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Abstract

Weighted essentially non-oscillatory (WENO) and finite volume (FV) methods employ different philosophies
in their way to perform limiting. We show that a generalized view on limiter functions, which considers a
two-dimensional, rather than a one-dimensional dependence on the slopes in neighboring cells, allows to write
WENO3 and 3rd-order FV schemes in the same fashion. Within this framework, it becomes apparent that the
classical approach of FV limiters to only consider ratios of the slopes in neighboring cells, is overly restrictive.
The hope of this new perspective is to establish new connections between WENO3 and FV limiter functions,
which may give rise to improvements for the limiting behavior in both approaches.

1 Introduction

In the finite volume (FV) approach for the numerical solution of hyperbolic conservation laws, flux evaluations
at the cell interfaces are needed. Since the exact values of the fluxes are unknown at the interfaces, the true flux
function is approximated by a numerical flux function. Following Godunov [10], this numerical flux function is
typically evaluated by solving a local Riemann problem at each interface, taking as input the left- and right-sided
limit of a reconstruction function. If this reconstruction returns simply the adjacent cell mean values, this leads to
a first order scheme. In order to obtain higher order schemes one can define higher-order reconstruction functions.
For instance, one can define various types of reconstructions based on only three input values, namely the mean
values of the cell of interest and its direct neighbors. Evaluating these polynomials at the cell interfaces yields input
values for the numerical flux function which result in a higher-order accurate scheme. The best order of accuracy
which can be obtained with only three input values is a quadratic polynomial, resulting in a 3rd-order-accurate
linear scheme. Godunov’s Theorem [10] implies that on fixed grids, the high-order approximation of hyperbolic
conservation laws with linear schemes is impossible without creating spurious oscillations. One way to work
around this is to limit the order of reconstruction at discontinuous parts of the solution. A large variety of these
non-linear limiters has been developed to achieve high-order accuracy without creating oscillations [3, 11, 12, 18].
The first limiter functions were van Leer’s limiter [27] and Roe’s superbee limiter [22]. These limiter functions
yield second order accurate reconstructions in smooth parts of the solution and lie in the second order total variation
diminishing (TVD) region of Sweby [16]. However, due to the TVD property they reduce to 1st-order at smooth
extrema [16]. These classical approaches based on three-cell reconstructions, result in 2nd-order accuracy [17,28].
For smooth solutions however, it is in fact possible to obtain update rules which yield 3rd-order accuracy. As
described above, 3rd-order accuracy is the optimum that can be achieved with only using immediate neighborhood
information and if only cell averages are stored. Higher orders of accuracy can be achieved only via wider stencils,
or by storing additional information per cell, as employed for instance in discontinuous Galerkin methods [6, 21]
or jet schemes [5].
Woodward and Colella [8] proposed a 3rd-order reconstruction based on a four-point centered stencil. They com-
pute the interface value, and then limit the reconstruction at shocks. Suresh and Huynh [26] go beyond this and
use a five-point stencil for higher-order reconstruction. The interface values are obtained by limiting a higher-
order polynomial reconstruction, however, their limiting procedure is costly to apply. Another possibility is the
use of non-polynomial reconstructions, cf. Marquina [19], who introduced hyperbolic reconstruction schemes,
and Harten, Engquist, Osher, and Chakravarthy [11], who present essentially non-oscillatory (ENO) schemes. The
idea behind ENO schemes is to divide the stencil of interest in smaller sub-stencils with piecewise polynomial re-
constructions on each sub-stencil. The scheme then applies an optimal stencil selection procedure, which chooses
the locally smoothest stencil for the reconstruction. The scheme avoids interpolation across discontinuities, how-
ever, the final approximation does not contain all available data. To overcome this drawback, weighted essentially
non-oscillatory (WENO) schemes were developed by Liu, Osher, and Chan [18]. Weighted ENO schemes use a
convex combination of all candidate stencils to obtain the reconstruction of the interface values. Later, Jiang and
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Shu [12] further modified and improved the WENO scheme by proposing a new way of measuring the smoothness
of a numerical solution and thereby increasing the order of accuracy.
Artebrant and Schroll [3] developed a local double-logarithmic reconstruction which only needs three input values.
Based on their work, Čada and Torrilhon [4] introduced a limiter function, which yields 3rd order accuracy in
smooth parts of the solution and at extrema. The authors also introduce a criterion to distinguish between smooth
extrema and discontinuities in order to avoid extrema clipping. This work has been further investigated in [23],in
order to find a parameter-free smoothness criterion.
This paper continues their work on determining a parameter-free smoothness criterion and incorporating it in the
reconstruction procedure. We present a new 3rd-order limiter function in the FV setting and then compare it to
different 3rd-order WENO schemes with the goal that this contributes to a better understanding of the nature of
non-linear schemes.
The time discretization of all schemes is implemented using the 3rd-order TVD Runge-Kutta method developed by
Shu and Osher [24].

The paper is structured as follows. In Section 2 we review the basic formulation of the problems in question
and interface reconstruction in general. In Section 3, we discuss FV reconstruction methods containing limiter
functions and we provide a new smoothness indicator. Section 4 recalls the WENO scheme as first introduced by
Liu et al. [18] and later improved by Jiang and Shu [12]. We focus on WENO schemes which only need three
points for each reconstruction, as from now called WENO3. Section 5 places the introduced methods into a uni-
fying setting and compares the novel limiter function with different WENO schemes. Finally, Section 6 presents
some numerical results which demonstrate the potential of the proposed schemes and conclusions are given in
Section 7.

2 Basic Formulation

We are interested in the numerical approximation of a Cauchy Problem of the hyperbolic conservation law

∂tu(x, t)+∂x f (u(x, t)) = 0, (2.1a)
u(x,0) = u0(x), x ∈ R (2.1b)

in one space dimension, equipped with the initial condition u0(x), where u = (u1, . . . ,us)
T and the Jacobian matrix

A(u) = d f
du has s real eigenvalues. For the sake of simplicity, we restrict our discussion and analysis to the scalar

case s = 1. However, the developed ideas are also applicable to systems (s > 1), in the same way other limiters
extend from s = 1 to s > 1. We consider a regular grid in space, with the positions of the cell centers denoted by
xi, i ∈ Z and with uniform space intervals of size ∆x. The grid cells are defined by Ci = [xi−1/2, xi+1/2], where
xi± j = xi± j∆x. Finite volume (FV) methods aim at approximating the cell averages of the true solution of (2.1)
with high accuracy, see e.g. [17]. The cell average of the true solution u(·, ·) is given by

Ū(x, t) =
1

∆x

∫ x+∆x/2

x−∆x/2
u(s, t)ds. (2.2)

With this definition we call Ūn
i = Ū(xi, tn) the cell average of the true solution u in cell Ci at time tn. The goal is to

find an update rule to advance approximate cell averages from a given time tn to a new time tn+1 = tn +∆t, such
that the true cell averages are approximated with high order of accuracy. In addition, the approximate solution
should not develop any (relevant) spurious oscillations. Integrating Eq. (2.1a) over the cell Ci and dividing by ∆x
yields

dŪi

dt
=− 1

∆x

(
f (u(xi+1/2, t))− f (u(xi−1/2, t))

)
(2.3)

which is still exact. We now want to find a solution approximation ūn
i satisfying ūn

i ≈ Ūn
i . The quality of the

approximation ūi depends on the accurate approximation of the fluxes at the cell boundaries f (u(xi±1/2, t)). This
is achieved by constructing a numerical flux function f̂ (u,v) that is Lipschitz continuous and consistent with the
(true) flux function, i.e. f̂ (u,u) = f (u). The numerical fluxes at the boundaries of cell Ci are then given by

f̂i+1/2 = f̂ (û(−)i+1/2, û
(+)
i+1/2), (2.4a)

f̂i−1/2 = f̂ (û(−)i−1/2, û
(+)
i−1/2), (2.4b)
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(a) From the three cell averages (black horizontal
lines), functions are reconstructed (red lines, a
linear function in this case), these functions are
then evaluated at the left- and right-sided cell
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(b) The normalized gradients are computed as the
differences between neighboring cell averages,
δi+ 1

2
= ūi+1− ūi and δi− 1

2
= ūi− ūi−1,

respectively.

Figure 1 – Basic setting for the reconstruction of the interface values u(±)(xi±1/2) on a 3-point-stencil.

where û(−)i±1/2 and û(+)
i±1/2 are approximations to the solution values at the cell boundary xi±1/2, left-sided ((−)) and

right-sided ((+)), respectively, see Fig. 1. The evolution of cell averages is thus given by

dūi

dt
=− 1

∆x

(
f̂i+1/2− f̂i−1/2

)
. (2.5)

The accurate reconstruction of these left and right interface values at the cell boundaries xi±1/2, see Fig. 1, is the
crucial point in this process. We are particularly interested in numerical schemes that find the approximate solution
values û(+)

i−1/2 and û(−)i+1/2 that correspond to cell Ci by using only information of the cell Ci and its immediate
neighbor cells Ci−1 and Ci+1. The restriction to immediate neighbor cells provides local update rules. This locality
is, among other advantages, beneficial for low-communication parallelization, and ensures that few ghost cells
must be provided near boundaries.
The key ingredient to getting 3rd-order accuracy is the way of reconstructing function values at cell boundaries
xi± 1

2
based on cell averages. The reconstructed values ûi± 1

2
are then provided as input values for the numerical flux

function f̂ (·, ·) in Eq. (2.5), following the standard FV methodology [16]. The focus of this paper is solely on the
actual reconstruction of the solution ûi± 1

2
at the cell interfaces. For the sake of simplicity, we shall drop the ˆ.

Since we consider three cells for the reconstruction, we define the left and right interface values to be determined
by functions L and R:

u(−)
i+ 1

2
= L(ūi−1, ūi, ūi+1) (2.6a)

u(+)

i− 1
2
= R(ūi−1, ūi, ūi+1). (2.6b)

3 Finite Volume 3rd order Limiting

In this section, we review limiting in FV methods using the three-point stencil for the reconstruction of û(+)
i±1/2 and

û(−)i±1/2. For the computation of the numerical flux functions, the approximate solution at the cell interfaces xi±1/2

is needed. For the cell xi, we define the left and right interface values by

u(−)i+1/2 = ūi +
1
2

φ(θi)δi+ 1
2
, (3.1a)

u(+)
i−1/2 = ūi−

1
2

φ(θ−1
i )δi− 1

2
, (3.1b)
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respectively. Here, φ is a univariate, non-linear limiter function depending on the local smoothness measure

θi =
δi− 1

2

δi+ 1
2

, (3.2a)

where δi+ 1
2
= ūi+1− ūi, (3.2b)

and δi− 1
2
= ūi− ūi−1 (3.2c)

are the differences between neighboring cell averages, cf. Fig. 1. Limiter functions switch the reconstruction
to high-order accuracy in smooth parts of the solution and to lower-order reconstructions near discontinuities
[16]. This means, limiter functions contain some sort of smoothness measure. In Eq. (3.1), the choice of φ(θi)
determines the order of accuracy of the reconstruction and therefore of the resulting scheme.

Property 3.1. General Properties of Limiter Functions
(i) If φ passes continuously through θ = 1 with φ(1) = 1, then the resulting scheme is at least 2nd order accurate
in sufficiently smooth, monotonous regions of the solution.
(ii) If φ satisfies the conditions

0≤ φ(θ)≤max(0,min(2,2θ)) , (3.3)

the numerical scheme is total variation diminishing (TVD), and thus does not create spurious oscillations.

Proof. See e.g. [17].

There is a variety of schemes which reconstruct based on three points and obtain 2nd-order accuracy. These are
the classical schemes in the Sweby setting, such as Superbee, van Leer and others [16]. These schemes use the
information of the three cells to compute a linear reconstruction function, see e.g. [28]. Indeed, the full 2nd-
order reconstruction u(−)i+1/2 = ūi +

∆x
2

(
ūi+1−ūi−1

2∆x

)
can be rewritten in form of Eq. (3.1) with the limiter function

φ(θ)= 1+θ

2 . One can easily check that this limiter function satisfies the property φ(θ−1)= θ−1φ(θ) and therefore,
for this limiter, Eq. (3.1) can be rewritten in the formulation

u(−)i+1/2 = ūi +
∆x
2

σi (3.4a)

u(+)
i−1/2 = ūi−

∆x
2

σi, (3.4b)

with the right-sided slope σi = φ(θi)δi+ 1
2
/∆x, see e.g. [17]. Even though this formulation is widely used, we will

continue with the formulations (2.6) and (3.1), as introduced in [4, 9]. The aim of this work is to discuss schemes
which use the three-point stencil to achieve 3rd order accurate reconstructions of the cell-interface values. One
possibility is to construct a quadratic polynomial pi(x) in each cell Ci. Applying the computed polynomial to
xi±1/2, we obtain the interface values

u(−)i+1/2 = pi(xi+1/2) =
1
3

ui+1 +
5
6

ui−
1
6

ui−1 (3.5a)

u(+)
i−1/2 = pi(xi−1/2) =

1
3

ui−1 +
5
6

ui−
1
6

ui+1. (3.5b)

It turns out that these expressions can be written in the form (3.1) to obtain the non-limited 3rd-order reconstruction

φ3(θi) :=
2+θi

3
(3.6)

with θi given by Eq. (3.2a). This formulation results in a full-3rd-order-accurate scheme for smooth solutions,
however, causes oscillations near discontinuities. This can be seen either by noticing that φ3(θi) does not lie in
the TVD region, see Fig. 2, or as a direct consequence of Godunov’s Theorem [10], since a linear scheme of more
than 1st order cannot be monotone. Since oscillations should be avoided, limiter functions have been introduced,
which apply the full 3rd-order reconstruction (3.6) at smooth parts of the solution and switch to a lower-order
reconstruction close to large gradients, shocks, and discontinuities. In [3], Artebrant and Schroll present a limiter

4



Figure 2 – Logarithmic limiter function φAS with q = 1.4 (black solid line), its approximation φCT (blue
solid line), the TVD-version of φCT which does not have the non-zero part for θ < 0, denoted by
φCT, TVD (red solid line with red circles) and the full-3rd-order reconstruction φ3 (black dashed
line).

function, which can be formulated as φAS(θi,q), see [4], based on a local-double-logarithmic reconstruction. This
function does not solely depend on θi but also contains a parameter q which significantly changes the reconstruction
function. The authors recommend q = 1.4 and demonstrate that for q→ 0, the logarithmic limiter function reduces
to φ3(θi). Their limiter function reads

φAS(θi,q) =
2p[(p2−2pθi +1) log(p)− (1−θi)(p2−1)]

(p2−1)(p−1)2 ,

p = p(θi,q) = 2
|θi|q

1+ |θi|2q .

The downside of φAS(θi,q) is its complexity, which renders the evaluation in each cell expensive. Čada and Tor-
rilhon [4] derive, in an ad-hoc fashion, a limiter function φCT(θi) which is based on φAS. This function overcomes
the drawbacks by approximating the properties of φAS and reducing the computational cost. It reads

φCT(θi) = max
(

0,min
(

φ3(θi),max
(
−1

2
θi,min(2θi,φ3(θi),1.6)

)))
(3.7)

and is shown in Fig. 2 together with φAS(θi,1.4) and φ3(θi). Note that φCT does not lie within the strict TVD
bounds, i.e. it breaks with 3.1 (ii). The TVD property 3.1 (ii) can be achieved by considering only those parts of
φCT where θ ≥ 0, and setting it to 0 elsewhere, leading to the limiter function

φCT, TVD(θ) = max(0,min(2θ ,φ3(θ),1.6)) . (3.8)

However, the motivation for keeping the non-zero part in the construction of φCT(θ) for θ ∈ [−2,0] is to avoid the
so-called extrema clipping. This is the effect occurring close to minima and maxima, where the normalized slopes
δi±1/2 are of the same order of magnitude but have opposite signs, i.e. θi ≈ −1. In this case, classical limiter
functions that fully lie in the strict TVD bounds yield zero and thus generate a 1st-order accurate scheme. This
undesirable reduction in accuracy is avoided when the non-zero part of φ is included. Therefore, φCT possesses
better smoothness properties near θ =−1 than φCT, TVD since here, φCT(θ) = φ3(θ) but φCT, TVD(θ) = 0. For more
details, see [4], where the non-zero part was first introduced.
Nonetheless, it might occur that the discretization of an extremum is such that one of the consecutive slopes is
approximately zero. In this case, θ → 0 or θ →±∞ and the interface values ui±1/2 are again approximated by
the cell mean values ūi, which yields a 1st-order scheme. That is, a zero-slope is interpreted as the onset of a
discontinuity, even though it might in fact be the magnified view of a smooth extremum. This undesired case
demonstrates that a criterion is needed which can differentiate a smooth extremum from a discontinuity or steep
gradient. In the framework considered in this paper, the criterion should only depend on the available information
of the compact three-point stencil. Furthermore, it has to detect cases when switching to the 3rd order reconstruction
is safe, even though one of the normalized slopes is zero. We assume that using the 3rd order reconstruction is safe

5



(a) Limiter function HCT, TVD(δi− 1
2
,δi+ 1

2
) satisfying

the strict TVD bounds.
(b) Extended limiter function HCT(δi− 1

2
,δi+ 1

2
).

Figure 3 – Different limiter functions in the two-parameter framework.

if the non-zero slope is ’small’. In turn, if the non-zero slope is not small, we assume to be near a discontinuity or
large gradient, and the order should be reduced. The main focus of Section 3.1 is to determine what ’small’ means
and to define a suitable smoothness indicator η .

3.1 Interpretation in 2D Slope Domain

From the discussion above, it is clear that such a switch function η has to explicitly depend on both normalized
slopes δi±1/2, Eq. (3.2b, 3.2c). The classical approach of only considering the ratio θi, Eq. (3.2a), of neighboring
slopes is overly restrictive because part of the information (the actual magnitude of the two slopes) is discarded.
This is why we reformulate all limiter functions φ in a two-parameter framework and obtain the new formulation
for the reconstructed interface values (see Eq. (3.1)) as

u(−)i+1/2 = ūi +
1
2 H(δi− 1

2
,δi+ 1

2
), (3.9a)

u(+)
i−1/2 = ūi− 1

2 H(δi+ 1
2
,δi− 1

2
) (3.9b)

with the limiter function H explicitly depending on both normalized slopes. The old limiter function φ(θi) can of
course be rewritten in the new form of the two-parameter function H by setting

H(δi− 1
2
,δi+ 1

2
) := φ(θi)δi+ 1

2
= φ

(
δi− 1

2

δi+ 1
2

)
δi+ 1

2
. (3.10)

In this setting, the full-3rd-order reconstruction φ3(θi) = (2+θi)/3, given by Eq. (3.6), now reads

H3(δi− 1
2
,δi+ 1

2
) =

2δi+ 1
2
+δi− 1

2

3
. (3.11)

This formulation has the advantage that there is no division by the normalized slope δi±1/2. Thus, a possible
division by a number close to zero is avoided. Fig. 3a shows the limiter function HCT,TVD which satisfies the strict
TVD bounds. This can clearly be seen by the zero parts for sgn(δi− 1

2
) 6= sgn(δi+ 1

2
). Fig. 3b shows the extended

version HCT in the two-parameter setting. On the coordinate axis where δi− 1
2
= 0, i.e. θi = 0, the limiter function

HCT returns zero, meaning that it yields a 1st-order method. The same holds for the coordinate axis where δi+ 1
2
= 0.

6



For two consecutive slopes of approximately the same order of magnitude, i.e. around the diagonals, HCT recovers
the 3rd-order reconstruction H3. This is the case for δi− 1

2
≈−δi+ 1

2
as well as for δi− 1

2
≈ δi+ 1

2
, contrary to HCT,TVD

which returns H3 only in the latter case and 0 for δi− 1
2
≈−δi+ 1

2
.

The limiter function presented in [4] is not symmetric with respect to the diagonals. This means that in some cases
HCT(δ1,δ2) = H3(δ1,δ2) but HCT(−δ2,−δ1) 6= H3(−δ2,−δ1), cf. Fig. 4. This asymmetry is not natural because
these two situations are equally smooth or non-smooth. We therefore correct this feature by defining the following
3rd-order limiter function H3L(δi− 1

2
,δi+ 1

2
)

H3L(δi− 1
2
,δi+ 1

2
) = sgn(δi+ 1

2
) max(0,min(sgn(δi+ 1

2
)H3,max(−sgn(δi+ 1

2
)δi− 1

2
, (3.12)

min(2 sgn(δi+ 1
2
)δi− 1

2
,sgn(δi+ 1

2
)H3,1.5|δi+ 1

2
|))))

This new limiter function treats symmetric situations in the same manner, i.e. if H3L(δ1,δ2) = H3(δ1,δ2) then also
H3L(−δ2,−δ1) = H3(−δ2,−δ1), cf. Fig. 4. The difference between the functions HCTand H3L can also be seen in
Fig. 7.

Expressing the interface values in the more general form (2.6), we can determine some properties for L(·, ·, ·) and
R(·, ·, ·), as done in [9]. These properties are valid for all limiter functions presented so far, i.e. for H3, HCT, H3L.

Property 3.2. Homogeneity
Multiplying the arguments of L and R in Eq. (2.6) by the same real number λ multiplies the interface values u(−)

i+ 1
2

and u(+)

i+ 1
2
, respectively, by the same constant λ . This is, L and R are called homogeneous, i.e. linear along each

line through the origin in the (δi− 1
2
,δi+ 1

2
) plane.

J(λu,λv,λw) = λJ(u,v,w), J ∈ {L, R}, λ ∈ R (3.13)

Property 3.3. Translational invariance
Adding a constant λ to the arguments of (2.6) adds the same constant λ to the interface values. This is, L and R
are called translationally invariant.

J(u+λ ,v+λ ,w+λ ) = J(u,v,w)+λ , J ∈ {L, R}, λ ∈ R (3.14)

Property 3.4. Left-Right symmetry
Exchanging the first and third argument of (2.6) interchanges the left and right interface values, (cf. [9] for more
details and figures)

R(w,v,u) = L(u,v,w). (3.15)

(a) This situation is treated as a possible discontinuity:
HCT 6= H3.

(b) This situation is classified as smooth: HCT = H3.

Figure 4 – Two situations which are reflections of each other, treated differently by HCT.

7



Figure 5 – Identical cell mean values, corresponding to a smooth solution, or to a discontinuous solution.

Lemma 3.1.
If properties 3.2 to 3.4 are satisfied, there exists an appropriate limiter function ψ : R→ R such that

L(u,v,w) = v+
1
2

ψ

(
u− v
w− v

)
(w− v) (3.16)

R(u,v,w) = v− 1
2

ψ

(
w− v
u− v

)
(v−u). (3.17)

Lemma 3.2. With properties 3.2 to 3.4, it is easy to verify that

(i) computing the interface values u(±)i±1/2 with L and R, given by Eq. (2.6), or in the form of Eq. (3.1), are
equivalent.

(ii) For δi+ 1
2
6= 0 the formulations of the cell interfaces in the one-parameter framework , Eq. (3.1) and in the

two-parameter framework, Eq. (3.9), are equivalent.

Proof. We will only show (i) for u(−)i+1/2; the other cases are similar.

(i) Setting (u,v,w) = (ūi−1, ūi, ūi+1) yields

u(−)i+1/2
(2.6)
= L(ūi−1, ūi, ūi+1)

(3.1)
= ūi +

1
2

ψ

(
ūi−1− ūi

ūi+1− ūi

)
(ūi+1− ūi) = ūi +

1
2

φ (θi)δi+ 1
2

where δi+ 1
2
= ūi+1− ūi and ψ (ūi−1− ūi/ūi+1− ūi) = ψ(−θi) =: φ(θi) applying Eq. (3.2a).

(ii) Due to the homogeneity of L and R, we can easily see with Eq. (3.9) that

H(δi− 1
2
,δi+ 1

2
) = H(

δi− 1
2

δi+ 1
2

,1) δi+ 1
2
= H(θi,1) δi+ 1

2
= φ(θi) δi+ 1

2
. (3.18)

3.2 A New Smoothness Indicator

Given three cell averages, it is in general not possible to determine whether these points represent the onset of
a discontinuity or the magnified view of an extremum. An example is shown in Fig. 5 where one set of cell
mean values could be obtained by the smooth function (green, square markers) or the discontinuous function (red,
diamond markers). As stated in Sec. 3.1, the two-parameter setting is the necessary prerequisite for the definition
of such a criterion. Čada and Torrilhon [4] proposed the function

ηCT(δi− 1
2
,δi+ 1

2
) =

δ 2
i− 1

2
+δ 2

i+ 1
2

(r∆x)2 . (3.19)

8



Figure 6 – Double logarithmic plot of the L1- and L∞-errors versus the number of grid cells of the solution
obtained with φ

(c)
CT advected until tend = 1 with CFL number ν = 0.9. The numerical solutions

are shown for different values of r, see Eq. (3.19). Left: L1-error, right: L∞-error.

This switch function defines an asymptotic region of radius r around the origin in the (δi− 1
2
,δi+ 1

2
)-plane. Within

this region the limiter switches to the 3rd-order reconstruction.
The authors of [4] then modified the structure of the limiter function φCT to include the asymptotic region around
the origin. The combination, denoted by the superscript (c), is defined as

φ
(c)
CT(θi) :=

{
φ3(θi) if ηCT < 1
φCT(θi) if ηCT ≥ 1.

(3.20)

It is possible to make this function Lipschitz continuous, by introducing a small transition region and a linear
function, cf. [4] for more details. This limiter function, combining φCT and the switch function ηCT, has been
successfully employed in e.g. [13, 14, 20]. In [4], the authors did not provide a general formulation of the param-
eter r which determines the size of the asymptotic region. Instead it was chosen ad hoc, in a problem-specific
way. To obtain some generic idea about suitable choices for r, we conduct a numerical test, applying φ

(c)
CT to the

advection equation ut +ux = 0 with smooth initial condition u0(x) = sin(πx) for different values of r. Fig. 6 shows
the double logarithmic plot of the L1- and L∞-errors versus the number of grid cells of the solution advected until
tend = 1 with CFL number ν = 0.9. For this smooth test case, we see that larger values of r, corresponding to larger
asymptotic regions are favorable. For smooth solution this makes sense because increasing values of r corresponds
to increasing the region of directly applying the full-3rd order reconstruction φ3. From Fig. 6 we can deduce that
for smaller r, a finer space discretization is needed to obtain 3rd order accuracy.
Motivated by the limiter function of [4], we want to define a new smoothness indicator without artificial parame-
ters. As already sketched in [23], a promising potential to distinguish discontinuities from smooth extrema is by
measuring the magnitude of the vector (δi− 1

2
,δi+ 1

2
). If this vector is sufficiently small in some appropriate norm,

the reconstruction is switched to the full-3rd order reconstruction, even if one of the lateral derivatives may be
vanishing.

Lemma 3.3. In the vicinity of an extremum ξ0, for |xi−ξ0| ≤ ∆x, the following relations hold for each time tn:∥∥∥(δi− 1
2
,δi+ 1

2

)∥∥∥
2
≤
√

c max
x∈Ω\Ωd

|u′′(x, tn)|∆x2 with c =
5
2
+O(∆x), (3.21a)∥∥∥(δi− 1

2
,δi+ 1

2

)∥∥∥
1
≤ c max

x∈Ω\Ωd
|u′′(x, tn)|∆x2 with c = 2+O(∆x). (3.21b)

Here, Ω is the computational domain, and Ωd is a set of points where the solution is discontinuous.

Proof. Let us recall the definition of Ū(x, t), Eq. (2.2),

Ū(x, t) =
1

∆x

∫ x+∆x/2

x−∆x/2
u(s, t)ds,

9



where u is the exact solution. The following properties hold for Ū(x, t)

Ū ′(x, t) =
u(x+ ∆x

2 , t)−u(x− ∆x
2 , t)

∆x
(3.22a)

Ū ′′(x, t) =
u′(x+ ∆x

2 , t)−u′(x− ∆x
2 , t)

∆x
(3.22b)

ūn
i ≈ Ūn

i = Ū(xi, tn), (3.22c)

where Ū(xi, tn) is the cell average of the exact solution at time tn in cell Ci with cell center xi.
Eq. (3.21a) can be proven regarding the following formulation of definitions (3.2b), (3.2c), with a constant α which
is going to be specified. For the sake of simplicity we shall neglect tn for the rest of the proof.

(Ū(xi +∆x)−Ū(xi))
2 +(Ū(xi)−Ū(xi−∆x))2

(α ∆x2)2 = (3.23a)

=
1

α2

(
Ū(xi +∆x)−2Ū(xi)+Ū(xi−∆x)

∆x2

)2

+
2

α2∆x2

(
Ū(xi +∆x)−Ū(xi)

∆x

)(
Ū(xi)−Ū(xi−∆x)

∆x

)
(3.23b)

a Taylor expansion of the functions Ū(xi±∆x) around xi yields

=
1
2

(
Ū ′′(xi)

α

)2

+
2

∆x2

(
Ū ′(xi)

α

)2

+
2
3

Ū ′(xi)Ū ′′′(xi)

α2 +O(∆x2). (3.23c)

In the vicinity of an extremum ξ0, for |xi−ξ0| ≤ ∆x, the derivative satisfies

Ū ′(xi) = Ū ′(ξ0)+Ū ′′(ξ0)(xi−ξ0)+O((xi−ξ0)
2) (3.24a)

= Ū ′′(ξ0)(xi−ξ0)+O(∆x2) (3.24b)

⇒ |Ū ′(xi)| ≤ |Ū ′′(ξ0)|∆x+O(∆x2). (3.24c)

Since we are interested in (Ū ′(xi))
2, we find that

(
Ū ′(xi)

)2 ≤
(
Ū ′′(ξ0)

)2
∆x2 +O(∆x3). (3.24d)

Therefore, Eq. (3.23) reduces to

(Ū(xi +∆x)−Ū(xi))
2 +(Ū(xi)−Ū(xi−∆x))2

(α ∆x2)2 ≤ 1
2

(
Ū ′′(xi)

α

)2

+2
(

Ū ′′(ξ0)

α

)2

+O(∆x). (3.24e)

Consider the computational domain Ω, and the set of points Ωd , where the solution is discontinuous. Setting
α ≡maxxi∈Ω\Ωd

|Ū ′′(xi, tn)| with the cell centers xi, leads to

(Ū(xi +∆x)−Ū(xi))
2 +(Ū(xi)−Ū(xi−∆x))2

(maxxi |Ū ′′(x, tn)|∆x2)
2 ≤ 5

2
+O(∆x). (3.25)

Since the numerical solution ūn
i is a 3rd-order-accurate approximation of the true solution, i.e. ūn

i = Ū(xi, tn)+
O(∆x3) and

α =max
xi
|Ū ′′(xi, tn)|

(3.22)
≤ max

xi
max

ξ∈(xi−
∆x
2 ,xi+

∆x
2 )

|u′′(ξ , t)|

holds true, this shows Eq. (3.21a). In a similar manner, Eq. (3.21b) can be proven.

Remark 3.1. Often, the exact value of maxx |u′′(x, tn)| is not known or it is too expensive to compute. In these
cases, a different estimator needs to be found.
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(a) In many applications, one has some estimate of the largest second derivative of the solution, even if one does
not know the solution itself.

(b) If a good estimate of the solution at time tn is unavailable, one can use the initial conditions u0(x) as
an approximation of α . Note that for a conservation law of the form ut + f (u)x = 0, certain information
about uxx can in fact be inferred from the initial data (where the solution is smooth). For instance, second
derivatives are actually preserved at extremal points. To see this, consider the equations that ux and uxx
satisfy, namely (ux)t + f ′(u)(ux)x = − f ′′(u)(ux)

2 and (uxx)t + f ′(u)(uxx)x = − f ′′′(u)u3
x − 3 f ′′(u)uxuxx. In

both equations, the left hand side represents the convective derivative along characteristics. Therefore,
extremal points (ux = 0) are just moved with the characteristics, and uxx remains unchanged from its value
at initial time.

From now on, we will use α ≡maxx∈Ω\Ωd
|u′′0(x)|.

Lemma 3.3 makes a statement on the magnitude of the normalized slopes. Note that the upper bound only de-
pends on the grid size ∆x and the initial condition u0. From this lemma we can now deduce the definition of the
smoothness indicator.

Definition 3.1. The switch function η which marks the limit between smooth extrema and discontinuities is defined
by

η = η(δi− 1
2
,δi+ 1

2
) =

√
δ 2

i−1/2 +δ 2
i+1/2√

5
2 α ∆x2

(3.26)

with

α ≡ max
x∈Ω\Ωd

|u′′0(x)| (3.27)

Ω and Ωd defined as in Lemma 3.3.

Note that α is proportional to 1/∆x2 and therefore, η is a non-dimensional quantity, so that the overall scheme is
not affected by changes of units.
The idea of using the largest second derivative of the initial conditions to relax limiting near extrema has already
been proposed by Cockburn and Shu [7] in the context of discontinuous Galerkin methods. They use the constant
M2 = maxx |u′′0(x)| to overcome the degeneration to first order at critical points: M2 is used to estimate the mag-
nitude of the reconstructions u(−)i±1/2,u

(+)
i±1/2. If the reconstruction is smaller than a certain bound, the high order

reconstruction is used, otherwise, a limiter function is applied. Note that in [7] the switch function is based on the
reconstructed values u(−)i±1/2,u

(+)
i±1/2, whereas in this work, we consider the normalized slopes δi±1/2.

With Def. 3.1, Lemma 3.3 states that in the vicinity of smooth extrema, η ≤ 1 holds. Combining this information
with the new limiter function H3L, we use this result to define the combined limiter, denoted by the superscript (c),

H(c)
3L (δi− 1

2
,δi+ 1

2
) :=

{
H3(δi− 1

2
,δi+ 1

2
) if η < 1

H3L(δi− 1
2
,δi+ 1

2
) if η ≥ 1.

(3.28)

The resulting two-dimensional limiter function for this approach is shown in Fig. 7b. Note that in the same manner
as for H(c)

CT, Lipschitz-continuity of the combined limiter H(c)
3L (δi− 1

2
,δi+ 1

2
), Eq. (3.28), can be achieved by using a

continuous switch function for the transition between the limited and non-limited reconstruction.

Remark 3.2. The proposed limiter H(c)
3L (δi− 1

2
,δi+ 1

2
) still satisfies properties 3.2 to 3.4, i.e. it is homogeneous,

translationally invariant and fulfills the left-right symmetry. For the homogeneity, this can be seen by the fact that
the stretched vector (k ui−1,k ui,k ui+1) leads to the undivided differences (k δi− 1

2
,k δi+ 1

2
), which are stretched by

the same factor. Also, observe how (k ui−1,k ui,k ui+1) affects α , Eq. (3.27),

α(k u0) = max
x∈Ω\Ωd

|k u′′0(x)|= |k| max
x∈Ω\Ωd

|u′′0(x)|= |k|α(u0). (3.29a)
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(a) Combined limiter function H(c)
CT, [4]. (b) New combined limiter function H(c)

3L .

Figure 7 – Limiter functions combined with the full-3rd order reconstruction in a region around the origin.

With definition (3.26), we obtain that the decision criterion is homogeneous, i.e.,

η(k δi− 1
2
,k δi+ 1

2
) = η(δi− 1

2
,δi+ 1

2
). (3.29b)

Using the fact that H3(δi− 1
2
,δi+ 1

2
) and H3L(δi− 1

2
,δi+ 1

2
) are homogeneous functions, finally leads to

⇒H(c)
3L (k δi− 1

2
,k δi+ 1

2
) = k H(c)

3L (δi− 1
2
,δi+ 1

2
). (3.29c)

For the translational invariance, note that the shifted vector (k + ui−1,k + ui,k + ui+1) leads to the original for-
mulation (δi− 1

2
,δi+ 1

2
) and does not affect α either. Contrary to H(c)

3L , the limiter function H(c)
CT(δi− 1

2
,δi+ 1

2
) is not

homogeneous, because ηCT(kδi− 1
2
,kδi+ 1

2
) = k2ηCT(δi− 1

2
,δi+ 1

2
) 6= ηCT(δi− 1

2
,δi+ 1

2
), compare to Eq. (3.29b).

4 Third order WENO

In this section we briefly review the 3rd-order weighted essentially non-oscillatory (WENO) scheme for one-
dimensional scalar conservation laws. We consider WENO schemes because they represent a very popular method
for approximating the solution of hyperbolic conservation laws. Since we want to compare WENO with the limiter
functions introduced in Section 3, we focus on WENO3. This is the family of schemes which only use three points
for the reconstruction of the left and right cell-interfaces u(+)

i−1/2 and u(−)i+1/2. WENO3 reconstructs an estimate of
the solution u(xi+ 1

2
) from the cell averages ūi−1, ūi, and ūi+1. The procedure, introduced by Jiang and Shu [12],

is to start just as for the r-th-order ENO scheme [11], where r = 2. This is, we consider the two-point stencils
S0 =Ci−1∪Ci and S1 =Ci∪Ci+1 and define on each stencil 2nd-order accurate approximations:

• p0(xi+ 1
2
) =− 1

2 ui−1 +
3
2 ui, where p0 is the linear interpolation of (xi−1, ūi−1) and (xi, ūi) and

• p1(xi+ 1
2
) = 1

2 ui +
1
2 ui+1, where p1 is the linear interpolation of (xi, ūi) and (xi+1, ūi+1).

For the sake of simplicity, we only consider the procedure for the right cell interface xi+ 1
2
. The left interface follows

in a similar manner.
Based on an r-th order ENO scheme, the best one can get is a (2r−1)-th order WENO scheme, i.e. in our case 3rd

order [12]. To obtain this, the WENO3 estimate of u(xi+ 1
2
), called ûi+ 1

2
, is defined as a convex combination of the
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two 2nd-order estimates p0(xi− 1
2
) and p1(xi+ 1

2
):

ûi+ 1
2
= wi− 1

2
p0(xi+ 1

2
)+wi+ 1

2
p1(xi+ 1

2
). (4.1)

The weights satisfy wi± 1
2
≥ 0 and wi− 1

2
+wi+ 1

2
= 1. There is a particular choice of weights that generates a 3rd-

order-accurate approximation to u(xi+ 1
2
), namely wi− 1

2
= γi− 1

2
= 1

3 , and wi+ 1
2
= γi+ 1

2
= 2

3 . This approximation is
obtained when interpolating (xi−1, ūi−1), (xi, ūi), and (xi+1, ūi+1) by a quadratic polynomial, and evaluating it at
xi+ 1

2
, see Eq. (3.5a).

The philosophy of WENO is to design formulas for the weights wi± 1
2
, such that in smooth regions, one has wi± 1

2
≈

γi± 1
2
, while in regions of large gradients, more weight is given to the approximation that generates fewer spurious

oscillations. This is achieved using smoothness indicators βi±1/2. They are defined using the normalized slopes
between neighboring cells δi± 1

2
:

βi± 1
2
= (δi± 1

2
)2.

The final weights wi± 1
2

are defined by

wi± 1
2
=

αi± 1
2

αi− 1
2
+αi+ 1

2

, (4.2)

where

αi± 1
2
=

γi± 1
2

(ε +βi± 1
2
)p . (4.3)

In equation (4.3), there are two parameters which need to be further detailed. The integer p ∈ N, which Liu et
at. [18] suggest to set p = r, the order of the base ENO scheme. Jiang and Shu [12] claim that for r = 2,3, setting
p to 2 is adequate. In this work, we will set p = 2.
The other parameter in Eq. (4.3) is ε , a small positive number, originally introduced to avoid the division by
zero [12]. We suggest that rather than fixing ε to some constant, it should depend on the spacial discretization ∆x.
This will be discussed in more detail in Sec. 4.2.

4.1 Interpretation of WENO3 in 2D Slope Domain

A brief calculation yields for the WENO3 reconstruction

ûi+ 1
2
= wi− 1

2
p0(xi+ 1

2
)+wi+ 1

2
p1(xi+ 1

2
)

= wi− 1
2

(
− 1

2 ūi−1 +
3
2 ūi
)
+wi+ 1

2

( 1
2 ūi +

1
2 ūi+1

)
= ūi +

1
2

(
wi− 1

2
(ūi− ūi−1)+wi+ 1

2
(ūi+1− ūi)

)
= ūi +

1
2

(
wi− 1

2
δi− 1

2
+wi+ 1

2
δi+ 1

2

)
.

Since the weights wi± 1
2

themselves only depend on the slopes δi± 1
2
, the WENO3 estimate can be written in the

form (3.9) with the limiter function HWENO3, whose particular form depends on the parameters p and ε . Explicitly
written, it is

HWENO3(δi− 1
2
,δi+ 1

2
) =

1
3 (ε +(δi− 1

2
)2)−pδi− 1

2
+ 2

3 (ε +(δi+ 1
2
)2)−pδi+ 1

2
1
3 (ε +(δi− 1

2
)2)−p + 2

3 (ε +(δi+ 1
2
)2)−p

. (4.4)

In the vicinity of (0,0), i.e. for |δi± 1
2
| � ε , one has in leading order that

H�(δi− 1
2
,δi+ 1

2
) = 1

3 δi− 1
2
+ 2

3 δi+ 1
2
. (4.5)

As mentioned before, this linear function is homogeneous and results in a 3rd-order-accurate approximation. On
the other side of the spectrum, if |δi± 1

2
| � ε , one has in leading order that

H�(δi− 1
2
,δi+ 1

2
) =

1
3 (δi− 1

2
)1−2p + 2

3 (δi+ 1
2
)1−2p

1
3 (δi− 1

2
)−2p + 2

3 (δi+ 1
2
)−2p

. (4.6)
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Figure 8 – Double logarithmic plot of the L1- and L∞-errors versus number of grid cells of the solution
obtained with HWENO3 advected until tend = 1 with CFL number ν = 0.9. Numerical solution for
different values of ε , see Eq. (4.4) and (4.3). Left: L1-error, right: L∞-error.

This function is also homogeneous, i.e. H�(kδi− 1
2
,kδi+ 1

2
) = k H�(δi− 1

2
,δi+ 1

2
). That means, along each line

through the origin in the (δi− 1
2
,δi+ 1

2
) plane, it is linear, thus resembling the behavior of traditional FV limiters.

4.2 WENO Smoothness Indicators

The choice of the weights ωi±1/2, which depend on αi±1/2, is crucial for the order of accuracy of the resulting
scheme. Its precise value influences the behavior of the limiting when βi±1/2 is close to zero. Clearly, this is
of particular importance near extremal points of the solution. To point out the importance of ε , we repeated the
numerical experiment conducted in Sec. 3.2 with the 3rd-order WENO scheme. This is, we apply HWENO3 to the
advection equation ut +ux = 0 with smooth initial condition u0(x) = sin(πx) for different values of ε . The result
for tend = 1 and CFL number ν = 0.9 is depicted in Fig. 8. There is a strong similarity between this test case and
the one shown in Fig. 6. This resemblance and also comparing the form of αi±1/2, Eq. (4.3), with the new FV
smoothness indicator η , Eq. (3.26), strongly suggests to take a closer look at ε . In recent years, this parameter has
attracted a lot of attention, see e.g. [30], [1], [2], [15] and references therein. Originally, ε was introduced by Jiang
and Shu to avoid the denominator to become zero [12]. The authors called it a small positive number and set to
ε = 10−6 for their test-case studies. Therefore, WENO3 with the fixed value ε = 10−6 will be called WENO-JS
henceforth. There are several drawbacks by fixing ε to some value ε0. One of them is the following scenario which
might occur since δi± 1

2
= O(∆x) in smooth parts of the solution:

1. For large grid sizes, |δi± 1
2
| � ε0 holds, leading to the homogeneous function HWENO3 → H�(δi− 1

2
,δi+ 1

2
),

Eq. (4.6), and thus to low order.

2. Refining the grid leads to |δi± 1
2
| � ε0, and yields HWENO3→H�(δi− 1

2
,δi+ 1

2
), Eq. (4.5), which is the full-3rd

order reconstruction.

This phenomenon is also demonstrated in Fig. 8. Wanting ε to be adaptive for all grid discretizations means that it
has to depend on the grid size, i.e. ε = ε(∆x). This is also what Yamaleev and Carpenter claim in [29,30]. However,
the authors do not simply replace ε by a function depending on ∆x, they rather define new weight functions

wk =
αk

∑
r−1
i=0 αi

, αk = γk

(
1+

τ

ε +βk

)
, k = 0, . . . ,r−1, (4.7a)

ε = max
x 6∈Ωd

(‖u2
0‖1,‖(u′0)2‖1, . . . ,‖(u(r−1)

0 )2‖1)∆x2, (4.7b)

where Ωd is a set of points where the initial condition is discontinuous. In this paper we consider r = 2. Thus,
γ0 = γi−1/2,γ1 = γi+1/2, etc. are defined as before and τ is the square of the undivided difference on the entire
stencil. In case of the compact three-point stencil this is τ = (ūi+1− 2ūi + ūi−1)

2 = (δi+ 1
2
− δi− 1

2
)2. Note that
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the definition of ε is not invariant under translation of the initial condition u0. This leads to a different limiting
behavior even though u0 may simply be shifted by a constant, cf. Sec. 6.3.
Arándiga et al. [2] show that using the weights proposed by Yamaleev and Carpenter, the resulting scheme reaches
the maximal order (2r−1) for sufficiently smooth solutions. However, near discontinuities, the scheme achieves
order of accuracy O(∆x2) which is worse or equal to O(∆xr), r ≥ 2, the order of accuracy of the underlying ENO
scheme. Arándiga et al. report to have fixed this issue by slightly changing the weight functions using

αk = γk

(
1+
(

τ

ε +βk

)µ)
, k = 0, . . . ,r−1, µ =

⌈ r
2

⌉
(4.8a)

ε = K ∆xq, with K > 0, q ∈ N, q≤ 4r−4− r/µ. (4.8b)

In the case of the three-point stencil, µ = 1 and therefore the weight formulation remains the same. In the numerical
test cases carried out in [2], K is set to 1, which makes ε a dimensional quantity that might be affected by changes
of units. We will not consider these weight functions in our numerical experiments in Sec. 6 since the definition
of ε in Eq. (4.7b) is clearly more elaborate. Solely in Sec. 6.4 we compare the obtained results with the scheme
setting K = 1, i.e. ε = ∆x2 to show the importance of the definition of ε .

5 A Unifying View

In this section we want to place the different methods in a unifying view to point out their differences and especially
their similarities.
For the sake of simplicity, we do not discuss the three-dimensional plots of the limiter functions but rather sectional
views at fixed values of δi+ 1

2
. This means, the limiter functions are depicted with a one-dimensional dependence

on δi− 1
2
. Lemma 3.2 states that for δi+ 1

2
= 1 this is equivalent to the standard (θ ,φ(θ))-plots such as Fig. 2, and

found in textbooks.
To give an overview, Fig. 9 shows the limiter functions treated in the previous sections for δi+ 1

2
∈ {2,1,0.5,0.1}.

In Fig. 9 we can nicely see that all limiter functions satisfy Property 3.1 (i). This is, for θ = 1, i.e. δi− 1
2
= δi+ 1

2
, the

limiter functions continuously go through the point (δi+ 1
2
,δi+ 1

2
), which corresponds to φ(θ) = 1. This situation

represents smooth parts of the solution. It can be seen that WENO-JS has slope 1
3 only close to the point δi− 1

2
=

δi+ 1
2

meaning that as soon as the slopes (of same sign) differ from each other, the limiting takes effect, even though
the function is still smooth. The smaller the values of δi±1/2, the stronger is this effect, see the trend from Fig. 9a
to 9d.
For δi− 1

2
→±∞, i.e. θ →±∞, all considered functions, except H3, tend to a constant. For the WENO schemes,

this constant is non-zero, contrary to the negative part of the FV limiter. However, for the reconstruction of the
cell interface values, H(δi− 1

2
,δi+ 1

2
)≡ const. leads to first-order accuracy, independent of the value of the constant.

In Fig. 9c and 9d we can see the switch of the FV limiter to the full-3rd order reconstruction, highlighted by the
dashed black line. Clearly, the construction of the transition zone is rather ad-hoc for the FV limiter, while it comes
more naturally in WENO3. However, the FV setup allows a much more systematic control about the shape of the
function H far away from the origin, particularly in the regions where δi− 1

2
and δi+ 1

2
have opposite signs. It is

here that the FV and WENO limiters show a very different behavior. In the point δi− 1
2
= −δi+ 1

2
, i.e. at extrema,

all proposed limiters equal H3. However, while H(c)
3L has the same slope as the full-3rd order reconstruction, the

WENO limiters have negative slopes. This indicates that the FV limiter reconstructs extrema with higher accuracy,
since in general extremal points might not lie exactly at δi− 1

2
= −δi+ 1

2
but rather δi− 1

2
≈ −δi+ 1

2
. In these cases,

the new limiter function approximates the full-3rd-order reconstruction, leading to higher order solutions.
Another interesting observation is the nature of H(c)

3L and WENO-YC at δi− 1
2
= 0. When considering the univariate

limiter functions φ(θ) with θ = δi− 1
2
/δi+ 1

2
, the point δi− 1

2
= 0 is equivalent to θ = 0. In this case, the conventional

FV limiter functions in the MUSCL framework are set to 0, yielding a first-order reconstruction. This is also the
case for WENO-JS, whereas the limiters proposed in this work and by Yamaleev and Carpenter yield non-zero
contributions for small δi+ 1

2
, see Fig. 9b, 9c, and 9d. This is exactly the desired behavior close to extrema where

one slope may be zero and the other slope small but non-zero. Further away from the origin in the (δi− 1
2
,δi+ 1

2
)-

plane, it is clear that the limiter functions should yield 0 for δi− 1
2
= 0 because this situation may correspond to a

discontinuity. This feature can be observed in Fig. 9a.
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(a) δi+ 1
2
= 2. (b) δi+ 1

2
= 1.

(c) δi+ 1
2
= 0.5. (d) δi+ 1

2
= 0.1.

Figure 9 – Sectional view of different limiter functions for the fixed values δi+ 1
2
∈ {2,1,0.5,0.1}.

6 Numerical Results

In this section, we apply and compare the different limiter functions discussed in the previous sections. In all test
problems proposed in this work, we compare

1. the original WENO3 scheme as introduced in [12], i.e. fixing ε = 10−6, called WENO-JS;

2. WENO3 with the weight functions proposed by Yamaleev and Carpenter [30], called WENO-YC;

3. the full 3rd-order reconstruction H3, Eq. (3.11); and

4. the FV limiter function H(c)
3L , as introduced in Sec. 3.

The time derivative is approximated using the 3rd-order Runge-Kutta method as described in [24].
For all test cases, rather than presenting tables with errors and convergence rates, we plot the L1- and L∞-errors.
In these plots, we include reference slopes of the design order of accuracy, i.e. the order of accuracy the schemes
obtain in theory.

6.1 Preliminary Test Case

In this test, we want to point out the importance of the choice of ε for WENO-YC as we have done for H(c)
CT and

WENO-JS in Sec. 3.2 and 4.2, respectively. We set ε =C ∆x2. According to Eq. (4.7), C =maxx 6∈Ωd (‖u
2
0‖,‖(u′0)2‖).
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Figure 10 – Zoom of the solution of the preliminary test case, Eq. (6.1). This has been obtained with the
WENO-YC scheme, ε =C ∆x2, C ∈ {103,1.0,10−1,10−2,10−3} with n = 80 grid cells and
tend = 1.0.

However, in this test case we set C ∈ {103,1.0,10−1,10−2,10−3} to study the influence of the coefficient. The re-
sults for the repetition of the test

ut +ux = 0 (6.1a)
u0(x) = sin(πx), x ∈ [−1,1] (6.1b)

with n = 80 cells and tend = 1.0 is depicted in Fig. 10 for different values of ε . One can clearly see the loss in
accuracy if the constant for ε is chosen too small. Note that the correct value for ε , as proposed by Yamaleev
and Carpenter [30], is ε = max(1, π2) ∆x2 = π2 ∆x2. This indicates that for smooth functions a coefficient which
is too small decreases the quality of the approximation. This can also be observed in Fig. 11 which shows the
L1- and L∞-errors of the solution. We can see that the solution with ε = 1000 ∆x2 is 3rd-order-accurate in both
norms starting at the lowest resolution. While the solution with ε = 1.0 ∆x2 is still directly 3rd-order-accurate in
the L1-norm starting from n = 20 grid cells, we observe that the smaller the coefficient of ε , the larger n must be
chosen so that 3rd order is achieved.
Of course, the same conclusion holds true for the choice of α in H(c)

3L . This test thus shows that we need to carefully
evaluate Eq. (4.7) and (3.26). A misinterpretation of the coefficients may lead to results which are significantly
worse than what the scheme is capable to achieve.

Figure 11 – Double logarithmic plot of the L1- and L∞-errors versus number of grid cells of the solution
obtained with HWENO-YC, advected until tend = 1 with CFL number ν = 0.9. Numerical
solution for different values of ε =C ∆x2, C ∈ {103,1.0,10−1,10−2,10−3}. Left: L1-error,
right: L∞-error.
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(a) Solution of Eq. (6.2), (6.3) with different
numerical schemes, slightly zoomed in.

(b) Enlarged view of the maximum of the solution.

Figure 12 – Results of advection equation Eq. (6.2) with smooth initial condition, ν = 0.8, n = 170 grid
cells and tend = 10, i.e. the solution has been advected 10 times around the domain.

6.2 Advection Equation with Smooth Initial Condition

With this first test case we aim to verify that all considered schemes are 3rd-order accurate for smooth solutions.
We solve the linear advection equation,

ut +ux = 0 (6.2)

with the smooth initial condition

u0(x) =

{
(0.5+0.5cos(5π(x−0.5)))4 if 0.3≤ x≤ 0.7
0 else

(6.3)

and periodic boundary conditions. The computational domain is [0,1], the CFL number ν = 0.8 and the so-
lution is advected until tend = 10. The spatial resolution is the sequence of refined uniform grids with n =
20,40,50,100,120,170,200,300,500,700,1000,1500,3000 cells. For WENO-YC, according to Eq. (4.7), we set
ε = 20.67 ∆x2 with ∆x = 1/n. For the FV limiter function Eq. (3.28) and (3.26) we fix α = maxx∈Ω\Ωd

|u′′0(x)|=
493.48.
Fig. 12a and 12b show zooms of the solution at tend with different numerical schemes on a 170-cell grid. It can
be seen that H(c)

3L and WENO-YC, as well as the full-3rd-order scheme, perform much better than the conventional
WENO-JS scheme in terms of accuracy. This can also be observed in Fig. 13 which shows the L1- and L∞-errors
obtained at tend. The convergence rates of our proposed FV scheme, WENO-YC, and the unlimited 3rd-order

Figure 13 – Double-logarithmic plot of the L1- and L∞-errors vs. number of grid cells for the advection
equation with smooth initial condition, Eq. (6.2), (6.3).
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Figure 14 – Enlarged view of the discontinuities of the solution of Eq. (6.2), (6.4) with different numerical
schemes using n = 320 cells. ν = 0.8, tend = 10.

scheme reach 3rd order starting at n = 150 grid cells whereas WENO-JS shows this order of convergence only for
very large numbers of cells and with a larger error constant.

6.3 Advection Equation with Discontinuous Initial Condition

In this section we want to discuss the behavior of the numerical schemes for solutions containing discontinuities.
Therefore, we consider the advection equation, Eq. (6.2) with a = 1 and square wave initial condition

u0(x) =

{
1 for −0.5 < x < 0.5
0 else.

(6.4)

The computational domain is [−1,1], the CFL number ν = 0.8 and the solution is advected until tend = 10, which
corresponds to 5 periods in time. Due to the large gradients contained in the initial condition, the limiter functions
have to take effect in order to avoid spurious oscillations to appear. Solving this test case with the full-3rd-order
reconstruction Eq. (3.6) generates oscillations. This is the reason the FV limiter functions presented in Sec. 3
restrict the reconstruction to 1st-order in these situations and WENO3 reduces to Eq. (4.6). The WENO-YC
parameter ε is given by ∆x2 (see Eq. (4.7b)) and H(c)

3L reduces to H3L because α = maxx∈Ω\Ωd
|u′′0(x)|= 0.

This test case nicely shows the already mentioned drawback of the definition of ε in WENO-YC, Eq. (4.7b),
namely the coefficient of ε which is not translationally invariant if the initial condition is shifted. To point this out,
a second test case has been chosen, where the initial condition has simply been shifted by +100, i.e

IC+100 : u0,+100(x) =

{
101 for −0.5 < x < 0.5
100 else.

(6.5)

When applying WENO-JS to this new initial condition, the solution is does not show more oscillations, because
ε is fixed to 10−6. In fact, the solution is the same as for u0(x), only shifted by +100. Also, in the proposed FV
limiter, the constant α = maxx∈Ω\Ωd

|u′′0,+100(x)| = 0 does not change. Thus, the scheme yields the exact same
results, shifted by +100. However, for WENO-YC, ε , as given by Eq. (4.7b), is no longer ∆x2 but 20201∆x2.
The higher value of ε leads to augmented oscillations in the solution, as can be seen in Fig. 14. Here, for better
comparison, the solution u+100(x, tend) of the test with shifted initial condition, which lies in the range [99.9,101.1],
has been shifted to the range [−0.1,1.1]. Thus, both test cases, Eq. (6.4) and (6.5) lie between −0.1 and 1.1 in the
plots and the magnitude of the oscillations can be compared. As seen in Fig. 14, the original WENO3 scheme does
not cause any oscillation but it is rather dissipative. Our proposed FV limiter does not produce overshoots either.
Additionally, it approximates the sharp structure of the initial condition better than WENO-JS. WENO-YC with
correctly chosen parameter approximates the discontinuity almost as good as H(c)

3L , however, it causes oscillations.
These are even larger for the badly chosen ε . This behavior can also be observed in Fig. 15a and 15b which show
the L1-error and the total variation (TV), respectively. The best order of convergence we can expect from a 3rd-
order scheme and a solution containing discontinuities is 3/4. This can be shown by the Fourier analysis of the
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(a) Double-logarithmic plot of the L1-error vs. number
of grid cells.

(b) Total Variation vs. number of grid cells of the
different schemes.

Figure 15 – Results of advection equation Eq. (6.2) with discontinuous initial condition., ν = 0.8 and
tend = 10, i.e. the solution has been advected 10 around the domain.

modified equation with self-similar initial condition, cf. [17].
Even though, both solutions computed with WENO-YC cause oscillations, they obtain the order of accuracy 3/4.
The more dissipative WENO-JS scheme is also of order 3/4 but with a larger error constant. Among the tested
schemes, the best error constant is obtained with our proposed FV limiter function. The total variation of all
schemes represents their behavior as seen in the solution. WENO-JS attains the TV of the exact solution TV (uex)
from below, meaning that is does not cause overshoots at all, whereas WENO-YC is larger than TV (uex) for all
spatial discretizations. H(c)

3L is closest to TV(uex) and lies never above TV(uex) for all time steps, i.e. it does not
cause oscillations at any time.

6.4 Initial Condition Containing Smooth and Non-Smooth Features

We consider the same setup as in Sec. 6.2 with CFL number ν = 0.8, tend = 10.0 and initial condition

u0(x) = max
(

min
( x

0.1
−2,−

( x
0.1
−2
))

+1,0
)
+ exp

(
−
(

x−0.7
0.15

)4
)

sin(30πx). (6.6)

In this problem, we want to test how accurate the different schemes resolve small features in a larger setting of a
more complex solution. The spatial discretizations are n = 20 ·2i, i = 0, . . . ,7 grid cells. For WENO-YC, we set
ε = 1042.83 ∆x2, ∆x = 1/n, according to Eq. (4.7b). For the FV limiter function we fix α = maxx∈Ω\Ωd

|u′′0(x)|=
8887.87. We run a third case with WENO-YC but setting ε = ∆x2 to show the difference in performance as
described in Sec. 4.2 and 6.1. This test case corresponds to the weight functions proposed in [2, 15], where

Figure 16 – Initial condition (6.6) containing smooth and non-smooth features.
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Figure 17 – Results of different schemes for the advection equation with more elaborate initial condition:
Zoom of two significant regions of the solution with n = 640 grid cells at tend = 10,ν = 0.8.

ε = K ∆x2 was used with K = 1. Furthermore, a test with the full-3rd-order reconstruction H3, Eq. (3.11), was
performed and compared to the numerical schemes discussed in this paper.
Fig. 17 shows a close up view of two significant regions of the solution with n = 640 grid cells. We observe
that our proposed FV limiter function and WENO-YC with correctly-chosen parameter ε perform much better
than WENO-YC with ε = ∆x2. The results of these two schemes are very close to the ones of the full-3rd order
reconstruction. Also, all four schemes outperform the conventional WENO-JS scheme. This can also be seen in
Fig. 19, which shows the double-logarithmic plot of the L1- and L∞-errors versus the number of grid cells in the
smooth part of the solution, x ∈ [0.4,1]. The solution cannot be accurately represented with few grid cells by any
of the treated schemes. Even the full 3rd-order reconstruction does not resolve the details and therefore has a large
error constant. As soon as a reasonable space discretization is reached, the order of convergence reaches 3rd order
if only the range x ∈ [0.4,1], i.e. the smooth part of the solution, is regarded. Solely WENO-JS does not reach this
order even at the highest resolution.
If the error is considered on the whole domain [0,1], the convergence rate of all schemes degenerates for higher
resolutions. This is due to the fact that at higher resolutions the kinks in x ∈ [0.1,0.3] become well-resolved and
thus recognized as non-smooth. The initial conditions are an interesting test case combining smooth and non-
smooth features and therefore testing the capabilities of limiter functions. As shown in Fig. 18, near the position
of the kinks, all schemes - with the exception of WENO-JS and H3L - generate undershoots. For our proposed FV
limiter H(c)

3L this can be explained with the large asymptotic region. Since the maximal second derivative of the

initial condition is very large, α = maxx∈Ω\Ωd
|u′′0(x)|= 8887.87, the region where H(c)

3L reconstructs with full-3rd

order is relatively large. At the same time, the discrete second derivative of the kinks of the triangle are small
compared to the extreme regions of the smooth part, and at these points, the solution is reconstructed using H3

with no limiting. As a result, H(c)
3L causes undershoots, just as H3 does, because this is what is efectively used at

the kinks. However, compared to other limiting methods, we can in principle control these undershoots using our

Figure 18 – Zoom of the kink of the solution with n = 640 grid cells at tend = 10,ν = 0.8.
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Figure 19 – Double-logarithmic plot of the L1- and L∞-norm of the error vs. number of grid cells in the
range x ∈ [0.4,1], i.e. the smooth part of the solution of (6.2), (6.6).

FV limiter H(c)
3L . By choosing a smaller value for α , i.e. a smaller asymptotic region, these undershoots can be

completely avoided, as can be seen in the test case with pure discontinuity, cf. Sec. 6.3. An adaptive value for α

would therefore eliminate the undershoots in the non-smooth region x ∈ [0,0.4] while still resolving the smooth
smooth parts in x ∈ [0.4,1] with high order accuracy. However, such a local adaptivity would necessarily require
to use a wider stencil for the reconstruction, because as shown in Fig. 5, three points can not distinguish between
the kink and a strongly curved extremum on a coarse grid.

6.5 Sod Shock Tube Problem

Let us consider Sod’s problem, which describes a shock tube containing two different ideal gases at the left and
right side of a diaphragm, placed at x = 0. The density, velocity, and pressure of the gases in the left and right
region are given by ρL

vL
pL

=

1.0
0.0
1.0

 ,

ρR
vR
pR

=

0.125,
0.0
0.1

 . (6.7)

At time t > 0, the diaphragm is removed and the gases begin to mix. The time evolution is described by the one
dimensional Euler equations,

ut + f(u)x = 0 (6.8a)

with u=(ρ,ρu,E), the flux function

f(u) =
(
ρu,ρu2 + p,u(E + p)

)T
, (6.8b)

and the equation of state for ideal gases

E =
p

γ−1
+

1
2

ρu2, (6.8c)

with γ = 1.4. The computational domain is set to [−2,2] and the test is conducted with N = 100 grid cells
until Tend = 0.8. We compare the new limiter function H(c)

3L with the full 3rd-order reconstruction and WENO-JS.
WENO-YC is not included in the plots because it produced negative values for pressure, when run with ε = 2.25.
Due to the purely discontinuous form of the initial condition, we obtain α = 0, just as in Sec. 6.3. This means, that
H(c)

3L = H3L, i.e. no asymptotic region exists in this test case. The reconstruction techniques have all been applied
to the primitive variables ρ,u and p.
Sod’s shock tube problem leads to three characteristic waves, which can be seen in the solution, Fig. 20. Both, the
density and pressure profile show the rarefaction wave and the shock. The contact discontinuity can only be seen in
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(a) Density profile. (b) Pressure profile.

Figure 20 – Solution of different reconstruction techniques for Sod’s Problem, Eq. (6.7), (6.8) on the
domain [−2,2] with N = 100 grid cells, CFL ν = 0.95 at Tend = 0.8.

the density profile, Fig. 20a, not in the pressure distribution, Fig. 20b. The solution shows that applying the full-3rd

order reconstruction leads to over- and undershoots close to the discontinuities. WENO-JS yields good results
concerning this feature, however, does not approximate the true solution as accurate as H(c)

3L , see also discussion in
Sec. 6.3.

6.6 Shu-Osher Problem

In this problem, originally introduced by Shu and Osher [25], a Mach 3 shock is interacting with sine waves in the
density profile. The computational domain is fixed to [−4.5,4.5] and the shock at time t = 0 is situated at x =−4.
The initial conditions of the primitive variables density, velocity and pressure, to the left and right of x = −4 are
given by

Figure 21 – Solution of different reconstruction techniques for the Shu-Osher Problem, Eq. (6.9), (6.8) with
N = 640 grid cells on the domain [−4.5,4.5], CFL ν = 0.95 at time Tend = 1.8.
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Figure 22 – Solution of different reconstruction techniques for the Shu-Osher Problem, Eq. (6.9), (6.8)with
N = 1280 grid cells on the domain [−4.5,4.5], CFL ν = 0.95 at time Tend = 1.8.

ρL
vL
pL

=

3.857143
2.629369
10.33333

 ,

ρR
vR
pR

=

1+0.2sin(5x),
0.0
1.0

 , (6.9)

and the time evolution is governed by the one-dimensional Euler equations, Eq. (6.8). Just as in [25], the solution
is computed at Tend = 1.8. We compare the solutions of the full 3rd-order reconstruction, WENO-JS, WENO-YC
(where ε = 21.932), and the new limiter function H(c)

3L with N = 640 and N = 1280 cells to a reference solution,
which is the numerical solution of WENO-JS with 10,000 grid cells. The CFL number is set to ν = 0.95 in all
tests.
The combined limiter function H(c)

3L includes an asymptotic region, cf. (3.26), with α = 5.0 the reconstruction
techniques have all been applied to the primitive variables ρ,u and p.
Fig. 21 shows a comparison of the solutions obtained on 640 grid cells of the full 3rd-order reconstruction, WENO-
JS, WENO-YC, and the new limiter function H(c)

3L . A zoom of the areas of interest of the solutions computed on
1280 grid cells is shown in Fig. 22. Overall, it can be seen that applying the full-3rd order reconstruction or WENO-
YC leads to under- and overshoots close to discontinuities. WENO-JS does not produce overshoots, however, it
limits too much, so that the reference solution is not approximated as well as by the limiter function H(c)

3L . This is
especially visible in regions with large gradients.

7 Conclusions

In this paper we have analyzed 3rd-order finite volume and WENO schemes. These schemes reconstruct the so-
lution at cell interfaces, each reconstruction based on only three mean values. We have then placed the different
schemes in a unifying context. More specifically, we have analyzed and improved the FV limiter by Čada and
Torrilhon [4]. Our proposed FV limiter does not contain artificial parameters anymore. For a unifying view,
we considered the 3rd-order WENO schemes proposed by Jiang and Shu [12] and Yamaleev and Carpenter [30].
Plotting all schemes in the (δi− 1

2
,δi+ 1

2
)-plane revealed certain similarities which could also be observed in the

numerical experiments. For smooth solutions, the FV limiter and WENO-YC show equally good results. How-
ever, near discontinuities, the numerical experiments showed some oscillations using the WENO-YC scheme, as
predicted by Arandiga et al. [2]. This effect is avoided using our proposed FV limiter function, which reduces
oscillations near discontinuities significantly.

References

[1] F. Aràndiga, A. Baeza, A. M. Belda, and P. Mulet. Analysis of WENO schemes for full and global accuracy.
SIAM J. Numer. Anal., 49(2):893–915, 2011.

24



[2] F. Aràndiga, M.C. Martí, and P. Mulet. Weights design for maximal order WENO schemes. J. Sci. Comput.,
60(3):641–659, 2014.

[3] R. Artebrant and H.J. Schroll. Conservative logarithmic reconstructions and finite volume methods. SIAM J.
Sci. Comput., 27(1):294–314, 2005.
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