is a
integrable two-dimensional function f(x), x ∈ (0, 1] × (0, 1]. Let the mean
value of f in a set Bx be

Λ(Bx) = N2

∫

Bx

f(t)dt.

Typically we observe a discrete data set of countsY = {N (Bx)}, whereN (Bx)
is a Poisson random variable of intensity Λ(Bx). We consider that if Bx∩By =
∅, then N (Bx) is independent of N (By). For a positive integer N the uniform
N ×N grid on the unit square is defined by

I =

{
1

N
,
2

N
, · · · , N − 1

N
, 1

}2

. (1)

Each element x of the grid I is called pixel. The number of pixels is n = N2.
Suppose that x = (x(1), x(2)) ∈ I, and Bx = (x(1) − 1/N, x(1)] × (x(2) −
1/N, x(2)]. Then {Bx}x∈I is a partition of the square (0, 1]× (0, 1]. The image
function f is considered to be constant on each Bx, x ∈ I. Hence we get a
discrete function f(x) = Λ(Bx), x ∈ I. The denoising aims at estimating the
underlying intensity profile f(x). In the sequence we shall use the following
important property of the Poisson distribution:

E(N (Bx)) = Var(N (Bx)) = f(x). (2)

Actually the Poisson noise model can be viewed as the following additive noise
model

Y (x) = f(x) + ǫ(x), (3)

where
ǫ(y) = Y (x)− f(x). (4)

may be considered as an additive heteroscedastic noise related to the Poisson
model. Due to (2), we have E(ǫ(y)) = 0 and Var(ǫ(y)) = Var(Y (y)) = f(x).

Let us set some notations to be used throughout the paper. The Euclidean

norm of a vector x = (x1, ..., xd) ∈ Rd is denoted by ‖x‖2 =
(∑d

i=1 x
2
i

) 1
2

. The

supremum norm of x is denoted by ‖x‖∞ = sup1≤i≤d |xi| . The cardinality of
a set A is denoted card A. For any pixel x0 ∈ I and a given h > 0, the square
window

Ux0,h = {x ∈ I : ‖x− x0‖∞ ≤ h} (5)

is called search window at x0. We naturally take h as a multiple of 1
N (h = k

N
for some k ∈ {1, 2, · · · , N}). The size of the square search window Ux0,h is the
positive integer number

M = (2Nh+ 1)2 = card Ux0,h.
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For any pixel x ∈ Ux0,h and a given η > 0. Consider a second square window
Ux,η of size

m = (2Nη + 1)2 = card Ux0,η.

We shall call Ux,η local patches and Ux,h search windows. Finally, the positive
part of a real number a is denoted by a+:

a+ =

{
a if a ≥ 0,
0 if a < 0.

2.2 Construction of the estimator

Let h > 0 be fixed. For any pixel x0 ∈ I consider a family of weighted estimates
f̃h,w(x0) of the form

f̃h,w(x0) =
∑

x∈Ux0,h

w(x)Y (x), (6)

where the unknown weights satisfy

w(x) ≥ 0 and
∑

x∈Ux0,h

w(x) = 1. (7)

The usual bias and variance decomposition of the Mean Square Error gives

E
(
f̃h,w(x0)− f(x0)

)2
= Bias2 + V ar, (8)

where

Bias2 =


 ∑

x∈Ux0,h

w(x) (f(x)− f(x0))




2

and

V ar =
∑

x∈Ux0,h

w(x)2f(x).

The decomposition (8) is commonly used to construct asymptotically minimax
estimators over some given classes of functions in the nonparametric function
estimation. With our approach the bias term Bias2 will be bounded in terms
of the unknown function f itself. As a result we obtain some ”oracle” weights
w adapted to the unknown function f at hand, which will be estimated further
using data patches from the image Y.

First, we shall address the problem of determining the ”oracle” weights.
With this aim denote

ρ(x) = ρf,x0 (x) = |f(x)− f(x0)| . (9)
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Note that the value of ρf,x0 (x) characterizes the variation of the image bright-
ness of the pixel x with respect to the pixel x0. From the decomposition (8),
we easily obtain a tight upper bound in terms of the vector ρf,x0 :

E
(
f̃h(x0)− f(x0)

)2
≤ gρf,x0

(w) = gρ(w), (10)

where

gρ(w) =




∑

x∈Ux0,h

w(x)ρ(x)




2

+
∑

x∈Ux0,h

w(x)2f(x). (11)

From the following theorem we can obtain the form of the weights w which
minimize the function gρ(w) under the constraints (7) in terms of ρ (x) . For the
sake of generality, we shall formulate the result for an arbitrary non-negative
function ρ(x), x ∈ Ux,h, not necessarily defined by (9).

Introduce into consideration the strictly increasing function

Mρ (t) =
∑

x∈Ux0,h

1

f(x)
ρ(x)(t − ρ(x))+, t ≥ 0. (12)

Let Ktr be the usual triangular kernel:

Ktr (t) = (1− |t|)+ , t ∈ R1. (13)

Theorem 1 Let ρ (x) , x ∈ Ux0,h be an arbitrary similarity function and let
gρ(w) be given by (11). Suppose that f(x) > 0 for all x ∈ Ux0,h. Then there
are unique weights which minimize gρ(w) subject to (7), given by

wρ(x) =
Ktr

(
ρ(x)
a

)
/f(x)

∑
y∈Ux0,h

Ktr

(
ρ(y)
a

)
/f(y)

, (14)

where a > 0 is the unique solution of the equation

Mρ (a) = 1. (15)

The proof of Theorem 1 is deferred to Section 4.1.

Remark 1 The bandwidth a > 0 is the solution of

∑

x∈Ux0,h

1

f(x)
ρ(x)(a− ρ(x))+ = 1,

and can be calculated as follows. We sort the set {ρ(x) |x ∈ Ux0,h} in the
ascending order 0 = ρ1 ≤ ρ2 ≤ · · · ≤ ρM < ρM+1 = +∞, where M =
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card Ux0,h. Let fi be the corresponding value of f(x) (we have fi = f(x) if
ρi = ρ(x), x ∈ Ux0,h). Let

ak =

1 +
k∑

i=1

ρ2i /fi

k∑
i=1

ρi/fi

, 1 ≤ k ≤ M, (16)

and

k∗ = max{1 ≤ k ≤ M | ak ≥ ρk}
= min{1 ≤ k ≤ M | ak < ρk} − 1, (17)

with the convention that ak = ∞ if ρk = 0 and that min∅ = M + 1. The
bandwidth a > 0 can be expressed as a = ak∗ . Moreover, k∗ is also the unique
integer k ∈ {1, · · · ,M} such that ak ≥ ρk and ak+1 < ρk+1 if k < M .

The proof of Remark 1 can be found in [15].
Let ρ (x) , x ∈ Ux0,h, be an arbitrary non-negative function and let wρ be

the optimal weights given by (14). Using these weights wρ we define the family
of estimates

f∗
h(x0) =

∑

x∈Ux0,h

wρ(x)Y (x) (18)

depending on the unknown function ρ. The next theorem shows that one can
pick up an useful estimate from the family f∗

h if the function ρ is close to the
”true” function ρf,x0(x) = |f (x) − f (x0)| , i.e. if

ρ (x) = |f (x) − f (x0)|+ δn, (19)

where δn ≥ 0 is a small deterministic error. We shall prove the convergence of
the estimate f∗

h under the local Hölder condition

|f(x)− f(y)| ≤ L‖x− y‖β∞, ∀x, y ∈ Ux0,h+η, (20)

where β > 0 is a constant, h > 0, η > 0 and x0 ∈ I.
In the following, ci > 0 (i ≥ 1) denotes a positive constant, and O(an)

(n ≥ 1) denotes a sequence bounded by c · an for some constant c > 0 and
all n ≥ 1. All the constants ci > 0 and c > 0 depend only on L and β; their
values can be different from line to line. Let

Γ ≥ max{f(x) : x ∈ I} (21)

be an upper bound of the image f .

Theorem 2 Assume that h ≥ c0n
−α with 0 ≤ α < 1

2β+2 and c0 > 0, or

that h = c0n
− 1

2β+2 with c0 > c1 =
(
Γ (β+2)(2β+2)

8L2β

) 1
2β+2

. Suppose also that

the function f > 0 satisfies the local Hölder condition (20). Let f∗
h(x0) be
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given by (18), where the weights wρ are defined by (14) and (15) with ρ (x) =

|f (x)− f (x0)|+ δn and δn = O
(
n− β

2+2β

)
. Then

E (f∗
h(x0)− f(x0))

2
= O

(
n− 2β

2+2β

)
. (22)

For the proof of this theorem see Section 4.2.

Recall that the bandwidth h of order n− 1
2+2β is required to have the opti-

mal minimax rate of convergence O
(
n− 2β

2+2β

)
of the Mean Square Error for

estimating the function f of local Hölder smoothness β (cf. e.g. [9]). To bet-
ter understand the adaptivity property of the oracle f∗

h(x0), assume that the
image f at x0 has local Hölder smoothness β (see [32]) and that h ≥ c0n

−α

with 0 ≤ α < 1
2β+2 , which means that the radius h > 0 of the search window

Ux0,h has been chosen larger than the “standard” n− 1
2β+2 . Then, by Theorem

2, the rate of convergence of the oracle is still of order n− β
2+2β . If we choose a

sufficiently large search window Ux0,h, then the oracle f∗
h(x0) will have a rate

of convergence which depends only on the unknown maximal local smoothness
β of the image f. In particular, if β is very large, then the rate will be close to
n−1/2, which ensures a good estimation of the flat regions in cases where the
regions are indeed flat. More generally, since Theorem 2 is valid for arbitrary
β, it applies for the maximal local Hölder smoothness βx0 at x0, therefore the

oracle f∗
h(x0) will exhibit the best rate of convergence of order n

−
2βx0

2+2βx0 at x0.
In other words, the procedure adapts to the best rate of convergence at each
point x0 of the image.

We justify by simulation results that the difference between the oracle f∗
h

computed with ρ(x) = ρf,x0(x) = |f (x)− f (x0)| , and the true image f , is
extremely small (see Table 1). This shows that, at least from the practical
point of view, it is justified to optimize the upper bound gρf,x0

(w) instead of

optimizing the Mean Square Error E (f∗
h(x0)− f(x0))

2
itself.

The estimate f∗
h with the choice ρ (x) = ρf,x0 (x) will be called oracle filter.

In particular for the oracle filter f∗
h , under the conditions of Theorem 2, we

have
E (f∗

h(x0)− f(x0))
2 ≤ gρ (wρ) ≤ cn− 2β

2+2β .

Now, we turn to the study of the convergence of the Optimal Weights Filter.
Due to the difficulty in dealing with the dependence of the weights we shall
consider a slightly modified version of the proposed algorithm: we divide the
set of pixels into two disjoint parts, so that the weights are constructed from
one part, and the estimation of the target function is a weighted mean along
the other part. More precisely, we proceed as follows. Assume that x0 ∈ I.
Denote

I′x0
=

{
x0 +

(
i

N
,
j

N

)
∈ I : i+ j is pair

}
,

and I′′x0
= I�I′x0

. Denote U′
x0,h

= Ux0,h ∩ I′x0
and U′′

x,η = Ux,η ∩ I′′x0
. Since

E|Y (x) − Y (x0)|2 = |f(x) − f(x0)|2 + f(x0) + f(x), an obvious estimate of



8 Qiyu JIN et al.

E |Y (x) − Y (x0)|2 is given by

1

cardU′′
x0,η

∑

y∈U′′
x0,η

|Y (y)− Y (Ty)|2 ,

where T = Tx0,x is the translation mapping: Ty = x + (y − x0). Define an
estimated similarity function ρ̂x0 by

ρ̂x0(x) =





 1

cardU′′
x0,η

∑

y∈U′′
x0,η

|Y (y)− Y (Ty)|2



1/2

−
√
2f(x0)




+

, (23)

where

f(x0) =
1

cardU′′
x0,η

∑

y∈U′′
x0,h

Y (y).

The Optimal Weights Poisson Noise Filter (OWPNF) proposed in this paper
is defined by

f̂h(x0) =
∑

x∈U′
x0,h

ŵ(x)Y (x), (24)

where

ŵ = argmin
w




∑

x∈U′
x0,h

w(x)ρ̂x0 (x, x0)




2

+ f(x0)
∑

x∈U′
x0,h

w2(x). (25)

In the next theorem, we prove that with the choice h = c0n
− 1

2β+2 and

η = c2n
− 1

2β+2 , the Mean Square Error of the estimator f̂h(x0) converges nearly

at the rate n− 2β
2β+2 which is the usual optimal rate of convergence for a given

Hölder smoothness β > 0 (see e.g. Fan and Gijbels (1996 [9])).

Theorem 3 Assume that h = c0n
− 1

2β+2 with c0 > c1 =
(
Γ (β+2)(2β+2)

8L2β

) 1
2β+2

,

and that η = c2n
− 1

2β+2 . Suppose that the function f(x) ≥ 1
lnn satisfies the local

Hölder condition (20). Then

E(f̂h(x0)− f(x0))
2 = O

(
n− 2β

2β+2 ln2 n
)
. (26)

For the proof of this theorem see Section 4.3.
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3 Simulation

For simulations we use the following usual set of 256×256 images: Spots[0.08, 4.99],
Galaxy[0, 5], Ridges[0.05, 0.85], Barbara[0.93, 15.73] and Cells [0.53, 16.93] (see
the first row of Figure 1). All the images are included in the package ”Denoising
software for Poisson data” which can be downloaded at http://www.cs.tut.fi/∼foi/invansc/.
We first do the simulations with the oracle filter which shows excellent visual
quality of the reconstructed image. We next present our denoising algorithm
and the numerical results which are compared with related recent works ([22]
and [33]). Each of the aforementioned articles proposes an algorithm specif-
ically designed for Poisson noise removal (EUI+BM3D, MS-VST + 7/9 and
MS-VST + B3 respectively).

We evaluate the performance of a denoising filter f̂ by using the Normalized
Mean Integrated Square Error (NMISE) defined by

NMISE =
1

n∗

∑

f(x)>0,x∈I

(
(f̂(x) − f(x))2

f(x)

)
,

where f̂(x) are the estimated intensities, f(x) are the respective true vales,
and n∗ = card {f(x) : f(x) > 0, x ∈ I}.

3.1 Oracle Filter

In this section we present the denoising algorithm called Oracle Filter, and
show its performance on some test images.

Algorithm: Oracle Filter

Repeat for each x0 ∈ I

Let a = 1 (give the initial value of a)
compute ρ(xi) by (27)
reorder ρ(xi) as increasing sequence
loop from k = 1 to M
if
∑k

i=1 ρ(xi) > 0

if
1+

∑k
i=1 ρ2(xi)/f(xi)∑k

i=1 ρ(xi)/f(xi)
≥ ρ(xk) then a =

1+
∑k

i=1 ρ2(xi)/f(xi)∑k
i=1 ρ(xi)/f(xi)

≥ ρ(xk)

else quit loop
else continue loop

end loop

compute w(xi) =
(a−ρ(xi))

+/f(xi)∑
xi∈Ux0,h

(a−ρ(xj))+/f(xj)

compute f∗
h(x0) =

∑
xi∈Ux0,h

w(xi)Y (xi).

We calculate the optimal weights from the original image and compute the
oracle estimate from the observed image contaminated by the Poisson noise.

http://www.cs.tut.fi/~foi/invansc/
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Table 1 NMISE values when oracle estimator f∗

h
is applied with different values of M .

Size 7× 7 9× 9 11× 11 13× 13 15× 15 17× 17 19× 19
Spots[0.08,4.99] 0.0302 0.0197 0.0166 0.0139 0.0112 0.0098 0.0104
Galaxy[0,5] 0.0284 0.0208 0.0165 0.0144 0.0122 0.0107 0.0093
Ridges[0.05,0.85] 0.0239 0.0178 0.0131 0.0109 0.0098 0.0085 0.0074
Barbara[0.93,15.73] 0.0510 0.0399 0.0304 0.0248 0.0208 0.0195 0.0174
Cells[0.53,16.93] 0.0422 0.0323 0.0257 0.0216 0.0191 0.0164 0.0146

(a) Spots (b) Galaxy (c) Ridges (d) Barbara (e) Cells

Fig. 1 The first row is the test images original, and the second row is the images restored
by Oracle Filter with M = 19 × 19.

For choosing the convenient size of the search windows, we do numerical ex-
periments with different window sizes (see Table 1). The results show that the
difference between the oracle estimator f∗

h and the true value f is extremely
small. In Figure 1, the second row illustrates the visual quality of the restored
images by the Oracle Filter with M = 19× 19. We can see that almost all the
details have been retained.

3.2 Performance of the Optimal Weights Poisson Noise Filter

Throughout the simulations, we use the following algorithm for computing
the Optimal Weights Poisson Noise Filter f̂h(x0). The input values of the
algorithm are Y (x) , x ∈ I (the image) and two numbers m = (2Nη + 1) ×
(2Nη + 1) and M = (2Nh+ 1) × (2Nh+ 1). In order to improve the results
we introduce a smoothed version of the estimated similarity distance

ρ̂κ,x0(x) =



√ ∑

y∈Ux0,η

κ (y) |(Y (y)− Y (Ty)|2 −
√
2f(x0)




+

, (27)

where

κ (y) =
K(y)∑

y′∈Ux0,η
K(y′)

. (28)
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As smoothing kernels K(y) we can use the Gaussian kernel

Kg(y, h) = exp

(
−N2‖y − x0‖22

2h2

)
, (29)

the following kernel: for y ∈ Ux0,η,

K0 (y) =

Nη∑

k=max(1,j)

1

(2k + 1)2
(30)

if ‖y − x0‖∞ = j
N for some j ∈ {0, 1, · · · , Nη}, and the rectangular kernel

Kr (y) =

{ 1
cardUx0,η

, y ∈ Ux0,η,

0, otherwise.
(31)

The best numerical results are obtained using K(y) = K0(y) in the definition
of ρ̂κ,x0 . Also note that throughout the paper, we symmetrize the image near
the frontier.

We present below the denoising algorithm which realizes OWPNF and
shows its performance on some test images.

Algorithm: Optimal Weights Poisson Noise Filter (OWPNF)

First step:

Repeat for each x0 ∈ I

Let a = 1 (give the initial value of a)
compute ρ̂κ,x0(xi) by (27)
reorder ρ̂κ,x0(xi) as increasing sequence
loop from k = 1 to M

if
∑k

i=1 ρ̂κ,x0(xi) > 0

if
f(x0)+

∑k
i=1 ρ̂2

κ,x0
(xi)∑

k
i=1 ρ̂κ(xi)

≥ ρ̂κ,x0(xk) then a =
f(x0)+

∑k
i=1 ρ̂2

κ,x0
(xi)∑

k
i=1 ρ̂κ(xi)

else quit loop
else continue loop

end loop

compute w(xi) =
(a−ρ̂κ,x0 (xi))

+

∑
xi∈Ux0,h

(a−ρ̂κ,x0 (xj))+

compute f̂ ′(x0) =
∑

xi∈Ux0,h
w(xi)Y (xi).

Second step:

For each x0 ∈ I, compute γ(x0) =
1
M

∑
x∈Ux0,h

f̂ ′(x)

If γ(x0) ≤ 5

compute f̂(x0) =
∑

‖x−x0‖≤d/N Kg(x,H)f̂ ′(x)
∑

‖x−x0‖≤d/N Kg(x,H)

else f̂(x0) = f̂ ′(x0).
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NMISE=0.0739 NMISE=0.0618 NMISE=0.0368 NMISE=0.1061 NMISE=0.0855
M = 19 × 19 M = 15× 15 M = 9× 9 M = 15× 15 M = 11 × 11
m = 13× 13 m = 5× 5 m = 19× 19 m = 21× 21 m = 17× 17
(a) Spots (b) Galaxy (c) Ridges (d) Barbara (e) Cells

Fig. 2 These images restored by the first step of our algorithm.

Algorithm Our EUI MS-VST MS-VST PH-HMT
Algorithm algorithm +BM3D + 7/9 + B3
Spots[0.08, 4.99] 0.0259 0.0358 0.0602 0.0810 0.048
Galaxy[0, 5] 0.0285 0.0297 0.0357 0.0338 0.030
Ridges[0.05, 0.85] 0.0162 0.0121 0.0193 0.0416 −

Barbara[0.93, 15.73] 0.1061 0.0863 0.2391 0.3777 0.159
Cells[0.53, 16.93] 0.0794 0.0643 0.0909 0.1487 0.082

Table 2 Comparison between Optimal Weights Filter, MS-VST + 7/9, and MS-VST +
B3.

Note that the presented algorithm is divided into two steps: in the first step
we reconstruct the image by OWPNF from noisy data; in the second step, we
smooth the image by a Gaussian kernel. This is explained by the fact that
images with brightness between 0 and 255 (like Barbara) are well denoised
by the first step, but for the low count levels images, the restored images by
OWPNF are not smooth enough (see Figure 2). For these types of images,
we introduce an additional smoothing using a Gaussian kernel (see the second
step of the algorithm).

Our numerical experiments are done in the same way as in [33] and [21]
to produce comparable results; we also use the same set of test images (all
of 256× 256 in size): Spots [0.08, 4.99], Galaxy [0, 5], Ridges [0.05, 0.85], Bar-
bara [0.93, 15.73], and Cells [0.53, 16.93]. The authors of [33] and [21] kindly
provided us with their programs and the test images.

Figures 3- 7 illustrate the visual quality of the denoised images using OW-
PNF,EUI+BM3D [22], MS-VST + 7/9 [33], MS-VST + B3 [33] and PH-HMP
[18].

Table 2 shows the NMISE values of images reconstructed by OWPNF,
EUI+BM3D, MS-VST + 7/9, and MS-VST + B3. For Spots [0.08, 4.99] and
Galaxy [0, 5], our results are the best; for Ridges [0.05, 0.85], Barbara [0.93, 15.73],
and Cells [0.53, 16.93], the method EUI+BM3D gives the best results, but our
method is also very competitive.
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4 Proofs of the main results

4.1 Proof of Theorem 1

We begin with some preliminary results. The following lemma is similar to
Theorem 1 of Sacks and Ylvisaker [30] where, however, the inequality con-
straints are absent.

Lemma 1 Let gρ(w) be defined by (11). Then there are unique weights wρ

which minimize gρ(w) subject to (7), given by

wρ(x) =
1

f(x)
(b− λρ(x))+, (32)

where b and λ are uniquely determined by the following two equations:

∑

x∈Ux0,h

1

f(x)
(b− λρ(x))+ = 1, (33)

∑

x∈Ux0,h

1

f(x)
(b− λρ(x))+ρ(x) = λ. (34)

Proof Consider the Lagrange function

G(w, b0, b) = gρ(w) − 2b




∑

x∈Ux0,h

w(x) − 1


− 2

∑

x∈Ux0,h

b(x)w(x),

where b0 ∈ R and b ∈ Rcard (Ux0,h) is a vector with components b(x) ≥ 0,
x ∈ Ux0,h. Let wρ be a minimizer of gρ (w) under the constraints (7). By
standard results (cf. Theorem 2.2 of Rockafellar (1993 [28]); see also Theorem
3.9 of Whittle (1971 [32])), there are Lagrange multipliers b0 ∈ R and b(x) ≥ 0,
x ∈ Ux0,h such that the following Karush-Kuhn-Tucker conditions hold: for
any x ∈ Ux0,h,

∂

∂w (x)
G (w)

∣∣∣∣
w=wρ

= 2λρ(x) + 2f(x)wρ(x)− 2b− 2b(x) = 0, (35)

with

λ =
∑

y∈Ux0,h

wρ(y)ρ(y), (36)

and

∂

∂b0
G (w)

∣∣∣∣
w=wρ

=
∑

y∈Ux0,h

wρ(y)− 1 = 0, (37)

∂

∂b (x)
G (w)

∣∣∣∣
w=wρ

= wρ(x)

{
= 0, if b (x) > 0,
≥ 0, if b (x) = 0.

(38)
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(Notice that the gradients of the equality constraint function h (w) =
∑

x∈Ux0,h

w(x) − 1 and of the active inequality constraints hx (w) = w (x) , x ∈ Ux0,h,
are always linearly independent, since the number of inactive inequality con-
straints is strictly less than card Ux0,h.)

If b (x) = 0, then by (38) we have wρ (x) ≥ 0, so that by (35) we obtain
b− λρ(x) = f(x)wρ(x) ≥ 0 and

wρ(x) =
(b− λρ(x))+

f(x)
.

If b (x) > 0, then by (37) we have wρ (x) = 0. Taking into account (35) we
obtain

b− λρ(x) = −b(x) ≤ 0, (39)

so that

wρ(x) = 0 =
(b− λρ(x))+

f(x)
.

As to conditions (33) and (34), they follow immediately from the constraint
(37) and the equation (36).

Since the system (33) and (34) has a unique solution (this can be verified
by substituting b

λ = a), the minimizer of gρ (w) is also unique. The assertion
of the Lemma is proved.

Now we turn to the proof of Theorem 1. Applying Lemma 1 with a = b/λ,
we see that the unique optimal weights wρ minimizing gρ(w) subject to (7),
are given by

wρ =
λ

f(x)
(a− ρ(x))+. (40)

Since the function

Mρ(t) =
∑

x∈Ux0,h

1

f(x)
(t− ρ(x))+ρ(x)

is strictly increasing and continuous with Mρ(0) = 0 and lim
t→∞

Mρ(a) = +∞,

the equation

Mρ(a) = 1

has a unique solution on (0,∞). The equation (34) together with (40) imply
(14).
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4.2 Proof of Theorem 2

First assume that ρ (x) = ρf,x0(x) = |f (x) − f (x0)| . Recall that gρ and wρ

were defined by (11) and (14). Using the Hölder condition (20) we have, for
any w,

gρ(wρ) ≤ gρ(w) ≤ g(w),

where

g(w) =




∑

x∈Ux0,h

w(x)L‖x − x0‖β∞




2

+ Γ
∑

x∈Ux0,h

w2(x) (41)

and Γ is a constant satisfying (21). Denote w = argminw g(w). Since wρ

minimize gρ(w) and ρ(x) ≤ L‖x− x0‖β∞, we get

gρ(wρ) ≤ gρ(w) ≤ g(w).

By Theorem 1,

w(x) =
(
a− L‖x− x0‖β∞

)+/ ∑

x′∈Ux0,h

(
a− L‖x′ − x0‖β∞

)+
, (42)

where a > 0 is the unique solution on (0,∞) of the equation Mh(a) = 1, where

Mh (t) =
∑

x∈Ux0,h

1

Γ
L‖x− x0‖β∞(t− L‖x− x0‖β∞)+ > 0. (43)

Now Theorem 2 is a consequence of the following lemma.

Lemma 2 Assume that ρ(x) = L‖x − x0‖β∞ and that h ≥ c0n
−α with 0 ≤

α < 1
2β+2 , or h = c0n

− 1
2β+2 with c0 ≥ c1 (L, β) =

(
(2β+2)(β+2)Γ

8L2

) 1
2β+2

. Then

a = c3n
−β/(2β+2)(1 + o(1)) (44)

and
g(w) ≤ c4n

− 2β
2+2β (1 + o(1)), (45)

where c3 and c4 are constants depending only on β and L.

Proof We first prove (44) in the case where h = 1 i.e. Ux0,h = I. In this case
by the definition of a, we have

M1 (a) =
∑

x∈I

1

Γ
(a− L‖x− x0‖β∞)+L‖x− x0‖β∞ = 1. (46)

Let h = (a/L)1/β . Then a− L‖x− x0‖2∞ ≥ 0 if and only if ‖x− x0‖ ≤ h. So
from (46) we get

L2h
β ∑

‖x−x0‖∞≤h

‖x− x0‖β∞ − L2
∑

‖x−x0‖∞≤h

‖x− x0‖2β∞ = Γ. (47)
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By the definition of the neighborhood Ux0,h
, it is easily seen that

∑

‖x−x0‖∞≤h

‖x− x0‖β∞ = 8N−β
Nh∑

k=1

kβ+1 = 8N2 h
β+2

β + 2
(1 + o (1))

and

∑

‖x−x0‖∞≤h

‖x− x0‖2β∞ = 8N−2β
Nh∑

k=1

k2β+1 = 8N2 h
2β+2

2β + 2
(1 + o (1)) .

Therefore, (47) implies

8L2β

(β + 2) (2β + 2)
N2h

2β+2
(1 + o(1)) = Γ,

from which we infer that

h = c1n
− 1

2β+2 (1 + o(1)) (48)

with c1 =
(
Γ (β+2)(2β+2)

8L2β

) 1
2β+2

. From (48) and the definition of h, we obtain

a = Lh
β
= Lcβ1n

− β
2β+2 (1 + o(1)),

which proves (44) in the case where h = 1.

We next prove (48), which implies(44), under the conditions of the lemma.
First, notice that if h ≤ h ≤ 1, then Mh(t) = M1(t), ∀t > 0. If h ≥ c0n

−α,
where 0 ≤ α < 1

2β+2 , then it is clear that h ≥ h, for n sufficiently large.

Therefore Mh (a) = M1 (a), thus we arrive at the equation (46), from which

we deduce (48). If h ≥ c0n
− 1

2β+2 and c0 ≥ c1, then again h ≥ h for n sufficiently
large. Therefore, Mh (a) = M1 (a), and we arrive again at (48).

We finally prove (45). Denote for brevity

Gh =
∑

‖x−x0‖∞≤h

(h
β − ‖x− x0‖β∞)+.

Since h ≥ h, for n sufficiently large, we have Mh (a) = Mh (a) = 1 and
Gh = Gh. Therefore by (41), (42) and (43), we get

g(w) = Γ
Mh (a) +

∑
‖x−x0‖∞≤h

((
a− L‖x− x0‖β∞

)+)2

L2G2
h

=
Γ

L

a

Gh

.
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Since

Gh =
∑

‖x−x0‖∞≤h

(h
β − ‖x− x0‖β∞)

= h
β ∑

1≤k≤Nh

8k − 8

Nβ

∑

1≤k≤Nh

kβ+1

=
4β

β + 2
N2h

β+2
(1 + o (1))

=
4β

(β + 2)L1/β
N2a(β+2)/β (1 + o (1)) ,

we obtain

g (w) = Γ
(β + 2)

4β
L1/β−1a

− 2
β

N2
(1 + o (1)) ≤ c4n

− 2β
2β+2 (1 + o (1)) ,

where c4 is a constant depending on β and L.

Proof of Theorem 2. As ρ (x) = |f (x)− f (x0)|+ δn, we have


 ∑

x∈Ux0,h

w(x)ρ(x)




2

≤


 ∑

x∈Ux0,h

w(x)|f(x) − f(x0)|+ δn




2

≤ 2


 ∑

x∈Ux0,h

w(x)|f(x) − f(x0)|




2

+ 2δ2n.

Since f(x) ≤ Γ, with gρ and g by (11) and (41), we get

gρ(w) ≤ 2g(w) + 2δ2n.

So

gρ(wρ) ≤ gρ(w) ≤ 2g(w) + 2δ2n.

Therefore, by Lemma 2 and the condition that δn = O
(
n− β

2β+2

)
, we obtain

gρ(wρ) = O
(
n− 2β

2β+2

)
.

This together with (10) give (22).
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4.3 Proof of Theorem 3

Let M ′ = cardU′
x0,h

= (2Nh + 1)2/2, m′ = cardU′′
x0,η = (2Nη + 1)2/2.

Denote ∆x0,x (y) = f(y)− f(Ty) and η (y) = ǫ(y)− ǫ(Ty), where ǫ is defined
by (4). It is easy to see that

1

m′

∑

y∈U′′
x0,η

(Y (y)− Y (Ty))
2
=

1

m′

∑

y∈U′′
x0,η

∆2
x0,x (y) +

1

m′
S(x) + f(x0) + f(x),

where S(x) = S2(x)− S1(x), with

S1(x) = 2
∑

y∈U′′
x0,η

∆x0,x (y) η (y) ,

S2(x) =
∑

y∈U′′
x0,η

(
η2 (y)− f(x0)− f(x)

)
.

Denote

V =
1

m′

∑

y∈U′′
x0,η

∆2
x0,x (y) +

1

m′
S(x).

Then

ρ̂x0(x) =

(√
V + f(x0) + f(x)−

√
2f(x0)

)+

≤
∣∣∣∣
√
V + f(x0) + f(x) −

√
2f(x0)

∣∣∣∣ .
(49)

Using one-term Taylor expansion, we obtain

∣∣∣∣
√
V + f(x0) + f(x)−

√
2f(x0)

∣∣∣∣

≤ |V |
(f(x0) + f(x) + θV )1/2

+

∣∣∣∣
√
f(x0) + f(x)−

√
2f(x0)

∣∣∣∣

≤
1
m′

∑
y∈U′′

x0,η
∆2

x0,x(y) +
1
m′ |S(x)|

(f(x0) + f(x) + θV )1/2
+

∣∣∣∣∣∣
f(x)− f(x0)√

f(x0) + f(x) +
√
2f(x0)

∣∣∣∣∣∣
.

(50)

Since f(x) ≥ 1/ lnn, x ∈ I, (49) and (50) imply that

ρ̂x0(x) ≤
L2h2β + 1

m′ |S(x)|
(2/ lnn+ θV )1/2

+ c3h
√
lnn. (51)

We shall use three lemmas to finish the Proof of Theorem 3.
The following lemma can be deduced form the results in Borovkov [6], see

also Merlevede, Peligrad and Rio [23].
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Lemma 3 If, for some δ > 0, γ ∈ (0, 1) and K > 1 we have

supE exp (δ |Xi|γ) ≤ K, i = 1, ..., n,

then there are two positive constants c1 and c2 depending only on δ, γ and K
such that, for any t > 0,

P

(
n∑

i=1

Xi ≥ t

)
≤ exp

(
−c1t

2/n
)
+ n exp (−c2t

γ) .

Lemma 4 Assume that h = c0n
− 1

2β+2 with c0 > c1 =
(
Γ (β+2)(2β+2)

8L2β

) 1
2β+2

and that η = c2n
− 1

2β+2 . Suppose that the function f satisfies the local Hölder
condition (20). Then there exists a constant c4 > 0 depending only on β and
L, such that

P

{
max

x∈U′
x0,h

ρ̂x0(x) ≥ c4n
− β

2β+2

√
lnn

}
= O

(
n− 2β

2β+2

)
. (52)

Proof Note that

EeY (y) =

+∞∑

k=0

ek
fk(x)e−f(x)

k!
= ef(y)e(e−1)f(y) ≤ eΓe(e−1)Γ .

From this inequality we easily deduce that

sup
y

E
(
e|Z(y)|1/2

)
≤ sup

y

(
EeY (Tx,x0y)+Y (y)+

√
2(Γ 2+Γ )

)

≤ (eΓ )
2
e2(e−1)Γ+

√
2(Γ 2+Γ ),

where

Z(y) = 2∆x0,x (y) η (y) +
(
η2 (y)− f(x0)− f(x)

)
.

By Lemma 3, we infer that there exists two positive constants c5 and c6 such
that

P

(
1

m′
|S(x)| ≥ z/

√
m′

)
≤ exp(−c5z

2) +m′ exp(−c6(
√
m′z)

1
2 ). (53)

Substituting z =
√

1
c5

lnm′M ′ into the inequality (53), we see that for m′

large enough,

P


 1

m′
|S(x)| ≥

√
1
c5

lnm′M ′

√
m′


 ≤ 2 exp (− lnm′M ′) =

2

m′M ′
.
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From this inequality we easily deduce that

P


 max

x∈U′
x0,h

1

m′
|S(x)| ≥

√
1
c5

lnm′M ′

√
m′




≤
∑

x∈U′
x0,h

P


 1

m′
|S(x)| ≥

√
1
c5

lnm′M ′

√
m′


 ≤ 2

m′
.

Taking M ′ = (2Nh+1)2/2 = c20n
2β

2β+2 /2 and m′ = (2Nη+1)2/2 = c22n
2β

2β+2 /2,
we arrive at

P (B) ≤ c7n
− 2β

2β+2 , (54)

where B = {maxx∈U′
x0,h

1
m′ |S(x)| ≥ c8n

− β
2β+2

√
lnn} and c8 is a constant

depending only on β and L. Since on the set B we have

(
2

lnn
+ θV

)1/2

<
1√
lnn

(55)

for n large enough, combining (51), (54) and (55), we get (52).

Lemma 5 Suppose that the conditions of Theorem 3 are satisfied. Then

P
(
E{|f̂h(x0)− f(x0)|2

∣∣Y (x), x ∈ I′′x0
} ≥ c9n

− 2β
2β+2 lnn

)
= O(n− 2β

2β+2 ),

where c9 > 0 is a constant depending only on β and L.

Proof Taking into account (23), (24) and the independence of ǫ(x), we have

E{|f̂h(x0)− f(x0)|2
∣∣Y (x), x ∈ I′′x0

}

≤




∑

x∈U′
x0,h(x)

ŵ(x)ρ(x)




2

+ f(x)
∑

x∈U′
x0,h(x)

ŵ2(x).
(56)

Since ρ(x) < Lhβ , from (56) we get

E{|f̂h(x0)− f(x0)|2
∣∣Y (x), x ∈ I′′x0

}

≤




∑

x∈U′
x0,h

ŵ(x)Lhβ




2

+ f(x)
∑

x∈U′
x0,h

ŵ2(x)

≤







∑

x∈U′
x0,h

ŵ(x)ρ̂x0(x)




2

+ f(x)
∑

x∈U′
x0,h

ŵ2(x)


 + L2h2β .
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Recall that ŵ(x) stand for the optimal weights, defined by (25). Therefore

E{|f̂h(x0)− f(x0)|2
∣∣Y (x), x ∈ I′′x0

}

≤







∑

x∈U′
x0,h

w1(x)ρ̂x0(x)




2

+ f(x)
∑

x∈U′
x0,h

w2
1(x)


 + L2h2β ,

(57)

where w1 = argmin
w

g1(w) with

g1(w) =




∑

x∈U′
x0,h

w(x)L‖x − x0‖β∞




2

+ Γ
∑

x∈U′
x0,h

w2(x).

Since by Lemma 4,

P

{
max

x∈Ux0,h

ρ̂x0(x) < c4n
− β

2β+2

√
lnn

}
= 1−O(n− 2β

2β+2 ),

the inequality (57) becomes

P

(
E{|f̂h(x0)− f(x0)|2

∣∣Y (x), x ∈ I′′x0
} < g1(w1) + 2c24n

− 2β
2β+2 lnn+ L2h2β

)

= 1−O(n− 2β
2β+2 ).

Now, the assertion of the theorem is obtained easily if we note that h2β =

c2β10n
− 2β

2β+2 and g1(w1) ≤ c11n
− 2β

2β+2 , for some constant c12 depending only on
β and L (by Lemma 2 with U′

x0,h
instead of Ux0,h).

Proof of Theorem 3. Using (56), the condition (20) and bound f(x) ≤ Γ
we obtain

E
(
|f̂h(x0)− f(x0)|2

∣∣Y (x), x ∈ I′′x0
,
)
≤ g1(ŵ) ≤ c12,

for a constant c14 > 0 depending only on β, L and Γ . Applying Lemma 5, we
have

E
(
|f̂h(x0)− f(x0)|2

∣∣Y (x), x ∈ I′′x0
,
)

<P

(
E{|f̂h(x0)− f(x0)|2

∣∣Y (x), x ∈ I′′x0
} < c9n

− 2β
2β+2 lnn

)
c9n

− 2β
2β+2 lnn

+ P
(
E{|f̂h(x0)− f(x0)|2

∣∣Y (x), x ∈ I′′x0
} ≥ c9n

− 2β
2β+2 lnn

)
c12

=O
(
n− 2β

2β+2 lnn
)
,

where the constant in O depending only on β, L and Γ . Taking expectation
proves Theorem 3.
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(a) Original image (b) Noisy image (c) OWF

(d) EUI+BM3D (e) MS-VST + 7/9 (f) MS-VST + B3

Fig. 3 Denoising an image of simulated spots of different radii (image size: 256× 256). (a)
simulated sources (amplitudes ∈ [0.08, 4.99]; background = 0.03); (b) observed counts; (c)
Optimal Weights Filter (M = 19× 19, m = 13× 13, d = 2 and H = 1, NMISE = 0.0259);
(d) Exact unbiased inverse + BM3D (NMISE = 0.0358) (e) MS-VST + 7/9 biorthogonal
wavelet (J = 5, FPR = 0.01,Nmax = 5 iterations, NMISE = 0.0602); (f) MS-VST + B3
isotropic wavelet (J = 5, FPR = 0.01, Nmax = 5 iterations, NMISE = 0.81).

(a) Original image (b) Noisy image (c) OWF

(d) EUI+BM3D (e) MS-VST + 7/9 (f) MS-VST + B3

Fig. 4 Denoising a galaxy image (image size: 256×256). (a) galaxy image (intensity ∈ [0, 5]);
(b) observed counts; (c) Optimal Weights Filter (M = 15 × 15, m = 5 × 5, d = 2 and
H = 1, NMISE = 0.0285); (d) Exact unbiased inverse + BM3D (NMISE = 0.0297)
(e) MS-VST + 7/9 biorthogonal wavelet (J = 5, FPR = 0.0001, Nmax = 5 iterations,
NMISE = 0.0357); (f) MS-VST + B3 isotropic wavelet (J = 3, FPR = 0.0001, Nmax = 10
iterations, NMISE = 0.0338).
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(a) Original image (b) Noisy image (c) OWF

(d) EUI+BM3D (e) MS-VST + 7/9 (f) MS-VST + B3

Fig. 5 Poisson denoising of smooth ridges (image size: 256× 256). (a) intensity image (the
peak intensities of the 9 vertical ridges vary progressively from 0.1 to 0.5; the inclined ridge
has a maximum intensity of 0.3; background = 0.05); (b) Poisson noisy image; (c) Optimal
Weights Filter (M = 9× 9, m = 19 × 19, d = 3 and H = 2, NMISE = 0.0162); (d) Exact
unbiased inverse + BM3D (NMISE = 0.0121); (e) MS-VST + 7/9 biorthogonal wavelet
(J = 5, FPR = 0.001, Nmax = 5 iterations, NMISE = 0.0193); (f) MS-VST + B3 isotropic
wavelet (J = 3, FPR = 0.00001, Nmax = 10 iterations, NMISE = 0.0416).

(a) Original image (b) Noisy image (c) OWF

(d) EUI+BM3D (e) MS-VST + 7/9 (f) MS-VST + B3

Fig. 6 Poisson denoising of the Barbara image (image size: 256× 256). (a) intensity image
(intensity ∈ [0.93, 15.73]); (b) Poisson noisy image; (c) Optimal Weights Filter (M = 15 ×

15, m = 21 × 21 and d = 0, NMISE = 0.1061); (d) Exact unbiased inverse + BM3D
(NMISE = 0.0863) (e) MS-VST + 7/9 biorthogonal wavelet (J = 4, FPR = 0.001,
Nmax = 5 iterations, NMISE = 0.2391); (f) MS-VST + B3 isotropic wavelet (J = 5,
FPR = 0.001, Nmax = 5 iterations, NMISE = 0.3777).
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(a) Original image (b) Noisy image (c) OWF

(d) EUI+BM3D (e) MS-VST + 7/9 (f) MS-VST + B3

Fig. 7 Poisson denoising of fluorescent tubules (image size: 256× 256). (a) intensity image
(intensity ∈ [0.53, 16.93]); (b) Poisson noisy image; (c) Optimal Weights Filter (M = 11×11,
m = 17 × 17, d = 1 and H = 0.6, NMISE = 0.0794); (d) Exact unbiased inverse +
BM3D (NMISE = 0.0643) (e) MS-VST + 7/9 biorthogonal wavelet (J = 5, FPR =
0.0001,Nmax = 5 iterations, NMISE = 0.0909); (f) MS-VST + B3 isotropic wavelet (J = 5,
FPR = 0.001, Nmax = 10 iterations, NMISE = 0.1487).
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