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LOWER BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS

— BY NONCONFORMING FINITE ELEMENT METHODS

JUN HU∗, YUNQING HUANG†, AND QUN LIN‡

Abstract. The aim of the paper is to introduce a new systematic method that can produce lower

bounds for eigenvalues. The main idea is to use nonconforming finite element methods. The general

conclusion herein is that if local approximation properties of nonconforming finite element spaces

Vh are better than global continuity properties of Vh, corresponding methods will produce lower

bounds for eigenvalues. More precisely, under three conditions on continuity and approximation

properties of nonconforming finite element spaces we first show abstract error estimates of approxi-

mate eigenvalues and eigenfunctions. Subsequently, we propose one more condition and prove that

it is sufficient to guarantee nonconforming finite element methods to produce lower bounds for

eigenvalues of symmetric elliptic operators. As one application, we show that this condition hold

for most nonconforming elements in literature. As another important application, this condition

provides a guidance to modify known nonconforming elements in literature and to propose new

nonconforming elements. In fact, we enrich locally the Crouzeix-Raviart element such that the

new element satisfies the condition; we propose a new nonconforming element for second order

elliptic operators and prove that it will yield lower bounds for eigenvalues. Finally, we prove the

saturation condition for most nonconforming elements.

1. Introduction

Finding eigenvalues of partial differential operators is important in the mathematical science.

Since exact eigenvalues are almost impossible, many papers and books investigate their bounds

from above and below. It is well known that the variational principle (including conforming

finite element methods) provides upper bounds. But the problem of obtaining lower bounds is

generally considerably more difficult. Moreover, a simple combination of lower and upper bounds

will produce intervals to which exact eigenvalue belongs. This in turn gives reliable a posteriori

error estimates of approximate eigenvalues, which is essential for the design of the coefficient of

safety in practical engineering. Therefore, it is a fundamental problem to achieve lower bounds

for eigenvalues of elliptic operators. In fact, the study of lower bounds for eigenvalues can date

back to remarkable works of [17, 18] and [38, 39], where lower bounds of eigenvalues are derived by

finite difference methods for second order elliptic eigenvalue problems. Since that finite difference

methods in some sense coincide with standard linear finite element methods with mass lumping,

one could expect that finite element methods with mass lumping give lower bounds for eigenvalues

of operators, we refer interested readers to [1, 20] for this aspect.

Nonconforming finite element methods are alternative possible ways to produce lower bounds

for eigenvalues of operators. In deed, the lower bound property of eigenvalues by nonconforming
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elements are observed in numerics, see, Zienkiewicz et al.[47], for the nonconforming Morley ele-

ment, Rannacher [32], for the nonconforming Morley and Adini elements, Liu and Yan [30], for

the nonconforming Wilson [35, 41], EQrot
1 [28], and Qrot

1 [33] elements. See, Boffi [7], for further

remarks on possible properties of discrete eigenvalues produced by nonconforming methods.

However, there are a few results to study the lower bound property of eigenvalues by nonconform-

ing elements. The first result in this direction is analyzed in a remarkable paper by Armentano and

Duran [2] for the Laplacian operator. The analysis is based on an identity for errors of eigenvalues.

It is proved that the nonconforming linear element of [13] leads to lower bounds for eigenvalues

provided that eigenfunctions u ∈ H1+r(Ω) ∩ H1
0 (Ω) with 0 < r < 1. The idea is generalized to

the enriched nonconforming rotated Q1 element of [28] in Li [24], and to the Wilson element in

Zhang et al. [46]. See [44] for a survey of earlier works. The extension to the Morley element

can be found in [45]. However, all of those papers are based on the saturation condition of ap-

proximations by piecewise polynomials for which a rigorous proof is missed in literature. We refer

interested readers to [26, 27, 29, 42, 46, 44] for expansion methods based on superconvergence or

extrapolation, which analyzes the lower bound property of eigenvalues by nonconforming elements

on uniform rectangular meshes.

The aim of our paper is to introduce a new systematic method that can produce lower bounds

for eigenvalues. The main idea is to use nonconforming finite element methods. However, some

numerics from the literature demonstrate that some nonconforming elements produce upper bounds

of eigenvalues though some other nonconforming elements yield lower bounds, see[30, 32]. We find

that the general condition lies in that local approximation properties of nonconforming finite

element spaces Vh should be better than global continuity properties of Vh. Then corresponding

nonconforming methods will produce lower bounds for eigenvalues of elliptic operators. More

precisely, first, we shall analyze errors of discrete eigenvalues and eigenfunctions. Second, we shall

propose a condition on nonconforming element methods and then under the saturation condition

prove that it is sufficient for lower bounds for eigenvalues. With this result, to obtain lower

bound for eigenvalue is to design nonconforming element spaces with enough local degrees of

freedom when compared to global continuity. This in fact results in a systematic method for

the lower bounds of eigenvalues. As one application of our method, we check that this condition

holds for most used nonconforming elements, e.g., the Wilson element [35, 41], the nonconforming

linear element by Crouzeix and Raviart [13], the nonconforming rotated Q1 element by Rannacher

and Turek [33, 35], and the enriched nonconforming rotated Q1 element by Lin, Tobiska and

Zhou [28] for second order elliptic operators, the Morley element [31, 35] and the Adini element

[25, 35] for fourth order elliptic operators, and the Morley-Wang-Xu element [37] for 2m-th order

elliptic operators. As another important application, we follow this guidance to enrich locally

the Crouzeix-Raviart element such that the new element satisfies the sufficient condition and to

propose a new nonconforming element method for second order elliptic operators and show that

it actually produces lower bounds for eigenvalues. As an indispensable and important part of the

paper, we prove the saturation condition for most of these nonconforming elements.

The paper is organized as follows. In the following section, we shall present symmetric elliptic

eigenvalue problems and their nonconforming element methods in an abstract setting. In Section

3, based on three conditions on discrete spaces, we analyze error estimates for both discrete eigen-

values and eigenfunctions. In Section 4, under one more condition, we prove an abstract result

that eigenvalues produced by nonconforming methods are smaller than exact ones. In Sections 5-6,

we check these conditions for various nonconforming methods in literature and we also propose
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two new nonconforming methods that admit lower bounds for eigenvalues in Section 7. We end

this paper by Section 8 where we give some comments, which is followed by appendixes where we

analyze the saturation condition for piecewise polynomial approximations.

2. Eigenvalue problems and nonconforming finite element methods

Let V ⊂ Hm(Ω) denote some standard Sobolev space on some bounded Lipschitz domain Ω

in R
n with a piecewise flat boundary ∂Ω. 2m-th order elliptic eigenvalue problems read: Find

(λ, u) ∈ R× V such that

a(u, v) = λ(ρu, v)L2(Ω) for any v ∈ V and ‖ρ1/2u‖L2(Ω) = 1,(2.1)

with some positive function ρ ∈ L∞(Ω). The bilinear form a(u, v) is symmetric, bounded, and

coercive in the following sense:

(2.2) a(u, v) = a(v, u), |a(u, v)| . ‖u‖V ‖v‖V , and ‖v‖2V . a(v, v) for any u, v ∈ V,

with the norm ‖ · ‖V over the space V . Throughout the paper, an inequality A . B replaces

A ≤ C B with some multiplicative mesh-size independent constant C > 0 that depends only on

the domain Ω, the shape (e.g., through the aspect ratio) of elements, and possibly some norm of

eigenfunctions u. Finally, A ≈ B abbreviates A . B . A.

Under the conditions (2.2), we have that the eigenvalue problem (2.1) has a sequence of eigen-

values

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ր +∞,

and corresponding eigenfunctions

(2.3) u1, u2, u3, · · · ,

which can be chosen to satisfy

(2.4) (ρui, uj)L2(Ω) = δij , i, j = 1, 2, · · · .

We define

(2.5) Eℓ = span{u1, u2, · · · , uℓ}.

Then, eigenvalues and eigenfunctions satisfy the following well-known minimum-maximum princi-

ple:

(2.6) λk = min
dimVk=k,Vk⊂V

max
v∈Vk

a(v, v)

(ρv, v)L2(Ω)
= max

u∈Ek

a(u, u)

(ρu, u)L2(Ω)
.

For any eigenvalue λ of (2.1), we define

(2.7) M(λ) := {u : u is an eigenfunction of (2.1) to λ}.

We shall be interested in approximating the eigenvalue problem (2.1) by finite element methods.

To this end, we suppose we are given a discrete space Vh defined over a regular triangulation Th
of Ω into (closed) simplexes or n-rectangles [9].

We need the piecewise counterparts of differential operators with respect to Th. For any differ-

ential operator L, we define its piecewise counterpart Lh in the following way: we suppose that vK
is defined over K ∈ Th and that the differential action LvK is well-defined on K which is denoted

by LKvK for any K ∈ Th; then we define vh by vh|K = vK where vh|K denotes its restriction of vh
over K; finally we define Lhvh by (Lhvh)|K = LKvK .
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We consider the discrete eigenvalue problem: Find (λh, uh) ∈ R× Vh such that

ah(uh, vh) = λh(ρuh, vh)L2(Ω) for any vh ∈ Vh and ‖ρ1/2uh‖L2(Ω) = 1.(2.8)

Here and throughout of this paper, ah(·, ·) is the piecewise counterpart of the bilinear form a(·, ·)

where differential operators are replaced by their discrete counterparts. Conditions on the approx-

imation and continuity properties of discrete spaces Vh are assumed as follows, respectively.

(H1) ‖ · ‖h := ah(·, ·)
1/2 is a norm over discrete spaces Vh.

(H2) Suppose v ∈ V ∩Hm+S(Ω) with 0 < S ≤ 1. Then,

inf
vh∈Vh

‖v − vh‖h . hS |v|Hm+S (Ω).

(H3) Suppose v ∈ V ∩Hm+s(Ω) with 0 < s ≤ S ≤ 1. Then,

sup
06=vh∈Vh

ah(v, vh)− (Av, vh)L2(Ω)

‖vh‖h
. hs|v|Hm+s(Ω) .

(H4) Let u and uh be eigenfunctions of problems (2.1) and (2.8), respectively. Assume that

there exists an interpolation Πhu ∈ Vh with the following properties:

ah(u−Πhu, uh) = 0,

‖ρ1/2u‖2L2(Ω) − ‖ρ1/2Πhu‖
2
L2(Ω) . h2s+△s,

‖ρ1/2(Πhu− u)‖L2(Ω) . hS+△S ,

(2.9)

when the meshsize h is small enough and u ∈ V ∩Hm+S(Ω) with two positive constants △s and

△S.

Let N = dimVh. Under the condition (H1), the discrete problem (2.8) admits a sequence of

discrete eigenvalues

0 < λ1,h ≤ λ2,h ≤ · · · ≤ λN,h,

and corresponding eigenfunctions

u1,h, u2,h, · · · , uN,h .

In the case where Vh is a conforming approximation in the sense Vh ⊂ V , it immediately follows

from the minimum-maximum principle (2.6) that

λk ≤ λk,h, k = 1, 2, · · · , N,

which indicates that λk,h is an approximation above λk.

We define the discrete counterpart of Eℓ by

(2.10) Eℓ,h = span{u1,h, u2,h, · · · , uℓ,h}.

Then, we have the following discrete minimum-maximum principle:

(2.11) λk,h = min
dimVk,h=k,Vk,h⊂Vh

max
v∈Vk,h

ah(v, v)

(ρv, v)L2(Ω)
= max

u∈Ek,h

ah(u, u)

(ρu, u)L2(Ω)
.
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3. Error estimates of eigenvalues and eigenfunctions

In this section, we shall analyze errors of discrete eigenvalues and eigenfunctions by nonconform-

ing methods. We refer to [5, 32] for some alternative analysis in the functional analysis setting.

We would like to stress the analysis is a nontrivial extension to nonconforming methods of the

analysis for conforming methods in [36]. For simplicity of presentation, we only consider the case

where λℓ is an eigenvalue of multiplicity 1 and also note that the extension to the multiplicity ≥ 2

case follows by using notations and concepts, for instance, from [10, Page 406].

Associated with the bilinear form a(·, ·), we define the operator A by

(3.1) a(u, v) = (Au, v)L2(Ω) for any v ∈ V .

Given any f ∈ L2(Ω), let uf be the solution to the dual problem: Find uf ∈ V such that

(3.2) a(uf , v) = (ρf, v)L2(Ω) for any v ∈ V .

Generally speaking, the regularity of uf depends on, among others, regularities of f and ρ, elliptic

operators under consideration, the shape of the domain Ω and the boundary condition imposed.

To fix the main idea and therefore avoid too technical notation, throughout this paper, without

loss of generality, assume that uf ∈ V ∩Hm+s(Ω) with 0 < s ≤ 1 in the sense that

(3.3) ‖uf‖Hm+s(Ω) . ‖ρ1/2f‖L2(Ω) .

In order to analyze L2 error estimates of eigenfunctions, define quasi-Ritz-projections P ′
huℓ ∈ Vh

by

(3.4) ah(P
′
huℓ, vh) = λℓ(ρuℓ, vh)L2(Ω) for any vh ∈ Vh.

The analysis also needs Galerkin projection operators Ph : V → Vh by

(3.5) ah(Phv,wh) = ah(v,wh) for any wh ∈ Vh, v ∈ V.

Remark 3.1. We note that P ′
h is identical to Ph for conforming methods, which indicates the

difference between conforming elements analyzed in [36] and nonconforming elements under con-

sideration.

Under the conditions (H1), (H2), and (H3), a standard argument for nonconforming finite

element methods, see, for instance, [9], proves

(3.6) ‖ρ1/2(v − Phv)‖L2(Ω) + hs‖v − Phv‖h . h2s|v|Hm+s(Ω) ,

provided that v ∈ V ∩Hm+s(Ω) with 0 < s ≤ 1.

Throughout this paper, uℓ, uj, and ui are eigenfunctions of the problem (2.1), while uℓ,h, uj,h,

and ui,h are discrete eigenfunctions of the discrete eigenvalue problem. Note that P ′
huℓ is the finite

element approximation of uℓ. Under conditions (H1)-(H3), a standard argument for nonconforming

finite element methods, see, for instance, [9], proves

Lemma 3.2. Suppose that the conditions (H1)-(H3) hold. Then,

(3.7) ‖ρ1/2(uℓ − P ′
huℓ)‖L2(Ω) + hs‖uℓ − P ′

huℓ‖h . h2s|uℓ|Hm+s(Ω) ,

provided that uℓ ∈ V ∩Hm+s(Ω) with 0 < s ≤ 1.
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From P ′
huℓ ∈ Vh we have

(3.8) P ′
huℓ =

N
∑

j=1

(ρP ′
huℓ, uj,h)uj,h .

For the projection operator P ′
h, we have the following important property

(λj,h − λℓ)(ρP
′
huℓ, uj,h)L2(Ω) = λℓ(ρ(uℓ − P ′

huℓ), uj,h)L2(Ω) .(3.9)

In fact, we have

(3.10) λj,h(ρP
′
huℓ, uj,h)L2(Ω) = ah(uj,h, P

′
huℓ) = λℓ(ρuℓ, uj,h)L2(Ω) .

Suppose that λℓ 6= λj if ℓ 6= j. Then there exists a separation constant dℓ with

(3.11)
λℓ

|λj,h − λℓ|
≤ dℓ for any j 6= ℓ,

provided that the meshsize h is small enough.

Theorem 3.3. Let uℓ and uℓ,h be eigenfunctions of (2.1) and (2.8), respectively. Suppose that the

conditions (H1)-(H3) hold. Then,

‖ρ1/2(uℓ − uℓ,h)‖L2(Ω) . h2s|uℓ|Hm+s(Ω) ,(3.12)

provided that uℓ ∈ V ∩Hm+s(Ω) with 0 < s ≤ 1.

Proof. We denote the key coefficient (ρP ′
huℓ, uℓ,h)L2(Ω) by βℓ. The rest can be bounded as follows:

‖ρ1/2(P ′
huℓ − βℓuℓ,h)‖

2
L2(Ω) =

∑

j 6=ℓ

(ρP ′
huℓ, uj,h)

2
L2(Ω) ≤ d2ℓ

∑

j 6=ℓ

(ρ(uℓ − P ′
huℓ), uj,h)

2
L2(Ω)

≤ d2ℓ‖ρ
1/2(uℓ − P ′

huℓ)‖
2
L2(Ω) .

(3.13)

This leads to

‖ρ1/2(uℓ − βℓuℓ,h)‖L2(Ω) ≤ ‖ρ1/2(uℓ − P ′
huℓ)‖L2(Ω) + ‖ρ1/2(P ′

huℓ − βℓuℓ,h)‖L2(Ω)

≤ (1 + dℓ)‖ρ
1/2(uℓ − P ′

huℓ)‖L2(Ω) . h2sλ
(m+s)/2m
ℓ .

(3.14)

‖ρ1/2uℓ‖L2(Ω) − ‖ρ1/2(uℓ − βℓuℓ,h)‖L2(Ω) ≤ ‖ρ1/2βℓuℓ,h‖L2(Ω)

≤ ‖ρ1/2uℓ‖L2(Ω) + ‖ρ1/2(uℓ − βℓuℓ,h)‖L2(Ω).
(3.15)

Since both uℓ and uℓ,h are unit vectors, we can choose them such that βℓ ≥ 0. Hence we have

|βℓ − 1| ≤ ‖ρ1/2(uℓ − βℓuℓ,h)‖L2(Ω). Thus, we obtain

‖ρ1/2(uℓ − uℓ,h)‖L2(Ω) ≤ ‖ρ1/2(uℓ − βℓuℓ,h)‖L2(Ω) + |βℓ − 1|‖ρ1/2uℓ,h‖L2(Ω)

≤ 2‖ρ1/2(uℓ − βℓuℓ,h)‖L2(Ω) . h2s|uℓ|Hm+s(Ω) .
(3.16)

This completes the proof. �

Next we analyze errors of eigenvalues. To this end, define ũℓ,h ∈ V by

(3.17) a(ũℓ,h, v) = λℓ,h(ρuℓ,h, v)L2(Ω) for any v ∈ V.
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It follows from (2.1) and (2.8) that

(ρ(ũℓ,h − uℓ,h), uℓ)L2(Ω) = λ−1
ℓ λℓ,h(ρuℓ,h, uℓ)L2(Ω) − (ρuℓ,h, uℓ)L2(Ω)

=
(λℓ,h − λℓ)(ρuℓ,h, uℓ)L2(Ω)

λℓ
.

(3.18)

Thus we have

(3.19) λℓ,h − λℓ =
λℓ(ρ(ũℓ,h − uℓ,h), uℓ)L2(Ω)

(ρuℓ,h, uℓ)L2(Ω)
.

Assume that ũℓ,h ∈ V ∩Hm+s(Ω) with 0 < s ≤ 1 in the sense that

(3.20) ‖ũℓ,h‖Hm+s(Ω) . λℓ,h‖ρ
1/2uℓ,h‖L2(Ω).

Note that uℓ,h is the finite element approximation of ũℓ,h. A standard argument for nonconforming

finite element methods, see, for instance, [9], proves

Lemma 3.4. Suppose that the conditions (H1)-(H3) hold. Then,

(3.21) ‖ρ1/2(uℓ,h − ũℓ,h)‖L2(Ω) + hs‖uℓ,h − ũℓ,h‖h . λℓ,hh
2s‖ρ1/2uℓ,h‖L2(Ω) .

Inserting the above estimate into (3.19) proves:

Theorem 3.5. Let λℓ and λℓ,h be eigenvalues of (2.1) and (2.8), respectively. Suppose that (H1)-

(H3) hold. Then,

(3.22) |λℓ,h − λℓ| . h2s|uℓ|Hm+s(Ω) ,

provided that h is small enough and that uℓ ∈ V ∩Hm+s(Ω) with 0 < s ≤ 1..

Finally we can have error estimates in the energy norm of eigenfunctions.

Theorem 3.6. Let uℓ and uℓ,h be eigenfunctions of (2.1) and (2.8), respectively. Suppose that the

conditions (H1)-(H3) hold. Then,

(3.23) ‖uℓ − uℓ,h‖h . hs|uℓ|Hm+s(Ω) ,

provided that uℓ ∈ V ∩Hm+s(Ω) with 0 < s ≤ 1.

Proof. In order to bound errors of eigenfunctions in the energy norm, we need the following de-

composition:

ah(uℓ − uℓ,h, uℓ − uℓ,h) = a(uℓ, uℓ) + ah(uℓ,h, uℓ,h)− 2ah(uℓ, uℓ,h)

= λℓ‖ρ
1/2(uℓ − uℓ,h)‖

2
L2(Ω) + λℓ,h − λℓ + 2λℓ(ρuℓ, uℓ,h − uℓ)− 2ah(uℓ, uℓ,h − uℓ) .

(3.24)

Then, the desired result follows from Theorem 3.5, (3.16), and the condition (H3). �

4. Lower bounds for eigenvalues: an abstract theory

This section proves that the conditions (H1)-(H4) are sufficient conditions to guarantee noncon-

forming finite element methods to yield lower bounds for eigenvalues of elliptic operators.
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Theorem 4.1. Let (λ, u) and (λh, uh) be solutions of problems (2.1) and (2.8), respectively. As-

sume that u ∈ V ∩ ∈ Hm+S(Ω) and that h2s . ‖u − uh‖
2
h with 0 < s ≤ S ≤ 1. If the conditions

(H1)–(H4) hold, then

(4.1) λh ≤ λ,

provided that h is small enough.

Proof. Let Πh be the operator in the condition (H4). A similar argument of [2] proves

λ− λh = ‖u− uh‖
2
h − λh‖ρ

1/2(Πhu− uh)‖
2
L2(Ω)

+ λh(‖ρ
1/2Πhu‖

2
L2(Ω) − ‖ρ1/2u‖2L2(Ω)).

(4.2)

(We refer interested readers to Zhang et al. [46] for an identity with full terms). From the abstract

error estimate (3.12) it follows that

(4.3) ‖ρ1/2(u− uh)‖L2(Ω) . h2s .

Hence the triangle inequality and (H4) plus the saturation condition h2s . ‖u − uh‖
2
h show that

the second third term on the right-hand side of (4.2) is of higher order than the first term. If

‖ρ1/2Πhu‖
2
L2(Ω) ≤ ‖ρ1/2u‖2L2(Ω), then the condition states that the third term is of higher order

than the first term; otherwise, it will be positive. This completes the proof. �

The condition that h2s . ‖u−uh‖
2
h is usually referred to as the saturation condition in the liter-

ature. The condition is closely related to the inverse theorem in the context of the approximation

theory by trigonometric polynomials or splines. For the approximation by conforming piecewise

polynomials, the inverse theorem was analyzed in [3, 40]. For nonconforming finite element meth-

ods, the saturation condition was first analyzed in Shi [34] for the Wilson element by an example,

which was developed by Chen and Li [12] by an expansion of the error. See [23] for lower bounds

of discretization errors by conforming linear/bilinear finite elements. Babuska and Strouboulis [4]

analyzed Lagrange finite element methods for elliptic problems in one dimension. In appendixes,

we shall analyze the saturation condition for most of nonconforming finite element methods under

consideration. To our knowledge, it is the first time to analyze systematically this condition for

nonconforming methods.

Since Galerkin projection operators Ph from (3.5) or their high order perturbations of noncon-

forming spaces Vh are taken as interpolation operators Πh, their error estimates are dependent on

only local approximation properties but not global continuity properties of spaces Vh while errors

‖u−uh‖h generally depend on both properties (see Theorems 3.3 and 3.6 ). On the other hand, the

term ‖ρ1/2u‖2L2(Ω) − ‖ρ1/2Πhu‖
2
L2(Ω) will be either of high order or negative when we have enough

many local degrees of freedom (compared to the continuity) and therefore consistency errors in

‖u− uh‖
2
h will be dominant in the sense that

‖u− uh‖
2
h ≥ ‖ρ1/2u‖2L2(Ω) − ‖ρ1/2Πhu‖

2
L2(Ω).

If this happens we say local approximation properties of spaces Vh are better than global continuity

properties of Vh. Hence, Theorem 4.1 states that corresponding methods of eigenvalue problems

will produce lower bounds for eigenvalues for this situation. Thus, to get a lower bound for an

eigenvalue is to design nonconforming finite element spaces with enough local degrees of freedom

when compared to global continuity properties of Vh. This in fact provides a systematic tool for

the construction of lower bounds for eigenvalues of operators in mathematical science.
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5. Nonconforming elements of second order elliptic operators

This section presents some nonconforming schemes of second order elliptic eigenvalue problems

that the conditions (H1)-(H4) proposed in Section 2 are satisfied. Let the boundary ∂Ω be divided

into two parts: ΓD and ΓN with |ΓD| > 0, and ΓD ∪ ΓN = ∂Ω. For ease of presentation, assume

that (2.1) is the Poisson eigenvalue problem imposed general boundary conditions.

Let Th be regular n-rectangular triangulations of domains Ω ⊂ R
n with 2 ≤ n in the sense that

⋃

K∈Th
K = Ω̄, two distinct elements K and K ′ in Th are either disjoint, or share an ℓ-dimensional

hyper-plane, ℓ = 0, · · · , n − 1. Let Hh denote the set of all n − 1 dimensional hyper-planes in

Th with the set of interior n − 1 dimensional hyper-planes Hh(Ω) and the set of boundary n − 1

dimensional hyper-planes Hh(∂Ω). Nh is the set of nodes of Th with the set of internal nodes

Nh(Ω) and the set of boundary nodes Nh(∂Ω).

For each K ∈ Th, introduce the following affine invertible transformation

FK : K̂ → K,xi = hxi,Kξi + x0i

with the center (x01, x
0
2, · · · , x

0
n) and the lengths 2hxi,K of K in the directions of the xi-axis, and

the reference element K̂ = [−1, 1]n. In addition, set h = max1≤i≤n hxi
.

Over the above mesh Th, we shall consider two classes of nonconforming element methods

for the eigenvalue problem (2.1), namely, the Wilson element in any dimension, the enriched

nonconforming rotated Q1 element in any dimension.

Let Vh be discrete spaces of aforementioned nonconforming element methods. The finite element

approximation of Problem (2.1) is defined as in (2.8).

For all the elements, one can use continuity and boundary conditions for discrete spaces Vh
given below to verify the conditions (H1)-(H3), see [28, 33, 35, 41] for further details. Let (λ, u)

and (λh, uh) be solutions to problems (2.1) and (2.8), by Theorems 3.3, 3.5, and 3.6 we have

(5.1) |λ− λh|+ hs‖u− uh‖h + ‖ρ1/2(u− uh)‖L2(Ω) . h2s ,

provided that u ∈ V ∩H1+s(Ω) with 0 < s ≤ 1.

We shall analyze the key condition (H4) for these elements in the subsequent subsections.

5.1. The Wilson element in any dimension. Denote by QWil(K̂) the nonconforming Wilson

element space [35, 41] on the reference element defined by

QWil(K̂) = Q1(K̂) + span{ξ21 − 1, ξ22 − 1, · · · , ξ2n − 1},(5.2)

where Q1(K̂) is the space of polynomials of degree≤ 1 in each variable. The nonconforming Wilson

element space Vh is then defined as

Vh :=
{

v ∈ L2(Ω) : v|K ◦ FK ∈ QWil(K̂) for each K ∈ Th, v is continuous

at internal nodes, and vanishes at boundary nodes on ΓD

}

.

The degrees of freedom read

v(aj), 1 ≤ j ≤ 2n and
1

|K|

∫

K

∂2v

∂x2i
dx, 1 ≤ i ≤ n,

where aj denote vertexes of element K.

In order to show the condition (H4), let Ph be the Galerkin projection operator defined in (3.5).

The approximation property of the operator Ph reads

(5.3) h‖u− Phu‖h + ‖u− Phu‖L2(Ω) . h2|u|H2(Ω) ,
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provided that u ∈ V ∩H2(Ω). This plus (5.1) lead to

λh(ρ(Phu− u), Phu+ u)L2(Ω) = λ(ρ(Phu− u), Phu+ u)L2(Ω) +O(h4)

= 2λ(ρ(Phu− u), u)L2(Ω) +O(h4).
(5.4)

To analyze the term λ(ρ(Phu − u), u)L2(Ω), let Ih be the canonical interpolation operator for the

Wilson element, which admits the following error estimates:

(5.5) h‖u− Ihu‖h + ‖u− Ihu‖L2(Ω) . h2+s|u|H2+s(Ω),

provided that u ∈ V ∩ H2+s(Ω) with 0 < s ≤ 1. Since ‖u − Phu‖h . h1+s provided that

u ∈ V ∩H2+s(Ω) with 0 < s ≤ 1,

λ(ρu, Phu− Ihu)L2(Ω) − ah(u, Phu− Ihu) . h|u|H2(Ω)‖Phu− Ihu‖h . h2+s‖u‖2H2+s(Ω).

This and (5.5) state

λ(ρ(Phu− u), u)L2(Ω) = λ(ρu, Phu− u)L2(Ω) − ah(u, Phu− u) + ah(u− Phu, Phu− u)

= ah(u− Ihu, u) +O(h2+s).
(5.6)

To analyze the term ah(u − Ihu, u), let IK denote the restriction of Ih on element K. Then we

have the following result.

Lemma 5.1. For any u ∈ P3(K) and v ∈ P1(K), it holds that

(5.7) (∇(u− IKu),∇v)L2(K) = −
n
∑

i=1

∑

j 6=i

h2xi,K

3

∫

K

∂3u

∂x2i ∂xj

∂v

∂xj
dx.

Proof. The definition of the interpolation operator IK leads to

u− IKu =

n
∑

i=1

h3xi,K

6

∂3u

∂x3i
(ξ3i − ξi) +

n
∑

i=1

∑

j 6=i

h2xi,K
hxj ,K

2

∂3u

∂x2i ∂xj
(ξ2i ξj − ξj).

A direct calculation proves

(∇(u− IKu),∇v)L2(K) = −
n
∑

i=1

∑

j 6=i

h2xi,K

3

∫

K

∂3u

∂x2i ∂xj

∂v

∂xj
dx,

which completes the proof. �

Given any element K, define Jℓ,Kv ∈ Pℓ(K) by

(5.8)

∫

K
∇iJℓ,Kvdx =

∫

K
∇ivdx, i = 0, · · · , ℓ,

for any v ∈ Hℓ(K). Note that the operator Jℓ,K is well-defined. Let Π0
K denote the constant

projection operator over K, namely,

Π0
Kv :=

1

|K|

∫

K
vdx for any v ∈ L2(K).

The property of operator Jℓ,K reads

(5.9) ‖∇i(v−Jℓ,Kv)‖L2(K) . hℓ−i
K ‖∇ℓ(v−Jℓ,Kv)‖L2(K) and ∇ℓJℓ,K = Π0

K∇ℓv for any v ∈ Hℓ(K).
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Lemma 5.2. For uniform meshes, it holds that

(5.10) (∇h(u− Ihu),∇u)L2(Ω) =

n
∑

i=1

∑

j 6=i

h2xi,K

3

∫

K

(

∂2u

∂xi∂xj

)2

dx+ o(h2),

provided that u ∈ H3(Ω) and the meshsize is small enough.

Proof. A combination of (5.5) and (5.9) leads to

(∇h(u− Ihu),∇u)L2(Ω) =
∑

K∈Th

(∇(u− IKu),∇u)L2(K)

=
∑

K∈Th

(∇(u− IKu),∇J1,Ku)L2(K) +O(h3).

The operator J3,K yields the following decomposition

∑

K∈Th

(∇(u− IKu),∇J1,Ku)L2(K) =
∑

K∈Th

(∇(I − IK)J3,Ku,∇J1,Ku)L2(K)

+
∑

K∈Th

(∇(I − IK)(I − J3,K)u,∇J1,Ku)L2(K).
(5.11)

It follows from (5.5) and (5.9) that the second term on the right-hand side of the above equation

can be estimated as

∑

K∈Th

(∇(I − IK)(I − J3,K)u,∇J1,Ku)L2(K) .
∑

K∈Th

h2K‖(I −Π0
K)∇3u‖L2(K)‖∇u‖L2(K) = o(h2),

since piecewise constant functions are dense in the space L2(Ω) when the meshsize is small enough.

The first term on the right-hand side of (5.11) can be analyzed by (5.7), which reads

∑

K∈Th

(∇(I − IK)J3,Ku,∇J1,Ku)L2(K) = −
∑

K∈Th

n
∑

i=1

∑

j 6=i

h2xi,K

3

∫

K

∂3J3,Ku

∂x2i ∂xj

∂J1,Ku

∂xj
dx

= −
∑

K∈Th

n
∑

i=1

∑

j 6=i

h2xi,K

3

∫

K

∂3u

∂x2i ∂xj

∂u

∂xj
dx+ o(h2),

when the meshsize is small enough. Since the mesh is uniform and ∂2u
∂xi∂xj

∂u
∂xj

vanish on the

boundary which is perpendicular to xi axises, elementwise integrations by parts complete the

proof. �

A summary of (5.4), (5.6) and (5.10) proves that

(5.12) λh(ρ(Phu− u), Phu+ u)L2(Ω) ≥ 0

when the meshsize is small enough and u ∈ H3(Ω). In appendix A, we prove that h . ‖u− uh‖h
when u ∈ H2+s(Ω). Therefore, the condition (H4) holds for the Wilson element when u ∈ H3(Ω)

and the mesh is uniform.
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5.2. The enriched nonconforming rotated Q1 element in any dimension. Denote by

QEQ(K) the enriched nonconforming rotated Q1 element space defined by [28]

(5.13) QEQ(K) := P1(K) + span{x21, x
2
2, · · · , x

2
n}.

The enriched nonconforming rotated Q1 element space Vh is then defined by

Vh :=
{

v ∈ L2(Ω) : v|K ∈ QEQ(K) for each K ∈ Th,
∫

f [v]df = 0,

for all internal n− 1 dimensional hyper-planes f , and
∫

f vdf = 0 for all f on ΓD

}

.

Here and throughout this paper, [v] denotes the jump of v across f . For the enriched nonconforming

rotated Q1 element, we define the interpolation operator Πh : H1
D(Ω) → Vh by

∫

f
Πhvdf =

∫

f
vdf for any v ∈ H1

D(Ω), f ∈ Hh ,

∫

K
Πhvdx =

∫

K
vdx for any K ∈ Th.

(5.14)

For this interpolation operator, we have

Lemma 5.3. There holds that

(5.15) ‖u−Πhu‖L2(K) . h2|u|H2(K)for any u ∈ H2(K) and K ∈ Th,

(5.16) ‖u−Πhu‖L2(K) . h1+s|u|H1+s(K)for any u ∈ H1+s(K) with 0 < s < 1 and K ∈ Th.

Proof. Since u−Πhu has vanishing mean on n− 1 dimensional hyper-plane of K, it follows from

the Poincare inequality that

‖u−Πhu‖L2(K) . hK‖∇(u−Πhu)‖L2(K).

Then the desired result follows from the usual interpolation theory and the interpolation space

theory for the singular case u ∈ H1+s(K). �

Lemma 5.4. For the enriched nonconforming rotated Q1 element, it holds the condition (H4).

Proof. We define the space QK =









a11 + a12x1
a21 + a22x2

· · ·

an1 + an2xn









with free parameters a11, a12, · · · , an1, an2.

From the definition of the operator Πh, we have

(5.17) (∇(u−Πhu),ψ)L2(K) = 0, for any ψ ∈ QK .

Let ∇h be the piecewise gradient operator which is defined element by element. Since ∇hΠhu|K ∈

QK , this leads to

(5.18) (∇hΠhu)|K = PK(∇u|K),

with the L2 projection operator PK from L2(K) onto QK . This proves ah(u − Πhu, uh) = 0.

It remains to show estimates in (H4). To this end, let Π0 be the piecewise constant projection
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operator (defined by Π0|K = Π0
K for element K ). Without loss of generality, we assume that ρ is

piecewise constant. It follows from the definition of the interpolation operator Πh that

‖ρ1/2Πhu‖
2
L2(Ω) − ‖ρ1/2u‖2L2(Ω) = (ρ(Πhu− u),Πhu+ u)L2(Ω)

= (ρ(Πhu− u),Πhu+ u−Π0(Πhu+ u))L2(Ω)

. h‖ρ1/2(Πhu− u)‖L2(Ω)‖∇h(Πhu+ u)‖L2(Ω),

(5.19)

which completes the proof of (H4) with s = △s = S = △S = 1 for the case u ∈ H1
D(Ω) ∩H

2(Ω);

with s = S = s, △s = 2− s, and △S = 1, for the case u ∈ H1
D(Ω) ∩H

1+s(Ω) with 0 < s < 1. �

In appendixes A and B, we show that h . ‖u − uh‖h when u ∈ H2(Ω) and that there exist

meshes such that hs . ‖u − uh‖h holds when u ∈ H1+s(Ω) with 0 < s < 1. Therefore, we have

that the result in Theorem 4.1 holds for this class of elements.

6. Morley-Wang-Xu elements for 2m-th order operators

This section studies 2m-th order elliptic eigenvalue problems defined over the bounded domain

Ω ⊂ R
n with 1 < n and m ≤ n. Let κ = (κ1, · · · , κn) be the multi-index with |κ| =

n
∑

i=1
κi, we

define the space

(6.1) V := {v ∈ L2(Ω),
∂κv

∂xκ
∈ L2(Ω), |κ| ≤ m, v|∂Ω =

∂ℓv

∂νℓ
|∂Ω = 0, ℓ = 1, · · · ,m− 1},

with ν the unit normal vector to ∂Ω. The partial derivatives ∂κv
∂xκ are defined as

(6.2)
∂κv

∂xκ
:=

∂|κ|v

∂xκ1
1 · · · ∂xκn

n
.

Let Dℓv denote the m-th order tensor of all ℓ-th order derivatives of v, for instance, ℓ = 1

the gradient, and ℓ = 2 the Hessian matrix. Let C be a positive definite operator with the same

symmetry as Dmv, the bilinear form a(u, v) reads

(6.3) a(u, v) := (σ,Dmv)L2(Ω) and σ := CDmu,

which gives rise to the energy norm

(6.4) ‖u‖2V := a(u, u) for any u ∈ V ,

which is equivalent to the usual |u|Hm(Ω) norm for any u ∈ V .

2m-th order elliptic eigenvalue problems read: Find (λ, u) ∈ R× V with

a(u, v) = λ(ρu, v)L2(Ω) for any v ∈ V and ‖ρ1/2u‖L2(Ω) = 1,(6.5)

with some positive function ρ ∈ L∞(Ω).

Consider Morley-Wang-Xu elements in [37] and apply them to eigenvalue problems under con-

sideration. Let Th be some shape regular decomposition into n-simplex of the domain Ω. Denote

by Hn−i,h, i = 1, · · · , n, all n-i dimensional subsimplexes of Th with νn−i,f any one of unit nor-

mal vectors to f ∈ Hn−i,h. Let [·] denote the jump of piecewise functions over f . For any n-i

dimensional boundary sub-simplex f , the jump [·] denotes the trace restricted to f . As usual, hK
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is the diameter of K ∈ Th, and hf the diameter of f ∈ Hn−i,h. Given K ∈ Th, let ∂K denote the

boundary of K. Morley-Wang-Xu element spaces are defined in [37], which read

(6.6) Vh := {v ∈ L2(Ω), v|K ∈ Pm(K),

∫

f

[ ∂m−iv

∂νm−i
n−i,f

]

df = 0,∀f ∈ Hn−i,h, i = 1, · · · ,m}.

Define the discrete stress σh = CDm
h uh, the broken versions ah(·, ·) and ‖·‖Ch follow, respectively,

ah(uh, vh) : = (σh,D
m
h vh)L2(Ω), for any uh , vh ∈ V + Vh ,

‖uh‖
2
h : = ah(uh, uh) for any uh ∈ V + Vh ,

where Dm
h is defined elementwise with respect to the partition Th.

The discrete eigenvalue problem reads: Find (λh, uh) ∈ R× Vh, such that

ah(uh, vh) = λh(ρuh, vh)L2(Ω) for any vh ∈ Vh and ‖ρ1/2uh‖L2(Ω) = 1.(6.7)

The canonical interpolation operator for the spaces Vh is defined by: Given any v ∈ V , the

interpolation Πhv ∈ Vh is defined as

(6.8)

∫

f

∂m−iΠhv

∂νm−i
n−i,f

df =

∫

f

∂m−iv

∂νm−i
n−i,f

df, for any f ∈ Hn−i,h , i = 1 , · · · ,m .

For this interpolation, we have the following approximation

(6.9) ‖ρ1/2(u−Πhu)‖L2(Ω) . hm+s|u|Hm+s(Ω) for any u ∈ V ∩Hm+s(Ω) with 0 < s ≤ 1 .

It is straightforward to see that conditions (H1)-(H3) hold for this class of elements, see [35, 37].

Then, it follows from Theorems 3.3, 3.5, and 3.6 that

(6.10) ‖u− uh‖h . hs and ‖u− uh‖L2(Ω) . h2s ,

provided that eigenfunctions u ∈ V ∩Hm+s(Ω) with 0 < s ≤ 1.

Theorem 6.1. Let (λ, u) and (λh, uh) be solutions of problems (6.5) and (6.7), respectively. Then,

(6.11) λh ≤ λ,

provided that h is small enough.

Proof. The definition of Πh in (6.8) yields ah(u−Πhu, vh) = 0 for any vh ∈ Vh. The condition (H4)

follows immediately from (6.9). In addition, in appendixes A and B, we show that h . |u− uh|h
when u ∈ V ∩ Hm+1(Ω) and that there exist meshes such that hs . ‖u − uh‖h holds when

u ∈ Hm+s(Ω) with 0 < s < 1. Then, the desired result follows from Theorem 4.1 for m ≥ 2. �

7. New nonconforming elements

In this section, we shall follow the condition (H4) and the saturation condition in Theorem 4.1

to propose two new nonconforming finite elements for second order operators. This is of two fold,

one is to modify a nonconforming element in literature such that the modified one will meet the

condition (H4), the other is to construct a new nonconforming element.
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7.1. The enriched Crouzeix-Raviart element. To fix the idea, we only consider the case where

n = 2 and note that the results can be generalized to any dimension. Let Th be some shape regular

decomposition into triangles of the polygonal domain Ω ⊂ R
2. Here we restrict ourselves to the

case where the bilinear form a(u, v) = (∇u,∇v)L2(Ω) with the mixed boundary condition |ΓN | 6= 0.

Note that the original Crouzeix-Raviart element can only guarantee theoretically lower bounds

of eigenvalues for the singular case in the sense that u ∈ H1+s(Ω) with 0 < s < 1. To produce lower

bounds of eigenvalues for both the singular case u ∈ H1+s(Ω) and the smooth case u ∈ H2(Ω), we

propose to enrich the shape function space by x21+x
2
2 on each element. This leads to the following

shape function space

(7.1) QECR(K) = P1(K) + span{x21 + x22} for any K ∈ Th.

The enriched Crouzeix-Raviart element space Vh is then defined by

Vh :=
{

v ∈ L2(Ω) : v|K ∈ QECR(K) for each K ∈ Th,
∫

f [v]df = 0,

for all internal edges f , and
∫

f vdf = 0 for all edges f on ΓD

}

.

For the enriched Crouzeix-Raviart element, we define the interpolation operator Πh : H1
D(Ω) → Vh

by
∫

f
Πhvdf =

∫

f
vdf for any v ∈ H1

D(Ω) for any edge f ,

∫

K
Πhvdx =

∫

K
vdx for any K ∈ Th.

(7.2)

For this interpolation operator, a similar argument of Lemma 5.3 leads to:

Lemma 7.1. There holds that

(7.3) ‖u−Πhu‖L2(K) . h2|u|H2(K)for any u ∈ H2(K) and K ∈ Th,

(7.4) ‖u−Πhu‖L2(K) . h1+s|u|H1+s(K)for any u ∈ H1+s(K) with 0 < s < 1 and K ∈ Th.

Lemma 7.2. For the enriched Crouzeix-Raviart element, it holds the condition (H4).

Proof. We follow the idea in Lemma 5.4 to define the space QK =

(

a11 + a12x1
a21 + a12x2

)

with free

parameters a11, a21, a12. From the definition of the operator Πh, we have

(7.5) (∇(u−Πhu),ψ)L2(K) = 0, for any ψ ∈ QK .

Indeed, we integrate by parts to get

(∇(u−Πhu),ψ)L2(K) = −(u−Πhu,divψ)L2(K) +
∑

f⊂∂K

∫

f
(u−Πhu)ψ · νfds.

Since divψ and ψ·νf (on each edge f) are constant, then (7.5) follows from (7.2). Since∇hΠhu|K ∈

QK , the identity (7.5) leads to

(7.6) (∇hΠhu)|K = PK(∇u|K),

with the L2 projection operator PK from L2(K) onto QK . Then a similar argument of Lemma 5.4

completes the proof. �
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In the appendixes A and C, we have proven that h . ‖u−uh‖h when u ∈ H2(Ω) and that there

exist meshes such that hs . ‖u− uh‖h holds when u ∈ H1+s(Ω) with 0 < s < 1. Hence, the result

in Theorem 4.1 holds for this class of elements.

7.2. A new first order nonconforming element. With the condition from Theorem 4.1, a

systematic method obtaining the lower bounds for eigenvalues is to design nonconforming finite

element spaces with good local approximation property but not so good global continuity property.

To make the idea clearer, we propose a new nonconforming element that admits lower bounds for

eigenvalues. Let Th be some shape regular decomposition into triangles of the polygonal domain

Ω ⊂ R
2. We define

Vh :=
{

v ∈ L2(Ω) : v|K ∈ P2(K) for each K ∈ Th,
∫

f [v]df = 0,

for all internal edges f , and
∫

f vdf = 0 for all edges f on ΓD

}

.

Since the conforming quadratic element space on the triangle mesh is a subspace of Vh, the usual

dual argument proves

‖u− Phu‖L2(Ω) . h2+s|u|H2+s(Ω),

provided that u ∈ V ∩ H2+s(Ω) with 0 < s ≤ 1. In the appendix A, it is shown that h .

‖∇h(u − uh)‖L2(Ω), which in fact implies the condition (H4) for this case. For the singular case

u ∈ V ∩H1+s(Ω), a similar argument of the enriched Crouzeix-Raviart element is able to show the

condition (H4).

8. Conclusion and comments

In this paper, we propose a systematic method that can produce lower bounds for eigenvalues

of elliptic operators. With this method, to obtain lower bounds is to design nonconforming finite

element spaces with enough local degrees of freedom when compared to the global continuity. We

check that several nonconforming methods in literature possess this promising property. We also

propose some new nonconforming methods with this feature. In addition, we study systematically

the saturation condition for both conforming and nonconforming finite element methods.

Certainly, there are many other nonconforming finite elements which are not analyzed herein.

Let mention several more elements and give some short comments on applications of the theory

herein to them. The first one is the nonconforming rotated Q1 element from [33]. For this element,

discrete eigenvalues are smaller than exact ones when eigenfunctions are singular, see more details

from [44]. The same comments applies for the Crouzeix–Raviart element of [13], see more details

from [2, 43]. The last one is the Adini element [25, 35] for fourth order problems. For this element,

by an expansion result of [22, Lemma] and a similar identity like that of Lemma 4.1 therein, a

similar argument for the Wilson element is able to show that discrete eigenvalues are smaller than

exact ones provided that eigenfunctions u ∈ H4(Ω).

Appendix A. The saturation condition

In the following two sections, we shall prove, for some cases, the saturation condition which

is used in Theorem 4.1. The error basically consists of two parts: approximation errors and the

consistency errors. In this section, we analyze the case where approximation errors are dominant

and the case where consistency errors are dominant; in the appendix B, we give some comments

for the case where eigenfunctions are singular.
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A.1. The saturation condition where approximation error are dominant. Let u ∈ V ∩

Hm(Ω) be eigenfunctions of some 2m-th order elliptic operator. Let Vh be some k-th order con-

forming or nonconforming approximation spaces to Hm(Ω) over the mesh Th in the following

sense:

(A.1)

sup
06=v∈Hm+k(Ω)∩V

inf
vh∈Vh

‖Dm
h (v − vh)‖L2(Ω)

|v|Hm+k

. hk for some positive integer k.

Then the following condition is sufficient for the saturation condition:

H5 At least one fixed component of Dm+k
h vh vanishes for all vh ∈ Vh while the L2 norm of the

same component of Dm+ku is nonzero.

Recall that Dℓv denote the ℓ-th order tensor of all ℓ-th order derivatives of v, for instance, ℓ = 1

the gradient, and ℓ = 2 the Hessian matrix, and that Dℓ
h are the piecewise counterparts of Dℓ

defined element by element.

In order to achieve the desired result, we shall use the operator defined in (5.8). For readers’

convenience, we recall its definition. Given any element K, define Jm+k,Kv ∈ Pm+k(K) by

(A.2)

∫

K
DℓJm+k,Kvdxdy =

∫

K
Dℓvdxdy, ℓ = 0, 1, · · · ,m+ k,

for any v ∈ Hm+k(K). Note that the operator Jm+k,K is well-defined. Since
∫

K Dℓ(v−Jm+k,Kv)dxdy =

0, ℓ = 0, · · · ,m+ k,

(A.3) ‖Dℓ1(v−Jm+k,Kv)‖L2(K) ≤ Chℓ2−ℓ1
K ‖Dℓ2(v−Jm+k,Kv)‖L2(K) for any 0 ≤ ℓ1 ≤ ℓ2 ≤ m+k.

Finally, define the global operator Jm+k by

(A.4) Jm+k|K = Jm+k,K for any K ∈ Th.

It follows from the very definition of Jm+k,K in (A.2) that

(A.5) Dm+k
h Jm+kv = Π0Dm+kv,

where Π0 is the L2 piecewise constant projection operator with respect to Th, which is defined in

subsection 5.1. Since piecewise constant functions are dense in the space L2(Ω),

(A.6) ‖Dm+k
h (v − Jm+kv)‖L2(Ω) → 0 when h→ 0.

Theorem A.1. Under the condition H5, there holds the following saturation condition:

(A.7) hk . ‖Dm
h (u− uh)‖L2(Ω).

Proof. By the condition H5, we let N denote the multi-index set such that |κ| = m + k for any

κ ∈ N and that

(A.8)
∂κvh|K
∂xκ

≡ 0 for any K ∈ Th and vh ∈ Vh while ‖
∂κu

∂xκ
‖L2(Ω) 6= 0.
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Let Jm+k be defined as in (A.2) and (A.4). It follows from the triangle inequality and the piecewise

inverse estimate that
∑

κ∈N

‖
∂κu

∂xκ
‖2L2(Ω) =

∑

κ∈N

∑

K∈Th

‖
∂κ(u− uh)

∂xκ
‖2L2(K)

≤ 2
∑

κ∈N

∑

K∈Th

(

‖
∂κ(u− Jm+ku)

∂xκ
‖2L2(K) + ‖

∂κ(Jm+ku− uh)

∂xκ
‖2L2(K)

)

. ‖Dm+k
h (u− Jm+ku)‖

2
L2(Ω) + h−2k‖Dm

h (Jm+ku− uh)‖
2
L2(Ω).

(A.9)

The estimate of (A.3) and the triangle inequality lead to

∑

κ∈N

‖
∂κu

∂xκ
‖2L2(Ω) . ‖Dm+k

h (u− Jm+ku)‖
2
L2(Ω) + h−2k‖Dm

h (u− uh)‖
2
L2(Ω).(A.10)

Finally it follows from (A.6) that

(A.11) h2k
∑

κ∈N

‖
∂κu

∂xκ
‖2L2(Ω) . ‖Dm

h (u− uh)‖
2
L2(Ω)

when the meshsize is small enough, which completes the proof. �

Remark A.2. Under the condition H5, a similar argument can prove the following general satu-

ration conditions:

(A.12) hk+m−ℓ . ‖Dℓ
h(u− uh)‖L2(Ω), ℓ = 0, 1, · · · ,m.

Next, we prove the condition H5 for various element in literature.

(1) The Morley-Wang-Xu element. SinceDm+1
h vh ≡ 0 for all vh ∈ Vh for this family of elements

and v ≡ 0 if Dm+1v ≡ 0 for any v ∈ V ∩Hm+1(Ω), the condition H5 holds.

(2) The enriched Crouzeix-Raviart element. Let ∂12,h denote the piecewise counterpart of the

differential operator ∂2

∂x∂y . We have ∂12,hvh ≡ 0 for any vh ∈ Vh. We only consider the

case where Ω = [0, 1]2 and u ∈ H1
0 (Ω). If ‖ ∂2v

∂x∂y‖L2(Ω) vanishes for v ∈ V ∩H2
0 (Ω). Then,

v should be of the form v(x, y) = f(x) + g(y), where f(x) is some function of the variable

x and g(y) is some function of the variable y. Now the homogenous boundary condition

indicates that f(x) ≡ C1 and g(y) ≡ C2 for some constants C1 and C2, which in turn

concludes that v ≡ 0. This proves the condition H5.

(3) The same argument applies to the nonconforming Q1 element, the enriched nonconforming

rotated Q1 element, and the conforming Q1 element in any dimension.

A.2. The saturation condition where consistency errors are dominant. In this subsection,

we prove the saturation condition for the case where consistency errors are dominant. As usual it is

very complicated to give an abstract estimate for consistency errors in a unifying way. Therefore,

for ease of presentation, we shall only consider the new first order nonconforming element proposed

in this paper. However, the idea can be extended to other nonconforming finite element methods.

In order to give lower bounds of consistency errors, given any edge ( boundary and interior) e,

we construct functions ve ∈ Vh such that:

(1) ve vanishes on Ω\ωe;

(2) ve vanishes on two Gauss-Legendre points of the other four edges than e of ωe;
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Figure 1. Reference Edge patch and degrees of freedom for ve

(3) ve vanishes at two interior points of ωe, see points (
1
4 ,

1
4) and (−1

4 ,
1
4 ) in Figure 1 for examples

of the reference edge patch;

(4)
∫

e[ve]sds = O(h2) 6= 0.

See Figure 1 for the reference edge patch and degrees of freedom for ve. Note that such a function

can be found. In fact, for the reference edge patch in Figure 1, a direct calculation shows that

there exists a function ve ∈ Vh such that
∫

e[ve]sds = 0.1715 6= 0.

Let Π1
e be the L2 projection from L2(e) to P1(e). Since

∫

e[vh]ds = 0 for any edge e of Th and

vh ∈ Vh, it follows that

(A.13)
∑

K∈Th

∫

∂K

∂u

∂ν
vhds =

∑

e

∫

e

∂u

∂ν
[vh]ds =

∑

e

∫

e

∂

∂τ

(

Π1
e

∂u

∂ν

)

[vh]sds+
∑

e

∫

e
(I−Π1

e)
∂u

∂ν
[vh]ds.

Define

(A.14) vh =
∑

e

ve
∂

∂τ

(

Π1
e

∂u

∂ν

)

.

Since ∂
∂τ

(

Π1
e
∂u
∂ν

)

are constants, definitions of ve yield

∑

e

∫

e

∂

∂τ

(

Π1
e

∂u

∂ν

)

[vh]sds ≥ Ch
∑

e

‖
∂

∂τ

(

Π1
e

∂u

∂ν

)

‖2L2(e),

and

‖∇hvh‖L2(Ω) ≤ Ch−1/2

(

∑

e

‖
∂

∂τ

(

Π1
e

∂u

∂ν

)

‖2L2(e)

)1/2

.

A substitution of these two inequalities into (A.13) leads to

(A.15) sup
06=vh∈Vh

∑

K∈Th

∫

∂K
∂u
∂ν vhds

‖∇hvh‖L2(Ω)
≥ C1h‖∇

2u‖L2(Ω) − C2h
1+s|u|H2+s(Ω),

provided that u ∈ H2+s(Ω) with 0 < s ≤ 1 for some positive constants C1 and C2. Since

‖∇2u‖L2(Ω) can not vanish, this proves the saturation condition.

Remark A.3. Thanks to two nonconforming bubble functions in each element, a similar argument

is able to show a corresponding result for the Wilson element [35, 41].
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Appendix B. The comment for the saturation condition of the singular case

We need the concept of the interpolation space. Let X, Y be a pair of normed linear spaces.

We shall assume that Y is continuously embedded in X with Y ⊂ X and ‖ · ‖X . ‖ · ‖Y . For any

t ≥ 0, we define the K−functional

(B.1) K(f, t) = K(f, t,X, Y ) = inf
g∈Y

‖f − g‖X + t|g|Y ,

where ‖ · ‖X is the norm on X and | · |Y is a semi-norm on Y . The function K(f, .) is defined on

R+ and is monotone and concave (being the pointwise infimum of linear functions). If 0 < θ < 1

and 1 < q ≤ ∞, the interpolation space (X,Y )θ,q is defined as the set of all functions f ∈ X such

that [6, 15, 16]

(B.2) |f |(X,Y )θ,q =











(
∞
∑

k=0

[2(s+ǫ)kθK(f, 2−k(s+ǫ))]q)1/q, 0 < q <∞,

sup
k≥0

2k(s+ǫ)θK(f, 2−k(s+ǫ)), q = ∞,

is finite for some 0 < s+ ǫ ≤ 1.

B.1. An abstract theory. We assume that u ∈ Hm+s(Ω) with 0 < s < 1 and Vh is some

nonconforming or conforming approximation space to the space Hm(Ω).

Then the following conditions imply in some sense the saturation condition for the singular case:

H6. There exists a piecewise polynomial space V c
m+1,h ⊂ Hm+1(Ω) such that V c

m+1,h ⊂ V c
m+1,h/2

when Th/2 is some nested conforming refinement of Th;

H7. There holds the following Berstein inequality

(B.3) |v|Hm+s+ǫ(Ω) . h−(s+ǫ)|v|Hm(Ω) for any v ∈ V c
m+1,h;

H8. There exists some quasi-interpolation operator Πc : Vh → V c
m+1,h such that

(B.4) ‖Dm(u−Πcuh)‖L2(Ω) . hs+ǫ

provided that ‖Dm
h (u− uh)‖L2(Ω) . hs+ǫ with ǫ > 0 and s+ ǫ ≤ 1.

Theorem B.1. Suppose the eigenfunction u ∈ Hm+s(Ω) with 0 < s < 1. Under conditions

H6–H8, there exist meshes such that the following saturation condition holds

(B.5) hs . ‖Dm
h (u− uh)‖L2(Ω).

Proof. We assume that the saturation condition hs . ‖Dm
h (u − uh)‖L2(Ω) does not hold for any

mesh Th with the meshsize h. In other word, we have

(B.6) ‖Dm
h (u− uh)‖L2(Ω) . hs+ǫ,

for some ǫ > 0. In the following, we assume that s+ ǫ ≤ 1. By the condition H8, we have

inf
v∈V c

m+1,h

‖Dm(u− v)‖L2(Ω) . ‖Dm
h (u−Πcuh)‖L2(Ω) . hs+ǫ.(B.7)

Take X = Hm(Ω) and Y = Hm+s+ǫ(Ω). The inequality (B.7) is the usual Jackson inequality and

the inequality (B.3) is the Berstein inequality in the context of the approximation theory [16, 15].

We can follow the idea of [16, Theorem 5.1 , Chapter 7] to estimate terms like K(u, 2−ℓ(s+ǫ))

for any positive integer ℓ. In fact, let ϕk ∈ V c
m+1,2−k(s+ǫ) be the best approximation to u in the
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sense that ‖Dm(u − ϕk)‖L2(Ω) = inf
v∈V c

m+1,2−k(s+ǫ)

‖Dm(u − v)‖L2(Ω), k ≥ 1. Let ψk = ϕk − ϕk−1,

k = 1, 2, · · · , where ψ0 = ϕ0 = 0. Then we have

(B.8) ‖Dmψk‖L2(Ω) ≤ ‖Dm(u− ϕk)‖L2(Ω) + ‖Dm(u− ϕk−1)‖L2(Ω) . 2−k(s+ǫ).

Since ϕℓ =
ℓ
∑

k=0

ψk and |ψ0|Hm+s+ǫ(Ω) = 0, it follows from (B.7), (B.3) and (B.8) that

K(u, 2−(s+ǫ)ℓ) ≤ ‖u− ϕℓ‖Hm(Ω) + 2−(s+ǫ)ℓ|ϕℓ|Hm+s+ǫ

. 2−(s+ǫ)ℓ + 2−(s+ǫ)ℓ
ℓ

∑

k=1

2k(s+ǫ)2‖ψk‖Hm(Ω)

. ℓ2−(s+ǫ)ℓ.

(B.9)

|u|(Hm(Ω),Hm+s+ǫ(Ω))θ,2 =

( ∞
∑

k=0

[

2k(s+ǫ)θK(u, 2−k(s+ǫ))
]2
)1/2

.

( ∞
∑

k=0

[

k2k(s+ǫ)(θ−1)
]2
)1/2

.(B.10)

Let θ = 1− ǫ0 with ǫ0 > 0 such that ǫ− (s + ǫ)ǫ0 > 0. This leads to

(B.11) |u|(Hm(Ω),Hm+s+ǫ(Ω))θ,2 .

( ∞
∑

k=0

[

k2−k(s+ǫ)ǫ0
]2
)1/2

<∞.

This proves that u ∈ Hm+(1−ǫ0)(s+ǫ)(Ω) which is a proper subspace of Hm+s(Ω) since ǫ−(s+ǫ)ǫ0 >

0, which contradicts with the fact that we only have the regularity u ∈ Hm+s(Ω). �

B.2. Proofs for H6–H8. It follows from [14] that there exist piecewise polynomial spaces V c
m+1,h

with nodal basis over Th such that V c
m+1,h are nested and conforming in the sense that V c

m+1,h ⊂

V c
m+1,h/2 ⊂ Hm(Ω) for any 1 ≤ n and m ≤ n.

This result actually proves the conditions H6 and H7. The proof of H8 needs the interpolation

of Vh into the conforming finite element space. To this end, we introduce the projection average

interpolation operator of [8, 35].

Let V c
m+1,h be a conforming finite element space defined by (K,P c

K ,D
c
K), where Dc

T is the vector

functional and the components of Dc
K are defined as follows: for any v ∈ Cκ(K)

(∗) di,K(v) :=



























Di,Kv(ai,K) 1 ≤ i ≤ k1,

1

|Fi,K |

∫

Fi,K

Di,Kv d s k1 < i ≤ k2,

1

|K|

∫

K
Di,Kv dx k2 < i ≤ L,

where ai,K are points in K, Fi,K are non zero-dimensional faces of K. κ := max
1≤i≤L

k(i) where k(i)

orders of derivatives used in degrees of freedom Di,K :=
∑

|α|=k(i)

ηi,α,K∂
α, 1 ≤ i ≤ L, ηi,α,K are

constants which depend on i, α, and K.

Let ω(a) denote the union of elements that share point a and ω(F ) the union of elements having

in common the face F . Let N(a) and N(F ) denote the number of elements in ω(a) and ω(F ),

respectively. For any v ∈ Vh, define the projection average interpolation operator Πc : Vh → V c
m+1,h

by
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(1) for 1 ≤ i ≤ k1, if ai,K ∈ ∂Ω and di,K(φ) = 0 for any φ ∈ Cκ(Ω)∩V , then di,K(Πcv|K) := 0;

otherwise

di,K(Πcv|K) :=
1

N(ai,K)

∑

K ′∈ω(ai,K )

Di,K(v|K ′)(ai,K);

(2) for k1 < i ≤ k2, if Fi,K ⊂ ∂Ω and di,K(φ) = 0 for any φ ∈ Cκ(Ω)∩V , then di,K(Πcv|K) := 0;

otherwise

di,K(Πcv|K) :=
1

N(Fi,K)

∑

K ′∈ω(Fi,K)

1

|Fi,K |

∫

Fi,K

Di,K(v|K ′)(ai,K) d s;

(3) for k2 < i ≤ L

di,K(Πcv|K) :=
1

|K|

∫

K
Di,K(v|K) dx.

Lemma B.2. For all nonconforming element spaces under consideration, there exists r ∈ N, r > m

such that Vh|K ⊂ Pr(K) ⊂ P c
K . Then, for m < k 6 min{r+1, 2m}, 0 6 l 6 m, α = (α1, · · · , αn),

it holds that

‖Dm
h (vh −Πcvh)‖

2
L2(Ω) .

∑

K∈Th





k−1
∑

j=m

h
2(j−m)+1
K

∑

F⊂∂K/∂Ω

∑

|α|=j

‖[∂αvh]‖
2
0,F

+hK
∑

F⊂∂K∩∂Ω

∑

|α|=m,α1<m

‖
∂|α|vh

∂να1
F ∂τα2

F,2 · · · ∂τ
αn

F,n

‖20,F



 ,

where τF,2, · · · , τF,n are n− 1 orthonormal tangent vectors of F .

Proof. Since Vh|K ⊂ Pr(K) ⊂ P c
K , a slight modification of the argument in [35, Lemma 5.6.4]

can prove the desired result; see also [8] for the proof of the nonconforming linear element with

m = 1. �

The remaining proof is based on bubble function techniques, see [11] for a posteriori error analysis

of second order problems, see [19, 21] for a posteriori error analysis of fourth order problems. Let

vh = uh in the above lemma. Such an analysis leads to

(B.12) ‖Dm
h (Πuh − uh)‖L2(Ω) . ‖Dm

h (u− uh)‖L2(Ω) . hs+ǫ.
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