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THE ENRICHED CROUZEIX–RAVIART ELEMENTS ARE EQUIVALENT

TO THE RAVIART–THOMAS ELEMENTS

JUN HU∗ AND RUI MA†

Abstract. For both the Poisson model problem and the Stokes problem in any

dimension, this paper proves that the enriched Crouzeix–Raviart elements are ac-

tually identical to the first order Raviart–Thomas elements in the sense that they

produce the same discrete stresses. This result improves the previous result in liter-

ature which, for two dimensions, states that the piecewise constant projection of the

stress by the first order Raviart–Thomas element is equal to that by the Crouzeix–

Raviart element. For the eigenvalue problem of Laplace operator, this paper proves

that the error of the enriched Crouzeix–Raviart element is equivalent to that of the

Raviart–Thomas element up to higher order terms.

1. introduction

The aim of this paper is to prove the enriched Crouzeix–Raviart (ECR hereafter)

elements by Hu, Huang and Lin [21] are equivalent to the first order Raviart–Thomas

elements (RT hereafter). The first main result proves that ECR elements are identical

to RT elements for both the Poisson and Stokes problems in any dimension. More

precisely, for the Poisson problem imposed a piecewise constant right–hand function f ,

it is proved that

(1.1) σRT = ∇NCuECR and uRT = Π0uECR,

where uECR and (σRT, uRT) denote the finite element solutions by the ECR and RT

elements, respectively; while for the Stokes problem imposed a piecewise constant right–

hand function f , it is established that

(1.2) σRT = ∇NCuECR + pECR id and uRT = Π0uECR + LuECR,

where (uECR, pECR) and (σRT,uRT) denote the finite element solutions by the ECR and

RT elements, respectively. Herein and throughout this paper, Π0 denotes the piecewise

constant L2 projection with respect to a shape–regular partition T of Ω consisting of

n-simplices, and L is some linear operator. The second main result proves that for the

eigenvalue problem of Laplace operator

(1.3) ‖∇NC(u− uECR)‖ = ‖∇u− σRT‖+ h.o.t.
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where the constants involved in the high order term depend on the corresponding

eigenvalue. Throughout this paper, ‖v‖ denotes (v, v)
1/2
L2(Ω)

, for any v ∈ L2(Ω). See the

next two sections for more details of the notations.

The history perspective justifies the novelty of both (1.1) and (1.2). For general

right–hand function f

(1.4) ‖∇NC(u− uECR)‖ = ‖∇u− σRT‖

hold up to data oscillation. Indeed, it is the first time that the RT elements are proved

in such a direct and simple way to be identical to nonconforming finite elements in any

dimension while the previous results state some relations between the two dimensional

Crouzeix–Raviart (CR hereafter) and RT elements; see below and also [3, 11, 26] for

more details. These results imply that the RT element can not be equivalent to the

CR element in general, which gives a negative answer to an open problem in [15].

The study on the relations between nonconforming finite elements and mixed finite

elements can date back to the pioneer and remarkable work by Arnold and Brezzi in

1985 [3]. In particular, for the two dimensional biharmonic equation, it was proved that

the first order Hellan–Herrmann–Johnson element [19, 20, 25] is identical to the modi-

fied Morley element which differs from the usual Morley element [29] only by presence

of the interpolation operator in the right–hand side; while for the two dimensional Pois-

son problem, it was shown that the L2 projection onto the first order RT element space

of the stress by the CR element, enriched by piecewise cubic bubbles, is identical to the

stress by the RT element. By proposing initially a projection finite element method,

Arbogast and Chen [1] generalized successfully the idea of [3] to most mixed meth-

ods of more general second order elliptic problems in both two and three dimensions.

In particular, they showed that most mixed methods can be implemented by solving

projected nonconforming methods with symmetric positive definite stiff matrixes, and

that stresses by mixed methods are L2 projections of those by nonconforming methods.

Let σRT be the discrete stress by the RT element, and uCR be the displacement by the

CR element of the two dimensional Poisson equation. Suppose that f is a piecewise

constant function with respect to T . Marini further explored the relation between the

RT and CR elements of [3] to derive the following relation [26]:

(1.5) σRT|K = ∇uCR|K −
fK
2
(x−mid(K)) x ∈ K for any K ∈ T ,

where fK := f |K denotes the restriction on K of f and mid(K) denotes the centroid of

K. This important identity was exploited by Brenner [8] to design an optimal multigrid

method for the RT element, and by Carstensen and Hoppe to establish, for the first

time, quasi–orthogonality and consequently convergence of both the adaptive RT and

CR elements in [13] and [12], respectively. For the two dimensional Stokes equation, a

similar identity was first accomplished in [11]:

σRT|K = ∇uCR −
fK

2
⊗ (x−mid(K)) + pCR|K id,

uRT|K = Π0uCR +
1

4
Π0(dev(fK ⊗ (x−mid(K))))(x −mid(K)),

(1.6)
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x ∈ K for any K ∈ T . Here (uCR, pCR) and (σRT,uRT) are finite element solutions by

the CR and RT elements, respectively, and fK is the restriction on K of the piecewise

constant function f . Given two vectors a ∈ R
2 and b ∈ R

2, a⊗ b := abT defines a 2× 2

matrix of rank one. See also [24] for a similar relation between the CR and RT elements

for the two dimensional Stokes–like problems. Such a beautiful identity is also used to

prove convergence and optimality of the adaptive pseudostress method in [11].

There is another direction for the study on the relations between nonconforming

finite elements and mixed finite elements, which may start with the remarkable work

by Braess [6]. A recent paper on the two dimensional Poisson model problem due to

Carstensen, Peterseim, and Schedensack [15] states more general and profound com-

parison results of mixed, nonconforming and conforming finite element methods

(1.7) ‖∇u− σRT‖ ≤ C‖∇NC(u− uCR)‖ ≈ ‖∇(u− uC)‖,

hold up to data oscillation and up to mesh-size independent generic multiplicative con-

stants, where C is a generic constant independent of the meshsize, and uC is the finite

element solution by the conforming Courant element. See [18, 27] for some relevant

results in this direction. By a numerical counterexample, it was also demonstrated in

[15] that the converse estimate

(1.8) ‖∇NC(u− uCR)‖ ≤ C‖∇u− σRT‖

does not hold. In Subsection 3.3, we give an example where the right hand side of the

above inequality vanishes while the left hand side is nonzero, which implies that the

converse of (1.8) is not valid.

This paper is organised as follows. Section 2 presents the Poisson equation, Stokes

equation and their mixed formulations. This section also introduces the ECR and RT

elements. Section 3 proves the equivalence between the ECR and RT elements for the

Poisson equation and Stokes equation respectively. Section 4 proves the equivalence

between the ECR and RT elements for the eigenvalue problem of Laplace operator.

Section 5 shows some numerical results by ECR elements. In the end, the appendix

presents the basis functions and convergence analysis of ECR elements.

2. Poisson equation, stokes equation and nonconforming finite element

methods

We present the Poisson equation, stokes equation and their nonconforming finite

element methods in this section. Throughout this paper, let Ω ⊂ R
n denote a bounded

domain, which, for the sake of simplicity, we suppose to be a polytope.

2.1. The Poisson equation. Given f ∈ L2(Ω,R), the Poisson model problem finds

u ∈ H1
0 (Ω,R) such that

(2.1) (∇u,∇v) = (f, v) for all v ∈ H1
0 (Ω,R).

By introducing an auxiliary variable σ := ∇u, the problem can be formulated as the

following equivalent mixed problem which seeks (σ, u) ∈ H(div,Ω,Rn)×L2(Ω,R) such
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that

(σ, τ) + (u,div τ) = 0 for any τ ∈ H(div,Ω,Rn),

(div σ, v) = (−f, v) for any v ∈ L2(Ω,R).
(2.2)

2.2. The stokes equation. Given f ∈ L2(Ω,Rn), the Stokes problem models the mo-

tion of incompressible fluids occupying Ω which finds (u, p) ∈ H1
0 (Ω,R

n)×L2
0(Ω,R) :=

{q ∈ L2(Ω,R),
∫
Ω qdx = 0} such that

(∇u,∇v) + (div v, p) = (f ,v) for any v ∈ H1
0 (Ω,R

n) ,

(divu, q) = 0 for any q ∈ L2
0(Ω,R).

(2.3)

where u and p are the velocity and pressure of the flow, respectively. Given any n× n

matrix–valued function τ , its divergence div τ is defined as

div τ :=




n∑
j=1

∂τ1,j
∂xj

...
n∑

j=1

∂τk,j
∂xj

...
n∑

j=1

∂τn,j

∂xj




,

while its trace reads

tr τ :=

n∑

i=1

τii.

Let id ∈ R
n×n be the n × n identity matrix. This allows to define the deviatoric part

of τ as

dev τ := τ − 1/n tr(τ ) id .

The definition of the pseudostress σ := ∇u + p id yields the equivalent pseudostress

formulation [4, 9, 10, 11, 14, 24]: Find (σ,u) ∈ Ĥ(div,Ω,Rn×n)×L2(Ω,Rn) such that

(devσ,dev τ ) + (u,div τ ) = 0 for any τ ∈ Ĥ(div,Ω,Rn×n) ,

(divσ,v) = −(f ,v) for any v ∈ L2(Ω,Rn).
(2.4)

Herein and throughout this paper, the space Ĥ(div,Ω,Rn×n) is defined as

Ĥ(div,Ω,Rn×n) := {τ ∈ H(div,Ω,Rn×n) :

∫

Ω
tr τdx = 0}.

2.3. Triangulations. The simplest nonconforming finite elements for both Problem

(2.1) and Problem (2.3) are the CR elements proposed in [16] while the simplest mixed

finite elements for Problem (2.2) and Problem (2.4) are the first order RT element due

to [30] and [4, 9, 10, 11, 14, 24], respectively. Suppose that Ω is covered exactly by

shape–regular partitions T consisting of n-simplices in n dimensions. Let E denote the

set of all n− 1 dimensional subsimplices of T , and E(Ω) denote the set of all the n− 1

dimensional interior subsimplices, and E(∂Ω) denote the set of all the n−1 dimensional
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boundary subsimplices. Given E ∈ E , let νE be unit normal vector and [·] be jumps of

piecewise functions over E, namely

[v] := v|K+ − v|K−

for piecewise functions v and any two elements K+ and K− which share the common

sub-simplice E. Note that [·] becomes traces of functions on E for boundary sub-

simplices E.

2.4. The enriched Crouzeix–Raviart elements for both the Poisson and Stokes

equations. Given ω ⊂ Ω and an integer m ≥ 0, let Pm(ω) denote the space of polyno-

mials of degree ≤ m over ω. The Crouzeix-Raviart element space VCR over T is defined

as

VCR :=
{
v ∈ L2(Ω,R) : v|K ∈ P1(K) for each K ∈ T ,

∫
E [v]dE = 0,

for all E ∈ E(Ω) , and
∫
E vdE = 0 for all E ∈ E(∂Ω)

}
.

To obtain a nonconforming finite element method that is able to produce lower bounds

of eigenvalues of second order elliptic operators, it was proposed in [21] to enrich the

shape function space P1(K) by span{
n∑

i=1
x2i } on each element. This leads to the following

shape function space

(2.5) ECR(K) := P1(K) + span
{ n∑

i=1

x2i

}
for any K ∈ T .

The enriched Crouzeix-Raviart element space VECR is then defined by

VECR :=
{
v ∈ L2(Ω,R) : v|K ∈ ECR(K) for each K ∈ T ,

∫
E [v]dE = 0,

for all E ∈ E(Ω) , and
∫
E vdE = 0 for all E ∈ E(∂Ω)

}
.

The enriched Crouzeix–Raviart element method of Problem (2.1) finds uECR ∈ VECR

such that

(2.6) (∇NCuECR,∇NCv) = (f, v) for all v ∈ VECR.

In order to construct a stable finite element method for the Stokes problem, we

propose the following finite element space for the pressure

(2.7) QECR := {q ∈ L2
0(Ω,R), q|K ∈ P0(K) for each K ∈ T }.

The enriched Crouzeix–Raviart element method of Problem (2.3) seeks (uECR, pECR) ∈

(VECR)
n ×QECR such that

(∇NCuECR,∇NCv) + (divNC v, pECR) = (f ,v) for any v ∈ (VECR)
n ,

(divNC uECR, q) = 0 for any q ∈ QECR.
(2.8)

Since VCR ⊂ VECR, the well-posedness of Problem (2.8) follows immediately from that

for the Crouzeix–Raviart element method of Problem (2.3), see [16] for more details.
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2.5. The Raviart–Thomas elements for both the Poisson and Stokes equa-

tions. For the Poisson equation, one famous mixed finite element is the first order

Raviart–Thomas element whose shape function space is

RT(K) := (P0(K))n + xP0(K) for any K ∈ T .

Then the corresponding global finite element space reads

(2.9) RT(T ) := {τ ∈ H(div,Ω,Rn) : τ |K ∈ RT(K) for any K ∈ T }.

To get a stable pair of space, the piecewise constant space is proposed to approximate

the displacement, namely,

(2.10) URT := {v ∈ L2(Ω,R) : v|K ∈ P0(K) for any K ∈ T }.

The Raviart–Thomas element method of Problem (2.2) seeks (σRT, uRT) ∈ RT(T )×URT

such that

(σRT, τ) + (uRT,div τ) = 0 for any τ ∈ RT(T ),

(div σRT, v) = (−f, v) for any v ∈ URT.
(2.11)

Define

(2.12) (R̂T(T ))n := (RT(T ))n ∩ Ĥ(div,Ω,Rn×n).

The Raviart–Thomas element method of Problem (2.4) searches for (σRT,uRT) ∈

(R̂T(T ))n × (URT)
n such that

(devσRT,dev τ ) + (uRT,div τ ) = 0 for any τ ∈ (R̂T(T ))n ,

(divσRT,v) = −(f ,v) for any v ∈ (URT)
n.

(2.13)

3. Equivalence between the ECR and RT elements

In this section we assume that both f and f are piecewise constant with respect to

T .

3.1. Equivalence between the ECR and RT elements for the Poisson equa-

tion. Given any K ∈ T , let Ei , i = 1, 2, · · · , n + 1, be its n − 1 dimensional sub-

simplices. Let φi, i = 1, 2, · · · , n + 1, and φK be basis functions of the shape function

space ECR(K), so that
∫

Ei

φjdE = δi,j :=

{
1 if i = j

0 otherwise
, and

∫

K
φjdx = 0, i, j = 1, · · · , n+ 1,

∫

K
φKdx = 1, and

∫

Ei

φKdE = 0, i = 1, · · · , n+ 1.

(3.1)

See the appendix for the specific expressions.

Lemma 3.1. Let uECR be the solution of Problem (2.6). There holds that

∇NCuECR ∈ H(div,Ω,Rn).

Remark 3.2. Since uECR is nonconforming in the sense that uECR 6∈ H1(Ω,R), it is

remarkable that ∇NCuECR is H(div) conforming.
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Proof. Let (σRT, uRT) the solution of Problem (2.11). Since σRT · νE are a constant

and
∫
E[v]dE = 0 for any E ∈ E and v ∈ VECR, an integration by parts plus the second

equation of (2.11) yield

(σRT,∇NCv) =
∑

E∈E

∫

E
σRT · νEvdE − (div σRT, v) = (f, v).

This and (2.6) lead to

(3.2) (∇NCuECR − σRT,∇NCv) = 0 for any v ∈ VECR.

Given E ∈ E(Ω), let vE ∈ VECR such that
∫

E
vEdE = 1,

∫

E′

vEdE = 0 for any E′ other than E, and

∫

K
vdx = 0 for all K ∈ T .

Since x·νE is a constant on E, ∇NCuECR·νE is a constant on E. Since divNC(∇NCuECR−

σRT) is a piecewise constant function, since both the average
{
(∇NCuECR − σRT)

}
· νE

and the jump [(∇NCuECR − σRT)] · νE are a constant on E, an integration by parts

derives

0 = (∇NCuECR − σRT,∇NCvE)

= [(∇NCuECR − σRT)] · νE

∫

E
vEdE +

{
(∇NCuNC − σRT)

}
· νE

∫

E
[vE ]dE

= [(∇NCuECR − σRT)] · νE.

Hence ∇NCuECR ∈ H(div,Ω,Rn), which completes the proof. �

Theorem 3.3. Let uECR and (σRT, uRT) be the solutions of problems (2.6) and (2.11),

respectively. Then there holds

σRT = ∇NCuECR and uRT = Π0uECR,

where Π0 is the piecewise constant L2 projection operator.

Proof. By Lemma 3.1, we only need to prove that (∇NCuECR,Π0uECR) is the solution

of Problem (2.11). In fact, given any τ ∈ RT(T ), an integration by parts yields

(∇NCuECR, τ) = −(uECR,div τ) +
∑

E∈E

∫

E
[uECR]τ · νEdE = −(uECR,div τ).

Hence

(∇NCuECR, τ) + (Π0uECR,div τ) = 0,

which is the first equation of Problem (2.11). To prove the second equation of Problem

(2.11), given any K, let v = φK in (2.6), an integration by parts leads to

(f, φK) = (∇NCuECR,∇NCφK) = −(div∇NCuECR, φK)+
∑

E⊂∂K

∫

E
∇NCuECR ·νEφKdE.

Since ∇NCuECR · νE is a constant on E and
∫
E φKdE = 0, this yields

div∇NCuECR(1, φK) = −fK(1, φK) ⇒ div∇NCuECR = −fK,

which completes the proof. �
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3.2. Equivalence between the ECR and RT elements for the Stokes equation.

Lemma 3.4. Let (uECR, pECR) be the solution of Problem (2.8). There holds that

∇NCuECR + pECR id ∈ H(div,Ω,Rn×n).

Proof. The proof is actually similar to that of Lemma 3.1. Let (σRT,uRT) be the

solution of Problem (2.13). Given any v ∈ (VECR)
n, it follows from an integration by

parts and the second equation of Problem (2.13) that

(σRT,∇NCv) = (f ,v) +
∑

E∈E

∫

E
σRTνE[v]dE = (f ,v).

This and the first equation of Problem (2.8) give

(∇NCuECR + pECR id−σRT,∇NCv) = 0 for any v ∈ (VECR)
n.

Given any E ∈ E(Ω), let vE be defined as in the proof of Lemma 3.1. Define vE =

(vE , · · · , vE)
T , this yields

0 =− (divNC(∇NCuECR + pECR id−σRT),vE)

+

∫

E
[∇NCuECR + pECR id−σRT]νE · vEdE

=

∫

E
[∇NCuECR + pECR id−σRT]νE · vEdE

=[∇NCuECR + pECR id−σRT]νE ·

∫

E
vEdE.

Since σRT ∈ H(div,Ω,Rn×n), this proves the desired result. �

Theorem 3.5. Let (uECR, pECR) be the solution of Problem (2.8), and let (σRT,uRT)

be the solution of Problem (2.13). Then there holds that

σRT = ∇NCuECR + pECR id and uRT = Π0uECR + LuECR,

where LuECR ∈ (URT)
n is defined by

(LuECR,div τ ) = (divNC uECR, tr τ/n) for any τ ∈ (R̂T(T ))n.

Remark 3.6. Since Π0 divNC uECR = 0 and div τ = 0 implies that τ is a piecewise

constant matrix–valued function, the operator L is well–defined.

Proof. We prove that (∇NCuECR+pECR id,Π0uECR+LuECR) is the solution of Problem

(2.13). We start with a simple but important property of the deviatoric operator dev

as follows

(devσ,dev τ ) = (σ,dev τ ) = (devσ, τ ) for any σ, τ ∈ H(div,Ω,Rn×n).

Hence, any τ ∈ (R̂T(T ))n admits the following decomposition:

(dev(∇NCuECR + pECR id),dev τ ) = (dev∇NCuECR, τ ) = (∇NCuECR,dev τ )

= (∇NCuECR, τ )− (divNC uECR, tr τ/n).
(3.3)
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After integrating by parts, the first term on the right–hand side of (3.3) can be rewritten

as

(∇NCuECR, τ ) = −(uECR,div τ ) = −(Π0uECR,div τ )

since
∑
E∈E

∫
E [uECR] · τνEdE = 0. This proves that

(dev(∇NCuECR + pECR id),dev τ ) + (Π0uECR + LuECR,div τ ) = 0,

which is the first equation of Problem (2.13). Given any K, define vK = (φK , · · · , φK).

Let v = vK in (2.4). After integrating by parts, we derive as

−(f ,vK) = (div(∇NCuECR + pECR id),vK) ⇒ div(∇NCuECR + pECR id) = −f .

Since it is obvious that
∫
Ω divNC uECRdx = 0, ∇NCuECR + pECR id ∈ (R̂T(T ))n. This

completes the proof. �

3.3. Comments on the Poisson problem with the pure Neumann boundary.

Given a bounded domain Ω ⊂ R
n with n ≥ 2 and f ∈ L2(Ω,R), the Poisson model

problem with the pure Neumann boundary condition finds u ∈ Ĥ1(Ω,R) := {v ∈

H1(Ω,R) :
∫
Ω vdx = 0} such that

(3.4) (∇u,∇v) = (f, v)+ < g, v > for all v ∈ Ĥ1(Ω,R).

where g|∂Ω := ∂u
∂ν |∂Ω ∈ H−1/2(∂Ω,R). Suppose that (f, v)+ < g, v >= 0, this problem

admits a unique solution. For this problem, the equivalent mixed formulation seeks

(σ, u) ∈ Hg(div,R
n)× L2(Ω,R) such that

(σ, τ) + (u,div τ) = 0 for any τ ∈ H0(div,Ω,R
n),

(div σ, v) = (−f, v) for any v ∈ L2(Ω,R).
(3.5)

Here

HD(div,R
n) = {τ ∈ H(div,Ω,Rn) : τ · ν = D on ∂Ω} with D = 0 or g.

Suppose that both f and g are a piecewise constant function. Then the result in (1.1)

holds equally for this case. Since the space for the CR element is a subspace of the

ECR element, this implies that the CR element can not be equal to the RT element.

In fact, for two dimensions, let the exact solution of Problem (3.4) be u = x21 + x22,

which yields that f = −4 and g is a piecewise constant on a polygonal domain. For this

problem, the RT element gives the exact solution while the error of the CR element

has the following lower bound

βh ≤ ‖∇NC(u− uCR)‖

for some positive constant β and the meshsize h of the domain, see [21] for more details

of proof.
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4. Equivalence between the ECR and RT elements for eigenvalue

problem

First we introduce the eigenvalue problem for the Laplace operator and the finite

element method in this section. The eigenvalue problem finds (λ, u) ∈ R × H1
0 (Ω,R)

such that

(∇u,∇v) = λ(u, v) for any v ∈ L2(Ω,R) and ‖u‖ = 1.(4.1)

By introducing an auxiliary variable σ := ∇u, the problem can be formulated as the

following equivalent mixed problem which seeks (λ, σ, u) ∈ R×H(div,Ω,Rn)×L2(Ω,R)

such that

(σ, τ) + (u,div τ) = 0 for any τ ∈ H(div,Ω,Rn),

(div σ, v) = −λ(u, v) for any v ∈ L2(Ω,R) and ‖u‖ = 1.
(4.2)

The ECR element method of (4.1) seeks (λECR, uECR) ∈ R× VECR such that

(∇NCuECR,∇NCv) = λECR(uECR, v) for any v ∈ VECR and ‖uECR‖ = 1.(4.3)

The RT element method of Problem (4.2) seeks (λRT, σRT, uRT) ∈ R × RT(T ) × URT

such that

(σRT, τ) + (uRT,div τ) = 0 for any τ ∈ RT(T ),

(div σRT, v) = −λRT(uRT, v) for any v ∈ URT and ‖uRT‖ = 1.
(4.4)

Assume, for simplicity, we only consider the case of λ is an eigenvalue of multiplicity

1. We define T as the inverse operator of continuous problem, i.e. for any f ∈ L2(Ω,R),

Tf = uf ∈ H1
0 (Ω,R), where uf satisfies the Poisson equation (2.1), i.e.

(4.5) (∇uf ,∇v) = (f, v) for any v ∈ H1
0 (Ω,R).

Generally speaking, the regularity of uf depends on, among others, regularities of

f and the shape of the domain Ω. To fix the main idea and therefore avoid too

technical notation, throughout the remaining paper, without loss of generality, assume

that uf ∈ H1
0 (Ω,R) ∩H1+s(Ω,R) with 0 < s ≤ 1 in the sense that

(4.6) ‖uf‖H1+s(Ω,R) . ‖f‖.

Here and throughout the paper, the inequality A . B replaces A ≤ CB with some

multiplicative mesh–size independent constant C > 0 that depends on the domain Ω,

the shape of element, and possibly the eigenvalue λ.

It follows from the theory of nonconforming eigenvalue approximation [21] and known

a priori estimate that,

(4.7) |λ− λECR|+ ‖u− uECR‖+ hs‖∇NC(u− uECR)‖ . h2s‖u‖H1+s(Ω,R)

and the theory of mixed eigenvalue approximation [28] that

(4.8) |λ− λRT|+ hs(‖σ − pRT‖+ ‖u− uRT‖) . h2s‖u‖H1+s(Ω,R).

Using (4.6), the bound for the eigenvalue λ . 1 and ‖u‖ = 1, there holds that

‖u‖H1+s(Ω,R) . ‖λu‖ . 1.
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To analyze the equivalence, we introduce the following discrete problem: Find φECR ∈

VECR such that

(4.9) (∇NCφECR,∇NCv) = λRT(Π0φECR, v) for any v ∈ VECR.

It follows from Theorem 3.3 that Problem (4.4) is equivalent to (4.9) in the sense that

they have the same eigenvalues λRT and the eigenvectors are related by σRT = ∇NCφECR

and uRT = Π0φECR.

Similar to the analysis in [17], applying to Problem (4.9) the general theory developed

for example in [5] we can prove that

(4.10) ‖u− φ̄ECR‖ . h2s,

where φ̄ECR = φECR/‖φECR‖. To present it clearly, we follow a similar argument in [17]

and give the proof of (4.10). Let Th be defined as the inverse operators of the following

discrete problem, i.e., for f ∈ L2(Ω,R), Thf = wh ∈ VECR where wh satisfies

(4.11) (∇NCwh,∇NCv) = (Π0f, v) for any v ∈ VECR.

Let E denote the eigenspace corresponding to λ. We have the following two results.

Lemma 4.1. Suppose T is defined in (4.5) and Th is defined in (4.11). Then,

‖(T − Th)|E‖L(L2,L2) . h2s.

Proof. We have to show that

‖Tf − Thf‖ . h2s‖f‖ for any f ∈ E.

Let uf = Tf , uΠ0f = T (Π0f) and wh = Thf . First a standard argument for noncon-

forming finite element methods, see, for instance, [7], proves

(4.12) ‖T (Π0f)− Thf‖ = ‖uΠ0f − wh‖ . h2s‖Π0f‖ . h2s‖f‖.

Let e = uf − uΠ0f and r ∈ H1
0 (Ω,R) be the solution of −∆r = e. Then a standard

duality argument gives,

(e, e) = (∇e,∇r) = (f −Π0f, r)

= (f −Π0f, r −Π0r).
(4.13)

Hence, the property of piecewise constant L2 projection Π0 implies that

‖e‖ . h2‖∇f‖.

Since f ∈ E, there exists a constant C depending on λ such that ‖∇f‖ ≤ C‖f‖ and so

‖e‖ . h2‖f‖.

This and (4.12) complete the proof. �

Lemma 4.2. The sequence {Th}h converges uniformly to T in L(L2, L2) as h goes to

0.
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Proof. We show that for all f ∈ L2(Ω,R) we have

‖Tf − Thf‖ . hmin{2s,1}‖f‖.

The proof follows the same lines as the previous lemma. The fact that f belonged to

the eigenspace E was used only once to estimate (4.13) with the desired order. When

f is taken in L2(Ω,R) we can only obtain from the following bound, using similar

arguments as before

(e, e) = (∇e,∇r) = (f −Π0f, r)

= (f −Π0f, r −Π0r)

. h‖f −Π0f‖‖∇r‖

. h‖f‖‖e‖.

This and (4.12) imply the desired order. �

Since the sequence of operators {Th}h converges uniformly to T in L(L2, L2), well-

known results in the theory of spectral approximation yield the following error estimate

for eigenvectors, see e.g. [5]

(4.14) ‖u− φ̄ECR‖ . ‖(T − Th)|E‖L(L2,L2).

Then (4.10) is a consequence of (4.14) and Lemma 4.1. In fact,

‖φECR‖
2 = ‖(I −Π0)φECR‖

2 + ‖Π0φECR‖
2

= 1 + ‖(I −Π0)φECR‖
2.

This and the property of piecewise constant L2 projection Π0 yield 0 ≤ ‖φECR‖ − 1 .

λRTh
2, and so φECR satisfies

(4.15) ‖u− φECR‖ . h2s.

The equivalence result for the errors of the eigenfunction approximations is presented

as follows.

Theorem 4.3. For sufficiently small h ≪ 1, the discrete eigenfunctions uECR and σRT
satisfy

‖∇u−∇NCuECR‖ = ‖∇u− σRT‖+ h.o.t.

Proof. Using (4.9) and some elementary manipulation yield

‖∇NCuECR − σRT‖
2 =‖∇NCuECR −∇NCφECR‖

2

=(λECRuECR − λRTΠ0φECR, uECR − φECR)

=(λECRuECR − λRTφECR, uECR − φECR)

+ λRT((I −Π0)φECR, (I −Π0)(uECR − φECR))

.‖λECRuECR − λRTφECR‖‖uECR − φECR‖

+ λRTh
2‖∇NCφECR‖‖∇NCuECR − σRT‖.

(4.16)
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The bound for the eigenvalues λECR . 1,λRT . 1 and the normalisation ‖uECR‖ = 1

yield

‖λECRuECR − λRTφECR‖ . |λECR − λRT|+ ‖uECR − φECR‖.

Therefore, the Young inequalities, (4.7) and (4.15) control the first term in (4.16) as

‖λECRuECR − λRTφECR‖‖uECR − φECR‖

. |λECR − λRT|
2 + ‖uECR − φECR‖

2 . h4s.

The last term in (4.16) can be absorbed. Hence it yields that

‖∇NCuECR − σRT‖ . h2s,

which is a high order term. �

5. Numerical results

In this section, we present some numerical results, which show that ECR elements

have some good numerical properties.

5.1. Poisson problem. We consider the poisson problem (2.1). Define the bubble

function space

BECR := {v ∈ L2(Ω,R) : v|K ∈ span{φK},∀K ∈ T },

where φK is defined in (3.1). For any v ∈ VECR, Πv ∈ VCR is given by
∫

E
Πvds =

∫

E
vds for all E ∈ E .

Hence v − Πv has vanishing average on each E and v − Πv ∈ BECR. Let uECR be the

solution to the discrete problem by the ECR element, then uECR can be written as

uECR = ΠuECR + ub, where ΠuECR ∈ VCR and ub ∈ BECR. In (2.6), we choose

v =

{
φK x ∈ K,

0 x 6∈ K.

This gives

(∇uECR,∇φK)L2(K) = (f, φK)L2(K).

Since
∫
Ei

φKdE = 0, i = 1, · · · , n + 1, an integration by parts leads to the following

important orthogonality:

(5.1) (∇ΠuECR,∇φK)L2(K) = 0.

This leads to

(5.2) (∇ub,∇φK)L2(K) = (f, φK)L2(K) ∀K ∈ T ,

and

(5.3) (∇NCΠuECR,∇NCv) = (f, v) for all v ∈ VCR.

Consequently, ΠuECR is the solution to the discrete problem by the CR element. Hence

we can solve the ECR element by solving (5.2) on each K and (5.3) for the CR element,

respectively.
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Remark 5.1. For general second order elliptic problems: Find u ∈ H1
0 (Ω,R) such that

(A∇u,∇v) = (f, v) for all v ∈ H1
0 (Ω,R),

when A is a piecewise constant tensor-valued function, a similar orthogonality of (5.1)

still holds

(5.4) (A∇ΠuECR,∇φK)L2(K) = 0 ∀K ∈ T .

Hence, we can still use the same technique to solve the ECR element. For the more

general case, the orthogonality (5.4) does not hold. However, ub can be eliminated a

prior by a static condensation procedure.

We compute two examples which compare the errors of the ECR and CR elements.

The first example takes Ω = (0, 1)2 and the exact solution u(x, y) = sin(πx) sin(πy);

the second takes Ω = (0, 1)3 and the exact solution u(x, y, z) = sin(πx) sin(πy) sin(πz).

Both comparisons are illustrated in Figure 1, which indicates that ‖∇NC(u−uECR)‖ is

smaller than ‖∇NC(u− uCR)‖.
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5.2. Eigenvalue problem. We consider the eigenvalue problem (4.1). Since VCR ⊂

VECR, the eigenvalues produced by the ECR element are smaller than those by the CR

element. When the meshsize is small enough, the ECR element has been proved to

produce lower bounds for eigenvalues, see [21]. When eigenfunctions are singular, the

CR element provides lower bounds for eigenvalues, see [2]; under some mesh conditions,

it also produces lower bounds for eigenvalues when eigenfunctions are smooth, see [22].

On the coarse triangulation of the square domain Ω = (0, 1)2 from Figure 2, the CR

element produces a upper bound λCR = 24 for the first eigenvalue λ = 2π2 ≈ 19.7392

of the Laplace operator, while the ECR element gives a lower bound λECR = 17.1429.

(0,1)

(0,0) (1,0)

(1,1)

Figure 2.

Appendix A. Basis Functions and Convergence Analysis of the ECR

Element

For any K ∈ T , we give the basis functions of the shape function space ECR(K).

Suppose the coordinate of the centroid mid(K) is (M1,M2 · · · ,Mn). The vertices of K

are denoted by ai, 1 ≤ i ≤ n + 1 and the barycentric coordinates by λ1, λ2, · · · , λn+1.

Let H =
∑

i<j |ai − aj|
2, then the basis functions are as follows

φK =
n+ 2

2
−

n(n+ 1)2(n + 2)

2H

n∑

i=1

(xi −Mi)
2,

φj = 1− nλj −
1

n+ 1
φK , 1 ≤ j ≤ n+ 1.

For any v ∈ VECR, by the definition of VECR in (2.6),
∫
E[v]dE = 0 for all E ∈ E(Ω)

and
∫
E vdE = 0 for all E ∈ E(∂Ω). From the theory of [23], there holds that

‖∇NC(u− uECR)‖ . ‖∇u−Π0∇u‖+ osc(f),

where

osc(f) =

(∑

K∈T

h2K
[

inf
f̄∈Pr(K)

‖f − f̄‖20,K
]
)1/2

r ≥ 0 is arbitrary. The convergence of the ECR element follows immediately.
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