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Abstract

The volume penalty method provides a simple, efficient approach for solving
the incompressible Navier-Stokes equations in domains with boundaries or
in the presence of moving objects. Despite the simplicity, the method is
typically limited to first order spatial accuracy. We demonstrate that one
may achieve high order accuracy by introducing an active penalty term. One
key difference from other works is that we use a sharp, unregularized mask
function. We discuss how to construct the active penalty term, and provide
numerical examples, in dimensions one and two. We demonstrate second and
third order convergence for the heat equation, and second order convergence
for the Navier-Stokes equations. In addition, we show that modifying the
penalty term does not significantly alter the time step restriction from that
of the conventional penalty method.

Keywords: Active penalty method, Sharp mask function, Immersed
boundary, Incompressible flow, Navier-Stokes, Heat equation

1. Introduction

There are many popular methods for numerically solving the incompress-
ible Navier-Stokes equations in complex geometries. For instance, the im-
mersed boundary method [24], the immersed interface method [21] and the
ghost fluid method [11] are popular since they allow one to use a regular grid
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with an immersed domain boundary. Other efficient methods for the Navier-
Stokes or heat equation include [13, 14, 23]. These methods not only use a
regular grid, but also utilize level set functions to ensure a sharp interface.
In all cases, the regular grid and level set formulation alleviates many of the
numerical difficulties introduced by curved or moving boundaries. In this
paper, we focus on the volume penalty method [1, 2, 6, 7, 18], which loosely
fits into the same class of methods.

As a result of their simplicity, penalty methods have been used in a wide
variety of problems including electromagnetism, magnetohydrodynamics [22],
shape optimization [9], fluid-solid interaction problems [10, 17] and even sim-
pler problems such as the heat equation or Poisson equation [25]. In the
context of fluids, they provide a simple means for solving the incompressible
Navier-Stokes equations in domains with boundaries. The approach relies
on replacing the often difficult to implement Dirichlet fluid boundary condi-
tions, with a simpler to implement volumetric forcing term in the advection
equation.

Despite the simplicity, the penalty method suffers from i) poor conver-
gence in the penalty parameter, thereby restricting the accuracy of numerical
methods and, ii) a lack of regularity in the velocity field which reduces the
advantages of spectral methods. For example, solutions to the penalized
equations have a discontinuous second derivative which limits the decay rate
of the Fourier coefficients, as well as the ability to spectrally compute deriva-
tives. Despite the lack of smoothness, stable and low order spectral methods
have been successfully used to solve the penalized fluid equations [17, 19].

The focus of our paper is to introduce a systematic method for improving
the accuracy of penalty methods. Current methods which improve accuracy
rely on introducing a subgrid numerical construct in the vicinity of the do-
main boundary [26, 27]. Such approaches, however, are restrictive if one
wishes to eventually use high order Fourier methods. One distinct differ-
ence with our approach is that we alter the equations at the continuous level
to improve the analytic convergence rate of the penalized problem to the
original unpenalized problem. The improved analytic convergence rate then
allows for higher order numerical schemes.

We first introduce the original volume penalty method, followed by an
introduction to the improved active penalty method. We then explicitly show
how to analytically construct the new penalty term. Following the con-
struction, we then examine a model equation to demonstrate how the active
penalization improves the convergence rate for the Poisson equation.
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After discussing the improved convergence, we focus on numerical details.
First, we examine the stability of the new active penalty term, and show that
it does not introduce additional numerical stiffness. We then provide numer-
ical examples for the heat equation, in dimensions one and two, showing
second and third order schemes. Lastly, we outline how to handle the di-
vergence constraint for the Navier-Stokes equations and provide numerical
examples showing second order convergence (in L∞) in the velocity field and
first order in the pressure.

2. Navier-Stokes and volume penalty equations

The aim of our work is to examine the behavior of a fluid in the vicinity of
a solid or a porous medium. For instance, two examples include the motion
of a fluid in a bounded domain with hard walls, or the motion around an
immersed solid body such as the one shown in figure 1. In our case, we
consider dimensions D = 2, 3 and let Ωp ⊂ RD denote the physical fluid
domain. For our purposes, Ωp is an open set with C2 boundary Γ = ∂Ωp.

2.1. Incompressible Navier-Stokes equations

Through the conservation of mass and momentum, the incompressible
Navier-Stokes equations govern the flow of an incompressible fluid for x ∈ Ωp

∂tu + u · ∇u = −∇p+ µ∆u + f (1)

∇ · u = 0. (2)

Here u(x, t) is the velocity vector field, p(x, t) is the pressure, µ > 0 is the
kinetic viscosity, and f(x, t) is an external forcing such as gravity.

To supplement the bulk equations (1)–(2), the fluid velocity also satisfies
prescribed boundary conditions

u = g for x ∈ Γ (3)∫
Γ

g · n dA = 0 (4)

Here n is an outward pointing normal, while equation (4) represents a con-
sistency condition on the boundary data. Although we allow g = g(x, t)
to be a function of both space and time, the case of g = 0 represents the
practical condition of a no-slip and no-flux boundary condition. Together,
equations (1)–(2) with boundary data (3) describe the evolution of an initial,
divergence-free velocity field u(x, 0) = u0(x).
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2.2. Volume penalty equations

Domains with curved boundaries Γ present several challenges to the nu-
merical solution of equations (1)–(2). For example, curved boundaries or
immersed objects limit the use of Fourier methods since solutions are not
periodic, or easily extended to periodic functions. One simple solution to
handle complicated or moving boundaries is through the use of a volume
penalty term in the Navier-Stokes equations. In such a case, one removes
the Navier-Stokes boundary condition, and instead adds a drag term to the
momentum equation.

To introduce the penalized equation, we first denote Ωs as the solid do-
main of the obstacle or wall. Here the obstacle region Ωs = Ωs is a closed
set which shares the same boundary as the fluid, ∂Ωs = Γ. The penalized
equations are then defined on a computational domain Ω which is the union
of the physical and solid domains Ω = Ωp

⋃
Ωs. In our case we take Ω to be

a rectangular domain with periodic boundary conditions, i.e. Ω = TD where
T
D is the D-dimensional torus.

Figure 1: Illustration of the physical fluid (Ωp) and solid obstacle (Ωs) do-
mains.

For a stationary obstacle with a g = 0 boundary condition, the volume
penalty equations (see [3, 4, 5]) are

∂tuη + uη · ∇uη = −∇pη + µ∆uη + f − η−1χs uη x ∈ Ω (5)

∇ · uη = 0. (6)
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Here η is a small parameter, and χs(x) is the characteristic function on Ωs,
namely

χs(x) =

{
0 for x ∈ Ω \ Ωs

1 for x ∈ Ωs

. (7)

In the limit η → 0, the drag term in equation (5) becomes large and tends
to slow the fluid inside Ωs. Rigorous convergence results by Angot et al. [3],
and Carbou and Fabrie [8] show that the penalized velocity uη converges to
the solution of the Navier-Stokes equations u with an error rate of O(η1/2)
in the L2(Ωp) norm.

2.3. Improved volume penalty equations

Although the volume penalty equations do converge to Navier-Stokes as
η → 0, the convergence rate is slow and therefore may limit the accuracy
of resulting numerical schemes. For example, let uη,num denote a numerical
solution for the penalized equations. One is then interested in quantifying
the numerical error for uη,num compared to u, the solution to the original
Navier-Stokes problem (1)–(2). Using the triangle inequality1, the error can
be controlled by

||u− uη,num||2 ≤ ||u− uη||2 + ||uη − uη,num||2. (8)

Rigorous convergence results then bound the first term as ||u−uη||2 ∼ η1/2,
while ||uη − uη,num||2 depends on the numerical details and order of the
scheme. Finally, we note that the addition of the penalty term introduces
time scales of O(η) and length scales of O(η1/2) into the solution uη. To
appropriately resolve the boundary layers in the penalty equations (5)–(6),
one then has a grid spacing of ∆x ∼ √η leading to a first order bound

||u− uη,num||2 ≤ O(∆x). (9)

In light of the above observations, a high order penalty method must either
increase the boundary layer width O(

√
η), or improve the analytic conver-

gence rate in the penalty parameter. We adopt the second approach, and
outline how equation (5) can be modified to better approximate the original

1Here || · ||2 is any appropriate numerical L2(Ωp) norm.
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Navier-Stokes problem (1)–(2). Furthermore, we note that when modify-
ing the penalty term, it is important to avoid the introduction of additional
length or time scales which would hinder the development of high order nu-
merical schemes. To improve the penalized equations, we exploit the fact that
u satisfies the boundary conditions on Γ, and does not represent a physical
flow inside Ωs. Specifically, we modify the penalty term so that the flow
tracks an extension function g̃ defined on x ∈ Ωs. In such a case, the volume
penalty equations take the form

∂tuη + uη · ∇uη = −∇pη + µ∆uη + f − η−1χs (uη − g̃) x ∈ Ω (10)

∇ · uη = 0 x ∈ Ωp. (11)

At this point, we only specify the divergence constraint within the physi-
cal domain and defer a more detailed description of the divergence constraint
inside Ωs for section 7. The idea is to choose g̃ to reduce the artificial fluid
boundary layer generated by the penalized equations in the vicinity of Γ.
Specifically, the function g̃ should be a smooth, at least C1, extension of
the prescribed boundary conditions. The extension is constructed for each
component of g̃, and each component of g̃ should be chosen to match k
derivatives of u in the direction normal to Γ. As a result, we prescribe the
following general properties for g̃

P1. g̃ is an extension of the prescribed boundary values: g̃ = g for x ∈ Γ.

P2. g̃ has the same normal slope as u: (n · ∇)ui = (n · ∇)g̃i. Here ui and
g̃i for i = 1 . . . D are the components of u and g̃

P3. For higher derivatives, (n · ∇)kui|Γp = (n · ∇)kg̃i.

Since derivatives of u may be discontinuous across Γ, the notation Γp denotes
the limit of the derivative from the physical domain Ωp.

3. Constructing the extension g̃

In this section we discuss one possible construction for the extension
function g̃. The construction procedure is identical for each component gi of
g̃ for i = 1 . . . D.

In our approach, we assume the domain Ωp has a smooth boundary, at
least Γ ∈ C2. As a result, we omit a class of physically important domains
such as rectangles. The general idea is to match the normal derivatives of g̃
to those of u on Γ. With the appropriate boundary derivatives, we then let
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g̃ decay to some constant value G over a length scale l. In our construction,
the maximum length scale l is bounded by the minimum radius of curvature
of the interface.

Step 1. First introduce a family of smooth, one-dimensional basis functions
Bj ∈ Ck with 0 ≤ j ≤ k such that

(i) The functions Bj form a basis for derivatives at x = 0

di

dxi
Bj(0) =

{
1 for j = i

0 for j 6= i
(12)

(ii) Each Bj(x) has support on [0, 1]. Namely Bj(x) = 0 for x < 0
and x > 1.

One can then use the functions Bj(x) to construct a Ck extension f̃(x)
of a one-dimensional function f(x) on x ≥ 0 as

f̃(x) = f(0)B0(x) + f ′(0)B1(x) + . . .+ f (k)(0)Bk(x). (13)

Note that by construction, the function f̃(x) matches k derivatives at
x = 0 and vanishes for x > 1. The goal is now to modify the extension
(13) to higher dimensions.
Although there are many different choices for Bj(x), we now give an
example of one such choice for matching k = 2 derivatives. We do this
by constructing Bj(x) out of stretched copies of the smoothly decaying
function

h(x) =

{
e1− 1

1−x for 0 ≤ x < 1

0 for x ≥ 1
. (14)

Using h(x), one can take the functions B0, B1, B2 (figure 2) as the
weighted sums

B0(x) = 3 h(x)− 3 h(2x) + h(3x) (15)

B1(x) =
5

2
h(x)− 4 h(2x) +

3

2
h(3x) (16)

B2(x) = −1

2
h(x) + h(2x)− 1

2
h(3x). (17)
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Figure 2: A plot of the 1D basis functions B0(x) (thick), B1(x) (dashed) and
B2(x) (thin).

Step 2. Construct a coordinate system inside the obstacle. The coordinate
system should be orthogonal at the boundary, and only needs to extend
a distance l inside the domain Ωs.
To construct the coordinates, we follow a standard approach [12] shown
in figure 3. Let ξ ∈ Γ denote the coordinates of the boundary Γ. Any
point x within a distance l of the boundary may then be written as

x = ξ + sn(ξ). (18)

Here s is the normal distance inside Ωs from the boundary. Within
a small enough region, s ≤ l, one may invert2 equation (18) to write
ξ = ξ(x) and s = s(x).

Remark 1. In cases where a level set function φ(x) describes the
boundary Γ = {x ∈ Ω |φ(x) = 0}, one may identify

n = ∇φ (19)

s = φ(x). (20)

Here we have assumed |∇φ| = 1 and φ(x) > 0 represents the domain
Ωs while φ(x) < 0 corresponds to the domain Ωp. ♠

2The coordinates ξ(x) and s(x) are both at least C1 functions
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Figure 3: A local set of normal coordinates. Here ξ ∈ Γ is a point on the
boundary, while s is the distance in the normal direction. A coordinate inside
a neighborhood of Ωs has the form x = ξ + sn(ξ).

Step 3. Construct the extension g̃ using the functions Bj(x) and the coordi-
nates (ξ, s).
For brevity, we introduce notation for the normal derivatives at the
boundary Γ.

un(ξ) = (n · ∇)u|Γ (21)

unn(ξ) = (n · ∇)2u|Γ (22)
...

unk
(ξ) = (n · ∇)ku|Γ (23)

Again, we note that higher derivatives of u are discontinuous across
the boundary. Therefore, unk

is evaluated as the limit approaching the
boundary from the physical domain. The extension is then

g̃(x) =
(
g(ξ)−G

)
B0

(
s l−1

)
+ l un(ξ) B1

(
s l−1

)
+ l2 unn(ξ) B2

(
s l−1

)
+ . . .

+ lk unk
(ξ) Bk

(
s l−1

)
+ G. (24)
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Note that g̃ decays to G, i.e. g̃ → G, as s → l. Therefore G can be
any time-dependent constant vector, however, for numerical purposes
one should choose G close to the boundary average of g

G = A−1

∫
Γ

g dA (25)

A =

∫
Γ

dA. (26)

Remark 2. Since values of g̃ inside Ωs depend on derivatives of u on the
boundary, the function g̃ described in (24) depends linearly on u. ♠

Remark 3. We can check that the construction (24) satisfies the properties
(P1)-(P3). For x ∈ Γ, we have s = 0, so that g̃ = g, thereby satisfying
(P1). To check higher derivatives, we first note that differentiating (18) with

respect to s yields ∂x(ξ,s)
∂s

= n(ξ). As a result any function independent of s,
y(ξ, s) = y(ξ), has the property that

(n · ∇)y(ξ) =
∑
j

∂xj
∂s

∂y(ξ)

∂xj
(27)

=
∂y(ξ)

∂s
(28)

= 0. (29)

Meanwhile, we also have

(n · ∇)iBj(s l
−1)|s=0 =

( ∂
∂s

)i
Bj(s l

−1)|s=0 (30)

= l−iδij (31)

where δij is the Kronecker delta. Combining the two properties above, we
have

(n · ∇)ig̃|x∈Γ = uni
(ξ). (32)

Therefore, we recover properties (P2)-(P3).
♠
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4. A Model equation

In this section we examine solutions to the steady-state heat equation
to provide some explanation for how the extension function g̃ improves the
analytic convergence rate of the penalized equations to the original problem.
In particular, we seek to quantify the error that results from the additional
penalty forcing. As a non-penalized problem, consider

∂xxv = 0 x ∈ [−1, 0] (33)

with boundary conditions: v(−1) = 1, v(0) = 0. The solution is then v(x) =
−x for x ∈ [−1, 0].

We note that solving explicit examples of the steady-state equations do
not give general sharp convergence estimates, however, they do provide a
rigorous lower bound on the convergence rate of the penalized equation to
the exact non-penalized equation. The equivalent one dimensional steady-
state penalized problem is then

∂xxu = η−1H(x)(u− g̃) x ∈ [−1,∞) (34)

with boundary conditions u(−1) = 1, u(∞) = 0. Here H(x) is the Heaviside
function

H(x) =

{
0 for x < 0

1 for x ≥ 0
(35)

We now examine the convergence of solutions u → v in the limit η → 0 for
different extensions g̃.

Remark 4. As a result of the discontinuous Heaviside function H(x), the
solution u to equation (34) has one continuous derivative (u ∈ C1). Higher
derivatives are discontinuous across x = 0. ♠

In light of remark (4), we take g̃ to have derivatives matching u from the
physical domain x = 0− and not x = 0+.

Proposition 1. Suppose that g̃ is a bounded Ck+1 function that matches k
derivatives of u at x = 0−. Namely

1. g̃(0) = 0
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2. g̃′(0) = u′(0)

3. g̃(m)(0) = u(m)(0−) = 0 for 2 ≤ m ≤ k.

Then the solution u converges to v as

max
x∈[−1,0]

|u− v| = O(η(k+1)/2) (36)

Proof 1. In the region −1 ≤ x ≤ 0, u has the solution

u = (1 + c) + cx (37)

for some constant c. To construct the solution on x ≥ 0, we note that one
may write g̃ as

g̃(x) = cx+ xk+1R(x) (38)

for some remainder function R(x), where in general R(0) 6= 0. By construc-
tion (38) matches the first k derivatives of u at x = 0−. In addition, we
assume that g̃(x) and g̃′(x) are bounded, so that R(x) and R′(x) are also
bounded functions. On x ≥ 0, u then solves

∂xxu− η−1u = −η−1
(
cx+ xk+1R(x)

)
(39)

To obtain the correct scaling, we rescale x = η1/2X to obtain

∂XXu− u = −cη1/2X + η(k+1)/2Xk+1R(η1/2X) (40)

The general solution is then

u(X) =

{
(1 + c) + cη1/2X if X < 0

be−X + cη1/2X + η(k+1)/2Q(X) if X ≥ 0
(41)

where we have excluded the term eX since it diverges as X →∞. In addition,
Q(X) is a particular solution (which stays bounded as X →∞ ) to

QXX −Q = Xk+1R(η1/2X) (42)

For instance, one may write a particular solution as

Q(X) =
1

2

∫ X

0

(eX−y − e−X+y)yk+1R(η1/2y) dy − AeX (43)

A =
1

2

∫ ∞
0

e−yyk+1R(η1/2y) dy (44)
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Letting Rm = maxy |R(y)|, we also have the bound

|Q(0)| = |A| ≤ Rm

2

∫ ∞
0

yk+1e−y dy = Q0. (45)

The same type of argument holds for bounding |Q′(0)| ≤ Q1.
To solve for the unknown constants, c and b, we use the fact that u and

u′ are continuous across x = 0. We therefore obtain the two equations

1 + c = b+ η(k+1)/2Q(0) (46)

η1/2c = −b+ η1/2c+ η(k+1)/2Q′(0) (47)

Upon solving for b and c, the error between u and v on the physical domain
−1 ≤ x ≤ 0 is

max
x∈[−1,0]

|u− v| = 1 + c (48)

= (Q(0) +Q′(0))η(k+1)/2 (49)

≤ (Q0 +Q1)η(k+1)/2 (50)

= O(η(k+1)/2) (51)

Hence, for the model problem, matching k derivatives of g̃ yields a conver-
gence rate of (k + 1)/2. In particular, when k = 0, we recover the known
convergence rate η1/2 of the standard penalty method.

Remark 5. Using higher derivatives in the construction of g̃ which are taken
as limits from the domain x↘ 0+, does not yield the convergence rate stated
in proposition (1). As an example, we take g̃+ = u′(0)B1(x) + u′′(0+)B2(x)
where

B1(x) =
5

2
e−x − 4e−2x +

3

2
e−3x (52)

B2(x) =
1

2
e−x − e−2x +

1

2
e−3x. (53)

For such a g̃+, the solution u to problem (34) yields only a first order error

max
[−1,0]

|u− v| ∼ 11

6
η. (54)

In contrast, taking g̃− = u′(0)B1(x) + u′′(0−)B2(x) yields a convergence rate
in agreement with (1)

max
[−1,0]

|u− v| ∼ 11η3/2. (55)

♠
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5. Stability

In this section we establish numerical stability criteria for the 1D pe-
nalized heat equation. To examine stability, we work with the domain
Ωp = (0, π), Ωs = [π, 2π] and periodic boundary conditions. Moreover, we
take g(0) = g(π) = 0 to capture a u = 0 boundary condition at the fluid-
solid boundary. A simple Euler scheme matching one derivative of u at the
interface is then

un+1 =
(
I + ∆t ∆

)
un −∆t η−1χs (un − g̃n) (56)

g̃n = unx(π)B1(x− π)− unx(2π)B1(2π − x) (57)

In general, adding derivatives of u to g̃(x) can reduce, by factors of h, the
time step restriction for an explicit scheme. In the case at hand, however,
the structure of g̃(x) results in the same time step restriction as the original
volume penalty method, namely

∆t < min{O(h2), O(η)}. (58)

Here h is either the grid spacing of a finite difference scheme, or alternatively
h−1 scales as the largest wavenumber in a Fourier method.

We note that although (56) is a linear recursion relation, the right hand
side is not a normal operator. As a result, a rigorous proof of (58) requires
bounding the eigenvalues for the spatially discrete system (56). The analysis
is further complicated by the fact that the operators (or matrices) on the
right hand side of (56) do not commute.

In this section we establish the time step restriction (58). To do so, we
first compute the eigenvalues for the penalty term using a finite difference
scheme. We show that although the penalty term contains derivatives of u,
the eigenvalues remain O(η−1) and do not become O(η−1h−1).

Secondly, to show that the addition of the Laplacian does not alter the
restriction (58), we numerically compute the eigenvalues for equation (56)
using a finite difference scheme.

5.1. Eigenvalues of the penalty term (Finite differences)

In practice, one does not observe the time step restriction governed by the
norm of g̃, but rather the larger bound in (58). Here we provide a stability
criteria by analytically computing the penalty term eigenvalues for a finite
difference scheme.
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Let xk = kh for 0 ≤ k ≤ N−1 with grid spacing h = 2π/N . Furthermore,
denote the discrete vector u = [u(x0)u(x1) . . . u(xN−1)]T .

We are then interested in evaluating the eigenvalues of the penalty term

Bu = λu (59)

B = −η−1(Iχ − v1d
T
1 − v2d

T
2 ) (60)

where B is the finite difference matrix corresponding to the penalty term.
Here Iχ is the identity matrix restricted to x ∈ Ωs while v1 and v2, are
vectors with components

(v1)k = χs(xk)B1(xk − π) (61)

(v2)k = −χs(xk)B1(2π − xk) (62)

In addition, d1 and d2 are column vectors which approximate the derivatives
of a vector u as

ux(π) ≈ dT1 u (63)

ux(2π) ≈ dT2 u (64)

For instance, a centered difference approximation to the derivative ux(2π)
would have (d2)N−1 = −(2h)−1, (d2)1 = (2h)−1 and (d2)k = 0 for k = 0 and
1 < k < N − 1. Lastly, since the support of B1(x) is restricted to x < 1, the
function B1(x − π) = 0 for x > π + 1. Hence, the numerical derivative of
B1(x− π) at x = 2π is zero (or similarly with B1(2π − x) at x = 0)

dT2 v1 = 0 (65)

dT1 v2 = 0. (66)

Combining the orthogonality conditions (65)–(66) with the fact that Iχv1,2 =
v1,2, implies that u = v1,2 are eigenvectors with corresponding eigenvalues

λ1 = −η−1(1− dT1 v1) (67)

λ2 = −η−1(1− dT2 v2). (68)

All other eigenvalues of B then lie in the space perpendicular to v1 and v2

resulting in either λ = 0 or λ = −η−1. The eigenvalues (67)–(68) are therefore
directly a result of the modified penalty term and depend specifically on the
component values of d1,2. As a result, the products dT1,2v1,2 ∈ (0, 1] depending
on how one builds the numerical derivative vector d1,2.
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As an example, taking a centered difference approximation to the deriva-
tive ux(2π) yields

bT2 v2 =
1

2h
((v2)1 − (v2)N−1) (69)

≈ 0.5. (70)

The second line follows since (v2)N−1 = 0 while (v2)1 ≈ h because the
function B′1(0) = 1.

In general, the product dT1,2v1,2 will be a weighted average of the deriva-
tives of B1(x) on the left and right of the interface. As a result, all eigenvalues
λ of B satisfy −η−1 ≤ λ ≤ 0. Therefore, modifying the penalty term does
not change the time step restriction ∆t < 2η for a simple Euler scheme
un+1 = un + ∆t Bun.

5.2. Numerical eigenvalues
In the follow section we numerically compute the eigenvalues of (56)–(57)

using a finite difference scheme for the spatial derivatives3. The scheme then
has the form

un+1 =
[
I + ∆t (L + B)

]
un (71)

where L is the standard 3-point stencil discrete Laplacian. As a result, the
eigenvalues of the linear system (71) approach the real values associated with
the Laplacian ∆ when η → ∞, and the values associated with the penalty
term when η → 0.

To compute the eigenvalues numerically, we fix a grid with N points
(256 ≤ N ≤ 4096) and examine the range 10−9 ≤ η ≤ 1.

Proposition 2. (Practical stability) In practice, the numerical scheme (71)
is stable provided one takes the time step restriction

∆t < min{0.5h2, 1.2η}. (72)

Remark 6. The exact constant 1.2 in (72) depends on numerical details
such as how one interpolates derivatives to the interface or the nature of the
functions B0(x), B1(x) . . .. ♠

Here figure 4 shows that the numerical eigenvalues forN = 2048 and η = 10−7

are stable with a time step restriction (72).

3Although not shown, a similar result of ∆t < min{N−2, 1.1η} holds for a Fourier
scheme.
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Figure 4: Scatter plot of the numerical eigenvalues for (71). Here N = 2048,
η = 10−7 and ∆t is taken from (72).

6. Numerical example: Heat Equation

In the following section we provide numerical examples for the heat equa-
tion in dimension D = 1, 2. Specifically, we combine the analytic convergence
and stability results from the previous sections to show that one may achieve
high order numerical schemes. As a starting point, we demonstrate high or-
der convergence in D = 1 dimension. We then move to D = 2, and outline
additional details that arise from the numerical construction of the extension
g̃(x).

6.1. 1D Heat Equation

To test the convergence rates for the penalized heat equation, we use a
manufactured solution approach. We note that the forced heat equation on
x ∈ [0, 2π],

∂tu = uxx + f (73)

f = esin(x+t)
[

cos(x+ t) + sin(x+ t)− cos2(x+ t)
]

(74)

u(x, 0) = esin(x) (75)

has an exact solution ue = esin(x+t). To quantify the total error, we penalize
equation (73) as

∂tuη = (uη)xx + f − η−1χs (uη − g̃) (76)
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and compare the numerical solution of (76) to the exact one from (73)4.
To discretize in space, we use an equispaced grid with fourth order stencils

for all derivatives. In addition, we treat all terms explicitly in time with a
second order (improved) Euler scheme. When constructing the extension g̃,
we first compute the derivatives of u at each grid point, i.e. ux(xk) or uxx(xk).
We then interpolate the values of ux and uxx from the regular grid points to
the points xΓ on the interface.

Remark 7. The solution to the penalized heat equation u has a discontinu-
ous second derivative uxx across the interface. As a result, interpolating uxx
using regular grid points on both sides of the interface will produce a weighted
average of right and left derivatives uxx(0

−) and uxx(0
+) in the construction

of g̃. We note that in practice, such a procedure does not appear to alter the
final numerical convergence rate. ♠

For our tests, we choose a solid region centered at π to be Ωs = [π−0.7, π+
0.7]. To satisfy the stability restriction, we then take ∆t = 0.2 h2, h = 2π/N
and slave η = 5 ∆t so that all parameter values are fixed by the number
of grid points N . For each N = 2k, with 6 ≤ k ≤ 12, we then numerically
integrate (76) up to a final time of T = 1. We repeat the procedure using
0, 1 and 2 derivatives of u in constructing the extension g̃ and compare the
numerical solution to the exact one (i.e. that of the unpenalized problem).
Here figure 5 shows the convergence rates for matching different derivatives,
while figures 6 and 7 show a typical solution and the corresponding error
respectively.

6.2. 2D Heat Equation

In the following subsection, we outline the numerical details for a D = 2
scheme. Here we work with an equispaced, regular grid with N × N points
(64 ≤ N ≤ 512), and immerse the boundary Γ. The main difference when
moving to higher dimensions is how one computes the extension g̃(x). To
illustrate the construction, we refer to figure 8. To build g̃(x) we first compute
all appropriate derivatives at each grid point (both on Ωs and Ωp). For each
grid point x ∈ Ωs within a distance l of Γ, we compute ξ(x) as the orthogonal
projection of x onto Γ and s(x) = ||ξ(x)−x||2. Using a regular 9 point stencil,

4One can also restrict the forcing f̃ = f(1 − χs) to the physical domain, and obtain
similar results.
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Figure 5: Plot of numerical errors ||u − uη,num||∞ for different values of N .
The three curves correspond to building g̃ using 0, 1, 2 derivatives of u and
result with convergence rates of 1, 2, 3 respectively.

Figure 6: Plot of the numerical solution uη,num (thin line) with the extension
g̃ (dashed line) for N = 2048. Here Ωs = [π−0.7, π+0.7] is the solid domain

we then perform a polynomial interpolation of all required derivatives from
the grid points to ξ. Using the interpolated derivatives at ξ, one can then
compute the normal derivatives of u required in equation (24) to construct
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Figure 7: Plot of the total error in solving the penalized equations matching
1 derivative of u in the extension. Here, N = 2048, T = 1 is the integration
time, while Ωs = [π − 0.7, π + 0.7] is the solid domain.

g̃(x) at each grid-point inside Ωs. Figure 9 illustrates a typical construction
of g̃(x).

Remark 8. For computational efficiency, one can precompute and store the
values of ξ as well as the appropriate coefficients required to extrapolate
derivatives to the interface Γ. ♠

As an example in D = 2, we take the computational domain Ω to be a
periodic square with side length 2π. For the penalized domain Ωs, we take a
circle of radius r = 1/2 and center (xc, yc) = (π, π). The physical domain is
then Ωp = Ω\Ωs. To perform convergence tests, we again use a manufactured
solution where ue = [esin(x) + cos(y)] cos(t). Here we perform a convergence
test for the penalty parameter η. To compute the convergence rate, we fix
N = 512 and vary 5 × 10−5 ≤ η ≤ 10−1, so that discrete numerical errors
are smaller than the η-dependent error obtained by introducing the penalty
term. For different values of η, we then integrate the penalty equation for a
time T = 0.1 and compute the error. Figure 10 shows the L∞ error between
the penalized equation and the exact heat equation as a function of η.
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Figure 8: Regular grid with interpolation points.

Figure 9: A sample 2D plot of g̃ matching 2 normal derivatives of u(x). The
plot is taken at t = 0 for the heat equation tests.
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Figure 10: Converence plot of the L∞ error at T = 0.1 for the heat equa-
tion tests. The plot shows curves for matching 0 derivatives (triangles), 1
derivative (squares), and 2 derivatives (circles). The straight lines compare
the expected convergence rates of O(η0.5), O(η) and O(η1.5) respectively.

7. Numerical example: 2D incompressible Navier-Stokes

The primary difficulty when transitioning from a penalized heat equation
to the penalized incompressible Navier-Stokes equations is the addition of
the velocity divergence constraint. Other differences, such as moving from
a scalar to a vector equation, or adding a nonlinear convective term do not
pose new additional challenges to the penalized equations. Intuitively, the
difficulty with the divergence can be outlined as follows. For the penalized
heat equation, the active penalty term forces the function u to closely track
the extension function g̃. When moving to a set of vector equations, the
velocity vector uη will closely track the term g̃ inside the penalty region Ωs.
However, the component-wise construction of g̃ will in general be such that
∇·g̃ 6= 0. Consequently, to remain consistent, one should not force ∇·uη = 0
inside Ωs but rather allow ∇ · uη to loosely track ∇ · g̃.

One approach for handling the divergence constraint is to replace ∇ ·
uη = 0 with a Pressure Poisson Equation (PPE) [15, 16, 28, 29]. Such
an approach can provide a consistent method to compute the pressure and
obtain high order schemes. Since a PPE approach requires the additional
solution of a Poisson equation with Neumann boundary conditions, we defer
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the implementation to future work. In our case, we utilize a projection
method where we project the velocity divergence to zero inside the fluid
domain. We now discretize equations (10)-(11) in time.

7.1. Discretization in time

Here we outline a pseudo-spectral scheme for solving the Navier-Stokes
equations. For a second order scheme in h, we take a first order discretization
in time with a time step restriction of the form outlined in (72). Since the
domain is 2π periodic, we can use the Fourier transform to invert the Poisson
equation. In the following algorithm we take a regular N ×N grid. We also
denote the discrete Fourier transform by F so that p̂n(k) = F [pn] with
k = (kx, ky) and k = |k|.

Algorithm 1. (Navier-Stokes)

1. Given the velocity unη , compute an intermediate velocity ũn+1
η

ũn+1
η − unη

∆t
= Fn − 1

η
χs(x)(unη − g̃n) (77)

Fn = −unη · ∇unη + µ∆unη + fn (78)

2. Compute the pressure

∆pn+1
η =

1

∆t
(∇ · ũn+1

η )(1− χs)−A. (79)

For k = 0 set p̂n+1
η (0) = 0, while for k 6= 0 take

p̂nη (k) = − 1

k2
F [

1

∆t
(∇ · ũn+1

η )(1− χs)]. (80)

Note that A does not appear in the Fourier transform and at no time
does one ever compute A. The value of A is hidden as a consistency
condition in setting p̂n+1

η (0) = 0.

3. Update the velocity un+1
η

un+1
η = ũn+1

η − (∆t)F−1[−ıkp̂nη ]. (81)

Note that either Fourier transforms or a second order finite difference scheme
can be used when computing the derivatives ∂xjuη in algorithm (1).

Since the second derivatives are discontinuous, we compute ∆uη using
finite differences.
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In the Poisson equation for the pressure, pη is only determined up to a
constant. To uniquely determine pη we enforce

∫
Ω
pη dV = 0. Meanwhile

the value of A is chosen so that the Poisson equation satisfies the standard
solvability condition. Namely,

A =
∆t−1

V

∫
Ωp

∇ · ũη dV (82)

=
∆t−1

V

∫
Γ

ũη · n dA (83)

=
∆t−1

V

∫
Γ

(ũη − g) · n dA (84)

where in the last line we have used the fact that
∫

Γ
g·n = 0. Here V =

∫
Ωp

dV

is the volume of the physical domain. The last line also shows that A is not
nearly as large as ∆t−1 since the jump (uη − g) · n is expected to be small.
Finally, we make a remark on the projection of u. Inside Ωp, we have

∇ · u = ∇ · ũ− (∆t)∆p (85)

= (∆t)A (86)

≤ C max
x∈Γ
|ũη − g| (87)

where C is an appropriate constant. Hence any error in the divergence of
u is directly controlled by the error in the velocity boundary condition. In
particular, for matching 1 derivative, we expect ∇ ·u = O(η) +O(∆t) inside
Ωf . As a result, we can recover a second order scheme, however systematically
moving to a higher order method will require an alternative formulation, such
as a PPE scheme, for computing the pressure.

Remark 9. In order to guarantee second order spatial accuracy in algorithm
(1), g̃ should match at least 1 derivative of uη. ♠

Remark 10. One could also consider solving the Poisson equation (79) with
A = 0 and instead impose an interface condition on the normal pressure
gradient:

[n · ∇pη]Γ =
1

∆t
n · (ũη − g) (88)

[f ]Γ := lim
ε→0

(
f(x + εn)− f(x− εn)

)
x ∈ Γ. (89)
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In the definition (89), n is taken as the unit normal directed outward from
Ωp. Such an approach greatly simplifies the analysis for the behavior of the
divergence (∇ · uη) in the resulting PPE scheme. However, we note that
numerically solving (79) with (88) and A = 0 is harder than simply solving
(79)–(82). Furthermore, the equations also allow for a direct solution using
pseudo-spectral methods, while the interface problem does not. ♠

To test the order of accuracy of the active penalty method, we again use
a manufactured solution of the form ue = (ue, ve) and pe where

ue = cos(x) sin(y) cos(t) (90)

ve = − sin(x) cos(y) cos(t) (91)

pe = sin(2x) cos(y) cos(t). (92)

Given initial data corresponding to the exact solution, we numerically
evolve the velocity uη and pressure pη using the pseudo-spectral method out-
lined in algorithm 1. Here we match 1 derivative of uη in the construction of g̃
and take time steps, with the appropriate restriction, of ∆t = O(h2) = O(η).
Figure 11 shows second order convergence of the velocity field (in L∞(Ωp)),
as well as the pressure and divergence (in L2(Ωp)). Meanwhile, the pressure
and the divergence converge at one order less in L∞(Ωp). As an example, fig-
ures 13a–13b show the typical error for velocity and pressure while 14a–14b
show the velocity divergence. In addition, 15a and 15b show the horizontal
velocity field along with the horizontal component of the extension g̃ · x̂.
Note that uη is again very close to g̃ inside Ωs.

8. Flow around an impulsively started cylinder

In this section we test our method for the model problem of an impulsively
started cylinder [20]. In this case, we solve the following initial value problem
where the fluid starts at rest

uη(x, 0) = 0 forx ∈ Ω. (93)

The impulsively started cylinder is then modeled by a moving mask function
with a time dependent set Ωs(t) and the appropriate Dirichlet boundary
condition. For t > 0 we have

Ωs(t) = {x : |x− x0 − u0t| ≤ R} (94)

u = u0 forx ∈ Γ. (95)
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Figure 11: Navier-Stokes convergence plot. Second order convergence in
L∞(Ωp) for the velocity field (squares), and in L2(Ωp) for the pressure (tri-
angles) and velocity divergence (circles).

Here u0 = u0êx is the velocity of the cylinder, and (x0, R) denotes the center
and radius of the cylinder.

To simplify the numerical calculation, we perform a Galilean transforma-
tion on the coordinates and solve the penalized equations with a stationary
mask. The velocity field then solves the equation

∂tuη + (uη − u0) · ∇uη = −∇pη + µ∆uη + f − η−1χs (uη − u0 − g̃),(96)

with initial data u(x, 0) = 0. Here χs(x) is a stationary mask with Ωs(0),
while g̃ is the active penalty term with a zero boundary condition g = 0.

To compare our results with pre-existing numerical tests, we adopt the
following definition of the Reynolds number and time scales from [20]

RE =
2Ru0

µ
(97)

T =
u0

R
t. (98)

Using equation (96), we then solve for the velocity field in time, and
compute the drag force and lift for the impulsively started cylinder. To
compute the force we numerically evaluate the momentum transfer to the
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Figure 12: Navier-Stokes convergence plot. First order convergence in
L∞(Ωp) for the pressure (triangles) and velocity divergence (circles). The
weaker convergence in L∞(Ωp) is due to the boundary layer in the pressure
and divergence. The divergence was computed using second order finite dif-
ferences.

fluid

Fb = − d

dt

∫
Ωf

u dV (99)

= − d

dt

∫
Ω

u
(
1− χs(x)

)
dV. (100)

The lift (CL) and drag (CD) coefficients are then evaluated as the non-
dimensionalized components of the force

CD =
Fb · êx
Ru2

0

CL =
Fb · êy
Ru2

0

. (101)

In our numerical tests, we examine the impulsively started cylinder for
RE = 40 and RE = 550. In both cases, we use R = 1, u0 = 10 and the
appropriate values of µ to obtain RE. Here figures 16 and 17 show the drag
versus time for an impulsively started cylinder with RE = 40 and RE = 550
respectively. Note that qualitatively the curves match the benchmark results
from [20]. In particular, for the RE = 40, the drag coefficient monotonically
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(a) Velocity error (b) Pressure error

Figure 13: Error fields with N = 128 for the velocity and pressure after
T = 1.

(a) Full divergence (b) Divergence error

Figure 14: Plots of the divergence ∇ · uη in Ω (left) and in Ωp (right) with
N = 128 after T = 1. The plot in Ωp shows the ||∇ · uη||L∞(Ωp) error occurs
at a point in a boundary layer near Γ.

(a) Velocity uη,Num (b) The extension g̃ · x̂

Figure 15: The numerical velocity field for horizontal component uη,Num
along with the extension function. Here N = 128 and T = 1.
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Figure 16: Drag versus time for RE = 40. Here η = 2 × 10−4, N = 512,
l = 0.45.

decays to a value slightly below 2. Meanwhile, for RE = 550, the drag
first drops, followed by a peak at T = 3.05. Here figure 18 shows the early
development of vorticity for the impulsive cylinder. We also extend the
computation for a much longer time to verify the onset of vortex shedding.
Here figure 19 shows the oscillations in the lift coefficient versus time, while
20 shows the vorticity at various times in the evolution. We note that due
to the periodicity of the domain, the simulation effectively models an array
of cylinders, as opposed to the conventional von Kármán street which arises
from flow past one cylinder.

9. Conclusion

In this paper, we outline how to construct high order penalty methods.
We do so by first introducing an active penalty term for the heat equa-
tion. When we increase the number of matched derivatives, we show that
the penalty term improves the analytic convergence rate in terms of the
penalty parameter. Secondly, we examine the numerical stability of the ac-
tive penalty term. We show that it does not introduce additional stiffness into
the equations or additional length scales that would need to be resolved. The
combination of the high order convergence in the penalty parameter along
with the numerical stability then leads to higher order numerical schemes.
Lastly, we extend the penalized term from the heat equation to the incom-
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Figure 17: Drag versus time for RE = 550. Here η = 10−3, N = 768,
l = 0.05. Circles correspond to snapshots of the vorticity shown in figure 18.

Figure 18: Snapshots of the vorticity for an impulsively started cylinder with
RE = 550. Images are taken at times (l-r) T = 1, 1.66, 2.33, 3, 3.66, 4.33 and
correspond to the circles in figure 17.
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Figure 19: Lift versus time for the onset of the von Kármám street at RE
= 550. The oscillations correspond to vortex shedding. Circles correspond
to snapshots of the vorticity shown in figure 20.

Figure 20: Snapshots of the vorticity for an impulsively started cylinder show-
ing the onset of full vortex shedding and von Kármán type street [30]. Images
are for RE = 550, and taken at times T = 45, 51, 57, 63, 69, 75 corresponding
to the circles in figure 19.
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pressible Navier-Stokes equations. In particular, we show how to handle the
divergence constraint on the velocity field. We also conclude with an appli-
cation of flow around an impulsively started cylinder for RE = 40 and RE
= 550. In the case of RE= 550, we demonstrate the onset of a von Kármán
street.

Although we have outlined a high order approach, there are still remaining
issues that limit the practical feasibility of the method. For instance, at
no point do we improve the smoothness of the solution uη. In fact the
second derivatives of uη remain discontinuous across the curve Γ, although
matching more derivatives in the active penalty term may reduce the size of
the discontinuity. As a result, Fourier methods still have a slow decay in the
Fourier modes thereby limiting the ability to spectrally compute derivatives.
In addition, interpolation of high order derivatives in the construction of g̃
should be one-sided (i.e. from Ωp) while in practice one would prefer to use
points on both sides of Γ. As a result, ongoing research includes improving
the global smoothness of uη while retaining the high order convergence.
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