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Abstract We propose a third-order WENO reconstruction which satisfies the sign property, required for
constructing high resolution entropy stable finite difference scheme for conservation laws. The reconstruction
technique, which is termed as SP-WENO, is endowed with additional properties making it a more robust
option compared to ENO schemes of the same order. The performance of the proposed reconstruction is
demonstrated via a series of numerical experiments for linear and nonlinear scalar conservation laws. The
scheme is easily extended to multi-dimensional conservation laws.

1 Introduction

High-resolution numerical methods have been of key importance in the past few decades. Hyperbolic system
of conservation laws are among the class of problems that require such efficient and accurate schemes meth-
ods. Conservative finite difference (finite volume) methods, in which the computational domain is divided
into control volumes and a discrete version of the conservation law imposed on each control volume, are
very popular. In these methods, point values (cell-averages) in each control volume are evolved in time
using suitable time integration techniques, such as strong stability preserving Runge-Kutta methods [6].
Higher-order methods are obtained by suitably reconstructing the solution in each control volume. Recon-
struction using total variation diminishing (TVD) limiters have good non-linear stability properties, but
can lead to clipping of smooth extrema [14,15]. Essentially non-oscillatory (ENO) reconstruction methods
were first introduced by Harten et al. [7]. The main idea is to choose the smoothest stencil among a number
of candidate stencils, to reconstruct the solution at the cell-interfaces to be used in the numerical flux. ENO
schemes have been quite successful in practice, but can show deterioration in accuracy due to selection of
unstable stencils [16].

Weighted ENO (WENO) schemes [12,9] were proposed as an improvement over ENO schemes. The basic
idea of WENO is to take a convex combination of all k polynomials involved in the k-th order ENO (ENO-k)
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approximation at an interface, and obtain a (2k − 1)-th order approximation of the interface value. The
weights are chosen so as to give the least weight to stencils containing discontinuities. It has been shown in
[17] that WENO schemes do not suffer from accuracy deterioration faced by ENO schemes.

Scalar conservation laws have been studied and analysed in great detail. It is known that the solutions
can develop discontinuities, despite having smooth initial data [3]. Thus, the solutions must be interpreted
in a weak (distributional) sense. Additional conditions known as entropy conditions need to be imposed to
single out a physically relevant solutions. Scalar conservation laws have been shown to have unique entropy
weak solutions [10]. Hence, it becomes important to construct numerical methods whose solutions converge
to the entropy solution.

For scalar conservation laws in one dimension, monotone schemes have been shown to be total vari-
ation diminishing (TVD) and satisfy the entropy condition [2]. E-schemes have been designed in [13] to
preserve a discrete version of the entropy condition. However, E-schemes — and in particular monotone
schemes — are at most first-order accurate. Second-order schemes using flux-limiters were introduced in
[18]. Tadmor [20] proposed a new method of constructing entropy stable schemes for conservation laws,
which consists of two components: i) constructing a second-order entropy conservative scheme that preserves
entropy locally, ii) adding artificial dissipation to get entropy stability. Higher-order entropy conservative
finite difference schemes have been constructed in [11]. The design of arbitrary-high order entropy stable
schemes was proposed recently by Fjordholm et al. [4]. These so-called TeCNO schemes combine high-order
entropy conservative fluxes with high-order numerical diffusion operators, based on piecewise polynomial
reconstruction. The reconstructions have to satisfy a sign property at each cell interface to ensure entropy
stability. This means that the jump in the reconstructed values at every cell interface must have the same
sign as the jump in the corresponding cell values. It was shown in [5] that the standard ENO reconstruction
procedure satisfies the sign property.

To the best of our knowledge, the second order limited TVD reconstruction using the minmod limiter
and the ENO method are the only reconstruction methods that satisfy the crucial sign property [4]. Existing
WENO schemes do not satisfy the sign-property. The aim of the current paper is to construct a third-order
WENO reconstruction method which satisfies the sign-property. This leads to a third-order accurate entropy
stable scheme when used in conjunction with the TeCNO schemes.

The rest of the paper is organized as follows. In Section 2 we briefly introduce the entropy framework
for scalar conservation laws. Section 3 highlights the existing work on high-order entropy conservative and
entropy stable schemes. The properties of a third-order sign preserving WENO scheme are discussed in
Section 4, with explicit WENO weights constructed in Section 5. We show that the proposed reconstruction
method is stable in the sense that the reconstructed jumps can be at most twice as large as the original
values. Several numerical results are presented for one-dimensional linear advection and the inviscid Burgers
equation in Section 6. We end with concluding remarks in Section 7.

2 Entropy framework

Consider the following Cauchy problem for a scalar conservation law

∂tu+ ∂xf(u) = 0 ∀ (x, t) ∈ R×R+

u(x, 0) = u0(x) ∀ x ∈ R.
(1)

In the above problem, u is the conserved variable with a smooth flux f(u). Assume that (1) is equipped
with a convex entropy function η(u) and an entropy flux q(u) such that q′(u) = η′(u)f ′(u) holds. Multiplying
(1) with the entropy variable v(u) = η′(u), results in an additional conservation law for smooth solutions:

∂tη(u) + ∂xq(u) = 0. (2)



A sign preserving WENO reconstruction method 3

However, for discontinuous solutions, entropy should be dissipated at shocks, and hence one imposes the
entropy condition

∂tη(u) + ∂xq(u) 6 0 (3)

which is understood in the sense of distributions. A weak solution of (1) is called an entropy solution if (3)
holds. Formally integrating (3) in space and ignoring the boundary terms by assuming periodic or no-inflow
boundary conditions, we get

d

dt

∫
R

η(u)dx 6 0 =⇒
∫
R

η(u(x, t))dx 6
∫
R

η(u0(x))dx ∀ t > 0. (4)

As η is convex, the above entropy bound gives rise to an a priori estimate on the solution of (1) in suitable
Lp spaces [3].

For scalar conservation laws, any convex function η(u) can serve as an entropy function, with the corre-
sponding entropy flux chosen as

q(u) =

∫ u

η′(z)f ′(z)dz.

This idea was been exploited to prove stability and uniqueness of entropy solutions of scalar conservation
laws [10].

3 Mesh and finite difference scheme

We discretise the domain using disjoint intervals Ii = [xi−1/2, xi+1/2) of uniform length xi+1/2−xi−1/2 ≡ h. We
use the notation xi to denote the center of the interval Ii. A generic semi-discrete finite difference scheme
for (1) is given by

dui
dt

+
1

h

(
Fi+1/2 − Fi−1/2

)
= 0. (5)

Here, ui(t) = u(xi, t) is the point values of the solution at the cell centre xi, while Fi+1/2(t) = F (ui(t), ui+1(t))
is a consistent and conservative approximation of the flux at the cell interface xi+1/2.

3.1 Entropy conservative schemes

As mentioned in the introduction, we are interested in looking at entropy stable schemes to approximate
(1). Following the approach described by Tadmor [20], we first consider an entropy conservative scheme.

Definition 1 The numerical scheme (5) is said to be entropy conservative if it satisfies the discrete entropy
relation

dη(ui)

dt
+

1

h

(
q∗i+1/2 − q

∗
i−1/2

)
= 0 (6)

where q∗i+1/2 is a consistent numerical entropy flux.

We introduce the following notation:

∆(· )i+1/2 = (· )i+1 − (· )i, (· )i+1/2 =
(· )i+1 + (· )i

2
.

Moreover, we introduce the entropy potential

Ψ(u) := v(u)f(u)− q(u).

The following theorem gives a sufficient condition for constructing entropy conservative fluxes.
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Theorem 1 (Tadmor [19]) The numerical scheme (5) with the flux F ∗i+1/2 = F ∗(ui, ui+1) is entropy conser-

vative if

∆vi+1/2F
∗
i+1/2 = ∆Ψi+1/2. (7)

Specifically, it satisfies (6) with the consistent numerical entropy flux given by

q∗i+1/2 = vi+1/2F
∗
i+1/2 − Ψ i+1/2.

Furthermore, the scheme is second order accurate in space.

For scalar conservation laws and a given entropy function η(u), two-point entropy conservative fluxes are
uniquely determined by

F ∗i+1/2 =
∆Ψi+1/2

∆vi+1/2
.

Example 1 Consider the linear advection equation with flux f(u) = cu, where c is a constant. Choosing
the square entropy η(u) = u2/2 and the corresponding entropy flux as q(u) = cu2/2, we get the entropy
conservative flux

F ∗i+1/2 = c
(ui + ui+1)

2
. (8)

Example 2 Consider the Burgers equation with flux f(u) = u2/2. The square entropy η(u) = u2/2 and the
corresponding entropy flux as q(u) = u3/3 results in the entropy conservative flux

F ∗i+1/2 =

(
u2i + u2i+1 + uiui+1

)
6

. (9)

The entropy conservative schemes described above are only second order accurate [20]. However, the
approach of LeFloch, Mercier and Rhode [11] can be used to used to construct higher order entropy con-
servative fluxes. The basic idea of their approach is to take appropriate linear combinations of existing
second-order accurate entropy conservative fluxes

F ∗,2p
i+1/2

=

p∑
r=1

αpr

r−1∑
s=0

F ∗(ui−s, ui−s+r) (10)

to obtain 2pth-order accurate entropy conservative fluxes. For instance, the fourth-order (p = 2) version of
the entropy conservative flux has the expression

F ∗,4 =
4

3
F ∗(ui, ui+1)− 1

6

(
F ∗(ui−1, ui+1) + F ∗(ui, ui+2)

)
. (11)

Remark 1 Since any convex choice for the entropy function η(u) works for scalar conservation laws, we shall
adhere to the choice η(u) = u2/2 for the remainder of this paper. The case of an arbitrary convex entropy is
in no way more difficult, so this choice is merely for the sake of simplicity of notation. Our choice of entropy
implies that the entropy variable v := η′(u) is identical to the conserved variable u. The variables u and v

will be used interchangeably.
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3.2 Entropy stable schemes

While entropy conservation is the correct notion when dealing with smooth solutions, entropy is dissipated
near discontinuities in accordance to (3). Therefore, we add entropy variable–based numerical dissipation
to the numerical flux in the form

Fi+1/2 = F ∗,2p
i+1/2

− 1

2
ai+1/2∆vi+1/2 (12)

where F ∗,2p
i+1/2

is the 2p-th order accurate entropy conservative flux described above, and ai+1/2 is a non-

negative quantity. Generally, ai+1/2 is taken to be some appropriate approximation of |f ′(u)|. This leads us
to the next lemma concerning entropy stable schemes.

Lemma 1 (Tadmor [19]) The semi-discrete numerical scheme (5) with numerical flux given by (12) satisfies

the discrete entropy inequality
dη(ui)

dt
+

1

h

(
qi+1/2 − qi−1/2

)
6 0 (13)

where the numerical entropy flux is given by

qi+1/2 = q∗i+1/2 −
1

2
vi+1/2ai+1/2∆vi+1/2.

Note that the term ∆vi+1/2 appearing in (12) is O(|∆xi+1/2|). Thus, the scheme (12) is only first-order
accurate, irrespective of the order of the entropy conservative flux used. To obtain a higher order scheme, we
need to appropriately reconstruct the entropy variable (or equivalently, the conserved variable) at the cell
interfaces. Consider the cell interface at xi+1/2 between control volumes Ii and Ii+1, as shown in Figure 1.

i+1i i+2i-1

i + 1/2 i + 3/2i - 1/2 i + 5/2i - 3/2

Fig. 1 Stencil for reconstruction.

Corresponding to this particular cell interface, let vi(x) and vi+1(x) be polynomial reconstructions of
the entropy variable in Ii and Ii+1 respectively. We denote the reconstructed values at the cell interface,
and the difference in the reconstructed states, by

v−i+1/2 = vi(xi+1/2), v+i+1/2 = vi+1(xi+1/2), JvKi+1/2 = v+i+1/2 − v
−
i+1/2. (14)

Replacing the original jump ∆vi+1/2 in (12) by the reconstructed jump JvKi+1/2 would lead to a higher order
accurate scheme. However, the entropy stability of the scheme may be lost in the process. The following
result ensures that the reconstruction does not destroy entropy stability.

Lemma 2 (Fjordholm et al. [4]) For each interface i+ 1/2, if the reconstruction satisfies the sign property

sign(JvKi+1/2) = sign(∆vi+1/2) (15)

then the scheme with the numerical flux

Fi+1/2 = F ∗i+1/2 −
1

2
ai+1/2JvKi+1/2 (16)

is entropy stable.
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It has been shown in [5] that ENO interpolation satisfies the sign property, and has been tested numerically
in [4] to give accurate results. However, to the best knowledge of the authors, other available reconstruction
procedures fail to satisfy this crucial property. In the following sections we present a third-order WENO
reconstruction procedure that satisfies the sign property, while maintaining the desired order of accuracy.

4 A sign preserving WENO-3

The idea of WENO reconstruction is to use a suitable convex combination of all 2k−1 polynomials used in the
k-th order ENO reconstruction at a given interface, and obtain a (2k− 1)-th order accurate reconstruction.
We describe a procedure to choose the weights of the WENO scheme which ensures that the reconstruction
is third-order accurate for smooth function, while satisfying the sign property. Consider the stencil shown
in Figure 1 corresponding to the reconstructions at xi+1/2.

Reconstruction from the left:

We first consider the reconstruction from the left side of the interface xi+1/2. The two stencils for linear
ENO reconstruction from the left are

S0
i = {xi, xi+1}, S1

i = {xi−1, xi}.

The corresponding linear polynomials and their evaluations at xi+1/2 are

p
(0)
i (x) = vi

(x− xi+1)

(xi − xi+1)
+ vi+1

(x− xi)
(xi+1 − xi)

=⇒ v
(0),−
i+1/2

=
vi
2

+
vi+1

2
,

p
(1)
i (x) = vi−1

(x− xi)
(xi−1 − xi)

+ vi
(x− xi−1)

(xi − xi−1)
=⇒ v

(1),−
i+1/2

= −vi−1

2
+

3vi
2
.

Each of the above reconstructions at the interface xi+1/2 are second-order accurate. Weighting each of these
with non-negative values w0,i+1/2 and w1,i+1/2, respectively, we obtain the reconstructed value

v−i+1/2 := w0,i+1/2

(
vi
2

+
vi+1

2

)
+ w1,i+1/2

(
−vi−1

2
+

3vi
2

)
. (17)

The weights must be chosen such that third-order accuracy is achieved, so we require that

v(xi+1/2) +O(h3) = v−i+1/2 = w0,i+1/2

(
vi
2

+
vi+1

2

)
+ w1,i+1/2

(
−vi−1

2
+

3vi
2

)
= w0,i+1/2

(
v(xi+1/2) +

1

8
v′′(xi+1/2)h

2 +O(h3)

)
+ w1,i+1/2

(
v(xi+1/2)−

3

8
v′′(xi+1/2)h

2 +O(h3)

)
.

Comparing the left and right hand sides, we obtain the following constraints on the weights:

w0,i+1/2 + w1,i+1/2 = 1, (18a)

C1 :=
w0,i+1/2

8
−

3w1,i+1/2

8
= O(h). (18b)
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Reconstruction from the right:

We now consider the reconstruction from the right at the interface xi+1/2, which requires the stencils

S̃0 = {xi+1, xi+2}, S̃1 = {xi, xi+1}.

The corresponding polynomial and their evaluations at xi+1/2 are

p̃(0)(x) = vi+1
(x− xi+2)

(xi+1 − xi+2)
+ vi+2

(x− xi+1)

(xi+2 − xi+1)
=⇒ v

(0),+
i+1/2

=
3vi+1

2
− vi+2

2
,

p̃(1)(x) = vi
(x− xi+1)

(xi − xi+1)
+ vi+1

(x− xi)
(xi+1 − xi)

=⇒ v
(1),+
i+1/2

=
vi
2

+
vi+1

2
.

Let the weights in this case be denoted by w̃0,i+1/2 and w̃1,i+1/2. As before, we set

v+i+1/2 := w̃0,i+1/2

(
−vi+2

2
+

3vi+1

2

)
+ w̃1,i+1/2

(
vi
2

+
vi+1

2

)
, (19)

and we require

v(xi+1/2) +O(h3) = w̃0,i+1/2

(
v(xi+1/2)−

3

8
v′′(xi+1/2)h

2 +O(h3)

)
+ w̃1,i+1/2

(
v(xi+1/2) +

1

8
v′′(xi+1/2)h

2 +O(h3)

)
.

This enforces the following constraints on the weights:

w̃0,i+1/2 + w̃1,i+1/2 = 1, (20a)

C2 := −
3w̃0,i+1/2

8
+
w̃1,i+1/2

8
= O(h). (20b)

The weights w1,i+1/2, w1,i+1/2, w̃1,i+1/2, w̃1,i+1/2 must be chosen in accordance to (18) and (20) to ensure
that the desired consistency and accuracy of the reconstruction is achieved. For the remainder of this paper
we drop the i+ 1/2 subscript in the weights wherever it is clear that we are referring to the interface xi+1/2.

4.1 Properties

We list the various crucial properties that the reconstruction needs to possess, including the sign-property.

4.1.1 Consistency

Using (18b) and (20b), we rewrite the weights as

w0 =
3

4
+ 2C1, w1 =

1

4
− 2C1, w̃0 =

1

4
− 2C2, w̃1 =

3

4
+ 2C2.

To ensure that the weights are non-negative and that (18a) and (20a) are satisfied, we require the following
consistency condition:

0 6 w0, w1, w̃0, w̃1 6 1, (P1)

or equivalently,

− 3

8
6 C1, C2 6

1

8
. (P1’)
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4.1.2 Sign property

The jump in the reconstructed variables can be written as

JvKi+1/2 =

[
− w̃0

2
θ−i+1 +

(w̃0 + w1)

2
− w1

2
θ+i

]
∆vi+1/2

=
1

2

[
w̃0(1− θ−i+1) + w1(1− θ+i )

]
∆vi+1/2

where

θ−i =
∆vi+1/2

∆vi−1/2
, θ+i =

1

θ−i
=
∆vi−1/2

∆vi+1/2
.

Thus, the following is an equivalent formulation of the sign property (15), whenever ∆vi+1/2 6= 0:

[
w̃0(1− θ−i+1) + w1(1− θ+i )

]
> 0. (P2)

4.1.3 Negation symmetry

By negation symmetry, we mean that the weights are not biased towards positive or negative solution val-
ues. In other words, the weights should remain unchanged under the transformation v 7→ −v. The jumps
accordingly transform as

∆vj+1/2 7→ −∆vj+1/2 ∀ j ∈ Z.

However, the jump ratios θ−j or θ+j remain unchanged. A sufficient condition to enforce negation symmetry

is to choose C1, C2 as functions of θ+i , θ
−
i+1:

C1 = C1(θ+i , θ
−
i+1), C2 = C2(θ+i , θ

−
i+1). (P3)

4.1.4 Mirror property

If we mirror the solution about the interface xi+1/2, we would like to ensure that the weights also get mirrored
about xi+1/2. The mirroring transforms the various difference ratios as follows:

θ−i+1 7→ θ+i , θ+i 7→ θ−i+1.

It is straightforward to see that the weights must transform as

w0 7→ w̃1, w1 7→ w̃0, w̃0 7→ w1, w̃1 7→ w0.

Assuming that the negation symmetry (P3) holds, the above is true if and only if

C1(a, b) = C2(b, a) ∀ a, b ∈ Z. (P4)
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4.1.5 Inner jump condition

In addition to the sign property, we would like the reconstructed variables to satisfy the inner jump condition

in each cell i:

sign(v−i+1/2 − v
+
i−1/2) = sign(∆vi+1/2) = sign(∆vi−1/2)

whenever the second equality holds. This property ensures that the monotonicity of the solution is preserved.
The second-order ENO reconstruction satisfies this property, while it need not hold true for higher order
ENO. Recalling the definitions (17), (19) of v−

i+1/2
and v+

i−1/2
, we obtain

v−i+1/2 − v
+
i−1/2 = w0,i+1/2

(
vi
2

+
vi+1

2

)
+ w1,i+1/2

(
−vi−1

2
+

3vi
2

)
− w̃0,i−1/2

(
−vi+1

2
+

3vi
2

)
− w̃1,i−1/2

(
vi
2

+
vi−1

2

)
= ∆vi+1/2

w0,i+1/2 + w̃0,i−1/2

2
+∆vi−1/2

w1,i+1/2 + w̃1,i−1/2

2
.

By the assumption (P1) of non-negativity of the weights, the coefficients of ∆vi−1/2 and ∆vi+1/2 in the above
expression are non-negative, and hence the inner jump condition is automatically satisfied.

4.1.6 Accuracy

In general, conditions (18b) and (20b) require C1 and C2 to be O(h) for smooth solutions. However, this
condition can be relaxed in scenarios in which v′′(x̂) = 0, for some x̂ such that |x̂ − xi+1/2| = O(h). Figure
2 depicts a few situations in which this can happen. Assuming sufficient regularity on the solution, the
following is true in these special scenarios:

v′′(xi+1/2) = v′′(x̂) + (xi+1/2 − x̂)v′′′(x̂) +O(h2) = O(h).

This in turn implies that each of the linear polynomials used for reconstruction gives a third-order accurate
approximation of the solution at xi+1/2. Thus, (18b) and (20b) become redundant. In other words, the
reconstruction is third-order accurate provided

C1, C2 =

{
O(h), in GC

no order restriction, in SC
(P5)

where we use the abbreviations GC and SC to denote general cases and special cases respectively.

4.2 The feasible region

In order to choose weights satisfying (P1)–(P5), we first analyse how the weights behave under the above
constraints. We will look at six different scenarios, depending on the values of θ+i , θ

−
i+1. In each scenario we

will try to determine the feasible region, which corresponds the region where the weights satisfy (P1) and
(P2). The remaining properties will be considered in Section 5 while trying to construct explicit weights.
We define

ψ+
i+1/2 :=

(1− θ−i+1)

(1− θ+i )
, ψ−i+1/2 :=

1

ψ+
i+1/2

.
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xi xi+1

xi+ 1
2

(a)

xi xi+1

xi+ 1
2

(b)

xi xi+1

xi+ 1
2

(c)

xi xi+1

xi+ 1
2

(d)

xi xi+1

xi+ 1
2

(e)

xi xi+1

xi+ 1
2

(f)

Fig. 2 Special cases when v′′(x̂) = 0.

The i+ 1/2 subscript will be dropped whenever it is obvious that we are referring to the interface i+ 1/2.
We also introduce the notation

L :=

{
C1

1
8
(1+ψ+)

+ C2
1
8
(1+ψ−)

, if ψ+ 6= −1

C1 − C2 + 1, if ψ+ = ψ− = −1.

Furthermore, we denote the open box
(
−3

8 ,
1
8

)
×
(
−3

8 ,
1
8

)
by B. Recall that the consistency constraint (18b)

requires that (C1, C2) ∈ B.

4.2.1 Case 1: θ+i , θ
−
i+1 > 1

The qualitative nature of the (smooth) solution for this case is indicated in Figure 3. The solution is clearly
not strictly convex or concave in the stencil under consideration, even if the soultion is more oscillatory than
that shown in Figure 3. Thus, we are in the SC regime, which implies that no order of accuracy restrictions
must be imposed on C1, C2. To ensure that (P2) holds, we need

w̃0 = w1 = 0 ⇐⇒ C1 = C2 =
1

8
.

Note that this leads to precisely the ENO-2 stencil selection, which is suitable for discontinuous solutions
as well.

4.2.2 Case 2: θ+i < 1, θ−i+1 > 1

In this case we have
ψ+ < 0, 1 + ψ+ < 1.
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xi xi+1

xi+ 1
2

(a)

xi xi+1

xi+ 1
2

(b)

Fig. 3 Possible scenarios for Case 1.

Case 2 falls into the GC regime. Thus, we must choose C1 and C2 carefully so as not to violate the accuracy
condition. The sign property (P2) will hold if

w1 > −w̃0ψ
+ ⇐⇒

(
1

4
− 2C1

)
> −

(
1

4
− 2C2

)
ψ+ ⇐⇒ C1 + ψ+C2 6

1

8
(1 + ψ+).

Thus, we have the following constraints on C1, C2:

−3

8
< C1, C2 <

1

8
,

L 6 1 if − 1 6 ψ+ < 0,

L > 1 if ψ+ < −1.

The feasible region for C1, C2 is shown in Figure 4 (in dark grey).

4.2.3 Case 3: θ+i > 1, θ−i+1 < 1

Similiar to case 2, we have
ψ+ < 0, 1 + ψ+ < 1

with the solutions falling into the GC regime in general. The sign property holds if

w̃0 > −w1ψ
− ⇐⇒

(
1

4
− 2C2

)
> −

(
1

4
− 2C1

)
ψ− ⇐⇒ C1 + ψ+C2 >

1

8
(1 + ψ+).

Comparing the last equivalent condition above with that observed for case 2, we see that the inequality has
been flipped. Thus, we have the following constraints on C1, C2:

−3

8
< C1, C2 <

1

8
,

L > 1 if − 1 6 ψ+ < 0,

L 6 1 if ψ+ < −1.

The feasible region for C1, C2 is shown in Figure 4 (in light grey).

Remark 2 Any point in {(C1, C2) : L = 1} ∩ B, satisfies the constraints in cases 2 and 3. This fact will be
exploited in constructing explicit weights.
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C1

C2

1
8

1
8

−3
8

−3
8

(1+ψ+)
8

(1+ψ−)
8

L = 1

(a) ψ+ = −0.5 ∈ (−1, 0)

C1

C2

1
8

1
8

−3
8

−3
8

(1+ψ+)
8

(1+ψ−)
8

L = 1

(b) ψ+ = −1.5 ∈ (−∞,−1)

Fig. 4 Feasible region for Case 2 (dark grey) and Case 3 (light grey).

4.2.4 Case 4: θ−i+1 = 1

In this case the solution either has a linear region or is oscillatory without being strictly convex or concave.
Thus, this case falls in the SC regime. In order to satisfy (P2), we require w1 to have the same sign as
(1− θ+i ). If θ+i 6 1, then (C1, C2) can be chosen as any point in B. However, if θ+i > 1, then to satisfy (P1)
and (P2), we must take C1 = 1

8 , while C2 can be any value in
[
−3

8 ,
1
8

]
. This would lead to w0 = 1, w1 = 0

when θ+i > 1, which is identical to the ENO-2 stencil selection.

4.2.5 Case 5: θ+i = 1

This case is similar to case 4, with the values of θ+i and θ−i+1 interchanged. If θ−i+1 6 1, then (C1, C2) can

be chosen as any point in B. If θ−i+1 > 1, then we must take C2 = 1
8 while C1 can be any value in

[
−3

8 ,
1
8

]
.

4.2.6 Case 6: θ+i , θ
−
i+1 < 1

In this final case, we have

ψ+ > 0, 1 + ψ+ > 1.

Note that this was true in case 1 as well. By an argument similar to the one made in case 1, we can show
that case 6 falls into the SC regime (see Figure 5). Furthermore, the sign property is satisfied as long as the
consistency condition (P1) holds true.
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xi xi+1

xi+ 1
2

(a)

xi xi+1

xi+ 1
2

(b)

xi xi+1

xi+ 1
2

(c)

Fig. 5 Possible scenarios for Case 6.

5 Explicit weights: SP-WENO

We now make an explicit choice for the weights, based on the case by case analysis in the previous section.
Recall that from an accuracy point of view, the optimal choice of weights is (w0, w1) = (3/4, 1/4) and
(w̃0, w̃1) = (1/4, 3/4), or equivalently, (C0, C1) = (0, 0). However, the point (C0, C1) = (0, 0) in many cases
does not lie in the feasible region (cf. Section 4.2).

For cases 2 and 3, we choose (C0, C1) to be the point in {L = 1}∩B, by virtue of Remark 2. Furthermore,
C0 and C1 must both be of order O(h) in these two cases, in order to satisfy (P5). Thus, we choose (C0, C1)
to be the point on L = 1 closest to the origin, as measured in the Euclidean norm:

C1(θ+i , θ
−
i+1) =

{
1
8

(
f+

(f+)2+(f−)2

)
if ψ+ 6= −1

0 otherwise,
C2(θ+i , θ

−
i+1) = C1(θ−i+1, θ

+
i ), (21)

where we have defined

f+(θ+i , θ
−
i+1) :=

{
1

1+ψ+ if θ+i 6= 1, ψ+ 6= −1

1 otherwise,
f−(θ+i , θ

−
i+1) := f+(θ−i+1, θ

+
i ).

For smooth functions v we have (1 + ψ+), (1− ψ−) = O(h), so C1, C2 = O(h) for cases 2 and 3, and hence
(P5) is clearly satisfied.

For cases 1 and 6, the point on the line L = 1 closest to the origin need not lie in the feasible region.
Furthermore, ψ+ and ψ− need not be defined for cases 4 and 5, thus the line L = 1 is not defined. Note that
for these remainder cases, there is no order restriction on (C0, C1). Going through a case-by-case analysis,
we propose the following extension of (21):

C1(θ+i , θ
−
i+1) =


1
8

(
f+

(f+)2+(f−)2

)
if θ+i 6= 1, ψ+ < 0, ψ+ 6= −1

0 if θ+i 6= 1, ψ+ = −1

−3
8 if θ+i = 1 or ψ+ > 0, |θ+i | 6 1

1
8 if ψ+ > 0, |θ+i | > 1

(22)

and C2(θ+i , θ
−
i+1) = C1(θ−i+1, θ

+
i ), as before.

By virtue of lying in the feasible region, the above choices of C1, C2 automatically satisfy the consistency
and sign properties (P1), (P2). By definition they satisfy the negation and mirror symmetry properties (P3)
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and (P4), and through a case-by-case analysis, it can be seen that the weights also satisfy the accuracy
condition (P5).

We refer to the third-order WENO-type reconstruction method as SP-WENO.

Remark 3 In the above discussion, we have assumed that ∆vi+1/2 6= 0. If ∆vi+1/2 = 0, then the weights are
chosen to be w1 = w̃0 = 0, leading to JvKi+1/2 = 0.

Remark 4 It can be shown that choosing C1, C2 to be a point on the line L = 1 ensures that the reconstructed
states are equal, i.e. v−

i+1/2
= v+

i+1/2
. Thus, JvKi+1/2 = 0 for cases 2 and 3.

Remark 5 During the making of this paper, we were able to find several other WENO-3 weights satisfying
the above mentioned properties. The weights described by (22) gave the best numerical results among all
the possible options considered, especially near discontinuous solutions. We were also able to construct
weights which ensured the reconstruction to be TVD. However, the reconstruction suffered from loss of
accuracy near smooth extrema, leading to overall second-order accuracy. This is to be expected; cf. Osher,
Chakravarthy [14]. Furthermore, the search for TVD property in the set-up of TeCNO schemes would be
futile, as the high-order entropy conservative fluxes used do not lead to a TVD scheme.

5.1 Stability estimates

We now show that it is possible to estimate the reconstructed jumps in terms of the original jumps. In order
to do so, we first express the reconstructed jumps in terms of the original jumps.

In case 1, we have θ+i , θ
−
i+1 > 1 and w1 = w̃0 = 0. Thus, the reconstructed states

v−i+1/2 = v+i+1/2 =
1

2
(vi + vi+1)

have zero jump. This is also true for cases 2–3, by virtue of Remark 4. Proceeding in a similar manner for
cases 4–6, we find that the jump in reconstructed states is

JvKi+1/2 =



0 if

θ+i > 1 and θ−i+1 > 1 (case 1)

θ+i < 1 and θ−i+1 > 1 (case 2)

θ+i > 1 and θ−i+1 < 1 (case 3)

|θ+i | > 1 and θ−i+1 = 1 (case 4)

θ+i = 1 and |θ−i+1| > 1 (case 5)

θ+i < −1 and θ−i+1 < −1 (case 6)


Ω0

1
2 (∆vi+1/2 −∆vi−1/2) if

|θ+i | 6 1 and θ−i+1 = 1 (case 4)

−1 6 θ+i < 1 and θ−i+1 < −1 (case 6)

}
Ω1

1
2 (∆vi+1/2 −∆vi+ 3

2
) if

θ+i = 1 and |θ−i+1| 6 1 (case 5)

θ+i < −1 and − 1 6 θ−i+1 < 1 (case 6)

}
Ω2

∆vi+1/2 − 1
2 (∆vi−1/2 +∆vi+ 3

2
) if −1 6 θ+i , θ

−
i+1 < 1 (case 6)

}
Ω3
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Lemma 3 (Bounds on jumps) We have the following estimate on the jump in the SP-WENO reconstruction:∣∣JvKi+1/2

∣∣ 6 2
∣∣∆vi+1/2

∣∣ ∀ i ∈ Z. (23)

Proof If ∆vi+1/2 = 0, then the estimate estimate clearly holds as JvKi+1/2 = 0 by construction of SP-WENO.

Thus, we assume ∆vi+1/2 6= 0. Furthermore, the above estimate holds trivially for (θ+i , θ
−
i+1) ∈ Ω0.

If (θ+i , θ
−
i+1) ∈ Ω1, then

|θ+i | 6 1 ⇐⇒ −1 6
∆vi−1/2

∆vi+1/2
6 1.

Thus,
JvKi+1/2

∆vi+1/2
=

1

2
−

∆vi−1/2

2∆vi+1/2
6 1 =⇒

∣∣JvKi+1/2

∣∣ 6 ∣∣∆vi+1/2

∣∣ < 2
∣∣∆vi+1/2

∣∣
Similarly, if (θ+i , θ

−
i+1) ∈ Ω2, then

|θ−i+1| 6 1 ⇐⇒ −1 6
∆vi+ 3

2

∆vi+1/2
6 1

Thus,
JvKi+1/2

∆vi+1/2
=

1

2
−

∆vi+ 3
2

2∆vi+1/2
6 1 =⇒

∣∣JvKi+1/2

∣∣ 6 ∣∣∆vi+1/2

∣∣ < 2
∣∣∆vi+1/2

∣∣
Finally, if (θ+i , θ

−
i+1) ∈ Ω3, then

|θ+i |, |θ
−
i+1| 6 1

Repeating the above arguments, we once again get∣∣JvKi+1/2

∣∣ 6 2
∣∣∆vi+1/2

∣∣ .
Remark 6 The bounding constant 2 on the right-hand side of (23) is identical to the one obtained with
ENO-2 [5], but smaller than that obtained with ENO-3. Thus, SP-WENO leads to tighter stability bounds
for higher order accuracy, as compared to its ENO counterparts.

6 Numerical results

We present several numerical results to demonstrate the performance of the SP-WENO reconstruction. In
each test case, a finite domain x ∈ [a, b] is considered with either periodic or Neumann boundary conditions.
An N-cell uniform mesh with mesh size h = b−a

N is generated as

xi+1/2 := a+ ih, xi :=
xi−1/2 + xi+1/2

2
.

At times, ghost cells would be required to extend the mesh on either side. For instance, if both v−1
2

and v+1
2

are required, then two ghost cells need to be introduced on the left. The value of the solution in the ghost
cells can be set depending on the boundary condition.

First, we demonstrate that our reconstruction SP-WENO does indeed give the desired order accuracy
in approximating the solution at cell-interfaces, assuming the solution is smooth enough.
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SP-WENO ENO3

N
L1
h L∞

h L1
h L∞

h
error rate error rate error rate error rate

40 8.59e-02 - 2.24e-01 - 3.95e-02 - 5.60e-02 -
80 6.73e-03 3.67 2.97e-02 2.92 4.90e-03 3.01 7.43e-03 2.92
160 5.01e-04 3.75 3.77e-03 2.98 6.08e-04 3.01 9.42e-04 2.98
320 3.64e-05 3.78 4.73e-04 2.99 7.57e-05 3.01 1.18e-04 2.99
640 2.59e-06 3.81 5.91e-05 3.00 9.47e-06 3.00 1.48e-05 3.00
1280 1.82e-07 3.83 7.39e-06 3.00 1.18e-06 3.01 1.85e-06 3.00
2560 1.26e-08 3.85 9.24e-07 3.00 1.47e-07 3.00 2.31e-07 3.00

WENO3 ENO2

N
L1
h L∞

h L1
h L∞

h
error rate error rate error rate error rate

40 2.04e-01 - 4.34e-01 - 2.35e-01 - 4.34e-01 -
80 4.03e-02 2.34 1.14e-01 1.93 5.39e-02 2.12 1.14e-01 1.93
160 7.25e-03 2.48 2.88e-02 1.98 1.29e-02 2.07 2.88e-02 1.98
320 1.18e-03 2.62 7.10e-03 2.02 3.14e-03 2.03 7.22e-03 2.00
640 1.77e-04 2.74 1.65e-03 2.10 7.76e-04 2.02 1.81e-03 2.00
1280 2.13e-05 3.05 1.64e-04 3.34 1.93e-04 2.01 4.52e-04 2.00
2560 2.10e-06 3.34 9.08e-06 4.17 4.81e-05 2.00 1.13e-04 2.00

Table 1 Inclined sine wave: reconstruction errors.

6.1 Reconstruction accuracy

We consider the smooth function

u(x) = sin (10πx) + x, x ∈ [0, 1].

to test the accuracy of SP-WENO. We also compare the results with ENO-2, ENO-3 and the existing robust
version of WENO-3 proposed in [9] (see also [17]). The error in the interface values are evaluated as

‖u−i+1/2 − u(xi+1/2)‖Lp
h

+ ‖u+i+1/2 − u(xi+1/2)‖Lp
h
, p ∈ [1,∞]

where the discrete norm is defined as

‖(.)i‖Lp
h

=

(
N∑
i=1

|(.)i|ph

) 1
p

for p <∞, ‖(.)i‖L∞h = max
i
|(.)i|

The error in approximating the interface values, and the corresponding convergence rates are shown in
Table 1. SP-WENO gives third order accuracy when we consider the L∞h norm. In fact, SP-WENO seems to
give more than third order convergence in the L1

h norm, which is not the case for the ENO reconstructions.
An improved superior convergence rate in the L1

h norm is also seen with WENO-3. Thus, one can expect
the SP-WENO to give superior convergence results for evolution problems, in the L1 sense. Looking at the
finest mesh (N = 2560), SP-WENO gives the best results from the point of view of error magnitude. Note
that WENO-3 gives almost fourth-order convergence in the L∞h norm. This can possibly be explained by
the fact that unlike the SP-WENO, the weights used in WENO-3 are smooth.
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SP-WENO ENO3 ENO2

N
L1
h L1

h L1
h

error rate error rate error rate
50 6.22e-04 - 2.58e-04 - 1.61e-02 -
100 6.90e-05 3.17 3.23e-05 3.00 4.36e-03 1.88
200 7.66e-06 3.17 4.04e-06 3.00 1.16e-03 1.91
400 8.29e-07 3.21 5.05e-07 3.00 3.08e-04 1.91
600 2.26e-07 3.20 1.50e-07 3.00 1.41e-04 1.92
800 8.72e-08 3.31 6.31e-08 3.00 8.09e-05 1.93

Table 2 Linear advection smooth test 1 with TeCNO4 flux.

6.2 Evolution problems

We now test the performance of SP-WENO in solving one-dimensional scalar conservation laws. We use the
TeCNO4 (finite difference) numerical flux

fi+1/2 = f∗i+1/2 −
1

2
ai+1/2

(
v+i+1/2 − v

−
i+1/2

)
where f∗i+1/2 is the fourth-order accurate entropy conservative flux given by (11), while v := η′(u) = u is

the entropy variable for the square entropy η(u) = u2

2 . The reconstruction is performed using SP-WENO,
ENO2 or ENO3, all of which have the sign property. Time integration is performed using SSP-RK3 (see
[6]).

6.2.1 Linear Advection

We first look at the linear advection equation

ut + cux = 0.

The entropy conservative component of the flux is chosen using (8) and (11), while ai+1/2 = |c|. For the
following test cases we take the convective velocity c = 1.
Test 1: The domain is [−π, π], final time is T = 0.5 and CFL = 0.4, with the initial profile given by

u0(x) = sin (x)

and periodic boundary conditions. Table 2 shows L1
h errors with various reconstructions. SP-WENO gives

more than third-order accuracy, while ENO2 and ENO3 give expected convergence rates.
Test 2: The domain is [−π, π], final time is T = 0.5 and CFL = 0.5, with the initial profile given by

u0(x) = sin4 (x)

and periodic boundary conditions. The MUSCL scheme using ENO reconstruction is known to perform
poorly for this test case; see Rogerson and Meiburg [16]. This is also observed with the TeCNO4 flux using
ENO, as shown in Table 3. There is a clear deterioration in the convergence rate for ENO with mesh
refinement. SP-WENO, on the other hand, does not suffer from such problems and continues to give more
than third order accuracy.
Test 3: The domain is [−1, 1], final time is T = 0.5 and CFL = 0.4, with the initial profile being discontinuous:

u0(x) =

{
3 if x < 0

−1 if x > 0.
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SP-WENO ENO3 ENO2

N
L1
h L1

h L1
h

error rate error rate error rate
100 1.32e-03 - 1.48e-03 - 2.13e-02 -
200 1.48e-04 3.16 1.97e-04 2.91 6.12e-03 1.80
400 1.64e-05 3.17 2.57e-05 2.94 1.66e-03 1.89
600 4.61e-06 3.14 8.35e-06 2.77 7.63e-04 1.91
800 1.79e-06 3.29 4.86e-06 1.88 4.41e-04 1.90
1000 8.55e-07 3.31 3.62e-06 1.32 2.87e-04 1.92

Table 3 Linear advection smooth test 2 with TeCNO4 flux.

x
0.2 0.3 0.4 0.5 0.6 0.7 0.8

u

-2

-1

0

1

2

3

4

Exact
N=100
N=200
N=400

(a) Comparison of different reconstruction methods
x

0.2 0.3 0.4 0.5 0.6 0.7 0.8

u

-2

-1

0

1

2

3

4

Exact
ENO-2
ENO-3
SP-WENO

(b) Mesh refinement study with SP-WENO

Fig. 6 Linear advection test 3: Solution with TeCNO4 at time T=0.5 for x ∈ [0.2, 0.8].

The mesh consists of 100 cells with Neumann boundary conditions. The results with the TeCNO4 scheme
are show in Figure 6(a). While ENO-2 and ENO-3 reconstruction seem to give oscillation-free solutions,
SP-WENO leads to minor undershoots and overshoots near the discontinuity. The solutions with mesh
refinement for SP-WENO are shown in Figure 6(b).

6.3 Burgers’ Equation

Next, we consider the Burgers equation

ut +

(
u2

2

)
x

= 0

with the entropy conservative component of the flux chosen as (9), (11). We use the diffusion coefficient

ai+1/2 =
|ui|+ |ui+1|

2
.
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SP-WENO ENO3 ENO2

N
L1
h L1

h L1
h

error rate error rate error rate
50 3.41e-04 - 3.07e-04 - 4.73e-03 -
100 4.17e-05 3.03 4.76e-05 2.69 1.35e-03 1.81
200 4.51e-06 3.21 8.44e-06 2.49 3.77e-04 1.84
400 4.98e-07 3.18 1.80e-06 2.23 1.02e-04 1.89
600 1.33e-07 3.26 7.29e-07 2.23 4.71e-05 1.90
800 5.22e-08 3.25 3.91e-07 2.17 2.72e-05 1.92

Table 4 Burgers equation smooth test 1.

Test 1: The domain is [−1, 1], final time is T = 0.3 and CFL = 0.4, with the initial profile given by

u0(x) = 1 +
1

2
sin (πx)

and periodic boundary conditions. Table 4 clearly show a deterioration of TeCNO4 with ENO-3 reconstruc-
tion, while SP-WENO seems to once again give more than third order accuracy.

Being a non-linear problem, the solution develops a discontinuity in finite time, which can be evaluated
to be t = 2

π ≈ 0.636. The total entropy of the problem should be preserved over time as long as the solution
is smooth. However, the time-stepping scheme introduces a small amount numerical diffusion. After the
appearance of the discontinuity, a sharp decrease in total entropy is expected. To see this, we evaluate the
relative change in total entropy

E(t)− E(0)

E(0)
, E(t) :=

∑
i

ηi(t)h ≈
1∫
−1

η(u(x, t))dx

up to time T = 0.7. The results shown in Figure 7 clearly show that SP-WENO performs the best from the
point of view of preservation of global entropy, prior to the shock. The most dissipative solutions are obtained
with ENO-2, while ENO-3 lies somewhere in between. Moreover, the performance with all reconstructions
improves with mesh refinement.
Test 2: The domain is [−1, 1], final time is T = 0.45 and CFL = 0.4, with the initial profile given by

u0(x) =

{
3, if x < 0

−1, if x > 0

which corresponds to a left-moving shock. The mesh consists of 100 cells with Neumann boundary conditions.
The solutions with the TeCNO4 flux is shown in Figure 8. As can be seen, ENO-2, ENO-3 and SP-WENO
gives minor oscillations near the shock. The shock is equally well resolved by each method.
Test 3: The domain is [−1, 1], final time is T = 0.2 and CFL = 0.4, with the initial profile given by

u0(x) =

{
−2, if x < 0

1, if x > 0

which corresponds to a rarefaction wave. The mesh consists of 100 cells with Neumann boundary conditions.
The solutions shown in Figure 9 indicates that SP-WENO gives the sharpest solution, while ENO-2 is the
most dissipative.
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Fig. 7 Burgers equation smooth test 1: relative change in total entropy.
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(a) Solution with TeCNO4 at time t = 0.45
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(b) Zoomed pre-shock region

Fig. 8 Burgers equation test 2.

Remark 7 The minor oscillations visible in Figure 9 can be attributed to insufficient dissipation near shocks.
One possibility of improving the solution would be to modify the dissipation operator to obtain entropy

consistent schemes, as described in [8]. However, this would lead to the introduction of an additional tuning
parameter into the scheme, which we intend to avoid. Note that despite the presence of oscillations, the
scheme satisfies the entropy condition and thus, by a Lax-Wendroff-type argument, is guaranteed to converge
to the unique entropy solution whenever it converges.
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Fig. 9 Burgers equation test 3: Solution with TeCNO4 at time t = 0.2.

7 Conclusion

The entropy condition ensures stability and uniqueness of weak solutions for hyperbolic conservation laws,
and in order to converge to the entropy solution, numerical methods for hyperbolic conservation laws must
be consistent with this entropy condition. It was found in [4] that reconstruction-based, high-order finite
difference and finite volume methods are entropy stable provided the reconstruction method satisfies the
sign property. Specifically, a class of schemes called the TeCNO schemes were designed, relying crucially
on the sign property to ensure that the numerical diffusion coefficient has the right (positive) sign. It was
shown in [5] that the ENO reconstruction method satisfies this property.

It is well-known that the WENO reconstruction methods exhibit several advantages over ENO; see e.g.
[17]. In the present paper we design a third-order WENO reconstruction method which satisfies the sign
property. We define the feasible region as the set of all stencil weights satisfying properties (P1)–(P2), and
then choose the point in this region such that the order contraints given by (P5) are satisfied (for smooth
solutions). Furthermore, the weights are constructed to satisfy several symmetry and consistency conditions,
(properties (P3)–(P4)). In a series of numerical experiments we demonstrate that the TeCNO scheme, using
the proposed WENO reconstruction, is both third (or higher) order accurate and entropy stable, both for
linear and nonlinear problems.

The SP-WENO reconstruction can be used to construct higher order entropy stable schemes for systems
of conservation laws in one-dimension, in which case scaled entropy variables must be reconstructed [4].
Furthermore, being a finite difference scheme, the scheme can be easily extended to higher-dimensional
problems on Cartesian meshes, by treating it in a dimension by dimension fashion, as described e.g. in [4,
Section 6]. The possibility of extending the proposed ideas to construct sign-preserving WENO schemes of
fifth-order or higher are being currently investigated, and will be the topic of future papers.

References

1. A. Harten. On a class of high resolution total-variation-stable finite-difference schemes. SIAM J. Numer. Anal.,
21(1):1–23, 1984.



22 Ulrik S. Fjordholm, Deep Ray

2. M. G. Crandall and A. Majda. Monotone difference approximations for scalar conservation laws. Math. Comp.,
34(149):1–21, 1980.

3. C. M. Dafermos. Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen
Wissenschaften. Springer-Verlag, Berlin, third edition, 2010.

4. U. S. Fjordholm, S. Mishra, and E. Tadmor. Arbitrarily high-order accurate entropy stable essentially nonoscillatory
schemes for systems of conservation laws. SIAM Journal on Numerical Analysis, 50(2):544–573, 2012.

5. U. S. Fjordholm. S. Mishra and E. Tadmor. ENO reconstruction and ENO interpolation are stable. FoCM 13 (2), 2013,
139–159.

6. S. Gottlieb, C-W. Shu, and E. Tadmor. Strong stability-preserving high-order time discretization methods. SIAM Rev.,
43(1):89–112, 2001.

7. A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. Uniformly high order accurate essentially non-oscillatory
schemes, III. Journal of Computational Physics, 71(2):231 – 303, 1987.

8. Farzad Ismail and Philip L. Roe. Affordable, entropy-consistent euler flux functions II: Entropy production at shocks.
Journal of Computational Physics, 228(15):5410 – 5436, 2009.

9. G.-S. Jiang and C.-W. Shu. Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), Academic
Press Professional, Inc., 202228, 1996.
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