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Abstract

In this paper, we consider the use of H(div) elements in the velocity—pressure formulation to
discretize Stokes equations in two dimensions. We address the error estimate of the element pair
RTp—Pg, which is known to be suboptimal, and render the error estimate optimal by the symmetry
of the grids and by the superconvergence result of Lagrange inter-polant. By enlarging RTq such
that it becomes a modified BDM-type element, we develop a new discretization BDMY — P, We,
therefore, generalize the classical MAC scheme on rectangular grids to triangular grids and retain
all the desirable properties of the MAC scheme: exact divergence-free, solver-friendly, and local
conservation of physical quantities. Further, we prove that the proposed discretization BDM? — P,
achieves the optimal convergence rate for both velocity and pressure on general quasi-uniform
grids, and one and half order convergence rate for the vorticity and a recovered pressure. We
demonstrate the validity of theories developed here by numerical experiments.

Keywords
Stokes equations; H(div) element; Exact divergence free

1 Introduction

We consider the steady-state Stokes equations

—vAu+gradp=f in{Q,
—divu=0 inQ, (11
u=g,, on 91},
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where u is the velocity field, p the pressure, and f the external force field. In this paper, we
will explore only the two-dimensional domain. For simplicity, we assume that 2 is simply
connected and the Dirichlet boundary condition gp = 0.

The MAC scheme introduced by Harlow et al. [27] is a well known finite difference
discretization of Stokes equations (1.1) on rectangular meshes. In particular, the MAC
scheme is remarkable for its ability to enforce the incompressibility constraint of the
velocity field point-wisely. It should also be noted that many efficient solvers, such as the
distributive Gauss-Seidel (DGS) smoother based multigrid methods [6,41,47,48], have been
devised for solving the corresponding saddle-point problem. Further, the MAC scheme has
been shown to locally conserve the mass, momentum, kinetic energy, and circulation
[42,43]. However, the standard MAC scheme is limited to rectangular meshes. To address
this shortcoming, significant research effort has been dedicated to generalizing the MAC
scheme to triangular meshes (TMAC).

Pioneering work on the TMAC discretization of Stokes equations dates back to Nédélec
[35], who constructed a H(div) element to approximate velocity. Since then, the TMAC
scheme has been investigated using the finite volume methods approach [13,21,37], the
finite element methods approach [18-20,23,24], and the discountinuous Galerkin (DG)

approach [7,14,15,45,46]. The MAC scheme can be interpreted within these approaches
when the underlying grids are rectangular [23,26,30,34,37].

Very recently, an error analysis of a vorticity—velocity—pressure formulation has been
presented using the finite element exterior calculus framework. The study [2] demonstrates
that a loss of exactness of the underlying differential complex causes a decrease in the order
of convergence for the pressure and the vorticity. In particular, for the lowest-order
approximation, the pressure has only half order convergence on general unstructured grids.
In practice, however, first-order convergence is observed for meshes with good mesh quality
and second-order for uniform grids [18-20]. In [12], we obtain a second-order convergence
of the MAC scheme on uniform rectangular grids. In the present paper, we will investigate
the convergence of TMAC schemes on general unstructured grids and mildly structured
grids.

Although the vorticity—velocity—pressure formulation [18-20] seems a natural formulation
when using H(div) elements, we are interested in the more popular and traditional velocity—
pressure formulation. In the velocity—pressure formulation, the vorticity will be eliminated
in the discretization. In this way, we are able to reduce the size of the resulting linear
algebraic equation, and thereby construct efficient multigrid solvers [47]. To eliminate
vorticity, the inverse of the mass matrix for the vorticity element, which is in general a dense
matrix, should be computed. Mass lumping will be applied to obtain a diagonal mass matrix
so that the inverse is practical.

The main contributions of this paper are as follows:

1. We prove that the symmetry of the grids will improve the rate of convergence for
the RTy—Pg element. The error analysis is closely related to the superconvergence
results of the Lagrange interpolation of the linear element developed in [4]. More
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precisely, suppose that the irregularity of the mesh is ©(h29) (see Sect. 4 for a
detailed definition).

We prove that

— i 1/2
o = wonl|+ ety — anll, +0~lp, —pall s RO logh) P2 (I[ell 0+l ),

where u; is the canonical interpolation of u on to the space RTy, py is the L2
projection to Py, up, and py, are the RTg—Pg approximation, @ is the vorticity and o,
is the numerical approximation of @ based on up, and || - [, is a discrete version of
the H1-norm.

2. Wwe propose a new velocity-pressure discretization BDMb — P, The velocity space
is enriched to BDM plus a cubic bubble function. This scheme maintains all the
desirable properties of TMAC schemes; i.e., both schemes are divergence-free and
solver-friendly, and can achieve local conservation. More importantly, it is both
robust and more accurate than the RTy—Pg element and the error estimate can be
improved to

oo —won |l = wnll,, 07 [, —pall 5 BB ]yt o] g+ 0l)-

For general quasi-uniform but unstructured grids, the BDM> — P, scheme will
produce an optimal first-order approximation for u and p and a one and half order
approximation for vorticity. Further, we can recover a linear pressure
approximation that has one and half order convergence.

3. Since point-wise divergence free elements are used to approximate the velocity, the
right-hand side of our error estimates is independent of the pressure and the
viscosity. For weakly divergence free elements, e.g., the popular Taylor-Hood
elements [44], the term v=1||p — p;|| will appear in the right-hand side, which might
be large when the pressure gradient is large or vis small (i.e. the Reynolds number
is large).

4.  We present a new proof of the stability of the mixed finite element discretization of
the vector Laplacian by establishing a discrete Poincaré inequality.

The paper is organized as follows. In Sect. 2, we introduce the TMAC discretization of the
Stokes equations. In Sect. 3, we prove the stability of the TMAC scheme. In Sect. 4, we
perform an error analysis of the TMAC scheme with an irregularity assumption on the
meshes. We present numerical experiments in the last section.

We use a < b to denote existence of a positive constant C independent of the mesh size h,
such that a < Cb, and we use a < b to denote a < b < a. Bold face is used to denote vectors.
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2 Discretization of Stokes Equations in the H(div) Space

Let us recall the following Sobolev spaces on a two-dimensional domain (2. In order to
distinguish between the curl operator acting on the scalar function from that acting on the
vector function, we denote, for scalar @ and vector u = [u, ]!, respectively, as follows

curl w=(0yw, —0w),rot u=0,v — Jyu.

Note that curl = grad-- and that rot u = div ul. Here L refers to a 90° degree clockwise
rotation. We then introduce the following spaces on 2

H(curl)={u € L?(Q):curlu € L*(Q)}, Hy(curl)={u € H(curl):u=0on o0},
H(div)={u € L*(Q):divu € L*(Q)}, Hy(div)={u € H(div):u - n=0 on 9Q},
Hi={u € H'(Q):u=00n 00}, L3={u € L*(Q):[qudz=0}.

As curl is a rotation of grad, H(curl) &~ H! and Hy(curl) = H2 The inner product for L2 or
L2 is denoted by (;, -).

2.1 The Velocity—Pressure Formulation of Stokes Equations using H(div) Elements
The velocity—pressure formulation of Stokes equations (1.1) considered here is based on this
observation: for « ¢ F, the following identity holds in H1 topology:

—Awu=curl rotu — grad divw.

Then a weak formulation of the Stokes equations (1.1) seeks (u, p) € H} x L2 satisfying

{ va(u,v)+b(v,p)=(f,v) for allv € Hy, -

b(u, q)=0 for allq € L2,

where the bilinear forms a(:, -) and b(:, -) are defined as
a(u,v) := (rot u, rot v)+(div u, div v) for allu,v € H, (2.2)

b(v,q) := —(divwv,q) for allv € H} qe L2 (23

In order to obtain a discretization of the weak formulation (2.1), it is necessary to choose
appropriate discrete spaces to approximate spaces H and L2 Let 7, be a shape regular

h
mesh of the domain (2. Suppose that 2" C H(curl), ZO C Ho(curl), v ¢ Hy(div)and

Sl L2 are appropriate discrete subspaces based on 7,

J Sci Comput. Author manuscript; available in PMC 2015 June 01.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Chenetal.

Page 5

h
Definition 1 The linear operator roto,h:Voh - ZO is defined as follows: for a given

h
u € V!, T0to v € ZO such that

(roto pu, T)=(u,curl 7) for allT € ZZ (2.4)

The linear operator rot, : VI — 31 is defined as follows: for a given u € V", rotyu € 5" such
that

(rotpu, 7)=(u,curl 7) for all7 € Zh. (2.5)

The linear operator grad,:Si — V;/* is defined as: for a given p € S, grad,,p € V" such
that

(grad,p,v)= — (p,divw) for allv € Vi (26)

The operators rotg j, rot, and grady, are well defined, since all these three systems are non-
singular finite dimensional square systems.

The normal boundary condition u - n = 0 is build into the space, whereas the tangential
boundary condition u - t = 0 is imposed weakly by the definition of weak rot operator roty,;
see (2.5). We will mainly apply rot, to V;* ¢ V. Note that mth|v0h # roto,n. Applying

roto n to V* will enforce a boundary condition to the vorticity, which conflicts with the
setting of the Stokes equations, i.e., no boundary condition of the vorticity is given.

With the help of operator roty,, we define the discrete bilinear form ay, (-, ) on the discrete

space V" as

ap(u,v) := (rotpu, rotpv)+(div u, div v) foru, v € VP e

Hence, a discrete formulation of (2.1) seeks (uy,, p,) € V{* x S{ such that:

{ vap(up, vy)+b(vp, pr)=(f,v,) for allvy, € V[)h, 28

b(un, gn)=0 for all g, € Sk.

Here an(;, -) indicates that (2.8) is a nonconforming discretization of a(:, -). However, the
divergence-free constraint is imposed point-wisely. The traditional finite element method
uses a conforming discretization of a(:, -), but with this method it is not easy to impose the
exact divergence-free constraint. A recent attempt to construct conforming and point-wise
divergence-free finite elements on general triangular grids can be found in [22,25].

J Sci Comput. Author manuscript; available in PMC 2015 June 01.



1duosnue Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuep Joyiny

Chenetal.

Page 6
To compute roty, the mass matrix of space X1 should be inverted. This is not practical since
the inverse of the mass matrix is dense. Therefore we will use mass lumping to approximate

rot, on the discrete space 2". Equivalently, the L2 inner product will be changed to a discrete
one. More precisely, for p, 7€ 5N,

(p,T)=> wip(zi)T(zi), (2.9)
i=1

where {x;, i = 1, ---, n} denote the quadrature points, n denotes the number of quadrature
points of the triangulation, and {w;j, i = 1, ---, n} are the corresponding integration weights.
The quadrature should be chosen such that the mass matrix is diagonal for some bases, and
(-, ) is an accurate enough approximation of (-, -).

— h
Definition 2 The linear operator rot,:Vh — Z is defined as follows: for a given u € vh,

— h
rot,u € Y such that

(rotpw:Ty=(u,curl 7) for allT € Zh, (2.10)
where (-, -) is the discrete L2 inner product (2.9).

With the help of operator rq,,, we define the bilinear form &(-, -) on the discrete space v
as

an(u,v) := (rotpu, rot,v)+(div u, div v), for u,v € Vi
Remark 1 We can also define the bilinear form as
an(u,v) = (rotpu, rot,v)+(div u, div v),
which is easier to implement. The stability and error estimates can be proved similarly.

Then a discrete formulation of (2.1) seeks (w,, p) € Vg x S& such that

(2.11)

vép (g, vi)+o(vn, pr)=(Ff,vy) for allv, € VI,
b(up, gp)=0 for allg, € Sh.

2.2 Two Specific Discretizations of Stokes Equations

We now discuss appropriate discrete subspaces X' ¢ H(curl), V' ¢ Hy(div), and $» ¢ L2,
which are critical for the stability of the discretization. Given an integer r > 1, a stable
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method is achieved by choosing 21 as the Lagrange element of degree r, V! as the Raviart-

Thomas element RT,—y, and s/ as the discontinuous piecewise polynomial function space of
degree r — 1. The case r = 1 corresponds to the lowest-order elements discretization, i.e., P1—
RTqo—Po.

Another method relies on choosing 2 as the Lagrange element of degree r + 1, vV as the

Brezzi-Douglas—Marini element BDM, and s/ as the discontinuous piecewise polynomial
function space of degree r — 1. The case r = 1 corresponds to the lowest-order element in
this sequence, i.e., Po—-BDM;1—P,.

In this paper, we will consider the simplest elements in each sequence, i.e., P1—-RTy—Pg and
P,—BDM1-Pq, for which mass lumping is relatively easy.

2.2.1 RTg—Pg Element Discretization—First, we consider the pair P1—RTy—Pg. The
bases of P, are the lowest-order continuous Lagrange element associated with each vertex.
For a triangle 7, denote V; (i = 1, 2, 3) as its three vertices. With the trapezoidal quadrature
rule

3
. T
Jorde TS (v,
=1
the lumped local mass matrix of P; element is diagonal:
111
M.=|7|di - =,= ).
I7ldiag (3 3 3>

Consequently the global mass matrix is also diagonal.

Let {4;,i=1, 2, ---, N} denote the linear nodal bases functions, where N is the number of
vertices. The basis of RTg, ¢ on edge ejj, is given by

or=Aicurl A; — Ajcurl A;.

The basis of Py is chosen as the characteristic function of each element z. Given these bases,
the matrix representation of the curl operator from P to RTy is the incidences matrix
between the edges and vertices, and the div matrix from RT to Pg is the incidences matrix
between the triangles and edges.

Remark 2 When the triangulation is Delaunay, the mass matrix of RTy can be lumped with
the help of circumcenters of triangles [5]. In this case, the discretization is identical to the
co-volume method developed by Nicolaides [36,37], which in the rectangular case is
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precisely the MAC scheme. The current finite element formulation, however, does not
require the mesh to be Delaunay.

2.2.2 BDM} — P, Element Discretization—We consider the pair P,~BDM1-Pg. On
each element 7, we have six nodal bases for Po:

1=\ (2/\1—1), 022/\2(2)\2—1), 93:)\3(2)\3—1), m =423, Ne=4A3\1, Nn3=4A 1 \2.

To maintain accuracy, the quadrature formula must be exact for quadratic functions. This
can be achieved by using quadrature at the middle point of each edge. However, this
quadrature yields a singular diagonal matrix, i.e., the rows corresponding to the unknowns at
vertices are zero, as & vanishes at these points. One way to resolve this is to add the bubble
function @y, = 27114»43 to P, element [16]. We construct 9,Aassociated with vertices Vj and
m%ssociated with edges E;j vanishing at the barycenter C, of the triangle by

A 1 4
gizei—i__wb? 7712771 - §wba ’L:l: 27 3.

9

Then a quadrature is obtained by expanding a quadratic function in the bases (Q,Am:wo), i.e.,

3 A 3
= Zizlf(‘/i)ei'f'zi:lf(Ei)ﬁi+f(cr)wb and applying the integral formula of each
basis to get

1 2 9
[ fdz~|7| %;f(viwrﬁ;f(&w%f(a) :

This quadrature is exact for f € P, since P, ¢ PY := span{éi,ﬁi7wb, i=1,2,3.

The element-wise mass matrix for p is thus given by
11 1 2 2 2 9
M. =|r|diag ( ——————— ) )

The basis of BDMy, ¢x and yx on edge ejj, are given by

qbk:)\icurl )\j — )\jCUI‘] Ais ’l/Jk:)\iCut'l /\j—l—/\jcurl Ai

1
Note that WZZ curl 77 and thus div g = 0.
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As ax, is added to the vorticity space, we add one more bubble function y, = curl oy, to
BDM; in order to ensure the inf-sup stability. After the vorticity is eliminated, the resulting

scheme is denoted by BDMY — P,

In the implementation, the discrete differential operators are easy to construct with the

hierarchical bases by using ¢y = A1, & = A5, and &5 = A3. The curl matrix from pb to BDM?
will be block diagonal consisting of that from P, to RTg and one identity matrix. The curl
matrix for the bases (9: rr,A @) can be obtained by the transfer operator between the
hierarchical bases (&, 7, ay) and nodal bases (&:n:a)o). The non-zeros of div matrix
remains the same.

3 Stability of TMAC

In this section, we prove the stability of the TMAC scheme formulation (2.8) without mass
lumping and of the formulation (2.11) with mass lumping. The abstract proof works for all
stable pairs P—RT,_1—P,-1 and P,+1—BDM,—P,_1 for integer r > 1, and the stability result
holds for all shape regular meshes which are not necessarily quasi-uniform.

3.1 Well-Posedness of the Discrete Formulation Without Mass Lumping

We will first prove that the bilinear form ay(, -) defined in (2.7) is an inner product, and we

will introduce the associated norm || - |, on the space V. Then we prove the inf-sup
condition for ap(-, ) and b(:, ) with respect to the norm || - [|o;,, which implies the well-
posedness of the discrete formulation (2.8).

The Hodge decomposition plays an important role in the analysis of well-posedness. On the
continuous level, the Hodge (or Helmholtz) decomposition is

L?=curl Hy(curl) ® grad(H'/R).

We have an analogous discrete Hodge decomposition based on the following exact
sequence:

h .
ZO curl ‘/Oh div S(})L 0. 3.1)

h
Lemma 1—(Discrete Hodge Decomposition [1]) Suppose that ZO, Vv, and s} are

appropriate subspaces for spaces Ho(curl), Ho(div), and L2, respectively, such that the
sequence in (3.1) is exact. Then, we have

h
V()h:curlzo @ grad, SB, (32)

where the operator grady, is defined in (2.6)
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Definition 3 For « ¢ V%, define ||U\|ih =ap(u,u),

According to the definition of ap(-, -) in (2.7), it is obvious that ap(-, -) is symmetric and
semi-positive definite and thus || - [|a,, defines a semi-norm on Voh. We will prove a discrete

Poincaré inequality and consequently || - |, indeed defines a norm on v

Let us first recall the following Poincaré inequalities [2]:

4]l < [lgrad,,o|[for allg € S5, (3:3)
h
llpll < [lcurl pl/for all p € Zo' (3.4)

Lemma 2—(Discrete Poincaré Inequality) We have the following discrete Poincaré
inequality with respect to || - [|y,:

lunll s sl for allus € V5. @)

Proof From the discrete Hodge decomposition in Lemma 1, for «,;, ¢ V{", there exist

h
pE ZO and ¢ e S} such that

up=curl p+grad,¢. (3.6)

By applying operator div to (3.6), we obtain div uy, = div gradye. By multiplying this
equation with ¢, using the definition of grady, (2.6), and using (3.3), we obtain

lerad, |*=(grad,,¢, grad;,¢)=—(diven, ¢) < ||dive[|g] < ||dive,|||grad, |-

Therefore, we have ||grady¢l| < || div up]l.

For the other part, by applying roty, to uy, = curl p + grad,¢ and then testing with p and
integration by parts, we obtain

(rotpup, p)=(roty curl p, p)+(rotygrad; @, p)=(curl p, curl p).
Therefore, by the Poincaré inequality for curl in (3.4), we obtain

leurl pl*=(curl p, curl p)=(rotpu, p) < ||rotpul||pl| < flcurl il [rothunl,
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which leads to || curl ol < |lrothupll.

In summary, we have proved that

[un]| < [lcurl pl|+[lgrad,, || < [[rothun [+ div un < [lunll, -

Remark 3 In the proof, we use the fact that for any ¢ ¢ S%, we have

(rotpgrad, @, p)=(grad; ¢, curl p)=(,div curl p)=0,for allp € ZZ (37)

h
However, (rotygradne, p) 20 if p€ SNand p ¢ ZO since now curl p ¢ V* and the second
equality in (3.7) fails.

According to Lemma 2, we can obtain the following lemma, which is equivalent to the inf-

sup condition of the bilinear form ay, (., *).

Lemma 3—The bilinear form ap(-, -) on V* x V; satisfies

1. Continuity: an(u, v) < [lulla, [Vllap;

.o 2
Coercivity: an(w,u) 2 [lull’ .

h
We denote the canonical interpolations as Hzgico(m - Zo, where Cy(f2) denotes the

:Hy(div)n H' — V! L2 — St
continus functions with zero trace on 042, Hvoh o(div) % and Hsg 0 0,

Based on P1—RTy—Pg as an example, the canonical interpolations are defined as following:

th:Co(Q) — Sk thp(mi):p(xi) for all vertices z;,
0 0
[1  :Ho(div)nH' -V, [ ]I v -nds=[ v-ndsfor all edgese,
vh 0 ellyn e
0 0
Hsh:L% — Sk, fTHSh qu:qudI for all trianglesT.
0 0

It is well known that the canonical interpolations are commuting with the corresponding

di = di curl = curl
differential operators [28]. More specifically, VHVOh Hsg Vand HZZ Hvoh .

In order to prove the inf-sup condition of the bilinear form b(:, -) on the discrete level, we

take advantage of the properties of the canonical projection; i.e., for any v ¢ H{(Q), we

div v= divv v — v|| < h v
e WL =TI v o =TT ol <ol

Il - ll1, - are norms restricted to the triangle 7.

L7 where h, = diam(z) and || - ||,

Lemma 4—For any ¢, ¢ S, there exists v;, e V{* such that
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div v, =qs, and thHAh < llgnll-

Proof It is well known that the operator div: H{ (Q) — L2 is surjective and that the right
inverse is stable [23]. Namely, for any ¢, e S < L2, there exists v € HE () such that:

divv=qp, and ||v||; < |/qn]|-

vp= v div vy =div v= divv= =
Let " Hvoh , then we have 4 Hvoh Hsg Hsgqh h

rothunll < llanl| as follows:

. We prove ||

(rotpvyp, rotpvy,)
=(rotpvp
— rotw, rotpvp,)

+(rotwv, rotpvy)

=(vp, — v, curl rotpvy)

+(rotv, rotpvy) < Z R — v |lrotpvn]| .-
TeT

Fvllyllrotrvnll s [[vlly[[rotavnll < llgnlll[rotavnll-

Then we obtain [[rothuy|| < llghll. In summary, we have proved that || oy || o, < llahll-

We summarize the well-posedness of the H(div) discretization (2.8) and the stability of the
Stokes equations in the following theorem.

Theorem 1 There exists a unique solution (u;,, p,) € V' x S& to the weak formulation of
the Stokes equations (2.8), and

v, +lowll < 1711,
h

17 = sup o0

Where "~ " Uhe‘/(]h”’UhHAh.

Proof The existences and uniqueness is from the Babuska-Brezzi theory since the inf-sup
conditions have been proved in Lemmas 3 and 4. We prove the stability as follows.

Choosing v, = up in (2.8), we obtain
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2
olnl, =(Frun) < 1711l
h

which leads to the stability of up. By Lemma 4, we can chose v,, e V;* such that div v, = pp,
and [lwllay, < llpnll. Choosing such o, in (2.8), we obtain

s |*=(pn, div v1)=(F, v1) — van(up, vy) < (FN, +olleall ,, llvall,, -
h

Then by the stability of up and the inequality oy [, S llpnll, we have

lpal® < LFIl, pull,
A

h

which leads to the stability of py,.

3.2 Well-Posedness of the Discrete Formulation with Mass Lumping

In this subsection, we prove the well-posedness of the discrete formulation (2.11), in which
mass lumping is applied to the discrete space 2. Let || - ||, denote the associated discrete L2

norm of quadrature (2.9), i.e., || p||3=(p, p)- Based on the results in the previous subsection, it
is sufficient to verify that the norm induced by the bilinear form &y(, -) is equivalent to the
norm | - {|ap,.

2 ~
Definition 4 For o e Vi, define ||“H,gh =an(u,u)
Let us prove the following norm equivalence.

Lemma 5—Assume that the discrete L2 norm is equivalent to the L2 norm; i.e, ||l < lloll
< |ldlly for any p € ZN. Then the norm || - lla, is equivalent to | - [|a,; i.e., for any up € Vy,

luanll, < lunl, < ], -

Proof It suffices to prove the part associated with the operators rot, and rqt,,. By definition,
we have

(rotpup, T)=(rotpup, 7)=(up,curl 7) for allT € Zh. (3.8)
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Let 7—rot,uy, iN (3.8), and use ||rotyuy |, S ||[rotsus|| < [[rotyusl], to get
—_— 2 —_— —_— —_— —_— —_—
lrotp ||, = (rotywn, rotpuy)=(rotywuy, rotpuy) < |[rotpus|||rotpus|| S ||rotyws|||lrotrwnsl,

, which leads to [lup || 4, < llunlla,. The other inequality can be proved similarly.

By Lemma 5, the stability results of the bilinear forms &g(-, -) and b(:, -) with respect to the
norm || - ||, are straightforward. Thus, we have proved the well-posedness of the H(div)
discretization (2.11) of the Stokes equations.

Theorem 2 Assume that the discrete L2 norm is equivalent to the L2 norm. Then there exists

a unique solution (u,, p,) € V' x S} to the weak formulation of the Stokes equations
(2.11) and

vlunll, +leall s £
h

17l = sup (f,vn)

Where ™ "5 o, cvp ol

In particular, for the two mass lumping schemes considered in this paper, the corresponding
discrete L2 norm is equivalent to the L2 norm and thus the corresponding discretization is
stable.

4 Error Analysis

In this section, we prove that for the RT¢—Pg approximation, the convergence order depends
on the symmetry of the mesh. For the BDM1—Pg approximation, first-order convergence is
always achieved. The results in this section are derived for quasi-uniform meshes 7y, for
which all triangles are shape regular and of comparable diameter h.

Let us clarify the notation before we present the details of our error analysis. For a given

. h L . .
space palr(z Vi, S8, let (), uy, py) denote the canonical interpolation of (@, u, p); i.e.,

gl ]

f sgp, and (an, up, pp) denote the numerical solution of
.8). For vorticity o, the approximation without mass lumping is denote n = roty Up,
2.8). F ticity w, the app t thout lumping is denoted by It

and the approximation with mass lumping by &, =rot,,w,,- The choice of spaces

h . . . . . . h
(Z , Voh, S(’)‘) will be indicated in the context. For an integer r > 1, we will use ZT to
indicate the degree of polynomial used for the Lagrange elementis r.

In the proof, we will use the L2 projection Qy, : L2 — 2N which is defined such that for a

given f € L2, Qy, f € 3N satisfies

(Qnf,m)=(f,m) for allT, € Zh.
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The following approximation properties of the L2 projection are well known.

h
Lemma 6—For any quasi-uniform mesh with mesh size h, the L2 projection QnL? — ZT
satisfies

|6 — Qno||+h|o — Qnol, < h|8|, for allp € H,

wherel1<s<r.

4.1 Error Analysis of the RTg—Pg Formulation Without Mass Lumping

First we present a definition for the irregular triangulation following Bank and Xu [4]. We
also recall their superconvergence result. Based on that, we obtain the error estimates for
both velocity and pressure, each of which has an optimal order on meshes with certain
symmetry.

Let e be an interior edge in the triangulation 7 y,. Let zand 7’ be the two triangles sharing e.
We say that zand ¢ form an ©(h?) approximate parallelogram if the lengths of any two
opposite edges differ only by ©(h?). Let x be a vertex lying on 042, and let e and ¢’ be the
two boundary edges sharing x as an endpoint. Let zand 7 be the two elements having e and
¢/, respectively, as edges, and let t and t’ be the unit tangents of e and ¢/, respectively. Take e
and €’ as one pair of corresponding edges, and make a clockwise traversal of dzand 07 to
define two additional corresponding edge pairs. In this case, we say that zand 7 form an ©
(h2) approximate parallelogram if |t — t'| = ©(h), and the lengths or any two corresponding
edges differ only by ©(h?).

Definition 5 Given a triangulation 7 p,, the triangulation 71, is ©(h29) irregular if the
following hold:

a. Lete=g @ & denote the set of interior edges in the triangulation mesh. For any e

€ &, two triangles 7 and ch containing e form an ©(h2) approximate parallelogram,
and D_, . |TelHTe[=0(n™),

b. Let=7 =7, ® P, denote the set of boundary vertices. The elements associated
with each x € P4 form an ©(h2) approximate parallelogram, and | P5| = xwhere x
is independent of h.

Examples of ©(h2°) irregular grids can be found in Sect. 5.
Remark 4 It is straightforward to generalize our error analysis to the mesh in which an ©

(h1*a) approximated parallelogram property holds for most pairs of triangles [31,49]. For
such meshes, the rate min(1, o) will be replaced by min(a, o).

Lemma 7—(Bank and Xu [4]) Assume that , ¢ %> 0 F] and that the triangulation 71,

is ©(h29). Let p; be the piecewise linear nodal interpolation of p based on 7 .. Then for any
continuous and piecewise linear function ¢y,
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(Vo= p,) V)| 5 B0 10gh |2 o

:s,oo,Q|<Ph|1,ﬂ- (4.1)

First, we give an estimate of the interpolation operator with the help of Lemmas 6 and 7. In
making this estimate, we draw on [3] and note that the general consistency analysis on the
codifferential operators can be found in [3].

Lemma 8—Assume that « ¢ W2°° 0 H{, div u =0, and the triangulation is 0(h20)
irregular. For the RT( space, we have the interpolation error estimate

[rot w — rotpu, || < APRL) |10gh‘1/2”u”2,oo'

Proof By the triangle inequality and the first-order approximation of Qp, in the L2 norm in
Lemma 6, we have

|lrot u—rotpu, || < |[rot u—Qprot u|+||Qnrot u—rotpu,|| S hlrot u|,+||Qnrot u—rotyu,||.

Let us estimate the second term. Asdivu=0and « €¢ W2 N Hg, there exists a p € W3«
() Ho(curl) such that u = curl p. As the canonical projections commute with differential

uI:H hu:H X curl p:curlHth:curl Pr
Vo' Vo 0

operators, we have .Forany gy € 2", we

have

(Qprot w — rotpu,, qn)
=(rot u — rotpu,, qn)

=(u — u;, curl gp)=(curl p — curl, , curly, )

=(V(p
= p1)s Va) $ W™D logh V2 pl| lanly < B0 logh| Y2 |ully o llax.

Thus, we have [|Qp, rot u — rotpuy| < h™MiN(L9) [log h|/2||ul|, ., such that the desired estimate
is obtained.

Then, we present the convergence result for the RTy—P discretization.

Theorem 3 Assume that the solution of the Stokes equations satisfies o ¢ W2 H(} and
rot u € H2, Assume the triangulation mesh is ©(h29) irregular. Let up, and py, be the solution
of the RTy—Pg approximation using formulation (2.8). Then, we have the error estimate

o=l +llen =l +vlpa—pill s A" logh[*2(||u]y oo +[[rot ).
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_ _ divu,=div][[ w=[] divu=0
Proof Notice that div uy, = 0 and vl sh . It is evident that

ap(up, — u ,vy)

:v_l(f"vh)
v (py, div vy,) — (rotpu,,rotpvy)
=(curl rotwu,wvp)
— (rotpu,, rotyvy)
—v i(p

— pp, divvp)=(rot w — rotpu,, rotpvp)
+(curl(1

— Qp)rot u, vy)

+v(p

— pp, —div vy):
—I+Ty+1s.

By Lemma 8, we can obtain the error estimate of the first part:

1/2

I =(rot u—rotpu,, rotyvy) < |[rot u—rotyu, |||[rotyws|| < A0 logh| ||u||2,oo||”h||,4h'

Using the first-order approximation of the L2 projection Qy, in the H! norm in Lemma 6, we
have

Iy=(curl(I — Qp)rot u,vp,) < |[curl{(I — Qp)rot ul|||V4|| S hljrot u||2thHAh.

If we choose v, = u; — Uy, it is easy to see that I3 = v=1(p — pp, — div vp,) = 0. By combining
these estimates, we obtain

lear, = |3, < RO logh| 2 ([l oo+ [rot ully) e — ],

which leads to the estimate of |lup — uyl|ap,.

By Lemma 8 and the error estimate of the velocity, we obtain

Jeo—n | < [[rot eu—rotyes, | +lrotyes, ~rotpeesl| <A™ [logh|2(|uu], o, +lrot ).

To prove the error estimate of the pressure, for any v, e v}, we have
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'v_lb(pI —Ph, 'vh):v_lb(pl, vp)+an(up, 'vh)—v_l(f, vp)=|ap(up,vy)—(curl rotu, vh)}—l—v_lb(pl —p, vy ):=I4+I5.

By the stability result presented in Lemma 4, we can choose v;, ¢ V;* such that

divop=p; — pp, and [[on]| , < [lp; = pal-

With such vy, we have

Ii=ap(up,vp)
— (curl rotwu,wvy)
=[(rotpup, rotyvy) — (rot u,rotpv,)|+)curl Q, — Irot u, vy,
=(wp, — w, rotKYV})
— I <||w
ol

+h|rot ”||2H”h||Ah < p(minl,o) UOgh‘l/z(”quoo

+rot wlly)llpy = pall-

For part Is, since p; is the L2 projection of p to Sk space,
Is=v""b(p, — p,vn)=(p, — p, div vy,)=0.
Overall, we obtain
vy = pull*=b(p,—pn, vn) RO logh|M(|[ul|y o +[rot w]y) [P, —pall-

By dividing ||p; — pnll on both sides, we obtain the desired estimate.

Remark 5 The term I3 = v-1(p — py, — div up) vanishes due to the point-wise divergence free
of the velocity. For weakly divergence free elements, in general (p, div up) # 0 and therefore
the right-hand side of the error estimate will involve the term v=1 ||p — ;|| which might be
large when the pressure gradient is large or v is small (i.e. the Reynolds number is large).
Our error estimate of the velocity and the vorticity is independent of pressure and v. Thus
our schemes can produce more accurate and robust approximation of the velocity and the
vorticity.

Remark 6 Let x, denote the barycenter of a triangle z. We define the interpolation operator
Iy : C() — S as
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Inp(z;)=p(z;) for allT € 9.

As both the L2 projection and interpolation Iy, preserve piecewise constant functions, if
p€ H'NLinC(Q then

Py — Inpl| < Rlpl;-

For the pressure error estimate in Theorem 3, we can obtain the same order of convergence
for an H1 pressure if we replace the L2 projection p; with the interpolation Iy, p.

4.2 Error Analysis of RTg—Pg Formulation with Mass Lumping

In this subsection, we prove the error estimates of element RTy—Pg with mass lumping.

Define the discrete L2 projection with mass lumping Qp, : L2 — 3, as for any f € L2
~ h
<th, T> =(f,7) for allT € Z .
The following first-order approximation of Qh~in the L2 norm is crucial to ensuring the

approximation of mass lumping.

Lemma 9—For any quasi-uniform triangulation with size h, the discrete L2 projection

~ h
Qu:L? — ) satisfies
¢ — Qnoll < Rld|,, for allp € H'.

Proof Let {4;,i = 1,..., N} denote the nodal bases of 2. By the definition of Qh~and by

N (d)v Az)
Zi]\il&'( =1, we have ¢(z Z Ai(2)é() and Qn@(@) =3, fQ/\idJ:)\i(x)’ then we

get

= th—nz[ o }HNZM “d)z < hlgl,.

(¢a )\’L)

Here, in the last step, we use the fact that the functional ¢ - [ Aida Preserves the piecewise
constant function on (2, where 2 is the support of the i-th basis function A;.
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Lemma 10—Assume that «, ¢ W2 n H{, div u = 0 and that the triangulation mesh is ©
(h29) irregular. Let u; be the canonical interpolation of u on to RTy. Then, we have the error
estimate

Irot w — rotpu,|| < A logh| " |, o
Proof Using Qh~to replace Qy, in the proof of Lemma 8, we have
[[rot u—rotya,|| < |[rot u—Qyrot ul|+||Q,rot u—rotyu, || < hlrot u|,+||Q,rot w — rotaa, ||,
To estimate the second term, we test with a g, € 2M:
<Qhrot u — rotpu,, qh> =(rot u — rotpu,, qn)=(u — u,, curl g).

The rest is the same as the proof of Lemma 8.

Theorem 4 Assume that the solution of the Stokes equations satisfies » ¢ W2>° N H} and
rot u € H2, and that the triangulation mesh is ©(h29) irregular. Let up, and py, be the solution
of the RTy—Pg approximation using formulation (2.11). Then, we have the error estimate

~ — i 1/2
Jwo—nlHlw = | A+ om0 Logh|2([ul] ot l]):

Proof Similar to the proof of Theorem 3, we have

an(up —u,,vp)

=(rot u — rathul, rot,vy,)
+(curl(I

— Qp)rot w, vp,)
+v i (p

— pp, —div vy)=(rot u — rotsu,, Tot;vy)

+(curl(Z

— Qp)rot u, vp)
+o i (p
— pp, —div vy )+ (curl(@Qp

— Qp)rot u, vp):
— I+ I+ I5+1,.
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The error estimates of the first three terms were obtained in Lemma 10 and Theorem 3. For
the last term, we obtain the following estimate by using the first-order approximation of Qy,
and Qy, in the L2 norm,

Ii=(curl(Qn — Qh)rot u, vp)=((Qn— @h)rot u, Totpvy) < h|rot u|1||vh||ﬂh.

As with the proof of Theorem 3, we can finish the error estimate and obtain the desired
results.

4.3 Error Analysis of the RTyg—Pg Formulation on General Unstructured Grids

The error estimate in Theorem 4 relies on the symmetry of the edge patch through the
parameter o. For general grids with o= 0, there is no order due to the inconsistency of the
interpolation. In this subsection, we obtain error estimates for the discrete formulation (2.8)
with the RTp—Pq element on the general unstructured grids by taking advantage of the
projection operator constructed in [2].

Definition 6 (Arnold et al. [2]) Define the projection operator

. h
PV(? Ho(div) — Vg ’Pv(]h”:”n by the equation

h
(v, curl T+grady, s)=(v,curl 7) — (div v, s) for allT € ZO,S e St (2
The estimate of the projection operator is given in the following lemma.

Lemma 11—(Arnold et al. [2]) Let v, be the projection of v on to RTq in Definition 6.
Then, for any quasi-uniform triangulation with size h,

h
(v — vy, curl 7) < W2 [logh|||v]|y o |I7|lfor allv € W, r e >

Lemma 12—Assume that «, ¢ W1 0 H} and rotu € H1. Let uj, be the projection of v
on to RTy in Definition 6. Then, we have the error estimate

Irot w — rotyuy || < 2 (|loghl |[ul|, o+ ?[rot ul,).

Proof By the triangle inequality, we have

|lrot w—rotpu, || < |rot u—Qprot w||+||Qprot u—rotyu, || < hlrot w|,+||Qnrot u—rotpuy|.

To estimate the second term, we have for any gy, € 5,
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(Qprot u—rotpu,, gn)=(rot u—rotpu,, ¢n)=(u—u,, curl ¢;) < h1/2|logh\ ||U||1700H%H~

Thus, we have [|Qp, rot u — rot, uyl| < /2 [logh||jull1 », and thereby obtain the desired
estimate.

Similarly, the error estimates for the velocity, the vorticity, and the pressure on general
unstructured grids can be obtained by following the proof of Theorem 3.

Theorem 5 (Arnold et al. [2]) Assume that the solution of the Stokes equations satisfies

ue Wh*n Hlandrotu € H2. Let up, and py, be the solution of the RT¢—Pg
approximation using formulation (2.8). Then, we have the following error estimate

— 2 1/2
o —eonlHllsn — el o~ lpn =yl 72 (oghl ]y oo +5"/2 ot 2.

Remark 7 The error estimates of Lemma 12 and Theorem 5 can easily be generalized to the
lumped case formulation (2.11) according to the analysis of Subsect. 4.2.

1
Remark 8 Compared with Theorem 3 for general unstructured grids with o< > the error

1 1
estimates in Theorem 5 increase from order oto > However, for grids with o> 2 We can
obtain better error estimates by Theorems 3 and 4.

4.4 Error Analysis of the BDM1—Py Formulation Without Mass Lumping

In this subsection, we present the error estimates for the discrete formulation (2.8) with the
BDM-Pg element. The first-order convergence for the velocity and the pressure is obtained
without any constraint on the irregularity of meshes.

Lemma 13—Assume that « ¢ H? N H_, and div u = 0. Let u, be the canonical
interpolation of u on to BDM;. Then, we have the error estimate

|lrot w — rotpu, || < A||u|,.

il

Proof As in Lemma 8, we have |[rot u — rot,uyl| < hjjrot ul|; + [|Qp, rot u — rotyu,]l.

In regard estimating the second term, the only difference to the proof of Lemma 8 is that p
€ P,. Thus, we have

(Qnrot u — oty 4)=(V(p = p,), Van) < 1?|lpllslanly < hlully]anll

As |[rot ull; < ||lullp, we obtain |jrot u — rotyu;l| < hjjull.
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The following result can be proved using the proof of Theorem 3 and the improved
interpolation error estimate in Lemma 13.

Theorem 6 Assume that the solution of the Stokes equations satisfies » ¢ H? N H_ and rot
u € H2. Let uy, and py, be the solution of the BDM1—Pq approximation using formulation
(2.8). Then, we have the following error estimate

o = wnll+llwn = will,, 4+~ ow = pill < Alllully+rot ully).

Remark 9 As up, and py, are piecewise linear and piecewise constant functions, respectively,
the velocity approximation in the H1-norm and the pressure approximation in the L2-norm

are at most first-order. From this point of view, the estimate is optimal for u and p, but not

for vorticity @ for which the ideal order is three since a quadratic element is used.

4.5 Error Analysis of the BDM} — P, Formulation with Mass Lumping

The quadrature is exact to quadratic functions. Therefore, similar to Lemma 9, we have the
first-order approximation of the discrete L2 projection in the L2 norm.

Lemma 14—For any quasi-uniform triangulation with size h, the discrete L2 projection

~ h
Qp:L? — 22 satisfies
|6 — Qnoll < R|d|, for all p € H'.

With this first-order approximation property, we have the interpolation error estimate.

Lemma 15—Assume that « ¢ H2 N Hol. Let u; be the canonical interpolation of u on to
the space BDM?). Then, we have the error estimate

[rot w — rotpu, || S Al

Theorem 7 Assume that the solution of the Stokes equations satisfies » ¢ H? N H_ and rot

u € H2. Let up, and py, be the solution of the BDM?} — P, approximation using formulation
(2.11). Then, we have the following error estimate

lw = @nll+lun = wll, o7 pn = pill < Al[ull+lxot wll,).
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4.6 Improved Error Analysis of the BDM;-Py and BDM!? — P, Formulations

In this subsection, we improve the error estimates for the discrete formulation (2.8) with

BDM;-Pg or BDM} — P, elements. First we present Huang and Xu's superconvergence
results for the P, element [29]. Based on that, we obtain the improved error estimates.

Lemma 16—(Huang and Xu [29]) Assume that p ¢ 3> N H* N H}. Suppose the

triangulation 71, is ©(h2°) irregular. Let p; be the quadratic Lagrange interpolation of p
based on 7, Then, for any continuous and piecewise quadratic function ¢y,

(V(p—py), Vip)| < B2 minl/29)(||p

10TPls 0o 0)enli o 43

Lemma 17—Assume that w ¢ W2 0 H* n H} div u = 0 and that the triangulation mesh
is ©(h29) irregular. Let u; be the canonical interpolation of u on to BDMj. Then, we have
the error estimate

|[rot w — rotya,|| 5 AT /29) (|[ag]| 4|

2,00)'

Theorem 8 Assume that the solution of the Stokes equations satisfies

ue W2 H?n H}and rot u € H3, and that the triangulation mesh is © (h%9) irregular.
Let up and py, be the solution of the BDM1—Pg approximation using formulation (2.8). Then,
we have the error estimate

lo—wnl+lun =l o~ pa—p, || s A2 ([l g+ o] o Hrot uly).

Proof One key difference between the current proof with that of Theorem 3 is that we apply
the second-order approximation of Qy, to the quadratic element in the H1 norm

curl(l — Qp)rot u < h?|rot u/..
3

To get the corresponding error estimate for the lumped scheme BDMY — P, it suffices to
establish the improved L2 error estimate of the lumped L2-projection Q.

Lemma 18—Assume the triangulation mesh is @ (h29) irregular. The discrete L2 projection

~ h
Qpil® — 22 satisfies

o = Quoll s hH 2D 4],y for allg € WA,
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Proof We first introduce the quadratic interpolation

NV NE
=3 "0(Vi)0i+d ¢(Ei)i+ Y ¢(Crwn,r.
=1 =1

‘I'Gyh

Here recall that Vj, Ej, C,are vertices, middle points of edges, and barycenter of triangles,
respectively. And Ny, Ng are the number of total vertices and edges, respectively. The
formulae of bases &, 7;, axy, can be found in Sect. 2.2.2. Recall that by definition

Qh¢ Z 1+Z(¢,771 Z ¢>wbr

1771 7'67;( awb'r)

Since the quadratic interpolation will preserve the piecewise quadratic function, we have the
standard interpolation error estimate

6 — &, 1 5 ¥ 6l35-

So we only need to estimate the coefficients of the difference ¢ — Qh~qz).

Let 1 {¢) = o(C) - (@ an, HI(1, an, 7). By direct calculation, one can easily verify 1. (4;) =0
fori=1, 2, 3, where 4 is the basis of the linear element at vertices V; of the triangle =
Therefore | (¢) = 1 (¢ — p1) for any linear polynomial p; and consequently by Bramble-
Hilbert lemma |1 {¢)| < h¥2|glg2, 0 <

Let Ie(¢) = o(E) - (o, nEA)/(l, nEA) Let p; be a linear interpolant of ¢ on the patch 2. Then |
le(e = p1)l < 132 |@las,00, 0 We now estimate [Ig(py)]. It is obvious Ig(c) = 0 for a constant.
Let us use a local coordinate with original at E and check the order for p; = x or p; =y. For
an interior edge E, suppose {% = tUt’. Chose a quadrature rule using the triangular lattice
points for polynomial of degree less than or equal to 4. We can use such a quadrature to
evaluate the integral

(x,ﬁE)TZZ%'ﬁE(%‘ayi)wi|7'|7 (x0T :Z%‘ﬁE (@5, yo)wilT |,
i i

where (X, yj) are quadrature points and w; is the corresponding weight. If we write the
quadrature points and 7 in the barycentric coordinate, it is easy to see the quantity

M, (@i, yi)wi=n (z;,y;)w;. If the patch 2 forms an ©(h?) parallelogram, then

zi+x;=0(h?)and |4 — |1 = ©(h3). Namely the patch is ©(h?) symmetric with respect to E;.
Therefor 15(p1) < ©(h?). For other edges, 1g(p1) < ©(h). But the measure of such edge
patches is bounded by ©(h29). Summing over all edges, we get
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1/2
(ZIE(@QE I) S RG]
E

Let Iv(p) = (V) - (o, 77\7)/(1, 17\7). To estimate this term, we split vertices into two parts. We
define V1 = {Xj € V', | every two neighboring triangles in £2 forms an ©(h?) approximated
parallelogram}, and V5, = M\ A'q h. For vertices x in V' p, the patch (2 is o(h?)
symmetry. The measure | Uye von | S 0(h29). We can thus prove the estimate

2
(ZI > (o), ) S B2 gl
\%

similarly.
The desirable estimate obtained by noticing that
~ 2
l6; = @nell” s 3 @I [+ T (@014 17 (@)l7]

Theorem 9 Assume that the solution of the Stokes equations satisfies
we W nH*nHlandrotu € H3, and that the triangulation mesh is @ (h29) irregular.

Let up and py be the solution of the BDM} — P, approximation using formulation (2.11).
Then, we have the error estimate

leo—@n e =], o lpn=py ]l R el 0t ).
We obtain the following error estimates for the BDM1—Pq formulation on general
unstructured grids in a way similar to that in Sect. 4.3.
Lemma 19—(Arnold et al. [2]) Let v}, be the projection of v on to BDM¢ in Definition 6.

Then, for any quasi-uniform triangulation with size h, we have the error estimate

h
(v—wv,,curlT) h3/2|1ogh|||v||2700||7'H for allT € Z ,v € W,

Lemma 20—Assume that ¢ W2> 0 H and rot u € H2. Let uy be the projection of u
on to the space BDM1 in Definition 6. Then, for any quasi-uniform triangulation with size h,
we have the error estimate

| s 122 (llogh|[ully oo+ 2| Otul ).

|[rot w — rotpu,, |
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Theorem 10 Assume that the solution of the Stokes equations satisfies « ¢ W2 N H}
and rot u € H3. Let up, and pp, be the solution of the BDM;—P approximation using
formulation (2.8). Then, we have the following error estimate

o —on|+llan, — gl 07—y < 5 (loghl[|us]|y 0 +h |0t ul )

Given the superconvergence of the pressure, we can recover the pressure from the piece-
wise constant to a piecewise linear function. We shall combine two methods, the least
squares fitting and the harmonic averaging, both of which locally preserve linear functions.
The procedure is described as follows.

We first evaluate the piecewise constant function py, at the barycenter of each triangle. A
piecewise linear pressure function p? can be obtained by assigning values at vertices. This
can be done by using the least square fitting to fit the piecewise constant defined on the
triangles around a vertex. We will only apply the least square fitting to the boundary nodes.
For the interior nodes, we construct a dual triangular mesh by connecting barycenter to the
verteX, and to use it to solve a local harmonic equation. We refer to [10] for details. On the
aspect of implementation, the harmonic averaging is more efficient than least square fitting
for large size triangulations.

5 Numerical Experiments

In this section, we present numerical tests for both the RTy—P discretization and the

BDM? — P, discretization. In all examples, the viscosity is chosen as one, i.e., v=1. For
both schemes, we consider three different types of grids: a criss-cross grid of the unit square,
a three-directional structured grid (all triangles are formed by edges parallel to three
directions only) of the unit square, and a unstructured grid of the unit disk. We refer to Figs.
1 and 2 for an illustration of these meshes. We use a uniform bisect strategy for refining the
criss-cross grid. That is the triangle is bisected twice by connecting the midpoint of the
longest edge to its opposite vertex. The resulting grids are still in the criss-cross type. In the
so-called red refinement the triangle is divided into four congruent sub-triangles by
connecting the midpoint of each edge. We use a uniform red refinement for refining the
three-directional grids such that the resulting grids remains three-directional. By the © (h29)
irregularity Definition 5, the three-directional structured grids correspond to o = oo, i.e., the
0(h?) approximate parallelogram property is satisfied for all pairs of adjacent triangles, and
the bisection corresponds to o = 0 since the patch of the majority of edges, which are parallel
to axis, is not an ©(h?) approximate parallelogram. For the unstructured grids of the unit
disk, we first generate a initial shape regular grid and then apply uniform red refinement. To
fit the boundary, we project the boundary nodes onto the unit circle after each refinement.
To improve the mesh quality, after each refinement, we apply ODT mesh optimization
methods [8,11] several times. In practice these mesh optimization technique will intend to
make every two adjacent triangles form an ©(h1*9) parallelogram and a small portion,
which has a measure ©(h29) of elements do not satisfy this property.
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We implemented the schemes by using the MATLAB® software package iFEM [9].

Example 1 In the numerical tests with the unit square domain (0, 1) x (0, 1), the right-hand
side f = 0 and the Dirichlet boundary condition for u are chosen. The analytical solutions are

20zy®
u(.T,Z]): < 5yt _y5y4 ) s p(I,y):60I2y - 20y3 - 9.

Example 2 In the numerical tests with the unit square domain (0, 1) x (0, 1), the Dirichlet
boundary condition for u are chosen. The velocity is the same as that in Example 1 and the
pressure is set zero:

20zy> —20z
u(l‘,y): < 5$4 _y5y4 ) ) p(:l:,y)ZO, f(ll?y): < —60-T2+é/0y2 ) N

Example 3 In the numerical tests with the unit disk domain centered at point (0, 0), we use
the test example in [19]. The Dirichlet boundary condition for u are chosen, and the
analytical solutions and the corresponding right-hand side function are

16y — dy(z?4y> 32
u(z,y)= ( _fgmﬂi({ﬁczi})) )  p(2,9)=0, f(z,9)= ( i ) .

We present the numerical results in Tables 1, 2, 3, 4,5, 6, 7, 8, 9, and 10, in which N is the
number of vertices of a mesh, u, pp, and wh~represent the approximations; u is the
canonical interpolation of velocity u; Iy, p is the interpolation of pressure p at the
barycenters; p; represents the recovered pressure; and ¢ is the nodal interpolation of
vorticity . Based on the numerical results, we can make the following observations:

1. For criss-cross grids, the errors [uj — up||4, and ||w — rot;,u, || have no order of
convergence when the RTy—Pq discretization is used. Both error estimates are

improved to first-order, however, when the BDM" — P, discretization is used. This
is supported by our theory since o= 0 for criss-cross grids.

2. For three-directional girds, the errors |ju; — UhllA, and (|jw — rotsu, || can achieve
first-order convergence when the RTy—P discretization is used, and both increase

to one and half order when the BDMY — P, discretization is used. This is also
supported by our theory since in this case o = co.

3. The error for pressure ||p — pnl| reaches half order for criss-cross grids, first order
for three-directional grids when the RTy—Pg discretization is used, and first order

for both grids when the BDM? — P, discretization is used. This is consistent with
our theory.
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The error for vorticity ||o- %ﬂ reaches half order for criss-cross grids and first-
order for three-directional grids when the RTy—Pg discretization is used. It reaches

one and half order for both grids when the BDM? — P, discretization is used. The
H® norm of the error [l — a1 is one order less than ||y — ay,|| for all cases, which
can be easily proved by the inverse inequality and the triangle inequality. In
particular, for criss-cross grids, this error diverges with half order when the RTy—Pg
discretization is used. This is consistent with our theory.

For Examples 1 and 2, the error for velocity and vorticity are exactly the same
which demonstrates the pressure independent error estimate for velocity and
vorticity.

For the examples on the unstructured grids of the unit disk, the error of the RTg—Pg
discretization depends on the parameter a which measures the symmetry of edge

patches. While the BDMb — P, discretization achieves much better accuracy on the
same grids and achieves the theoretical predicted order of convergence; see Tables
5and 6.

We also report other norms not covered by our theory.

- uj and up, are super-close in the maximum norm in all cases. A better velocity
could be reconstruct based on this fact.

- |lu — uy|| is first order for the RTy—Pg discretization, and second order for the
BDM? — P discretization. This is reasonable, as BDM; contains a linear
polynomial whereas RTg is incompletely linear.

-y p — Prlloc and ||y — a)n|~|00 are zero order for the RTp—Pg discretization and

first order for the BDM} — P, discretization. Especially for the unit disk
example, the computed py, from the RTy—P discretization has no accuracy near
the boundary of the disk; see the detailed explanation in [19]. The BDM}? — P,
discretization, however, pushes down the error near the boundary into order ©

(h).

6 Conclusion and Future Work

We have analyzed MAC type schemes for Stokes equations using H(div) elements on
unstructured triangular grids in two dimensions. When the lowest order element RTy is used,
the rate is suboptimal on general quasi-uniform meshes. It can be improved to optimal order
of convergence either by the symmetry of the mesh or by the enhancement of the velocity

space to BDM}.

In the future work, we shall extend our results in two directions. One is the non-linear
Navier—Stokes equations and another is the discretization in three dimensions. For Navier—
Stokes equations, we shall use the vorticity—velocity—pressure formulation —vAu + @ x u +
A(p + |ul?/2) = f and replace the vorticity w=rot,u- We shall follow [39] to establish some
energy estimate first and then derive corresponding error estimate.
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Generalization to three dimensions is much harder since now the space for the vorticity is
the edge element space. Mass lumping for the edge element space is not obvious. And
supreconvergence results for edge element spaces are rare [32,33]. We may need to work on
different discretizations using the vorticity—velocity—pressure formulation. For example,
results on three dimensional co-volume methods for Stokes and Maxwell's equations can be
found in [38,40] and least-square formulation for the three dimensional Stokes equations
based on the vorticity-velocity-pressure formulation can be found in [17].
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Fig. 1. Criss-cross grids and three-directional structured grids of a square domain
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Example 1: errors for the RTy—Pg element discretization on criss—cross grids

Chen et al.
Table 1

N fluy = unlla,  lup=unll llu = ugll lluy = unlleo
289 3.899e+00  8.615e-02 4.065e-01 1.742e-02
1,089 4.021e+00  4.337e-02 2.028e-01 4.572e-03
4,225 4.082e+00 2.176e-02 1.013e-01 1.169e-03
16,641 4.111e+00 1.090e-02 5.063e-02 2.954e-04
Order -0.017 1.013 1.018 2.010

N e =pnll llp = pull r 4P = Pl

[P — phl

289 9.873e-01  1.208e+00 3.910e-01 8.660e+00
1,089 6.525e-01  7.396e-01 1.208e-01 7.215e+00
4,225 4.499e-01  4.824e-01 4.573e-02 6.801e+00
16,641 3.144e-01  3.262e-01 2.211e-02 6.581e+00
Order 0.536 0.600 1.246 0.067

N lex =l llo= —~ llen = exll.

lw — rotpu,||

289 6.406e+01 1.134e+00 2.243e+00 3.048e+01
1,089 8.195e+01  6.860e-01 2.113e+00 3.024e+01
4,225 1.091e+02  4.421e-01 2.081e+00 3.012e+01
16,641 1.491e+02  2.968e-01 2.073e+00 3.006e+01
Order -0.439 0.614 0.014 0.004
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Example 2: errors for the RTy—Pg element discretization on criss-cross grids

Chen et al.
Table 2

N fluy = unlla,  lup=unll llu = ugll lluy = unlleo
289 3.899e+00  8.615e-02 4.065e-01 1.742e-02
1,089 4.021e+00  4.337e-02 2.028e-01 4.572e-03
4,225 4.082e+00 2.176e-02 1.013e-01 1.169e-03
16,641 4.111e+00 1.090e-02 5.063e-02 2.954e-04
Order -0.017 1.013 1.018 2.010

N e =pnll llp = pull r 4P = Pl

[P — phl

289 9.865e-01  9.865e-01 2.858e-01 8.672e+00
1,089 6.523e-01  6.523e-01 9.751e-02 7.212e+00
4,225 4.498e-01  4.498e-01 4.191e-02 6.800e+00
16,641 3.144e-01  3.143e-01 2.167e-02 6.580e+00
Order 0.535 0.535 1.103 0.067

N lex =l llo= —~ llen = exll.

lw — rotpu,||

289 6.406e+01 1.134e+00 2.243e+00 3.048e+01
1,089 8.195e+01  6.860e-01 2.113e+00 3.024e+01
4,225 1.091e+02  4.421e-01 2.081e+00 3.012e+01
16,641 1.491e+02  2.968e-01 2.073e+00 3.006e+01
Order -0.439 0.614 0.014 0.004
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Example 1: errors for the RTy—Pg element discretization on three-directional grids

Chen et al.
Table 3
N fluy = unlla,  lup=unll llu = ugll lluy = unlleo
289 2.491e-01 1.273e-02 4.683e-01 2.157¢-03
1,089 1.041e-01  3.397e-03 2.344e-01 3.601e-04
4,225 4.045e-02  8.683e-04 1.172e-01 5.364e—05
16,641 1.510e-02 2.187e-04 5.862e-02 7.501e-06
Order 1.416 2.012 1.017 2.840
N e =pnll llp = pull r 4P = Pl
[P — phl
289 5.018e—-01  8.590e-01 4.951e-01 9.077e+00
1,089 1.993e-01  4.016e-01 1.745e-01 7.264e+00
4,225 8.640e—02  1.945e-01 6.786e-02 6.199e+00
16,641 4.048e-02  9.610e-02 2.980e-02 5.619e+00
Order 1.169 1.049 1.296 0.188
N lex =l llo= —~ llen = exll.
lw — rotpu,||
289 5.050e+01 1.083e+00 1.093e+00 3.909e+01
1,089 5.068e+01  5.358e-01 5.407e-01 3.954e+01
4,225 5.082e+01  2.670e-01 2.687e-01 3.977e+01
16,641 5.090e+01 1.334e-01  1.339e-01 3.988e+01
Order -0.006 1.020 1.024 -0.006
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Example 2: errors for the RTy—Pg element discretization on three-directional grids

Chen et al.
Table 4
N fluy = unlla,  lup=unll llu = ugll lluy = unlleo
289 2.491e-01 1.273e-02 4.683e-01 2.157¢-03
1,089 1.041e-01  3.397e-03 2.344e-01 3.601e-04
4,225 4.045e-02  8.683e-04 1.172e-01 5.364e—05
16,641 1.510e-02 2.187e-04 5.862e-02 7.501e-06
Order 1.416 2.012 1.017 2.840
N e =pnll llp = pull r 4P = Pl
[P — phl
289 5.025e-01  5.025e-01 4.451e-01 9.089e+00
1,089 1.995e-01 1.995e-01 1.650e-01 7.267e+00
4,225 8.642e—02  8.642e-02 6.629e-02 6.200e+00
16,641 4.048e-02  4.048e-02 2.957e-02 5.619e+00
Order 1.169 1.169 1.261 0.188
N lex =l llo= —~ llen = exll.
lw — rotpu,||
289 5.050e+01 1.083e+00 1.093e+00 3.909e+01
1,089 5.068e+01  5.358e-01 5.407e-01 3.954e+01
4,225 5.082e+01  2.670e-01 2.687e-01 3.977e+01
16,641 5.090e+01 1.334e-01  1.339e-01 3.988e+01
Order -0.006 1.020 1.024 -0.006
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Example 1: errors for the BDM}, — P, element discretization on criss-cross grids

Chenetal.
Table 5

N lluy = unllay,  lluy=unll — lu = ugll llu = upllos
289 2.836e-01  3.544e-03  1.088e-02 1.228e-03
1,089  1.393e-01  8.724e-04 2.710e-03 1.630e-04
4225 6.903e-02 2.161e-04 6.763e—04 2.099e-05
16,641 3.436e-02  5.374e-05 1.689e-04 2.663e—06
Order  1.026 2.044 2.035 3.018

N Map = pall NP = pall . MaP = Pl

|p — phll

289 3.925e-02  6.977e-01  1.760e-01 2.282e-01
1,089  1.381e-02  3.488e-01 5.347e-02 1.125e-01
4225  4.881e-03  1.744e-01 1.704e-02 5.582e—02
16,641 1.726e-03  8.717e-02 5.659e-03 2.779e-02
Order 1525 1.017 1.647 1.026

N loy=anlly o= axl ~ llex = ol

lw — rotpu,||

289 1.150e+01  1.235e-01 5.504e-01 2.750e+00
1,089  8.064e+00  4.352e-02 2.703e-01 1.397e+00
4225 5675e+00 1536e-02 1.339e-01 7.044e-01
16,641 4.003e+00 5.423e-03  6.662e-02 3.536e-01
Order 0513 1.527 1.027 1.008
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Example 2: Errors for the BDM}, — P, element discretization on criss-cross grids

Chenetal.
Table 6

N lluy = unllay,  lluy=unll — lu = ugll llu = upllos
289 2.836e-01  3.544e-03  1.088e-02 1.228e-03
1,089  1.393e-01  8.724e-04 2.710e-03 1.630e-04
4225 6.903e-02 2.161e-04 6.763e—04 2.099e-05
16,641 3.436e-02  5.374e-05 1.689e-04 2.663e—06
Order  1.026 2.044 2.035 3.018

N Map = pall NP = pall . MaP = Pl

|p — phll

289 3.870e-02  3.870e-01 4.212e-02 2.155e-01
1,089  1.372e-02  1.372e-02 1577e-02 1.093e-01
4225  4.865e-03  4.865e-03  5.735e-03 5.501e-02
16,641 1.724e-03  1.724e-03 2.056e-03 2.758e-02
Order  1.521 1.521 1.495 1.010

N loy=anlly o= axl ~ llex = ol

lw — rotpu,||

289 1.150e+01  1.235e-01 5.504e-01 2.750e+00
1,089  8.064e+00  4.352e-02 2.703e-01 1.397e+00
4225 5675e+00 1536e-02 1.339e-01 7.044e-01
16,641 4.003e+00 5.423e-03  6.662e-02 3.536e-01
Order 0513 1.527 1.027 1.008
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Example 1: errors for the BDM}, — P, element discretization on three-directional grids

Chenetal.
Table 7

N lluy = unllay,  lluy=unll — lu = ugll llu = upllos
289 1.414e-01  1.529e-03 1.326e-02 5.706e—-04
1,089  4.719e-02  2.635e-04 3.308e-03 7.215e-05
4225 1606e-02 4.561e-05 8.261e—-04 9.062e-06
16,641 5.555e-03  8.018e-06 2.064e-04 1.135e-06
Order  1.569 2.561 2.035 3.045

N Map = pall NP = pall . MaP = Pl

|p — phll

289 7.021e-02  7.001e-01 1.372e-01 9.643e-01
1,089  2.224e-02  3.492e-01  4.100e-02 4.928e-01
4225  7.308e-03 1.744e-01 1.290e-02 2.488e-01
16,641 2.475e-03  8.719e-02 4.243e-03 1.250e-01
Order  1.610 1.018 1.663 1.006

N loy=anlly o= axl ~ llex = ol

lw — rotpu,||

289 2.300e+01  1.960e-01  3.259e-01 2.947e+00
1,089  1.662e+01  7.086e-02 1.174e-01 1.512e+00
4225 1.187e+01  2532e-02  4.192e-02 7.659e-01
16,641 8.440e+00  9.000e-03  1.489e-02 3.854e-01
Order  0.497 1.513 1.514 1.002

J Sci Comput. Author manuscript; available in PMC 2015 June 01.



1duosnue Joyiny 1duosnuen Joyiny 1duasnuen Joyiny

1duasnuen Joyiny

Page 42

Example 2: errors for the BDM}, — P, element discretization on three-directional grids

Chenetal.
Table 8

N lluy = unllay,  lluy=unll — lu = ugll llu = upllos
289 1.414e-01  1.529e-03 1.326e-02 5.706e—-04
1,089  4.719e-02  2.635e-04 3.308e-03 7.215e-05
4225 1606e-02 4.561e-05 8.261e—-04 9.062e-06
16,641 5.555e-03  8.018e-06 2.064e-04 1.135e-06
Order  1.569 2.561 2.035 3.045

N Map = pall NP = pall . MaP = Pl

|p — phll

289 6.993e-02  6.993e-02  1.169e-01 9.581e-01
1,089  2.220e-02  2.220e-02  3.705e-02 4.912e-01
4225  7.301e-03  7.301e-03  1.215e-02 2.484e-01
16,641 2.474e-03  2.474e-03 4.105e-03 1.249e-01
Order  1.609 1.609 1.614 1.005

N loy=anlly o= axl ~ llex = ol

lw — rotpu,||

289 2.300e+01  1.960e-01  3.259e-01 2.947e+00
1,089  1.662e+01  7.086e-02 1.174e-01 1.512e+00
4225 1.187e+01  2532e-02  4.192e-02 7.659e-01
16,641 8.440e+00  9.000e-03  1.489e-02 3.854e-01
Order  0.497 1.513 1.514 1.002
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Example 3: Errors for the RTy—Pg element discretization on unstructured grids of the

Chen et al.
Table 9
unit disk
N luy = uplla, — llug = upll llu = unll lluy = uplleo
194 1.753e+00 1.622e-01  9.720e-01 3.223e-02
727 7.453e-01 4.245e-02  4.844e-01 5.701e-03
2,813 3.397e-01 1.096e-02 2.420e-01 1.198e-03
11,065 1.630e-01  2.815e-03 1.210e-01 2.756e-04
Order 1.116 1.993 1.019 2.225
N Mhp = poll - lIp = pull r IMhp = phllo
2 — il
194 3.871e-01 3.871e-01 2.434e-01 1.153e+00
727 2.892e-01 2.892e-01 1.320e-01 1.695e+00
2,813 1.699e-01 1.699e-01 9.116e-02 1.790e+00
11,065 8.831e-02 8.831e-02  5.140e-02 1.802e+00
Order 0.871 0.871 0.693 -0.045
N lex = enlly Nl e ~ llex = el
lw — rotpu,||
194 7.664e+00 3.639e-01  1.350e+00 2.762e+00
727 1.432e+01 2.630e-01 6.126e-01 3.941e+00
2,813 1.497e+01 1.58%e-01 2.910e-01 4.311e+00
11,065 1.503e+01 8.289e-02 1.416e-01 4.401e+00
Order -0.035 0.848 1.076 -0.081
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Example 3: errors for the BDM} — P, element discretization on unstructured grids of the

Chenetal.
Table 10
unit disk
N llur = uplla,  llup—unll flu = ugll [luy = Uplleo
194 2.018e-01  4.302e-03 2.152e-02 1.616e-03
727 6.932e-02  7.531e-04 5.358e-03 2.419e-04
2,813  2.498e-02  1.372e-04 1.337e-03 3.354e-05
11,065 9.041e-03  2.483e-05 3.339e-04 4.237e-06
Order  1.496 2.506 2.038 2.971
N e =pnll llp = pull r IhP = Prllso
[P — |
194 3.010e-02  3.010e-02 4.375e-02 1.028e-01
727 1.205e-02  1.205e-02  2.014e-02 6.260e—02
2,813  4.666e-03  4.666e-03 7.872e-03 3.234e-02
11,065 1.731e-03  1.731e-03  2.914e-03 1.639e-02
Order  1.426 1.426 1.420 0.984
N lan=anly  llo= ~ llen = nlloo
lw — rotpu,||
194 1.105e+01  2.114e-01 2.701e-01 9.710e-01
727 8.025e+00  7.654e-02  1.008e-01 5.067e-01
2,813  5.765e+00  2.731e-02  3.655e-02 2.572e-01
11,065 4.110e+00  9.702e-03  1.308e-02 1.294e-01
Order  0.491 1.517 1.500 1.002
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