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1 Introduction

Fractional differential equations (FDEs) have become moreand more popular in applied
science and engineering field recently. The history and mathematical background of frac-
tional differential operators are given in [25] with definitions and applications of fractional
calculus. This kind of equations has been used increasinglyin many fields, for example,
in Nature [16] fractional operators applied in fractal stream chemistry and its implications
for contaminant transport in catchments, in [19] the fractional calculus motivated into bio-
engineering, and its application as a model for physical phenomena exhibiting anomalous
diffusion, Lévy motion, turbulence [1,2,28], etc.

Let us briefly review the development of numerical methods for the fractional convection-
diffusion equations. Several authors have proposed a variety of high-order finite difference
schemes for solving time-fractional convection-diffusion equations, for example [10,17,29,
31], and solving space-fractional convection-diffusion equations [6,18]. In [20,21,23], W.
Mclean and K. Mustapha have used the piecewise-constant andpiecewise-linear discon-
tinuous Galerkin (DG) methods to solve the time-fractionaldiffusion and wave equations,
respectively. But these methods require more computational costs. In order to tackle those
problems, in [22] W. Mclean has proposed an efficient scheme called fast summation by
interval clustering to reduce the implementation memory; more recent works on this issue
can been in [9,24]. Furthermore, in [11] Deng and Hesthaven have developed DG methods
for fractional spatial derivatives and given a fundamentalframe to combine the DG methods
with fractional operators. In [30] Xu and Hesthaven have applied the DG methods to the
fractional convection-diffusion equations in one dimension. In the two dimensional case,
Ji and Tang [15] have applied the DG methods to recast the fractional diffusion equations
in rectangular meshes with the numerically optimal convergence orderO(hk+1). However,
there are no theoretical results. So far very few literatures deal with the fractional problems
in triangular meshes, besides [26]. This motives us to consider a successful DG method for
solving the fractional problems in triangular meshes.

Here, we consider the time-dependent space-fractional convection-diffusion problem











∂tu+b ·∇u− ∂ α u
∂xα − ∂ β u

∂yβ = f , (x,y, t) ∈ Ω ×J,

u(x,y,0) = u0(x,y), (x,y) ∈ Ω ,

u(x,y, t) = 0, (x,y, t) ∈ ∂ Ω ×J,

(1.1)

in the domainΩ = (a,b)× (c,d) andJ = [0,T] with the superdiffusion operators which

are defined by the left Riemann-Liouville fractional derivatives ∂ α u
∂xα and ∂ β u

∂yβ , 1< α ,β < 2.

The function f ∈ L2(J;L2(Ω )) is a source term; the convection coefficientb is supposed to
satisfyb ∈ L∞(J;W1,∞(Ω )2), and the initial functionu∈ L2(Ω ).

In this work, we shall design a stable and accurate DG method for (1.1). The stability and
convergence are proved in multi-dimensional case. This development is built on the exten-
sion of the previous DG works found in [11,30], where a qualitative study of the high-order
local DG methods was discussed and some theoretical resultswere offered in one space
dimension. In order to perform the error analysis, the authors defined some projection op-
erators to prove the convergence results. Unfortunately, the defined projection operators can
not be easily extended to two dimensional case (see [11,30]). Hence, to avoid this difficulty,
a different DG method is designed in this paper by carefully choosing the numerical fluxes
and adding penalty terms. The presented hybridized discontinuous Galerkin (HDG) method
has the following attractive properties: 1) The HDG method can be used for other fractional
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problems, for example, fractional diffusion equations; 2)It has excellent provable stability,
i.e., the stability can be proved in any space dimensions; 3)Theoretically, the error analysis
can be more easily performed with the general analytical methods in any space dimensions.

The outline of this paper is as follows. In Section 2, we introduce some basic definitions,
notations and review a few lemmas which are useful for the following analysis. In Section
3, we present the computational schemes and give some discussions. In Section 4, we per-
form the stability and convergence analysis for the 2D space-fractional convection-diffusion
equations. In Section 5, we make the numerical experiments and show some simulation re-
sults to verify the theoretical results and illustrate the performance of the proposed schemes.
We conclude the paper with some remarks in the last section.

2 Preliminaries

In the following we give some definitions of fractional integrals, derivatives, and their prop-
erties.

Definition 1 ([25]) For anyµ > 0, the left and right Riemann-Liouville fractional integrals
of function u(x) defined on(a,b) are defined by

aI
µ
x u(x) =

∫ x

a

(x−ξ )µ−1

Γ (µ)
u(ξ )dξ ,

and

xI
µ
b u(x) =

∫ b

x

(ξ −x)µ−1

Γ (µ)
u(ξ )dξ .

Definition 2 ([25]) For any µ > 0,n− 1 < µ < n,n ∈ N+, the left and right Riemann-
Liouville fractional derivatives of function u defined on(a,b) are defined by

aD
µ
x u(x) =

dn

dxn

∫ x

a

(x−ξ )n−µ−1

Γ (n−µ)
u(ξ )dξ ,

and

xD
µ
b u(x) = (−1)n dn

dxn

∫ b

x

(ξ −x)n−µ−1

Γ (n−µ)
u(ξ )dξ .

Definition 3 ([25]) For anyµ > 0,n−1< µ < n,n∈ N+, Caputo’s left and right fractional
derivatives of function u(x) on (a,b) are defined by

C
aDµ

x u(x) =
∫ x

a

(x−ξ )n−µ−1

Γ (n−µ)
dnu(ξ )

dξ n dξ ,

and

C
xDµ

b u(x) =
∫ b

x

(ξ −x)n−µ−1

Γ (n−µ)
(−1)ndnu(ξ )

dξ n dξ .

Lemma 1 (Adjoint property [11,13,30]) For anyµ >0, the left and right Riemann-Liouville
fractional integral operators are adjoints for any functions u(x),v(x) ∈ L2(a,b), i.e.,

∫ b

a
aI

µ
x u(x)v(x)dx=

∫ b

a
u(x)xI

µ
b v(x)dx. (2.1)
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Lemma 2 ([11,30]) Suppose that u(x) is a function defined on(a,b), u(k)(x)= 0 when x= a
or x= b, ∀ 0≤ k≤ n−1 (n−1< µ < n), n∈ N+. There are

aD
µ
x u(x) = Dn

aI
n−µ
x u(x) = aI

n−µ
x

(

Dnu(x)
)

,

or
xD

µ
b u(x) = (−D)n

xI
n−µ
b u(x) =x In−µ

b

(

(−D)nu(x)
)

.

Note that, from Definition 2, Definition 3 and Lemma 2 if the solutionu of (1.1) satisfies
u(x,y) = 0 whenx = a or y = c, then for any 1< α ,β < 2, the left fractional Riemann-
Liouville derivatives of functionu(x,y) on Ω = (a,b)× (c,d) can be rewritten as (see [11,
30]):

∂ αu
∂xα =

∂
∂xaI

2−α
x

( ∂
∂x

u(x,y)
)

, (2.2)

∂ β u

∂yβ =
−∂
∂y cI

2−β
y

(−∂
∂y

u(x,y)
)

. (2.3)

For the convenience, we use the notation

I ᾱx = (aI
α1
x , cI

α2
y ), (2.4)

where(α1,α2) = (2−α ,2−β ) andα1,α2 ∈ (0,1).

Definition 4 (The left and right fractional spaces [11]) For 0 < µ < 1, extend u(x) out-
side ofI := (a,b) by zero. Define the norms

‖ u ‖J−µ
L (R)

:=‖−∞ Iµ
x u ‖L2(R), (2.5)

‖ u ‖J−µ
R (R)

:=‖x Iµ
∞ u ‖L2(R) . (2.6)

Let the two spacesJ−µ
L (R) andJ−µ

R (R) denote the closures ofC∞
0 (R) with respect to

‖ · ‖J−µ
L

and‖ · ‖J−µ
R

, respectively.

Lemma 3 ([11,13,30])For µ > 0, assume that u(x) is a real function. Then

(−∞Iµ
x u,xI

µ
∞u) = cos(µπ) ‖ u ‖2

J−µ
L (R)

= cos(µπ) ‖ u ‖2
J−µ
R (R)

. (2.7)

Generally, we consider the case in which the problem is in a bounded domain instead of
R. Thus we restrict the definitions toI= (a,b).

Definition 5 ([11,30]) Define the spaces J−µ
L,0 (I) and J−µ

R,0 (I) as the closures of C∞0 (I) under
their respective norms.

Theorem 4 ([11,30]) If −µ2 < −µ1 < 0, then J−µ1
L,0 (I) and J−µ1

R,0 (I) are embedded into

J−µ2
L,0 (I) and J−µ2

R,0 (I), respectively. Furthermore, L2(I) is embedded into both of them.

Definition 6 ([11,30]) By Lemma 1, Lemma 3, Definition 4 and Definition 5, we obtain
∫ d

c
(aI

α1
x u(·,y),u(·,y))L2(a,b)dy= cos(α1π/2)

∫ d

c
‖ u(·,y) ‖2

J
−α1/2
R,0 (a,b)

dy, (2.8)

∫ b

a
(cI

α2
y u(x, ·),u(x, ·))L2(c,d)dx= cos(α2π/2)

∫ b

a
‖ u(x, ·) ‖2

J
−α2/2
R,0 (c,d)

dx. (2.9)

Let the spaces J−α1/2
R,0 (a,b) and J−α2/2

R,0 (c,d) denote the closures of C∞
0 (a,b) and C∞

0 (c,d)
under their respective norms, andα1 = 2−α ,α2 = 2−β , α1,α2 ∈ (0,1).
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3 Derivation of the numerical schemes

We first review some notations, and then focus on deriving thefully discrete numerical
scheme of the 2D space-fractional convection-diffusion equation.

3.1 Notations

For the mathematical setting of the DG methods, we describe some spaces and notations.
The domainΩ is subdivided into elementsE. HereE is a triangle in 2D. We assume that
the intersection of two elements is either empty, or an edge (2D). The mesh is called regular
if

∀E ∈ Eh,
hE

ρE
≤C,

whereEh is the subdivision ofΩ , C a constant,hE the diameter of the elementE, andρE the
diameter of the inscribed circle in elementE. Throughout this workh= maxE∈Eh

hE.
We introduce the broken Sobolev space for any real numberssby

Hs(Eh) =
{

v∈ L2(Ω ) : ∀E ∈ Eh,v|E ∈ Hs(E)
}

,

equipped with the broken Sobolev norm:

‖ v ‖Hs(Eh)
=
(

∑
E∈Eh

‖ v ‖2
Hs(E)

) 1
2 .

The set of edges of the subdivisionEh is denoted byE B
h . LetE i

h denote the set of interior
edges, andE b

h = E
B
h \E i

h denote the set of edges on∂ Ω . With each edgee, the unit normal
vector isne. If e is on the boundary∂ Ω , thenne is taken to be the unit outward vector
normal to∂ Ω [27].

If v belongs toH1(Eh), then the trace ofv along any side of one elementE is well
defined. If two elementsEe

1 andEe
2 are neighbours and share one common sidee, then there

are two traces ofv belonging toe. We assume that the normal vectorne is oriented fromEe
1

to Ee
2. Then the average and jump are defined, respectively, by

{v} =
1
2
(v|∂Ee

1
+v|∂Ee

2
), JvK = (v|∂Ee

1
−v|∂Ee

2
), ∀e∈ ∂Ee

1

⋂

∂Ee
2.

If e is on∂ Ω , we have
{v} = JvK = v|e, ∀e∈ ∂E

⋂

∂ Ω .

3.2 HDG scheme

For designing the DG method of fractional derivative, we rewrite (1.1) as a low order system
(see [11,30]). Firstly, we introduce two auxiliary variablesp,σ and set

{

p= ∇u,

σ = I ᾱx p= (aI
α1
x px,cI

α2
y py).
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As Ref. [4], letψ(x, t) = (1+ |b(x, t)|2)
1
2 , where|b(x, t)|2 = b2

1+b2
2. Hence, the character-

istic direction associated with∂tu+b ·∇u is denoted by∂τ =
∂t
ψ + b·∇

ψ . Then, from (2.2) and
(2.3), Eq. (1.1) can be rewritten as a mixed form [3,7,8,11,30]:































ψ∂τu−∇ ·σ = f , (x,y, t) ∈ Ω ×J,

σ− I ᾱx p= 0, (x,y, t) ∈ Ω ×J,

p−∇u= 0, (x,y, t) ∈ Ω ×J,

u(x,y,0) = u0(x,y), (x,y) ∈ Ω ,

u(x,y, t) = 0, (x,y, t) ∈ ∂ Ω ×J,

(3.1)

whereI ᾱx is defined in (2.4).
For an arbitrary subsetE ∈ Eh, we multiply the first, second, and the third equation of

(3.1) by the smooth test functionsv,ω, andq, respectively. In order to obtain a symmetric
weak variational formulation, we only integrate the first equation of (3.1) by parts, and
obtain































∫

E ψ∂τuvdx+
∫

E σ ·∇vdx−
∫

∂E σ ·nEvds=
∫

E f vdx,

∫

E σ ·ωdx−
∫

E I ᾱx p ·ωdx= 0,

∫

E p ·qdx−
∫

E ∇u·qdx= 0,

(3.2)

wherenE is the outward unit normal to∂E. Note that the above equations are well defined
for the functions(u,σ,p) and(v,ω,q) in V×Q×Q, where

V=
{

u∈ L2(Ω ) : u|E ∈ H1(E), ∀E ∈ Eh

}

,

Q=
{

p ∈ (L2(Ω ))2 : p|E ∈ (H1(E))2, ∀E ∈ Eh

}

.

Next we will approximate the exact solution(u,σ,p) with the functions(uh,σh,ph) in
the finite element spacesVh×Qh×Qh ⊂V×Q×Q, where

Vh =
{

uh ∈ L2(Ω ) : uh|E ∈ Pk(E), ∀E ∈ Eh

}

,

Qh =
{

ph ∈ (L2(Ω ))2 : ph|E ∈ (Pk(E))2, ∀E ∈ Eh

}

,

where the finite element spacePk(E) denotes the set of polynomials of degree less than or
equal tok≥ 0.

Thus, the approximate solution(uh,σh,ph) satisfies the weak formulation, for all(v,ω,q)∈
Vh×Qh×Qh,































∫

E ψ∂τuhvdx+
∫

E σh ·∇vdx−
∫

∂Eσ⋆
h ·nEvds=

∫

E f vdx,

∫

E σh ·ωdx−
∫

E I ᾱx ph ·ωdx= 0,

∫

E ph ·qdx−
∫

E ∇uh ·qdx= 0,

(3.3)
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where the numerical fluxes are well chosen asσ⋆
h = {σh}, ∀e∈ E B

h in order to ensure the
stability of the scheme and its accuracy.

It is well known that the fluxesσ⋆
h = {σh} are consistent. Inspired by the penalty

Galerkin methods [27] and noting the fact thatJuK
∣

∣

e = 0,∀e∈ E
B
h and JσK = 0,∀e∈ E

i
h,

a symmetric and stable DG scheme is derived as follows. Substituting the fluxσ⋆
h = {σh}

into (3.3), summing over all the elements, and adding the penalty terms, we observe that for
(uh,σh,ph) ∈ Vh×Qh×Qh, the semi-discrete variational formulation is given by































(ψ∂τuh,v)+(σh,∇v)− ({σh} ·ne,JvK)E B
h
+ ε1(JuhK,JvK)E B

h
= ( f ,v),

(σh,τ )− (I ᾱx ph,ω) = 0,

(ph,q)− (∇uh,q)+(JuhK,{q} ·ne)E B
h
+ ε2(JσhK,JqK)

E i
h
= 0.

(3.4)

For any(v,ω,q) ∈ Vh×Qh×Qh, the exact solution of (1.1) is expected to be contin-
uously differentiable with respect to the variablesx andy, which keeps the consistency of
the scheme. The term(JuK,{q} ·ne)E B

h
vanishes since the exact solutionu satisfiesJuK

∣

∣

e =

0,∀e∈ E
B
h . Note thatε1(JuK,JvK)

E B
h

penalizes the jump of the functionu, whereasε2(JσK,JqK)
E

i
h

penalizes the jump of the functionσ. Hereε1 andε2 are the positive constants to be chosen.
Unfortunately the third equation of (3.4) makes the DG method lose its locality, sinceph is
a function ofuh andσh, ph can not be eliminated from the third equation. So we have to
simultaneously solve the three unknownsuh, pxh, pyh. Although the extra unknowns can not
be eliminated in the HDG methods, our choice of fluxes makes the error analysis available.
Above and throughout, the following notations are used,

(w,v) = ∑
E∈Eh

(w,v)E, (w,v)E i
h
= ∑

e∈E
i
h

(w,v)e, (w,v)E B
h
= ∑

e∈E B
h

(w,v)e.

3.3 Dealing with time

After performing the HDG approximation, we discretize the time derivative with the char-
acteristic method. For the given positive integerN, let 0= t0 < t1 < · · · < tN = T be a
partition of J into subintervalsJn = (tn−1, tn] with uniform mesh and the interval length
∆ t = tn − tn−1,1 ≤ n ≤ N. The characteristic tracing back along the fieldb of a point
x= (x,y) ∈ Ω at timetn to tn−1 is approximated by [4,5,12]

x̌(x, tn−1) = x−b(x, tn)∆ t.

Therefore, the approximation for the hyperbolic part of (1.1) at timetn can be approxi-
mated as

ψn∂τun ≈
un− ǔn−1

∆ t
,

whereun = u(x, tn), ǔn−1 = u(x̌(x, tn−1), tn−1), andǔ0 = u0(x).

Remark 1 (see [12])Assume that the solution u of (1.1) is sufficiently regular. Under the
assumption of the functionb, we have

∥

∥

∥

∥

ψn∂τ un−
un− ǔn−1

∆ t

∥

∥

∥

∥

2

L2(Ω)

≤C ‖ ψ (4) ‖L∞(J;L∞(Ω))‖ ∂ττu ‖2
L2(Jn;L2(Ω)) ∆ t.
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Thus, the fully discrete scheme corresponding to the variational formulation (3.4) is to find
(un

h,σ
n
h,p

n
h) ∈ Vh×Qh×Qh, for any(v,τ ,q) ∈ Vh×Qh×Qh, such that



































( un
h−ǔn−1

h
∆ t ,v

)

+(σn
h,∇v)− ({σn

h} ·ne,JvK)E B
h
+ ε1(Jun

hK,JvK)E B
h
= ( f n,v),

(σn
h,ω)− (I ᾱx pn

h,ω) = 0,

(pn
h,q)− (∇un

h,q)+(Jun
hK,{q} ·ne)E B

h
+ ε2(Jσ

n
hK,JqK)

E i
h
= 0,

(3.5)

whereǔn−1
h = uh(x̌(x, tn−1), tn−1), ǔ0

h = u0.
Define the bilinear forms by

a(σn
h,v) := (σn

h,∇v)− ({σn
h} ·ne,JvK)E B

h
, (pn

h,q) := (pn
h,q),

d(un
h,v) := ε1(Ju

n
hK,JvK)E B

h
, e(σn

h,q) := ε2
(

Jσn
hK,JqK)

E i
h
,

and the linear form

F (v) := ( f n,v) ∀v∈ Vh.

We can rewrite (3.5) as a compact formulation: Find(un
h,σ

n
h,p

n
h) ∈ Vh ×Qh ×Qh at time

t = tn, such that































( un
h−ǔn−1

h
∆ t ,v

)

+a(σn
h,v)+d(un

h,v) = F (v), ∀v∈ Vh,

(σn
h,ω)−(I ᾱx pn

h,ω) = 0, ∀ω ∈Qh,

(pn
h,q)−a(q,un

h)+e(σn
h,q) = 0, ∀q ∈Qh.

(3.6)

4 Stability analysis and error estimate

This section focuses on providing the proof of the unconditional stability and the error esti-
mates of the schemes.

4.1 Stability analysis

In the following,C indicates a generic constant independent ofh and∆ t, which takes differ-
ent values in different occurrences.

Lemma 5 ([4]) If b ∈ L∞(J;W1,∞(Ω )2), for any function v∈ L2(Ω ) and each n, there is

‖ v̌ ‖2
L2(Ω) − ‖ v ‖2

L2(Ω)≤C∆ t ‖ v ‖2
L2(Ω), (4.1)

wherev̌(x) = v(x−b(x, tn)∆ t).
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Theorem 6 (Numerical stability) If b∈ L∞(J;W1,∞(Ω )2), the HDG scheme (3.5) is stable,
i.e., for any integer N= 1,2, · · · , there is

‖ uN
h ‖2

L2(Ω) +2∆ t
N

∑
n=1

∣

∣(un
h,σ

n
h,p

n
h)
∣

∣

2
A

≤C∆ t
N

∑
n=1

‖ f n ‖2
L2(Ω) +C ‖ u0 ‖2

L2(Ω), (4.2)

where u0h = u0, and the semi-norm| · |A is defined as

∣

∣(un
h,σ

n
h,p

n
h)
∣

∣

2
A

= d(un
h,u

n
h)+(I ᾱx pn

h,p
n
h)+e(σn

h,σ
n
h)

= cos(α1π/2)
∫ d

c
‖ pn

xh(·,y) ‖
2

J
−α1/2
R,0 (a,b)

dy+ ε1 ∑
e∈E B

h

‖ Jun
hK ‖

2
L2(e)

+cos(α2π/2)
∫ b

a
‖ pn

yh(x, ·) ‖
2

J
−α2/2
R,0 (c,d)

dx+ ε2 ∑
e∈E

i
h

‖ Jσn
hK ‖2

L2(e) .

(4.3)

Proof Let v= 2∆ tun
h, ω = −2∆ tpn

h, q = 2∆ tσn
h in the equations of (3.6), respectively. By

the symmetry of the bilinear formulas, adding the above equations, we obtain

2∆ tF (un
h) = 2∆ t(I ᾱx pn

h,p
n
h)+2∆ te(σn

h,σ
n
h)+2

(

un
h− ǔn−1

h ,un
h

)

+2∆ td(un
h,u

n
h).

Following from

2
(

un
h− ǔn−1

h ,un
h

)

≥‖ un
h ‖

2
L2(Ω) − ‖ ǔn−1

h ‖2
L2(Ω),

the Young inequality, the definition ofF and| · |A , and Lemma 5, we have

‖ un
h ‖

2
L2(Ω) − ‖ un−1

h ‖2
L2(Ω) +2∆ t

∣

∣(un
h,σ

n
h,p

n
h)
∣

∣

2
A

≤C∆ t ‖ un−1
h ‖2

L2(Ω) +∆ t
(

‖ un
h ‖

2
L2(Ω) + ‖ f n ‖2

L2(Ω)

)

.

Summing from n=1,2,...,N, we get

‖ uN
h ‖2

L2(Ω) +2∆ t
N

∑
n=1

∣

∣(un
h,σ

n
h,p

n
h)
∣

∣

2
A

≤C∆ t
N

∑
n=1

‖ un
h ‖

2
L2(Ω) +(1+C∆ t) ‖ u0

h ‖
2
L2(Ω) +∆ t

N

∑
n=1

‖ f n ‖2
L2(Ω) .

Using the discrete Grönwall inequality, withC∆ t < 1, ∀N ≥ 1, there is

‖ uN
h ‖2

L2(Ω) +2∆ t
N

∑
n=1

∣

∣(un
h,σ

n
h,p

n
h)
∣

∣

2
A

≤C ‖ u0
h ‖

2
L2(Ω) +C∆ t

N

∑
n=1

‖ f n ‖2
L2(Ω) . (4.4)
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4.2 Error estimates

In this subsection we state and discuss the error bounds for the HDG scheme. The main
steps of our error analysis follow the classical methods in finite element analysis, i.e., the
so-called Galerkin orthogonality property. As usual, we denote the errors(en

u,e
n
σ,e

n
p) =

(un−un
h,σ

n−σn
h,p

n−pn
h) by

(en
u,e

n
σ,e

n
p) = (un−Πun,σn−Πσn,pn−Πpn)+(Πen

u,Πen
σ,Πen

p),

whereΠ andΠ = (Π ,Π ) are theL2-projection and(L2)2-projection operators fromV and
Q onto the finite element spacesVh andQh, respectively. From (3.6), we obtain the compact
form

(un
h− ǔn−1

h

∆ t
,v
)

+A (un
h,σ

n
h,p

n
h;v,ω,q) = F (v), (4.5)

where

A (un
h,σ

n
h,p

n
h;v,ω,q)

= a(σn
h,v)+d(un

h,v)+(σn
h,ω)−(I ᾱx pn

h,ω)+(pn
h,q)−a(q,un

h)+e(σn
h,q).

(4.6)

Lemma 7 Assume that the solution u of problem (1.1) is sufficiently regular. Then

(

ψn∂τun−
un

h− ǔn−1
h

∆ t
,Πen

u

)

+
∣

∣(Πen
u,Πen

σ,Πen
p)
∣

∣

2
A

= A
(

Πun−un,Πσn−σn,Πpn−pn;Πen
u,−Πen

p,Πen
σ

)

.

(4.7)

Proof By the consistency of the numerical fluxes, the exact solution (u,σ,p) satisfies (3.4).
Takingv= Πen

u,ω =−Πen
p,q =Πen

σ and subtracting (3.5) from (3.4) yield

(

ψn∂τ un−
un

h− ǔn−1
h

∆ t
,Πen

u

)

+A
(

en
u,e

n
σ,e

n
p;Πen

u,−Πen
p,Πen

σ

)

= 0 (4.8)

and
∣

∣(Πen
u,Πen

σ,Πen
p)
∣

∣

2
A

= A
(

Πen
u,Πen

σ,Πen
p;Πen

u,−Πen
p,Πen

σ

)

. (4.9)

By the Galerkin orthogonality, there is

A
(

en
u,e

n
σ,e

n
p;Πen

u,−Πen
p,Πen

σ

)

= A
(

Πen
u,Πen

σ,Πen
p;Πen

u,−Πen
p,Πen

σ

)

−A
(

Πun−un,Πσn−σn,Πpn−pn;Πen
u,−Πen

p,Πen
σ

)

.

(4.10)

Substituting the equalities (4.9) and (4.10) into (4.8) leads to the desired result.

Next we review two lemmas for our analysis. The first one is thestandard approxima-
tion result for theL2-projection operatorΠ from Hs+1(E) ontoVh(E) = {v;v

∣

∣

E ∈ Pk(E)}
satisfyingΠv= v for anyv∈ Pk(E). The second one is the standard trace inequality.

Lemma 8 ([3]) Let v∈ Hs+1(E), s≥ 0. Π is the L2-projection operator from Hs+1(E) onto
Vh(E) such thatΠv= v for any v∈ Pk(E). Then, for m= 0,1,







∣

∣v−Πv
∣

∣

Hm(E) ≤Chmin{s,k}+1−m
E ‖ v ‖Hs+1(E),

‖ v−Πv ‖L2(∂E)≤Ch
min{s,k}+ 1

2
E ‖ v ‖Hs+1(E) .

(4.11)
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Lemma 9 ([3]) There exists a generic constant C being independent of hE, for any v∈
Vh(E), such that

‖ v ‖L2(∂E)≤Ch
− 1

2
E ‖ v ‖L2(E) . (4.12)

Now we are ready to prove our main results.

4.2.1 The characteristic term

In this subsection, we estimate the first left-side term of (4.7).

Lemma 10 ([4]) If b ∈ L∞(J;W1,∞(Ω )2), for any function v∈ H1(Ω ) and each n,

‖ v− v̌ ‖L2(Ω)≤C∆ t ‖ ∇v ‖L2(Ω), (4.13)

wherev̌= v(x̌) = v(x−bn∆ t).

The following result is a straightforward consequence of the estimate of the first left-side
term of (4.7).

Theorem 11 Assume that the solution u of problem (1.1) is sufficiently smooth and unh sat-
isfies (3.5). Ifb ∈ L∞(J;W1,∞(Ω )2), we have

(

ψn∂τ un−
un

h− ǔn−1
h

∆ t
,Πen

u

)

≥
1

2∆ t

(

‖ Πen
u ‖

2
L2(Ω) − ‖ Πen−1

u ‖2
L2(Ω)

)

−C ‖ Πen−1
u ‖2

L2(Ω)

−C∆ t ‖ ∂ττu ‖2
L2(Jn;L2(Ω)) −

C
∆ t

‖ ∂t(Πu−u) ‖2
L2(Jn;L2(Ω))

−C ‖ ∇(Πun−1−un−1) ‖2
L2(Ω) −C ‖ Πen

u ‖
2
L2(Ω) .

(4.14)

Proof From (4.7), it can be noted that
(

ψn∂τ un−
un

h− ǔn−1
h

∆ t
,Πen

u

)

=

(

Πen
u−Π ěn−1

u

∆ t
,Πen

u

)

+

(

ψn∂τ un−
un− ǔn−1

∆ t
,Πen

u

)

−

(

(Πun−un)− (Π ǔn−1− ǔn−1)

∆ t
,Πen

u

)

=
3

∑
i=1

Bi .

(4.15)

Using Lemma 5, we obtain

B1 =
(Πen

u−Π ěn−1
u

∆ t
,Πen

u

)

=
1

2∆ t

(

‖ Πen
u ‖

2
L2(Ω) − ‖ Π ěn−1

u ‖2
L2(Ω) + ‖ Πen

u−Π ěn−1
u ‖2

L2(Ω)

)

≥
1

2∆ t

(

‖ Πen
u ‖

2
L2(Ω) − ‖ Π ěn−1

u ‖2
L2(Ω)

)

≥
1

2∆ t

(

‖ Πen
u ‖

2
L2(Ω) − ‖ Πen−1

u ‖2
L2(Ω)

)

−C ‖ Πen−1
u ‖2

L2(Ω),



12 Shuqin Wang, Jinyun Yuan, Weihua Deng, Yujiang Wu

whereΠ ěn−1
u = Π ǔn−1 − ǔn−1

h . Also by the Taylor expansion and the Hölder inequality,
there are

| B2 |=

∣

∣

∣

∣

(

ψn∂τ un−
un− ǔn−1

∆ t
,Πen

u

)∣

∣

∣

∣

≤C∆ t ‖ ∂ττu ‖2
L2(Jn;L2(Ω)) +C ‖ Πen

u ‖
2
L2(Ω)

and

−B3 =
( (Πun−un)− (Π ǔn−1− ǔn−1)

∆ t
,Πen

u

)

=
( (Πun−un)− (Πun−1−un−1)

∆ t
,Πen

u

)

+
( (Πun−1−un−1)− (Π ǔn−1− ǔn−1)

∆ t
,Πen

u

)

= S1+S2,

where

S1 =
( (Πun−un)− (Πun−1−un−1)

∆ t
,Πen

u

)

≤
1

∆ t
‖ Πen

u ‖L2(Ω)

∫ tn

tn−1
‖ ∂t(Πu−u) ‖L2(Ω) dt

≤C ‖ Πen
u ‖

2
L2(Ω) +

C
∆ t

‖ ∂t(Πu−u) ‖2
L2(Jn;L2(Ω)),

and

S2 =
( (Πun−1−un−1)− (Π ǔn−1− ǔn−1)

∆ t
,Πen

u

)

≤C ‖ Πen
u ‖

2
L2(Ω) +C ‖ ∇(Πun−1−un−1) ‖2

L2(Ω),

follow from Cauchy-Schwarz’s inequality, Young’s inequality and Lemma 10. Substituting
B1,B2,B3 into (4.15), the desired result is reached.

4.2.2 The right-hand side term

In this subsection, we use the general analytic methods to get the bound of the right side
term of (4.7).

Theorem 12 Let u be sufficiently smooth solution of (3.1).(Πun,Πσn,Πpn) are standard
L2-projection operators of(un,σn,pn), and(un

h,σ
n
h,p

n
h) solve (3.5). Ifb∈ L∞(J;W1,∞(Ω )2),

we have
∣

∣A
(

Πun−un,Πσn−σn,Πpn−pn;Πen
u,−Πen

p,Πen
σ

)∣

∣

≤Cεα1

∫ d

c
‖ Πen

px
(·,y) ‖2

J
−α1/2
R,0 (a,b)

dy+

(

C
ε1

+Cε1

)

h2k+1+
C

εα1

h2k+2

+Cεα2

∫ b

a
‖ Πen

py
(x, ·) ‖2

J
−α2/2
R,0 (c,d)

dx+

(

C
ε2

+Cε2

)

h2k+1+
C

εα2

h2k+2

+
ε1

2 ∑
e∈E B

h

‖ JΠen
uK ‖

2
L2(e) +

ε2

2 ∑
e∈E i

h

‖ JΠen
σK ‖2

L2(e) .

(4.16)
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Proof From the definition ofA , we have

A
(

Πun−un,Πσn−σn,Πpn−pn;Πen
u,−Πen

p,Πen
σ

)

≤
∣

∣

a(Πσn−σn,Πen
u)
∣

∣+
∣

∣

(I ᾱx (Πpn−pn),Πen
p)
∣

∣

+
∣

∣

a(Πen
σ,Πun−un)

∣

∣+
∣

∣

d(Πun−un,Πen
u)
∣

∣

+
∣

∣

e(Πσn−σn,Πen
σ)
∣

∣+
∣

∣

(Πσn−σn,−Πen
p)
∣

∣

+
∣

∣

(Πpn−pn,Πen
σ)
∣

∣

=
7

∑
i=1

Ti .

(4.17)

Using Hölder’s, Young’s inequalities and Lemma 8, we obtain

T1 =
∣

∣

a(Πσn−σn,Πen
u)
∣

∣=
∣

∣({Πσn−σn} ·ne,JΠen
uK)E B

h

∣

∣

≤ ∑
e∈E

B
h

‖ {Πσn−σn} ·ne ‖L2(e)‖ JΠen
uK ‖L2(e)

≤ ∑
e∈E B

h

( 1
ε1

‖ {Πσn−σn} ·ne ‖
2
L2(e) +

ε1

4
‖ JΠen

uK ‖
2
L2(e)

)

≤
C
ε1

h2k+1+
ε1

4 ∑
e∈E B

h

‖ JΠen
uK ‖

2
L2(e) .

From Lemma 1, Lemma 8, Definition 4, Definition 6, and Theorem 4, it follows that

T2 =
∣

∣

(I ᾱx (Πpn−pn),Πen
p)
∣

∣

=
∣

∣(Π pn
x − pn

x, xI
α1
b Πen

px
)+(Π pn

y − pn
y, yI

α2
d Πen

py
)
∣

∣

≤‖ Π pn
x − pn

x ‖L2(Ω)

(

∫ d

c
‖ Πen

px
(·,y) ‖2

J
−α1
R,0 (a,b)

dy

)
1
2

+ ‖ Π pn
y − pn

y ‖L2(Ω)

(

∫ b

a
‖ Πen

py
(x, ·) ‖2

J
−α2
R,0 (c,d)

dx

)
1
2

≤C ‖ Π pn
x − pn

x ‖L2(Ω)

(

∫ d

c
‖ Πen

px
(·,y) ‖2

J
−α1/2
R,0 (a,b)

dy

)
1
2

+C ‖ Π pn
y − pn

y ‖L2(Ω)

(

∫ b

a
‖ Πen

py
(x, ·) ‖2

J
−α2/2
R,0 (c,d)

dx

)
1
2

≤
C

εα1

h2k+2+Cεα1

∫ d

c
‖ Πen

px
(·,y) ‖2

J
−α1/2
R,0 (a,b)

dy

+
C

εα2

h2k+2+Cεα2

∫ b

a
‖ Πen

py
(x, ·) ‖2

J
−α2/2
R,0 (c,d)

dx,

whereεα1 andεα2 are chosen as sufficiently small numbers such thatCεα1 ≤ cos(α1π/2)
andCεα2 ≤ cos(α2π/2).
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Integrating the first term ofa(Πen
σ,Πun−un) by parts, and using the orthogonal prop-

erty of projection operatorΠ, we get

T3 =
∣

∣

a(Πen
σ,Πun−un)

∣

∣

=
∣

∣

(

Πen
σ,∇(Πun−un)

)

−
(

{Πen
σ} ·ne,JΠun−unK

)

E B
h

∣

∣

=
∣

∣

(

JΠen
σK,{Πun−un}ne

)

E i
h

∣

∣

≤ ∑
e∈E

i
h

‖ JΠen
σK ‖L2(e)‖ {Πun−un}ne ‖L2(e)

≤ ∑
e∈E i

h

(

1
ε2

‖ {Πun−un}ne ‖
2
L2(e) +

ε2

4
‖ JΠen

σK ‖2
L2(e)

)

≤
C
ε2

h2k+1+
ε2

4 ∑
e∈E

i
h

‖ JΠen
σK ‖2

L2(e) .

With the same deduction ofT1, there is

T4 =
∣

∣

d(Πun−un,Πen
u)
∣

∣

≤ ε1 ∑
e∈E B

h

‖ JΠun−unK ‖L2(e)‖ JΠen
uK ‖L2(e)

≤ ε1 ∑
e∈E

B
h

(

‖ JΠun−unK ‖2
L2(e) +

1
4
‖ JΠen

uK ‖
2
L2(e)

)

≤ ε1Ch2k+1+
ε1

4 ∑
e∈E B

h

‖ JΠen
uK ‖

2
L2(e) .

By Lemma 8, we get

T5 =
∣

∣

e(Πσn−σn,Πen
σ)
∣

∣

≤ ε2 ∑
e∈E

i
h

‖ JΠσn−σnK ‖L2(e)‖ JΠen
σK ‖L2(e)

≤ ε2 ∑
e∈E i

h

(

‖ JΠσn−σnK ‖2
L2(e) +

1
4
‖ JΠen

σK ‖2
L2(e)

)

≤Cε2h2k+1+
ε2

4 ∑
e∈E

i
h

‖ JΠen
σK ‖2

L2(e) .

Note thatT6 and T7 vanish because of the orthogonal property of the projectionΠ.
SubstitutingTi , i = 1, · · · ,7 into (4.17), the desired result is obtained.

4.2.3 Error bounds

Assuming that the solution of (1.1) is sufficiently regular,we have the following error esti-
mates.
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Theorem 13 Let (un,σn,pn) be the exact solution of (3.1),(un
h, σn

h, pn
h) the numerical

solution of the fully discrete HDG scheme (3.5). Ifb ∈ L∞(J;W1,∞(Ω )2), for any integer
N = 1,2, · · · , there is

‖uN −uN
h ‖

2
L2(Ω)+∆ t

N

∑
n=1

(

ε1 ∑
e∈E B

h

‖Jun−un
hK‖

2
L2(e)+ ε2 ∑

e∈E
i
h

‖Jσn−σn
hK‖2

L2(e)

2Kα1

∫ d

c
‖(pn

x − pn
xh)(·,y)‖

2

J
−α1/2
R,0 (a,b)

dy+2Kα2

∫ b

a
‖(pn

y − pn
yh)(x, ·)‖

2

J
−α2/2
R,0 (c,d)

dx
)

≤C(∆ t)2
N

∑
n=1

‖∂ττu‖2
L2(Jn;L2(Ω))+C

N

∑
n=1

‖∂t(Πu−u)‖2
L2(Jn;L2(Ω))

+Cε h2k+1+C∆ t
N

∑
n=1

| Πun−1−un−1 |2H1(Ω),

(4.18)

whereα1 = 2−α , α2 = 2−β , Kα1 = cos(α1π/2)−Cεα1 ≥ 0,Kα2 = cos(α2π/2)−Cεα2 ≥
0, εα1 andεα2 are chosen as above, Cε is dependent ofε1, ε2.

Proof Substituting the results of Theorem 11 and Theorem 12 into (4.7), there is

1
2∆ t

(

‖ Πen
u ‖

2
L2(Ω) − ‖ Πen−1

u ‖2
L2(Ω)

)

+
ε1

2 ∑
e∈E

B
h

‖ JΠen
uK ‖

2
L2(e)

+
ε2

2 ∑
e∈E

i
h

‖ JΠen
σK ‖2

L2(e) +(cos(α1π/2)−Cεα1)
∫ d

c
‖Πen

px
(·,y)‖2

J
−α1/2
R,0 (a,b)

dy

+(cos(α2π/2)−Cεα2)
∫ b

a
‖Πen

py
(x, ·)‖2

J
−α2/2
R,0 (c,d)

dx

≤C ‖ Πen−1
u ‖2

L2(Ω) +C ‖ Πen
u ‖

2
L2(Ω) +C∆ t ‖ ∂ττu ‖2

L2(Jn;L2(Ω))

+
C
∆ t

‖∂t(Πu−u)‖2
L2(Jn;L2(Ω))+C | Πun−1−un−1 |2H1(Ω) +Cε h2k+1.

With Πe0
u = 0, multiplying the above inequality by 2∆ t on both sides, summing overn from

1 toN, and using the discrete Grönwall inequality, there is

‖ ΠeN
u ‖2

L2(Ω) +∆ t
N

∑
n=1

(

ε1 ∑
e∈E B

h

‖ JΠen
uK ‖

2
L2(e) +ε2 ∑

e∈E
i
h

‖ JΠen
σK ‖2

L2(e)

)

+2∆ t
N

∑
n=1

(cos(α1π/2)−Cεα1)
∫ d

c
‖ Πen

px
(·,y) ‖2

J
−α1/2
R,0 (a,b)

dy

+2∆ t
N

∑
n=1

(cos(α2π/2)−Cεα2)
∫ b

a
‖Πen

py
(x, ·)‖2

J
−α2/2
R,0 (c,d)

dx

≤C(∆ t)2
N

∑
n=1

‖∂ττ u‖2
L2(Jn;L2(Ω))+C

N

∑
n=1

‖∂t(Πu−u)‖2
L2(Jn;L2(Ω))

+C∆ t
N

∑
n=1

| Πun−1−un−1 |2H1(Ω) +Cεh2k+1.

By the triangle inequality, we obtain the desired result.
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5 Numerical experiment

In this section, we illustrate the numerical performance ofthe proposed schemes by the
numerical simulations of two examples. In the first example,we take the vector functionb=
0 and verify the accuracy of the schemes with the exact smooth solution u combining with
the left fractional Riemann-Liouville derivatives with respect tox-variable andy-variable,
respectively. When we compute the fractional integral partin triangular meshes (see Figures
1-2), the Gauss points and weights are used to deal with the terms relating with the fractional
operators element-by-element (see [14,26]). Since this part needs more time and memory
spaces (see [22]), we only use the piecewise linear basis functions to simulate the solution in
triangular meshes. Tables 1-3 illustrate that the schemes have a good convergence order with
piecewise linear basis function for different choices of the fluxes. In the second example, we
takeb to be a vector function and perform some numerical experiments with some figures
(see Figures 3-4) which justify that the schemes simulate the solution very well for 2D-
fractional convection-diffusion problems.
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Fig. 1 All triangles in x-direction affected by the
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Fig. 2 All triangles in y-direction affected by the
Gauss points (denoted by black square).

Example 5.1.Consider 2D space-fractional convection-diffusion problem (1.1) in do-
mainΩ = (0,1)× (0,1). The initial condition and the exact solution are specified as







u(x,y, t) = e−tx2(x−1)2y2(y−1)2,
u0(x,y) = x2(x−1)2y2(y−1)2,
b(x,y, t) = (0,0).

(5.1)

Then the force termf is determined accordingly from (1.1). In this case, we present a few
results to numerically validate the analysis.

For the numerical simulations, in order to validate the stability and the accuracy of the
presented HDG scheme, we choose the time-stepsize,∆ t = O(h3/2), used to advance the
discrete formulation fromtn−1 to tn,n = 1,2, ...,N. The experimental convergence rate is
given by

rate=
log
(

‖ u(t)−uh1(t) ‖L2(Eh1
) / ‖ u(t)−uh2(t) ‖L2(Eh2

)

)

log(h1/h2)
.
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t = 0.1,(α ,β) = (1.2,1.4),(ε1,ε2) = (O(1),O(1))
h ‖eu(t)‖L2 rate ‖eu(t)‖L1 rate ‖∂xeu(t)‖L2 rate ‖∂yeu(t)‖L2

1/6 1.3993e-04 – 1.0771e-04 – 1.4273e-03 – 6.4132e-03
1/10 5.6088e-05 1.79 4.1112e-05 1.89 7.2047e-03 1.34 6.8133e-03
1/14 2.9803e-05 1.88 2.1713e-05 1.90 4.8274e-04 1.19 6.9191e-03
1/18 1.8452e-05 1.91 1.3226e-05 1.97 3.4904e-04 1.29 6.9660e-03

t = 0.1,(α ,β) = (1.5,1.5),(ε1,ε2) = (O(1),O(1))
1/6 1.8283e-04 – 1.4041e-04 – 1.1688e-03 – 6.4118e-03
1/10 7.5004e-05 1.74 5.6669e-05 1.78 5.1740e-04 1.60 6.7972e-03
1/14 4.0967e-05 1.80 3.1156e-05 1.78 3.2141e-04 1.41 6.9127e-03
1/18 2.5475e-05 1.89 1.9258e-05 1.91 2.2281e-04 1.46 6.9610e-03

t = 0.1,(α ,β) = (1.9,1.6),(ε1,ε2) = (O(1),O(1))
1/6 2.6485e-04 – 1.9290e-04 – 1.1859e-03 – 6.4542e-03
1/10 1.1544e-04 1.63 8.6542e-05 1.57 5.3599e-04 1.56 6.7608e-03
1/14 6.7712e-05 1.59 5.0400e-05 1.61 3.3163e-04 1.43 6.8829e-03
1/18 4.5463e-05 1.59 3.3857e-05 1.58 2.3476e-04 1.38 6.9387e-03

Table 1 TheL2,L1-errors and convergence rates foru andux,uy for Example 5.1.

t = 1,(α ,β) = (1.2,1.4),(ε1,ε2) = (O(1),O(1))
h ‖eu(t)‖L2 rate ‖eu(t)‖L1 rate ‖∂xeu(t)‖L2 rate ‖∂yeu(t)‖L2

1/6 8.2881e-05 – 7.2374e-05 – 4.7733e-04 – 2.5556e-03
1/10 3.2222e-05 1.85 2.7700e-05 1.88 2.6204e-04 1.17 2.7560e-03
1/14 1.6162e-05 2.05 1.3515e-05 2.13 1.7748e-04 1.06 2.8077e-03
1/18 9.9448e-06 1.93 8.2787e-06 1.95 1.3085e-04 1.21 2.8291e-03

t = 1,(α ,β) = (1.5,1.5),(ε1,ε2) = (O(1),O(1))
1/6 8.7928e-05 – 7.4712e-05 – 4.1510e-04 – 2.5466e-03
1/10 3.5668e-05 1.77 2.9706e-05 1.81 1.9555e-04 1.47 2.7408e-03
1/14 1.8524e-05 1.95 1.4885e-05 2.05 1.2291e-04 1.38 2.8010e-03
1/18 1.1432e-05 1.92 9.0662e-06 1.97 8.6553e-05 1.40 2.8244e-03

t = 1,(α ,β) = (1.9,1.6),(ε1,ε2) = (O(1),O(1))
1/6 1.1250e-04 – 8.4393e-05 – 4.6409e-04 – 2.5983e-03
1/10 4.7998e-05 1.67 3.6510e-05 1.64 2.1614e-04 1.50 2.7410e-03
1/14 2.7916e-05 1.61 2.0971e-05 1.65 1.3512e-04 1.40 2.7985e-03
1/18 1.8767e-05 1.58 1.4104e-05 1.58 9.5762e-05 1.37 2.8216e-03

Table 2 TheL2,L1-errors and convergence rates foru andux,uy for Example 5.1.
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t = 1,(α ,β) = (1.9,1.6),(ε1,ε2) = (O(h−1),O(1))
h ‖eu(t)‖L2 rate ‖eu(t)‖L1 rate ‖∂xeu(t)‖L2 rate ‖∂yeu(t)‖L2

1/6 5.2142e-05 – 4.1592e-05 – 4.0695e-04 – 2.5777e-03
1/10 1.9772e-05 1.90 1.5784e-05 1.90 1.7761e-04 1.62 2.7383e-03
1/14 9.5805e-06 2.15 7.5267e-06 2.20 1.1392e-04 1.32 2.7976e-03
1/18 5.8213e-06 1.98 4.6596e-06 1.91 7.8388e-05 1.49 2.8210e-03

t = 1,(α ,β) = (1.9,1.6),(ε1,ε2) = (O(h−1),O(h))
1/6 4.8702e-05 – 3.9358e-05 – 4.2857e-04 – 2.5666e-03
1/10 1.9169e-05 1.83 1.5766e-05 1.79 1.9937e-04 1.50 2.7356e-03
1/14 9.2520e-06 2.17 7.6271e-06 2.16 1.2817e-04 1.31 2.7962e-03
1/18 5.6525e-06 1.96 4.6650e-06 1.96 8.9725e-05 1.42 2.8202e-03

t = 1,(α ,β) = (1.9,1.6),(ε1,ε2) = (O(1),O(h))
1/6 8.6286e-05 – 6.6645e-05 – 4.5649e-04 – 2.5761e-03
1/10 3.4635e-05 1.79 2.8021e-05 1.70 2.0660e-04 1.55 2.7365e-03
1/14 1.7787e-05 1.98 1.4393e-05 1.98 1.2993e-04 1.38 2.7964e-03
1/18 1.0969e-05 1.92 8.9170e-06 1.91 8.9646e-05 1.48 2.8200e-03

Table 3 TheL2,L1-errors and convergence rates foru andux,uy for Example 5.1.

In Table 1 and Table 2 we choose different observation timet = 0.1,1 andα ,β to justify
that the convergence rates at least have an order ofO(h3/2) for the solutionu in L2, L1-norms
based on the piecewise linear basis function. In Table 3 we take the same choice ofε1,ε2 as
Ref. [3] and see that the convergence rates increase toO(h2) (see the explanations in Ref.
[3]). Comparing the numerical results with the work [26], wecan see that the HDG method
has smaller numerical errors for the first order polynomial approximation.

Example 5.2. In this example, we investigate the approximation solutionof problem
(1.1). For convenience, we still choose the domainΩ = (0,1)× (0,1). The exact solutionu,
initial value and the vector functionb are given by











u(x,y, t) =e−tx2(x−0.5)2(x−1)2y2(y−0.5)2(y−1)2,

u0(x,y) = x2(x−0.5)2(x−1)2y2(y−0.5)2(y−1)2,

b= ((x−0.5),−(y−0.5)).

(5.2)

For the second example, in order to further support the theoretical convergence and justify
the powerful HDG scheme, we takeb to be nonzero vector function and give some approx-
imation solutions with the refining space-steph to compare with the exact solutions and
display the efficiency of the simulations.
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Fig. 3 Exact solutionu and the numerical solutionsuh at t = 1 for Example 5.2.



A hybridized discontinuous Galerkin method for 2D fractional convection-diffusion equations 19

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

2

4

6

x 10
−8

x

u(t=5)

y

z

(a)

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

2

4

6

x 10
−8

x

uh(t=5)

y

z

(b)

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0

2

4

6

x 10
−8

x

uh(t=5)

y

z

(c)

Fig. 4 Exact solutionu and the numerical solutionsuh at t = 5 for Example 5.2.

Figure 3 displays the exact solutionu and the numerical solutionsuh based on different
space stepsizesh= 1

8,
1
16 at t = 1 with α = 1.2,β = 1.4, ε1 = ε2 = 1. Figure 4 displays the

exact solutionu and the numerical solutionsuh based on different space stepsizesh= 1
8,

1
16

att = 5 with α = 1.9,β = 1.6,ε1 = h−1,ε2 = 1. It is clear that the exact solution of Example
5.2 is nonnegative with four hills. In the simulations, theP1-HDG solutions recover the
exact solution perfectly with all four hills in coarse meshes. Note that the numerical results
display that the approximations are more and more accurate with the refining of the meshes.

6 Conclusions

By carefully introducing the auxiliary variables, constructing the numerical fluxes, adding
the penalty terms, and using the characteristic method to deal with the time derivative
and convective term, we design the effective HDG schemes to solve 2D space-fractional
convection-diffusion equations with triangular meshes. As we know, this work is the first
time to deal two-dimensional space-fractional convection-diffusion equation with triangular
mesh by the DG method. The stability and error bounds analysis are investigated.

Besides the general advantages of HDG method, the presentedscheme is shown to have
the following benefits: 1) it is symmetric, so easy to deal with the fractional operators; 2)
theoretically, the stability can be more easily proved; 3) the penalty terms make the error
analysis more convenient; 4) numerically verified to have efficient approximations; 5) the
schemes are performed very well in triangular meshes; 6) it is possible to use this scheme to
solve nonlinear equations which is the future research task.
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