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Abstract. We propose a class of semi-Lagrangian methods of high ap-

proximation order in space and time, based on spectral element space

discretizations and exponential integrators of Runge–Kutta type. The methods
were presented in [7] for simpler convection-diffusion equations. We discuss

the extension of these methods to the Navier–Stokes equations, and their

implementation using projections. Semi-Lagrangian methods up to order three
are implemented and tested on various examples. The good performance of the

methods for convection-dominated problems is demonstrated with numerical

experiments.
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1. Introduction

Consider the incompressible Navier–Stokes equations

ut + u ·∇u = ν∇2u−∇p,(1)

∇ · u = 0.(2)

Here u = u(x, t) is the velocity field defined on the cylinder Ω × [0, T ] (Ω ⊂ Rd

for d = 2, 3), subject to the incompressibility constraint (2), while p = p(x, t) is
the pressure and plays the role of a Lagrange multiplier, and ν is the kinematic
viscosity of the fluid. We consider no slip, or periodic boundary conditions when
the domains allow it.

For no slip boundary conditions we will mostly consider the case

(3) u|∂Ω = 0.

The variables (u, p) are sometimes called primitive variables and the accurate
approximation of both these variables is desirable in numerical simulations.

A typical approach for solving numerically convection-diffusion problems (the
incompressible Navier–Stokes equations included) is to treat convection and
diffusion separately, the diffusion with an implicit approach and the convection
with an explicit integrator, see for example [5, 2, 1, 28]. We will refer to these
methods as implicit-explicit methods (IMEX). The advantage of this approach is
that most of the spatial discretizations of the diffusion operator give rise to finite
dimensional counterparts which are symmetric and positive definite, so the implicit
integration of the diffusion requires only the solution of symmetric positive definite
linear algebraic systems.

In this paper we propose high order discretization methods in time of semi-
Lagrangian type, to be used in combination with high order spatial discretizations
of the Navier–Stokes equations, as for example spectral element methods.
High order methods are particularly interesting when highly accurate numerical
approximations of a given flow are required. An interesting field of application
is the direct numerical simulation of turbulence phenomena, as pointed out for
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example in [37]. Another relevant situation is in connection with discontinuous-
Galerkin methods, as an alternative to the use of explicit Runge–Kutta schemes.
In this context, the purpose is to alleviate severe time-step restrictions imposed
by CFL conditions. See for example [27] for the use of IMEX time-stepping
schemes combined with discontinuous-Galerkin space discretizations, and [34] for
semi-Lagrangian discontinuous Galerkin methods.

The integration methods we propose in this paper are implicit-explicit
exponential integrators of Runge–Kutta type. They combine the use of a diagonally
implicit Runge–Kutta method (DIRK) for the diffusion with a commutator-free
exponential integrator (CF) for the nonlinear convection, and were denoted DIRK-
CF in [6, 7]. To achieve higher order, the nonlinear convection term needs to
be approximated by a composition of linearised convection flows along constant
convecting vector fields. Compared to the simpler convection diffusion problems
treated in [7], we here deal with the non-trivial, additional difficulty of enforcing
the incompressibility constraint without compromising the order of the methods.
This difficulty is present also when applying IMEX methods to the same problems,
and our strategy to ensure incompressibility is equally valid for IMEX methods.

A significant advantage of the proposed schemes, compared for example to IMEX
schemes, is that, because of the presence of exponentials of the linearised convection
operator, they are amenable to semi-Lagrangian implementations. Similarly to
other semi-Lagrangian methods (see e.g. [37]), the methods we proposed here
allow for the use of considerably larger time-steps compared to Eulerian schemes,
especially in convection dominated problems (i.e. at high Reynolds numbers in the
Navier–Stokes equations).

1.1. Semi-Lagrangian features of the proposed exponential integrators.
To explain how the presence of exponentials of the convection operator can allow
for semi-Lagrangian implementations, let us consider the simple linear convection
model problem

(4)
Du

Dt
= 0,

where Du
Dt

:= ∂u
∂t +V·∇ is the total derivative of u, with V : Rd → Rd the convecting

vector field (which we assume to be not time dependent). Approximations of simple
convection problems of the type (4) are highly relevant to the approach we propose
in this paper because they appear as building blocks in our methods. See section 2.

Let h be a fixed step-size in time. A simple example of a semi-Lagrangian scheme
for (4) is

un+1 − un(X (tn))

h
= 0,

where X (t) is the characteristic path, solution (at time tn) of the ordinary
differential equation

Ẋ (t) = V(X (t)), X (tn+1) = x, x ∈ Ω ⊂ Rd,

and tn+1 = tn + h. The practical realization of this method requires:

• introducing a space discretization, where Un is the numerical solution at
time tn and on all nodes of the discretization grid Γ (or Un belonging to a
suitable finite element space);

• an operator I(Un)(x̃) interpolating Un and evaluating the result on x̃ ∈ Ω
(notice that x̃ is not necessarily on the grid Γ);

• a suitable integration method to solve the equation Ẋ = V(X ) backward
in time and compute the characteristic paths; we denote by ΦVh (x) its
numerical flow at time tn and with initial value x ∈ Γ.
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So the fully discrete method can be expressed in the form

(5) Un+1 = I(Un)(ΦVh (Γ)).

We interpret I(U)(ΦVh (Γ)) as an evolution operator in the sense of [32], [10].
In fact, in an Eulerian perspective, a space semidiscretization of the convection
problem (4) yields C(·) a discrete convection operator and a system of linear
ordinary differential equations (ODEs) of the type

(6) U̇(t) = C(V )U(t),

where V is a discrete version of V, typically known only on the nodes of the
discretization grid Γ. Assuming Un is the initial condition, the solution of (6) at
tn+1 = tn + h is

Un+1 = exp(hC(V ))Un,

where exp denotes the exponential operator. Unless stated otherwise in our methods
we choose C(V ) such that

(7) exp(hC(V ))Un = I(Un)(ΦVh (Γ))

is satisfied1. This choice allows to view the semi-Lagrangian discretization as
coming from a semi-discrete operator C(V ), and it simplifies the presentation of
the algorithms in sections 2.1 and A.5 where exponentials of the same type of (7)
enter as building blocks of the proposed methods.

1.2. Error estimates of semi-Lagrangian methods allowing larger time
steps. In the case of pure convection problems a well known error estimate for
semi-Lagrangian methods, due to Falcone and Ferretti [15, 16], gives a bound for
the local error τ(xi, tn+1) of the type

|τ(xi, tn+1)| ≤ K
(
hr +

∆xq+1

h

)
,

where xi is a generic grid-point and tn+1 is time. In this estimate, the term hr

is the error due to the numerical approximation of the characteristics paths, the

term ∆xq+1

h arises from the accumulation of the interpolation error, r and q+ 1 are
integers denoting the order of the time and space discretizations respectively, and
K is a constant independent on h and ∆x. This estimate of the error suggests that
the spatial error is affected positively by the use of large time-steps h, moreover,
when high order interpolation is used (like in the case of high order spectral element
methods), the integration of the characteristic paths should also be done at high
accuracy and in particular an optimal h could be chosen so that

hr =
∆xq+1

h
.

These error estimates motivate the interest in designing semi-Lagrangian, exponen-
tial integrators achieving high order in time, when the adopted space-discretization
is of high order. In [7] and [9] we considered high order space discretizations by
spectral element methods for convection-diffusion problems and provided high order
semi-Lagrangian time-discretizations for nonlinear convection-diffusion problems.
We also showed numerically that the proposed integrators do overcome nominal
CFL stability restrictions.

So far the case of linear and nonlinear convection-diffusion equations have been
considered. Semi-discretizations of the Navier–Stokes equations, giving rise to
index 2 differential-algebraic systems, have been approached successfully by BDF-
like multi-step methods proposed in [9]. The connections of these methods to
the methods proposed in [31], [37] and [22], have also been explained. Here we

1We also assume that the characteristic paths are integrated to high accuracy.
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address the case of semi-Lagrangian methods based on one-step formulae, and more
precisely Runge–Kutta type formulae.

1.3. Projections and reformulation into ODE form to enforce incom-
pressibility. Given a time-stepping technique, a standard approach to adapt the
method to the incompressible Navier–Stokes equations is by means of projections.
The primary example of this technique, and most famous projection method for
the incompressible Navier–Stokes equations is the Chorin’s projection method,
proposed by Chorin [11, 12] and Témam [36]. The study of the temporal order
of the Chorin’s projection method was considered in [35] and [33] and it revealed
order 1 in time for the velocity and only 1

2 for the pressure. Such loss of order in
time for the pressure is well known and has been analysed for projection methods
for Stokes and Navier–Stokes equations. Remedies to restore the full time order
are also known in the literature, [24].

In this paper we choose the following strategy. We first semi-discretize in space,
taking care of boundary conditions, then project the equations at the space discrete
level and eliminate the Lagrangian multipliers, and obtain a system of ordinary
differential equations (ODEs). Finally we apply the exponential integrators to
the resulting system of ordinary differential equations. The exponentials of the
pure convection operators are approximated by computing characteristics and
subsequent interpolation as in (7). We ensure incompressibility in two different
ways described in section 2 and A.5. The numerical approximation of the pressure
is obtained in a post-processing step.

In section 2 we present our main scheme and show how to obtain high order
implicit-explicit and semi-Lagrangian methods for the incompressible Navier–Stokes
equations. The formal order analysis of these integrators applied to ODE problems
has been addressed in [7] and [8], an extension of the order analysis and convergence
of the methods to the PDE context, is outside the scope of the present paper. In
section 3 we describe the implementation details, we use techniques from [18] for
the efficient solution of the linear algebraic systems. We obtain an overall strategy
which resembles conventional projection schemes as described in [24], where, at
each step in time, one only needs to solve a sequence of decoupled elliptic equations
for the velocity and the pressure. In section 4 we report the numerical experiments.
We provide numerical verification of the temporal order of the methods, and we
demonstrate the clear benefits of the semi-Lagrangian approach in the case of
convection-dominated problems.

2. High order implicit-explicit and semi-Lagrangian methods of
Runge–Kutta type for the incompressible Navier–Stokes equations

In this section we present the details of the high order integration schemes
proposed in this paper.

After spatial discretization of (1), we obtain a system of differential-algebraic
equations of the type:

(8)
Bẏ = Ay + C(y) y −DT z,

Dy = 0.

The matrices and vectors appearing in that equation have the following
signification:

• A represents the discrete Laplacian;
• C(y) is the discrete convection operator;
• D is the discrete divergence operator, so DT is a discrete gradient operator;
• B is a mass matrix coming from the spatial discretization. We assume that
B is explicitly invertible, i.e., B−1 is available;
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• the vectors y and z represent numerical approximations of the velocity u
and the pressure p respectively.

We can eliminate the Lagrangian multiplier z from the system (8) by multiplying
on both sides by B−1 and using the constraint Dẏ = 0. This leads to the following
system of ordinary differential equations (ODEs)

Bẏ = Ay + C(y) y −BHB−1(A+ C(y))y,(9)

where

(10) H := B−1DT (DB−1DT )−1D.

We introduce the projection
Π := I −H

allowing to write the ODE in the short form

(11) ẏ = ΠB−1Ay + ΠB−1C(y) y.

In order to fully describe the methods, we need an IMEX method, as well
as its DIRK-CF counterpart. In this paper, we use the second and third order
IMEX-RK schemes with stiffly-accurate and L-stable DIRK parts [1]. We refer to
them as IMEX2L and IMEX3L respectively. We refer to the corresponding DIRK-
CF methods as DIRK-CF2L and DIRK-CF3L respectively. All the corresponding
coefficients are given in Table 1 and Table 2.

Table 1: IMEX2L and DIRK-CF2L coefficients

γ = (2−
√

2)/2 and δ = 1− 1/(2γ)

ai,j ≡

0
γ 0 γ
1 0 1− γ γ

0 1− γ γ

, âi,j ≡

0
γ γ
1 δ 1− δ

δ 1− δ 0

αki,1 := âi,k

Table 2: IMEX3L and DIRK-CF3L coefficients

ai,j ≡

0
1
2 0 1

2
2
3 0 1

6
1
2

1
2 0 − 1

2
1
2

1
2

1 0 3
2 − 3

2
1
2

1
2

0 3
2 − 3

2
1
2

1
2

, âi,j ≡

0
1
2

1
2

2
3

11
18

1
18

1
2

5
6 − 5

6
1
2

1 1
4

7
4

3
4 − 7

4

1
4

7
4

3
4 − 7

4 0

αki,1 = âi,k 1 ≤ i, k ≤ s, s = 5

αks+1,1 =
[

7
12

1
5

3
4 − 2

3 0
]

αks+1,2 =
[
− 1

3
31
20 0 − 13

12 0
]

2.1. DIRK-CF methods applied to the projected semi-discretized Navier–
Stokes equations. In this section we present our main semi-Lagrangian approach
to the incompressible Navier–Stokes equations based on the exponential integrators
methods of [7]. The operators A and D and C are as in the previous section.

We assume that we have chosen a DIRK-CF method (see A.1), so we have a
Butcher tableau ai,j and coefficients αki,j . We use the convention that as+1,s+1 = 0.
In particular, we will use the coefficients in Table 1 and Table 2.

Our main algorithm to solve (8) is Algorithm 1.
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Algorithm 1 DIRK-CF Method

for i← 1, s+ 1 do

(1) Compute the exponential ϕi (see section 3.1):

ϕi = exp(hΠB−1C(Y Ji )) · · · exp(hΠB−1C(Y 1
i ))

where

Y γi :=

i−1∑
k=1

αki,γYk for γ = 1, . . . , J

(2) Solve in Yi, Zi the linear equation:

Yi − hai,iB−1AYi = ϕiyn + h

i−1∑
j=1

ai,jϕiϕ
−1
j Pj +B−1DTZi

DYi = 0

(3) Solve in Pi, Z
′
i the linear equation:

Pi = B−1AYi +B−1DTZ ′i

DPi = 0

end for

yn+1 = Ys+1

The rationale behind such an algorithm is that it is exactly equivalent to applying
a standard DIRK-CF integrator to (11):

for i = 1 : s+ 1 do

Yi = ϕiyn + h
i−1∑
j=1

ai,jϕiϕ
−1
j Pj + hai,iΠB

−1AYi

Pi = ΠB−1AYi

Y γi :=
∑
k α

k
i,γYk for γ = 1, . . . , J

ϕi = exp(hΠB−1C(Y Ji )) · · · exp(hΠB−1C(Y 1
i ))

end for

yn+1 = Ys+1

2.2. IMEX methods applied to the projected semi-discretized Navier–
Stokes equations. The same strategy for enforcing the incompressibility con-
straint can be adopted for IMEX methods, we outline the details in this section.
IMEX methods will be used for comparison in the numerical experiments.
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We need two Butcher tableaus a and â, for instance the ones in Table 1 or Table 2.
We define the corresponding IMEX method applied to (11) in Algorithm 2.

Algorithm 2 IMEX Method

for i← 1, s+ 1 do

Solve for Yi, Zi the linear equation

Yi − hai,iB−1AYi = yn + hB−1
i−1∑
j=1

(ai,jA+ âi,jC(Yj))Yj +B−1DTZi

DYi = 0

end for

yn+1 = Ys+1

Note that this is equivalent to apply the IMEX Runge–Kutta method to the
system (11), as we would obtain.

for i = 1 : s do

Yi = yn + hΠB−1
i−1∑
j=1

(ai,jA+ âi,jC(Yj))Yj + hai,iΠB
−1AYi

end for

yn+1 = yn + hΠB−1
s∑
i=1

(
biA+ b̂iC(Yi)

)
Yi

See A.1 for the definition of IMEX methods for convection-diffusion problems.
We notice in particular that yn+1 satisfies the discrete incompressibility

constraint Dyn+1 = 0 being the sum of terms which vanish when premultiplied
by D.

Finally, to recover the correct approximation of the pressure at time tn+1 we
perform a post-processing step (which amounts to an extra projection). We consider
the right hand side of (8) and evaluate it in yn+1 leading then to an approximation
of Dẏ(tn+1). Since Dyn+1 = 0 and Dẏ(tn+1) = 0 the correct approximation of the
pressure is given by zn+1 such that

B−1Ayn+1 +B−1C(yn+1)yn+1 −B−1DT zn+1 = 0.

This amounts to solving a linear system for zn+1, obtained by multiplying by D:

(12) DB−1DT zn+1 = DB−1(A+ C(yn+1))yn+1.

3. Implementation issues

Before proceeding to the numerical experiments, we describe some of the
implementation issues, related to the discretization of the Navier–Stokes equations,
and to the use of spectral element methods.

In the numerical experiments, the approximation is done in PN − PN−2

compatible velocity-pressure discrete spaces. That is, in each element we
approximate the velocity by a N -degree Lagrange polynomial based on Gauss-
Lobatto-Legendre (GLL) nodes in each spatial coordinate, and the pressure by
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(N − 2)-degree Lagrange polynomial based on Gauss-Legendre (GL) nodes. The
discrete spaces are spanned by tensor product polynomial basis functions. A
consequence of this choice of the spatial discretization is that the grid for the
pressure does not include boundary nodes (there are no boundary conditions for the
pressure). We remark that this is not the only viable choice of spatial discretization
for our time-integration schemes.

3.1. Computing the exponentials. The exponential exp(hΠB−1C(w)) · g is the
solution of the semidiscretized equation

Bv̇ = C(w) v +DT z,(13)

Dv = 0,(14)

on the time interval [0, h].
To approximate each of the exponentials exp(hΠB−1C(w))·g we use the following

approach: we consider

(15) exp(hΠB−1C(w)) · g = Π exp(hB−1C(w)) · g + Eqh · g +O(hq+1),

where exp(hB−1C(w)) · g = I(g)(Φwh (Γ)) and

(16) Eqh :=

q∑
k=2

hk

k!
((ΠB−1C)k −Π(B−1C)k).

For methods of order up to 2, it suffices to use the approximation

(17) exp(hΠB−1C(w)) · g = Π I(g)(Φwh (Γ)) +O(h2).

However for higher order methods, in general, values of q ≥ 2 will be required for
the correction operator (16).

Remark 1. We observe from numerical tests that the more terms we include in
the correction operator Eqh defined in (16) the greater the accuracy of the methods.
Nevertheless, only a few terms are required to achieve a desired order of convergence.
For example, we observed that DIRK-CF3 methods constructed from the Butcher
tableaus in Table 3, showed up to third order of convergence, even when the
exponentials are approximated simply as in (17) (with no additional correction
term).

Table 3: IMEX3 and DIRK-CF3 coefficients.

γ = (3 +
√

3 )/6

ai,j ≡

0 0
γ 0 γ

1− γ 0 1− 2γ γ

0 1
2

1
2

âi,j ≡

0
γ γ

1− γ γ − 1 2(1− γ)

0 1
2

1
2

αki,1 = âi,k, i = 1, . . . , s,

αks+1,1 =
[
x1, x2, (3x1 + 3x2 − 6c2x2 − 1)/(6c3 − 3)

]
,

αks+1,2 =
[
x2,

1
2 − x2, (6c3 − 6x1 − 6x2 + 12c2x2 − 1)/(12c3 − 6)

]
,

where c1 = 0, c2 = γ, c3 = 1− γ, x1 = 1/2, x2 = 1/3.
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3.2. Pressure-splitting scheme. This scheme is used to obtain a cost efficient
computation of solutions of discrete linear Stokes systems (see e.g.,[18]).

The IMEX and DIRK-CF methods described in sections 2.2 and 2.1, give rise
to linear Stokes systems of the form

(18)

{
HYi −DTZi = Bfi

DYi = gi

at each stage i, where H = 1
ai,ih

B −A, while fi, gi incorporate the vector fields at

earlier stage values Yj(for j < i) and the contributions at boundary nodes (at stage
i).

For a method of order 1 or 2, the pressure-splitting scheme can be carried out
in the following steps:2

Step 1. HŶi −DT zn = Bfi
Step 2. DB−1DT∆zi = − 1

ai,ih
(DŶi − gi)

Step 3. Yi = Ŷi + ai,ihB
−1DT∆zi, Zi = zn + ∆zi.

The first step is an explicit approximation of the stage value of the velocity using the
initial pressure zn. This approximation is not divergence-free. Steps 2 and 3 are thus
the projection steps which enforce the algebraic constrain and correct the velocity
and pressure. Note that this approximation introduces a truncation error of order
O(h3), and is thus sufficient for methods of order up to 2 (see e.g.[18]). Solving
(18) directly would lead to solving linear equations with the operator DH−1DT for
the Zi. However, the cost of inverting DH−1DT is much higher than for inverting
DB−1DT in Step 2, since B is usually diagonal or tridiagonal and easier to invert
than H (which is usually less sparse). This explains the main advantage for using
the pressure-splitting schemes in the numerical computations. We have exploited
this advantage in the numerical experiments presented in sections 4.3 and 4.4.

The matrix H is a discrete Helmholtz operator and is symmetric positive-definite
(SPD); the mass matrix B is diagonal and SPD, and thus easy to invert. We use
conjugate gradient methods for H−1, with B−1 taken as preconditioner. The entire
system (18) forms a symmetric saddle system, which has a unique solution for Yi
provided D is of full rank. The choice of spatial discretization method guarantees
this requirement. The system can be solved by a Schur-complement approach (or
block LU-factorization) and the pressure-splitting scheme.

Finally, we remark that the use of the pressure splitting scheme with our methods
leads to overall approaches which can be regarded as a conventional projection
schemes in the sense of [24].

4. Numerical experiments

For the numerical experiments we shall employ a spectral element method (SEM)
based on the standard Galerkin weak formulation as detailed out in [19]. See section
3. We use a rectangular domain consisting of Ne = Nx × Ny uniform rectangular
elements. The resulting discrete system has the form (8) or (29) (see section 2). The
semi-Lagrangian schemes associated to all the DIRK-CF methods in this section
are achieved by tracing characteristics and interpolating as in [22]. The fourth order
explicit RK method is used for approximating the paths of characteristic.

4.1. Temporal order tests for the IMEX methods. We investigate numer-
ically the temporal order of convergence of the IMEX methods (contructed from
Table 1 and Table 2) following the algorithm described in section 2.2.

2Extension to higher order methods is straightforward (See [30] and references therein).
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In the first example we consider the Taylor vortex problem with exact solution
given by

(19)


u1(x, t) = − cos(πx1) sin(πx2) exp(−2π2t/Re),

u2(x, t) = sin(πx1) cos(πx2) exp(−2π2t/Re),

p(x, t) = −1

4
[cos(2πx1) + cos(2πx2)] exp(−4π2t/Re),

where Re = 1/ν is the Reynolds number, and u := (u1, u2), x := (x1, x2). The
boundary condition is doubly-periodic on the domain x1, x2 ∈ [−1, 1], and we
choose Re = 2π2. The initial conditions are determined from the exact solution
(19). For the spatial discretization we use a spectral method of high order N = 12,
with Ne = 4 elements, and the time integration is done up to time T = 1. For each
time-step h = T/2k, k = 1, . . . , 9, the global error between the numerical solution
and the exact PDE solution (at time T ) are measured in the H1− and L2-norms3

respectively, for the velocity and pressure. These are illustrated in log-log plots of
the errors against the time-steps. The results for both the IMEX2L and IMEX3L
show temporal convergence of order 2 and 3 respectively (see Figure 1). See also
Table 4. We notice that the measured global errors decrease as we decrease the
time step. However as the time step gets smaller, the fixed spatial error becomes
dominant over the temporal error, and no further decrease in global error can be
observed. This is particularly the case for the pressure error of the third order
method. The spatial approximation space for the pressure is of lower order than
the approximation space for the velocity (see the first paragraph of Section 4).

4.2. Temporal order tests for the DIRK-CF methods. Using the IMEX2L
and IMEX3L methods, we construct two DIRK-CF methods, namely, DIRK-CF2L
and DIRK-CF3L, of classical orders 2 and 3 respectively. Both DIRK-CF methods
are applied to (8) following the algorithm discussed in section 2.1. To approximate
the exponentials, we use a semi-Lagrangian approach coupled with a high order
approximation based on (15). More precisely, we use Eqh (with q = 3) for the
DIRK-CF3L method, and (17) for DIRK-CF2L. In the case of DIRK-CF3L, larger
time steps required higher values of q > 3 in order to achieve convergence (that is,
q = 3 did not suffice). The exponential on the right hand side of (15) is accurately
computed using semi-Lagrangian methods for pure convection problems.

Using the same test example as for section 4.1, we observe the temporal order
of convergence 2 and 3, in both the velocity and pressure (see Figure 1). See also
Table 4.

In addition, to show the impact of the correction operator Eqh on the accuracy
of the DIRK-CF methods, we repeat the numerical test for DIRK-CF2L, choosing
this time q = 2. Figure 2 clearly show the improvement in accuracy.

To test the alternative semi-Lagrangian algorithm discussed in section A.5, we
apply the second and third order DIRK-CF methods on the test problem by [23]
with exact solution given by

(20)


u1(x, t) = π sin(2π x2) sin2(π x1) sin(t),

u2(x, t) = −π sin(2π x1) sin2(π x2) sin(t),

p(x, t) = cos(π x1) sin(π x2) sin(t),

for x1, x2 ∈ [0, 1] and t ∈ [0, T ], with T = 1. A corresponding forcing term f is added
to the momentum equations (1) so that (20) is the exact solution. In this test case
we have used Re = 100. Meanwhile (20) is used to prescribe the initial data and
boundary conditions (homogeneous Dirichlet on the entire boundary). The errors

3See A.2 for the definitions of these norms.
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(a) velocity error (H1) (b) velocity error (H1)

(c) pressure error (L2) (d) pressure error (L2)

Figure 1: Temporal convergence of IMEX2L, IMEX3L, DIRK-CF2L and DIRK-CF3L
methods. Test problem: Taylor vortex (19), with Re = 2π2, Ω = [−1, 1]2 and doubly-
periodic bc. Discretization parameters: N = 12, Ne = 4, Nx = Ny = 2, h = T/2k,
k = 1, . . . , 9, T = 1.

are all measured in the L2-norm. We observe temporal order of convergence 2 and
3, in both the velocity and pressure (see Figure 3). We rename the corresponding
DIRK-CF methods by DIRK-CF2L* and DIRK-CF3L* respectively.

In the subsequent sections 4.3 and 4.4, we present a set of numerical experiments
that illustrate the potential of the semi-Lagragian exponential integrators [7] for
the treatment of convection-dominated problems. Two examples involving the
incompressible Navier–Stokes models at high Reynolds numbers are considered.
These examples are the shear-layer roll up problem in [3, 17, 19], and the 2D
lid-driven cavity problem (see [20, 4] and references therein). The second order
semi-Lagrangian DIRK-CF2L method (named SL2L in [7]) is used in each of these
experiments. The pressure-splitting technique [18] (discussed in section 3.2) is
applied to solve the discrete linear Stokes system that arises at each stage of the
DIRK-CF method. The results reported in both sections 4.3 and 4.4 indicate that
the semi-Lagrangian exponential integrators permit the use of large time-steps and
Courant numbers. In both test cases the Courant number is defined following [21,
sect.5.2] as

Cr = max

(
U∆t

∆s

)
,
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Table 4: Temporal convergence, obtained with constant time steps h = T/2k, where
k = 1, . . . , 9, T = 1. Test problem: Taylor vortex (19).

(a) Approximation errors in the velocity, measured in the H1-norm.

k IMEX2L IMEX3L DIRK-CF2L DIRK-CF3L

1 1.2418e-02 2.5291e-03 2.2102e-01 1.8398e+01
2 4.9719e-03 3.4250e-04 5.5991e-02 2.4196e-01
3 7.3930e-04 4.4798e-05 1.3504e-02 2.3406e-03
4 1.8365e-04 5.7352e-06 3.3104e-03 7.2051e-05
5 4.5775e-05 7.2573e-07 8.1987e-04 9.0946e-06
6 1.1427e-05 9.1284e-08 2.0405e-04 1.1434e-06
7 2.8545e-06 1.1445e-08 5.0903e-05 1.4337e-07
8 7.1282e-07 1.3767e-09 1.2714e-05 1.7974e-08
9 1.7843e-07 2.4201e-10 3.1763e-06 2.2809e-09

(b) Approximation errors in the pressure, measured in the L2-norm.

k IMEX2L IMEX3L DIRK-CF2L DIRK-CF3L

1 1.4463e-03 2.9583e-04 2.8097e-02 9.5741e-01
2 5.3052e-04 4.0100e-05 6.7856e-03 6.1495e-03
3 8.6544e-05 5.2460e-06 1.6080e-03 5.8863e-05
4 2.1504e-05 6.7327e-07 3.9240e-04 8.4854e-06
5 5.3603e-06 9.7331e-08 9.7070e-05 1.0720e-06
6 1.3389e-06 4.8632e-08 2.4152e-05 1.4275e-07
7 3.3761e-07 4.7462e-08 6.0246e-06 5.0355e-08
8 9.6013e-08 4.7443e-08 1.5054e-06 4.7489e-08
9 5.1837e-08 4.7443e-08 3.7890e-07 4.7443e-08

(c) Convergence rates.a

k IMEX2L IMEX3L DIRK-CF2L DIRK-CF3L
vel. press. vel. press. vel. press. vel. press.

1-2 1.3206 1.4469 2.8844 2.8831 1.9809 1.4469 6.2486 2.8831
2-3 2.7496 2.6159 2.9346 2.9343 2.0518 2.6159 6.6918 2.9343
3-4 2.0092 2.0088 2.9655 2.9620 2.0283 2.0088 5.0217 2.9620
4-5 2.0043 2.0042 2.9823 2.7902 2.0136 2.0042 2.9859 2.7902
5-6 2.0021 2.0013 2.9910 1.0010 2.0064 2.0013 2.9917 1.0010
6-7 2.0011 1.9876 2.9957 0.0352 2.0031 1.9876 2.9955 0.0352
7-8 2.0016 1.8140 3.0554 0.0006 2.0013 1.8140 2.9958 0.0006
8-9 1.9982 0.8893 2.5081 0.0000 2.0010 0.8893 2.9782 0.0000

aThe approximate temporal convergence rates are obtained by computing the linear slopes between

any two adjacent time steps in the log-log plot of the global errors versus time steps.

where U =
√

uTmum is the characteristic speed, and ∆s =
√

∆x2 + ∆y2 is the grid
spacing. Here um denote the velocities at the midpoint of adjacent nodes.

4.3. Lid-driven cavity flow in 2D. We consider the 2D lid-driven cavity problem
on a domain (x, y) ∈ Ω := [0, 1]2 with initial data u = (u, v) = (0, 0) and constant
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(a) velocity error (H1) (b) pressure error (L2)

Figure 2: Temporal convergence of DIRK-CF2L method without correction (dashed line
plot) and with correction Eqh (solid line plot). Test problem: Taylor vortex (19), with

Re = 2π2, Ω = [−1, 1]2 and doubly-periodic bc. Discretization parameters: N = 12,
Ne = 4, Nx = Ny = 2, h = T/2k, k = 1, . . . , 9, T = 1.
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(b) pressure error

Figure 3: Temporal order of convergence. Test problem (20); Re = 100, T = 1, N =
8, Ne = 16, Nx = Ny = 4, Ω = [0, 1]2, h = h = T/2k, k = 5, . . . , 9. bc: homogeneous
Dirichlet. (a) velocity error (L2): DIRK-CF2L* (slope = 2.1268), DIRK-CF3L* (slope
= 2.8632); (b) pressure error (L2): DIRK-CF2L* (slope = 2.1296), DIRK-CF3L* (slope
= 3.1628).

Dirichlet boundary conditions

(21) u =

{
1 on upper portion of ∂Ω

0 elsewhere on ∂Ω
, v = 0 on ∂Ω.

We demonstrate the performance of the second order DIRK-CF method (SL2L,
by the nomenclature of [7]). Spectral element method on a unit square domain
[0, 1]2 with Ne = 10 × 10 uniform rectangular elements and polynomial degree
N = 10 is used (see [37]). A constant time-step, h = 0.03, is used, corresponding
to a Courant number of Cr ≈ 9.0911. The time integration is carried out until
the solution attains steady-state. The results in Figure 4 show the evolution of the
center velocity (at Re = 400) up to steady state. It can be observed from this figure
that steady state is attained at time t ≈ 40. At steady state the relative error (L2-
norm), between the velocity at a given time (tn+1) relative to the velocity at the
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preceding time (tn), has decreased to O(10−8). The results also match with those
of [37]. In Figure 5a-b we plot the streamline contours of the stream functions,
choosing contour levels as in [4]. Meanwhile in Figure 5c-d plots of the centerline
velocities (continuous line, for Re = 400, dashed line, for Re = 3200) show a good
match with those reported in [20] (plotted in red circles).

4.4. Shear-layer roll up problem. We now consider the shear-layer problem
[3, 17, 19] on a domain Ω := [0, 1]2 with initial data u = (u, v) given by

(22) u =

{
tanh(ρ(y − 0.25)) for y ≤ 0.5

tanh(ρ(0.75− y)) for y > 0.5
, v = 0.05 sin(2π x)

which corresponds to a layer of thickness O(1/ρ). Doubly-periodic boundary
conditions are applied.

In Figure 6 we demonstrate the performance of various second order methods
including two DIRK-CF methods (SL2 & SL2L, by the nomenclature of [7]),
and also a second order semi-Lagrangian multistep exponential integrator (named
BDF2-CF2, in [9]). The results are obtained at time t = 1.5, using a filter-based
spectral element method (see [19]) with Ne = 16 × 16 elements and polynomial
degree N = 8. The specified Reynolds number is Re = 105, while ρ = 30 and
time-steps used are h = 0.002, 0.005, 0.01 corresponding to a Courant numbers
of Cr ≈ 0.6393, 1.5981, 3.1963 respectively. The filtering parameter used in each
experiment is α = 0.3 (see for example [19]). However, the time-step and Courant
number are up to about 10 times larger than that report in [19]. The initial values
for the BDF2-CF are computed accurately using the second order DIRK-CF (SL2L)
with smaller steps. The results are qualitatively comparable with those in [17, 19].

In Figure 7 we demonstrate the performance of the second order DIRK-CF
method (SL2L). The results are obtained at times t = 0.8, 1.0, 1.2 and 1.5
respectively, using spectral element method (without filtering) with Ne = 16 × 16
elements and polynomial degree N = 16. The specified Reynolds number is
Re = 105, while ρ = 30. The time-step used is h = 0.01, corresponding to a Courant
number of Cr ≈ 11.9250. This time-step is 10 times larger than that reported in
[19]. Again the results are well comparable to those in [17, 19].

Finally in Figure 8 we demonstrate the performance of the second order DIRK-
CF method (SL2L) for the “thin” shear-layer roll up problem, so defined for ρ = 100.
The results are obtained at times t = 0.8, 1.0, 1.2 and 1.5 respectively, using spectral
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(b) v at center

Figure 4: Results of the second order semi-Lagrangian DIRK-CF method (SL2L) for the
2D lid-driven cavity problem. We have (x, y) ∈ [0, 1]2; Ne = 10 × 10, N = 10, h = 0.03,
Cr = 9.0911, Re = 400. (a) Evolution of the horizontal velocity component u at the
domain center (x = 0.5, y = 0.5): t ∈ (0, 112.08), (b) Evolution of the vertical velocity
component v at the domain center (x = 0.5, y = 0.5): t ∈ (0, 112.08).
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(c) center line velocity u
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(d) center line velocity v

Figure 5: Results of a second order DIRK-CF method for the 2D lid-driven cavity
problem. We have (x, y) ∈ [0, 1]2; Ne = 10× 10, N = 10, h = 0.03, Cr = 9.0911. In blue
continuous line (our numerical solution); in red circles (◦, reference solution from [20]).
(a) Streamline contours of the solution for Re = 400, (b) Streamline contours of the
solution for Re = 3200, (c) Horizontal velocity component u along the vertical center line
(x = 0.5), (d) Vertical velocity component v along the horizontal center line (y = 0.5).

element method (without filtering) with Ne = 16 × 16 elements and polynomial
degree N = 16. The specified Reynolds number is Re = 4×104. The time-step used
is h = 0.01, corresponding to a Courant number of Cr ≈ 11.9250. The results are
well comparable to those in [17, 19], except that we used 10 times the step size in
time.

5. Conclusion

In this paper we have presented a class of semi-Lagrangian methods for the
incompressible Navier–Stokes equations of high order in time to be used with high
order space discretizations, such as for example spectral element methods. We
have proposed a strategy to maintain the high temporal order also in the presence
of constraints. As a by product, we have also derived projection methods based on
IMEX Runge–Kutta schemes which have been used for comparison. The methods
have been implemented and tested, and have been shown the predicted order of
convergence in the case of periodic and no-slip boundary conditions. For convection-
dominated test problems, in 2D with high Reynolds number, the semi-Lagrangian
methods showed improved performance compared to their Eulerian counterparts,
allowing for the use of considerably larger time-steps. So far methods up to order
three have been implemented. Order four methods where obtained in [8], and will
be implemented and tested in future work.
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(d) BDF2CF: h = 0.005
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(f) SL2L: h = 0.01

Figure 6: Results of second order DIRK-CF methods (SL2 & SL2L) and BDF2-CF
method for the shear-layer rollup problem. We have (x, y) ∈ [0, 1]2; Ne = 16 × 16 =
256, N = 8. (filtering, α = 0.3), ρ = 30, Re = 105. Vorticity contours (-70 to 70 by 15) of
the solution at time t = 1.5. The corresponding Courant numbers are (a) Cr = 0.6393,
(b) Cr = 0.6393, (c) Cr = 0.6393, (d) Cr = 1.5981, (e) Cr = 3.1963, (f) Cr = 3.1963.
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Appendix

A.1. IMEX and DIRK-CF methods for convection-diffusion equations.
A DIRK-CF method is a IMEX Runge–Kutta method of exponential type. It
is defined by two Runge–Kutta tableaus one of implicit type to treat the linear
diffusion and one of explicit type to treat the nonlinear convection by composition
of exponentials. These methods have a Runge–Kutta like format with two sets of
parameters:

A = {ai,j}i,j=1,...,s, b = [b1, . . . , bs], c = [c1, . . . , cs]

and

αji,l, βil , i = 1, . . . s, j = 1, . . . , s, l = 1, . . . , J, ĉ = [ĉ1, . . . , ĉs].

When applied to the convection-diffusion problem

U̇(t) + C(U(t))U(t) = AU(t),

with linear diffusion and nonlinear convection the DIRK-CF methods have the
following format:

for i=1:s do

Ui = ϕiUn + h
s∑
j=1

ϕi,j(ai,jAUj)

ϕi = exp(h
∑
k α

k
i,JC(Uk)) · · · exp(h

∑
k α

k
i,1C(Uk))
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(d) t = 1.5

Figure 7: Results of second order DIRK-CF method (SL2L) for the shear-layer rollup
problem. We have (x, y) ∈ [0, 1]2; Ne = 16 × 16 = 256, N = 16, h = 0.01, Cr =
11.9250, ρ = 30, Re = 105. Vorticity contours (-70 to 70 by 15) of the solution at time (a)
t = 0.8, (b) t = 1.0, (c) t = 1.2, (d) t = 1.5.

ϕi,j := ϕiϕ
−1
j

end for

Un+1 = ϕs+1Un + h
∑s
i=1 biϕs+1,iAUi

ϕs+1 = exp(h
∑
k β

k
JC(Uk)) · · · exp(h

∑
k β

k
1C(Uk))

ϕs+1,i := ϕs+1ϕ
−1
i .

The methods are associated to the two Butcher tableaus,

(23)
c A

b
,

ĉ Â
b̂
,

where we have defined

(24) âi,j :=

J∑
l=1

αji,l, b̂j :=

J∑
l=1

βjl ,

for i = 1, . . . , s, Â = {âi,j}i,j=1,...,s and b̂ = [b̂1, . . . , b̂s]. The coefficients of the first
tableau are used for the linear vector field Ay while the coefficients of the second
tableau, split up in the sums (24), are used for the nonlinear vector field C(y)y. We
choose the first tableau to be a DIRK (diagonally implicit Runge–Kutta) method,
this means we are solving only one linear system per stage. The tableaus (23) are
typically chosen so that they define a classical IMEX method, which we call the
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Figure 8: Results of second order DIRK-CF method (SL2L) for the “thin” shear-layer
rollup problem. We have (x, y) ∈ [0, 1]2; Ne = 16 × 16 = 256, N = 16, h = 0.01, Cr =
11.9250. (no filtering), ρ = 100, Re = 40, 000. Vorticity contours (-36 to 36 by 13) of the
solution at time (a) t = 0, (b) t = 0.8, (c) t = 1.0, (d) t = 1.2.

underlying IMEX method, see [1] and [7] for more details. This IMEX method has
the format

for i = 1 : s do

Ui = Un + h
s∑
j=1

(âi,jC(Uj)Uj + ai,jAUj)

end for

Un+1 = Un + h
∑s
i=1(b̂iC(Ui)Ui + biAUi).

The order theory for classical IMEX methods reduces to the theory of partitioned
Runge–Kutta methods, [25]. Given an implicit and an explicit method of order κ
they must satisfy extra compatibility conditions in order for the corresponding
IMEX method to have order κ. The extension of this theory to the DIRK-CF
methods has been discussed in [7] and [8].

A.2. Definition of norms. For a square-integrable (respectively H1) function u :
Ω → Rn, where Ω ⊂ Rm is bounded and connected, the L2-norm (‖ · ‖L2(Ω)) and
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the H1-norm (‖ · ‖H1(Ω)) are defined by

‖u‖L2(Ω) :=

(
n∑
i=1

∫
Ω

u2
i dΩ

)1/2

,(25)

‖u‖H1(Ω) :=

(
n∑
i=1

∫
Ω

(u2
i +∇ui · ∇ui) dΩ

)1/2

.(26)

In the spectral element approximations the continuous integrals of numerical
solutions are accurately computed using Gauss quadrature rules.

A.3. Boundary conditions and discrete stiffness summation. For the sake of
completeness, we illustrate the strategy for implementing the boundary conditions
in the context of spectral element methods. We use the spectral element notion
known as the direct-stiffness summation (DSS), see for instance [13].

Suppose we have to impose periodic or homogeneous Dirichlet boundary
conditions, and that the variable ȳ represents the values of the numerical solution at
all discretization nodes in the computational domain (including boundary nodes).
The variable y represents the restriction of ȳ to the minimum degrees of freedom
k required to define the numerical solution, while ȳ contains typically redundant
components. Thus if the number of components of ȳ is N , then k < N . We denote
by Q a prolongation or “scatter” operator such that ȳ = Qy. Associated to Q is a
restriction or “gather” operator denoted by QT . The operator Q is a N×k constant
matrix of rank k ≤ N . The variable ȳ is referred to as the local variable, while
y is the global variable. The DSS operator QQT ensures inter-element continuity
and the fulfillment of the appropriate boundary conditions. So, for example, if the
boundary conditions are periodic, given a vector ȳ in the solution space or in the
space of vector fields, QQT ȳ is periodic.

The spectral element discretization of the Navier–Stokes equations yields the
discrete system

B̄ ˙̄y = Āȳ + C̄(ȳ)ȳ − D̄T z(27)

D̄ȳ = 0,(28)

where ȳ is assumed to be in the range of Q (i.e. ȳ = Qy). The relation between
the local and global operators is B = QT B̄ Q, A = QT ĀQ, C(y) = QT C̄(Qy)Q
and D = D̄ Q.

Applying on both sides of (27) the DSS operator QQT we obtain

Σ ˙̄y = QQT Āȳ +QQT C̄(ȳ)ȳ −QQT D̄T z,(29)

D̄ȳ = 0.(30)

The matrix Σ = QQT B̄ is N × N and invertible on the range of Q. In practice
the integration methods are reformulated for the local variable ȳ and the local
operators.

Indeed, in the computations the full data for the local variable ȳ is stored, since
all computations involving the operators B−1,H−1 and (DB−1DT )−1 must be done
within the range of Q. These operators are symmetric and positive-definite, and so
they can be inverted using a fast iterative solver such as the conjugate gradient
method. For example the problem y = H−1f is reformulated as follows: Find ȳ
such that

(31)

{
QQT H̄ȳ = Qf

Qy = ȳ
,

where H̄ = 1
ai,ih

B̄ − Ā.
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We refer to [18] for further details on DSS and boundary conditions. In the
experiments reported in this paper, no special treatment has been taken to enforce
pressure boundary conditions, since the discrete pressure space is not explicitly
defined on discretization nodes on the boundary.

A.4. Reformulation of the integration methods in local variables. In this
section we briefly discuss the correct implementation of the methods of section 2
as applied to (29). The purpose of reporting here these implementation details is
to explicitly highlight when care has to be taken in the implementation. See also
the remark below.

We first perform the elimination of the discrete pressure Lagrangian multiplier
from (29) in analogy to (9). We use

H̄ = D̄T (DB−1D)−1DB−1QT ,

and we get a system of ODEs for the variable ȳ:

Σ ˙̄y = QQT Ā ȳ +QQT C̄(ȳ) ȳ −QQT H̄(Ā ȳ + C̄(ȳ) ȳ),(32)

Introducing the projection Π̄ = I − H̄ allows us to write the following projected
system of ODEs

(33) Σ ˙̄y = QQT Π̄Āȳ +QQT Π̄C̄(ȳ)ȳ.

Denote Π̃ = QΠB−1QT . Applying the method of section 2.2 to the ordinary
differential equation (33) split in its projected convection and projected diffusion
terms, and then rewriting it as a method for the differential-algebraic equation (29)
we obtain

for i = 1 : s do(
Σ− hai,iQQT Ā

)
Ȳi + hai,iQQ

T D̄TZi = Σ ȳn + hΣ Π̃
i−1∑
j=1

(
ai,jĀ+ C̄(Ȳj)

)
Ȳj

D̄Ȳi = 0

end for

ȳn+1 = Ȳs,

under the assumption ȳn = Qyn. Since ȳn+1 = Ȳs, the approximation of the velocity
satisfies the discrete incompressibility constraint, D̄ȳn+1 = 0.

Remark 2. We observe that this is not equivalent to what we obtain applying
directly the IMEX method to (29), which written in ODE form is

Σ ˙̄y = QQT Āȳ +QQT C̄(ȳ)ȳ −QQT H̄(Āy + C̄(ȳ)ȳ).

In fact if we apply the IMEX method to (29) we need to treat the term QQT D̄T z
either with the implicit method or with the explicit method, while in the approach
outlined in this section we treated QQT H̄C̄(ȳ)ȳ explicitly and QQT H̄Āȳ implicitly,
see also [29].

Analogously, the method of section 2.1 applied to for (33) becomes

for i = 1 : s+ 1 do

(Σ− hai,iQQT Ā)Ȳi + hai,iQQT D̄TZi = ΣQϕiyn + h
i−1∑
j=1

ai,jΣQϕiϕ
−1
j ĀȲj

D̄Ȳi = 0
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Y γi :=
∑
k α

k
i,γYk for γ = 1, . . . , J

ϕi = exp(hΠB−1C(Y Ji )) · · · exp(hΠB−1C(Y 1
i ))

end for

ȳn+1 = Ȳs+1.

The method of section A.5 may be reformulated in a similar way.

A.5. Projected DIRK-CF methods for Navier–Stokes equations. In this
section we present an alternative semi-Lagrangian approach compared to the
previous section 2.1. Also in this case the integration methods are a variant of
the exponential integrators methods of [7].

We consider (11), and rearrange the terms in the form

(34) ẏ = B−1Ay −HB−1(A+ C(y)) y +B−1C(y) y.

This is a differential equation on the subspace of discrete divergence-free vector
fields, i.e. Dy = 0 for all t. To approximate the solution of this equation, we consider
a projection method of the type reviewed in [25, IV.4], see also [14, Sect.5.3.3]
and [26, Sect.VII.2]. The idea is to use a one-step integrator φh for advancing
the numerical solution of (34) by one step, and an orthogonal projection on the
subspace of divergence-free vector fields applying Π at the end of each step. We
choose φh to be the following integration method, in which the coefficients of both
the DIRK-CF method and the underlying IMEX method are used:

• the term (I −H)B−1Ay is treated implicitly with the DIRK coefficients,
• the term HB−1C(y) y is treated explicitly with the coefficients of the

underlying explicit method,
• the term B−1C(y) y is treated with the coefficients of the corresponding

CF method.

The projection Π is used to guarantee divergence-free numerical approximations,
i.e. Dyn+1 = 0. We obtain

for i = 1 : s+ 1 do

Yi = ϕiyn+h
i−1∑
j=1

ϕiϕ
−1
j

(
ai,jΠB

−1AYj − âi,jHB−1C(Yj)Yj
)

+hai,iΠB
−1AYi

Y γi :=
∑
k α

k
i,γYk for γ = 1, . . . , J

ϕi = exp(hB−1C(Y Ji )) · · · exp(hB−1C(Y 1
i ))

end for

yn+1 = ΠYs+1,

where

as+1,j = bj , âs+1,j = b̂j , α
k
s+1,γ = βkγ , j, k = 1, . . . , s, as+1,s+1 = 0, âs+1,s+1 = 0.

Since Π is an orthogonal projection, the order of the method is not affected
by the use of the projection in the update step4. This approach requires only

4The projection does not need to be orthogonal, but should be guaranteed not to compromise the
order of the method, an orthogonal projection will have this property. The target of the orthogonal

projection map on the discrete divergence-free subspace is the element of shortest distance to the
point which is projected. Since yn+1 = ΠYs and ‖y(tn+1)− Ys‖ = O(hr+1), where r is the order
of the integration method, then

‖y(tn+1)− yn+1‖ ≤ ‖y(tn+1)− Ys‖+ ‖Ys − yn+1‖ = O(hr+1),
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exponentials of pure convection problems, this will ease the implementation of
the method as a semi-Lagrangian method, because now we simply use the semi-
Lagrangian approximation

exp
(
hB−1C

(
w
))
g = I(g)(Φwh (Γ)).

Observe that at each stage Yi does not necessarily satisfy DYi = 0.
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