
Explicit Strong Stability Preserving Multistage Two-Derivative
Time-Stepping Schemes

Andrew J. Christlieb1, Sigal Gottlieb2, Zachary Grant2∗, David C. Seal3
1Department of Computational Mathematics Science and Engineering, Department of Electrical Engineering,

and Department of Mathematics, Michigan State University
2Department of Mathematics, University of Massachusetts, Dartmouth

3Department of Mathematics, U.S. Naval Academy.

Abstract

High order strong stability preserving (SSP) time discretizations are advantageous for use with spatial dis-
cretizations with nonlinear stability properties for the solution of hyperbolic PDEs. The search for high order
strong stability time-stepping methods with large allowable strong stability time-step has been an active area of
research over the last two decades. Recently, multiderivative time-stepping methods have been implemented with
hyperbolic PDEs. In this work we describe sufficient conditions for a two-derivative multistage method to be SSP,
and find some optimal SSP multistage two-derivative methods. While explicit SSP Runge–Kutta methods exist
only up to fourth order, we show that this order barrier is broken for explicit multi-stage two-derivative methods
by designing a three stage fifth order SSP method. These methods are tested on simple scalar PDEs to verify the
order of convergence, and demonstrate the need for the SSP condition and the sharpness of the SSP time-step in
many cases.

1 Introduction
1.1 SSP methods
When numerically approximating the solution to a hyperbolic conservation law of the form

Ut + f(U)x = 0, (1)

difficulties arise when the exact solution develops sharp gradients or discontinuities. Significant effort has been
expended on developing spatial discretizations that can handle discontinuities [7], especially for high-order methods.
These discretizations have special nonlinear non-inner-product stability properties, such as total variation stability
or positivity, which ensure that when the semi-discretized equation

ut = F (u), (2)

(where u is a vector of approximations to U) is evolved using a forward Euler method, the numerical solution
satisfies the desired strong stability property,

‖un + ∆tF (un)‖ ≤ ‖un‖, 0 ≤ ∆t ≤ ∆tFE , (3)

where ‖ · ‖ is any desired norm, semi-norm, or convex functional.
In place of the first order time discretization (3), we typically require a higher-order time integrator, but we still

wish to ensure that the strong stability property ‖un+1‖ ≤ ‖un‖ is satisfied, perhaps under a modified time-step
restriction, where un is a discrete approximation to U at time tn. In [32] it was observed that some Runge–
Kutta methods can be decomposed into convex combinations of forward Euler steps, so that any convex functional

∗Corresponding author: zgrant@umassd.edu

1

ar
X

iv
:1

50
4.

07
59

9v
3

 [
m

at
h.

N
A

]
 2

3
M

ar
 2

01
6

property satisfied by (3) will be preserved by these higher-order time discretizations. For example, the s-stage
explicit Runge–Kutta method [33],

y(0) = un,

y(i) =

i−1∑
j=0

(
αi,jy

(j) + ∆tβi,jF (y(j))
)
, i = 1, ..., s (4)

un+1 = y(s)

can be rewritten as convex combination of forward Euler steps of the form (3). If all the coefficients αi,j and βi,j
are non-negative, and provided αi,j is zero only if its corresponding βi,j is zero, then each stage is bounded by

‖y(i)‖ =

∥∥∥∥∥
i−1∑
j=0

(
αi,jy

(j) + ∆tβi,jF (y(j))
)∥∥∥∥∥ ≤

i−1∑
j=0

αi,j

∥∥∥∥y(j) + ∆t
βi,j
αi,j

F (y(j)

∥∥∥∥ .
Noting that each ‖y(j) + ∆t

βi,j
αi,j

F (y(j))‖ ≤ ‖y(j)‖ for βi,j
αi,j

∆t ≤ ∆tFE, and by consistency
∑i−1
j=0 αi,j = 1, we have

‖un+1‖ ≤ ‖un‖ as long as

∆t ≤ C∆tFE ∀i, j, (5)

where C = min
αi,j

βi,j
. (We employ the convention that if any of the β’s are equal to zero, the corresponding ratios

are considered infinite.) The resulting time-step restriction is a combination of two distinct factors: (1) the term
∆tFE that depends on the spatial discretization, and (2) the SSP coefficient C that depends only on the time-
discretization. Any method that admits such a decomposition with C > 0 is called a strong stability preserving
(SSP) method.

This convex combination decomposition was used in the development of second and third order explicit Runge–
Kutta methods [33] and later of fourth order methods [34, 16] that guarantee the strong stability properties of
any spatial discretization, provided only that these properties are satisfied when using the forward Euler (first
derivative) condition in (3). Additionally, the convex combination approach also guarantees that the intermediate
stages in a Runge–Kutta method satisfy the strong stability property as well.

The convex combination approach clearly provides a sufficient condition for preservation of strong stability.
Moreover, it has also be shown that this condition is necessary [4, 5, 11, 12]. Much research on SSP methods
focuses on finding high-order time discretizations with the largest allowable time-step ∆t ≤ C∆tFE by maximizing
the SSP coefficient C of the method. It has been shown that explicit Runge–Kutta methods with positive SSP
coefficient cannot be more than fourth-order accurate [20, 28]; this led to the study of other classes of explicit SSP
methods, such as methods with multiple steps. Explicit multistep SSP methods of order p > 4 do exist, but have
severely restricted time-step requirements [7]. Explicit multistep multistage methods that are SSP and have order
p > 4 have been developed as well [17, 2].

Recently, multi-stage multiderivative methods have been proposed for use with hyperbolic PDEs [29, 37].
The question then arises as to whether these methods can be strong stability preserving as well. Nguyen-Ba
and colleagues studied the SSP properties of the Hermite-Birkoff-Taylor methods with a set of simplified base
conditions in [23]. In this work we consider multistage two-derivative methods and develop sufficient conditions
for strong stability preservation for these methods, and we show that explicit SSP methods within this class can
break this well-known order barrier for explicit Runge–Kutta methods. Numerical results demonstrate that the
SSP condition is useful in preserving the nonlinear stability properties of the underlying spatial discretization and
that the allowable time-step predicted by the SSP theory we developed is sharp in many cases.

1.2 Multistage multiderivative methods
To increase the possible order of any method, we can use more steps (e.g. linear multistep methods), more stages
(e.g. Runge–Kutta methods), or more derivatives (Taylor series methods). It is also possible to combine these

2

approaches to obtain methods with multiple steps, stages, and derivatives. Multistage multiderivative integration
methods were first considered in [24, 38, 35], and multiderivative time integrators for ordinary differential equations
have been developed in [30, 31, 14, 15, 22, 25, 3], but only recently have these methods been explored for use with
partial differential equations (PDEs) [29, 37]. In this work, we consider explicit multistage two-derivative time
integrators as applied to the numerical solution of hyperbolic conservation laws.

We consider the system of ODEs (2) resulting from the spatial discretization of a hyperbolic PDE of the form
(1). We define the one-stage, two-derivative building block method un+1 = un + α∆tF (un) + β∆t2Ḟ (un) where
α ≥ 0 and β ≥ 0 are coefficients chosen to ensure the desired order. This method can be at most second order,
with coefficients α = 1 and β = 1

2
. This is the second-order Taylor series method. To obtain higher order explicit

methods, we can add more stages:

y(i) = un + ∆t

i−1∑
j=1

(
aijF (y(j)) + ∆tâijḞ (y(j))

)
, i = 1, ..., s (6)

un+1 = un + ∆t

s∑
j=1

(
bjF (y(j)) + ∆tb̂jḞ (y(j))

)
.

We can write the coefficients in matrix vector form, where

A =


0 0

... 0

a21 0
... 0

...
...

...
...

as1 as2
... 0


, Â =


0 0

... 0

â21 0
... 0

...
...

...
...

âs1 âs2
... 0


, b =



b1

b2

...
bs


, b̂ =



b̂1

b̂2

...
b̂s


.

We let c = Ae and ĉ = Âe, where e is a vector of ones. These coefficients are then selected to attain the desired
order, based on the order conditions written in Table 1 as described in [3, 6].

Remark 1. In this work, we focus on multistage two-derivative methods as time integrators for use with hyperbolic
PDEs. In this setting, the operator F is obtained by a spatial discretization of the term Ut = −f(U)x to obtain the
system ut = F (u). This is the typical method-of-lines approach, and SSP methods were introduced in the context
of this approach. The computation of the second derivative term Ḟ should follow directly from the definition of F ,
where we compute Ḟ = F (u)t = Fuut = FuF . In practice, the calculation of Fu may be computationally prohibitive,
as for example in the popular WENO method where F has a highly nonlinear dependence on u.

Instead, we adopt a Lax-Wendroff type approach, where we use the fact that the system of ODEs arises from
the PDE (1) to replace the time derivatives by the spatial derivatives, and discretize these in space. This approach
begins with the observation that F (u) = ut = Ut + O(∆xm) (for some integer m). The term F (u) is typically
computed using a conservative spatial discretization Dx applied to the flux:

F (u) = Dx(−f(u)).

Next we approximate

F (u)t = utt ≈ Utt = −f(U)xt = (−f(U)t)x =
(
−f ′(U)Ut

)
x
≈ D̃x

(
−f ′(u)ut

)
,

where a (potentially different) spatial approximation D̃x is used. This means that

F (u)t = utt = Utt +O(∆xn) = Ḟ +O(∆xr)

(for some integers n and r).

3

Since Ft = Ḟ +O(∆xr), we will not necessarily obtain the time order ∆tp when we satisfy the order conditions
in Table 1, as our temporal order is polluted by spatial errors as well. The concern about the Lax-Wendroff approach
is that the order conditions in Table 1 are based on the assumption that Ḟ = Ft, which is not exactly correct in our
case, thus introducing additional errors. However, these errors are of order r in space, so that in practice, as long
as the spatial errors are smaller than the temporal errors, we expect to see the correct order of accuracy in time.

To verify this, in Section 4.2 we perform numerical convergence studies of these temporal methods where Ḟ is
approximated by high order spatial schemes and compare the errors from these methods to those from well-known
SSP Runge–Kutta methods. We observe that if the spatial and temporal grids are refined together, the expected
order of accuracy is demonstrated. Furthermore, if the spatial grid is held fixed but the spatial discretization is
highly accurate, the correct time-order is observed until the time error falls below the spatial error. We conclude
that in practice, it is not necessary to compute Ft exactly, and that the use of a Lax-Wendroff type procedure that
replaces the temporal derivatives by spatial derivatives and discretizes each of these independently, does not destroy
the temporal accuracy.

This observation is not new: many other methods have adopted this type of approach and obtained genuine
high-order accuracy. Such methods include the original Lax-Wendroff method [21], ENO methods [9], finite volume
ADER methods [36], the finite difference WENO Schemes in [27], and the Lax-Wendroff discontinuous Galerkin
schemes [26].

In the next section we will discuss how to ensure that a multistage two-derivative method will preserve these
strong stability properties.

p = 1 bT e = 1

p = 2 bT c+ b̂T e = 1
2

p = 3 bT c2 + 2b̂T c = 1
3

bTAc+ bT ĉ+ b̂T c = 1
6

p = 4 bT c3 + 3b̂T c2 = 1
4

bT cAc+ bT cĉ+ b̂T c2 + b̂TAc+ b̂T ĉ = 1
8

bTAc2 + 2bT Âc+ b̂T c2 = 1
12

bTA2c+ bTAĉ+ bT Âc+ b̂TAc+ b̂T ĉ = 1
24

p = 5 bT c4 + 4b̂T c3 = 1
5

bT c2Ac+ bT c2ĉ+ b̂T c3 + 2b̂T cAc+ 2b̂T cĉ = 1
10

bT cAc2 + 2bT cÂc+ b̂T c3 + b̂TAc2 + 2b̂T Âc = 1
15

bT cA2c+ bT cAĉ+ bT cÂc+ b̂T cAc+ b̂T cĉ+ b̂TA2c+ b̂TAĉ+ b̂T Âc = 1
30

bT (Ac)(Ac) + 2bT ĉAc+ bT ĉ2 + 2b̂T cAc+ 2b̂T cĉ = 1
20

bTAc3 + 3bT Âc2 + b̂T c3 = 1
20

bTA(cAc) + bTA(cĉ) + bT Âc2 + bT ÂAc+ bT Âĉ+ b̂T cAc+ b̂T cĉ = 1
40

bTA2c2 + 2bTAÂc+ bT Âc2 + b̂TAc2 + 2b̂T Âc = 1
60

bTA3c+ bTA2ĉ+ bTAÂc+ bT ÂAc+ bT Âĉ+ b̂TA2c+ b̂TAĉ+ b̂T Âc = 1
120

Table 1: Order conditions for multi-stage multiderivative methods of the form (6) as in [3].

4

2 The SSP condition for multiderivative methods

2.1 Motivating Examples
To understand the strong stability condition for multiderivative methods, we consider the strong stability properties
of a multiderivative building block of the form

un+1 = un + α∆tF (un) + β∆t2Ḟ (un),

and begin with the simple linear one-way wave equation Ut = Ux. This equation has the property that its second
derivative in time is, with the assumption of sufficient smoothness, also the second derivative in space:

Utt = (Ux)t = (Ut)x = Uxx.

We will use this convenient fact in a Lax-Wendroff type approach to define Ḟ (un) by a spatial discretization of
Uxx.

For this problem, we define F by the original first-order upwind method

F (un)j :=
1

∆x

(
unj+1 − unj

)
≈ Ux(xj), (7a)

and Ḟ by the second order centered discretization to Uxx:

Ḟ (un)j :=
1

∆x2

(
unj+1 − 2unj + unj−1

)
≈ Uxx(xj). (7b)

These spatial discretizations are total variation diminishing (TVD) in the following sense:

un+1 = un + ∆tF (un) is TVD for ∆t ≤ ∆x, (8a)

un+1 = un + ∆t2Ḟ (un) is TVD for ∆t ≤
√

2

2
∆x. (8b)

Remark 2. Note that we chose a second derivative Ḟ in space that is not an exact derivative Ft(un) of F (un) in
the method-of-lines formulation. However, as noted in Remark 1 and will be shown in the convergence studies, if the
spatial and temporal grids are co-refined, this provides a sufficiently accurate approximation to Ḟ (un). The exact
derivative can be obtained by applying the upwind differentiation operator to the solution twice, which produces

Ft :=
1

∆x2

(
unj+2 − 2unj+1 + unj

)
.

However, computing Ḟ = Ft using this formulation does not satisfy the condition (8b) for any value of ∆t.

To establish the TVD properties of the multiderivative building block we decompose it:

un+1 = un + α∆tF (un) + β∆t2Ḟ (un) = aun + α∆tF (un) + (1− a)un + β∆t2Ḟ (un)

= a
(
un +

α

a
∆tF (un)

)
+ (1− a)

(
un +

β

1− a∆t2Ḟ (un)

)
.

It follows that for any 0 ≤ a ≤ 1 this is a convex combination of terms of the form (8a) and (8b), and so

‖un+1‖TV ≤ a
∥∥∥(un +

α

a
∆tF (un)

)∥∥∥
TV

+ (1− a)

∥∥∥∥(un +
β

1− a∆t2Ḟ (un)

)∥∥∥∥
TV

≤ a ‖un‖TV + (1− a) ‖un‖TV ≤ ‖u
n‖TV

5

for time-steps satisfying ∆t ≤ a
α

∆x and ∆t2 ≤ 1−a
2β

∆x2. The first restriction relaxes as a increases while the second
becomes tighter as a increases, so that the value of a that maximizes these conditions occurs when these are equal.
This is given by

a2 +
α2

2β
a− α2

2β
= 0, =⇒ a =

α
√
α2 + 8β − α2

4β
.

Using this SSP analysis, we conclude that∥∥∥un + α∆tF (un) + β∆t2Ḟ (un)
∥∥∥
TV
≤ ‖un‖TV for ∆t ≤

√
α2 + 8β − α

4β
∆x. (9)

Of course, for this simple example we can directly compute the value of ∆t for which the multiderivative building
block is TVD. That is, with λ := ∆t

∆x
≥ 0, we observe that

‖un+1‖TV =
∥∥((1− αλ− 2βλ2)unj + (αλ+ βλ2)unj+1 + βλ2unj−1

)∥∥
TV
≤ ‖un‖TV ,

provided that

1− αλ− 2βλ2 ≥ 0 ⇐⇒ λ ≤
√
α2 + 8β − α

4β
.

We see that for this case, the SSP bound is sharp: the convex combination approach provides us exactly the same
bound as directly computing the requirements for total variation.

We wish to generalize this for cases in which the second derivative condition (8b) holds for ∆t ≤ K∆tFE where
K can take on any positive value, not just

√
2

2
. For the two-derivative building block method this can be done

quite easily:

Theorem 1. Given F and Ḟ such that

‖un + ∆tF (un)‖ ≤ ‖un‖ for ∆t ≤ ∆tFE,

and
‖un + ∆t2Ḟ (un)‖ ≤ ‖un‖ for ∆t ≤ K∆tFE,

the two-derivative building block
un+1 = un + α∆tF (un) + β∆t2Ḟ (un)

satisfies the monotonicity condition ‖un+1‖ ≤ ‖un‖ under the time-step restriction

∆t ≤ K

2β

(√
α2K2 + 4β − αK

)
∆tFE.

Proof. As above, we rewrite

un+1 = a
(
un +

α

a
∆tF (un)

)
+ (1− a)

(
un +

β

1− a∆t2Ḟ (un)

)
,

which is a convex combination provided that 0 ≤ a ≤ 1. The time-step restriction that follows from this convex
combination must satisfy α

a
∆t ≤ ∆tFE and β

1−a∆t2 ≤ K2∆t2FE. The first condition becomes ∆t ≤ a
α

∆tFE while

the second is ∆t ≤
√

1−a
β
K∆tFE. We observe that on 0 ≤ a ≤ 1 the first term encourages a larger a while the

second term is less restrictive with a smaller a. The two conditions are balanced, and thus the allowable time-step
is maximized, when we equate the right hand sides:

a

α
=

√
1− a
β

K → a =
αK

2β

(√
α2K2 + 4β − αK

)
.

Now using the first condition, ∆t ≤ a
α

∆tFE we obtain our result.

6

A more realistic motivating example is the unique two-stage fourth order method

u∗ = un +
∆t

2
F (un) +

∆t2

8
Ḟ (un),

un+1 = un + ∆tF (un) +
∆t2

6
(Ḟ (un) + 2Ḟ (u∗)). (10)

The first stage of the method is a Taylor series method with ∆t
2
, while the second stage can be written

un+1 = un + ∆tF (un) +
∆t2

6
(Ḟ (un) + 2Ḟ (u∗))

= a

(
u∗ − ∆t

2
F (un)− ∆t2

8
Ḟ (un)

)
+ (1− a)un + ∆tF (un) +

∆t2

6
(Ḟ (un) + 2Ḟ (u∗))

= (1− a)

(
un +

1− a
2

1− a∆tF (un) +
1
6
− a

8

1− a ∆t2Ḟ (un)

)
+ a

(
u∗ +

∆t2

3a
Ḟ (u∗)

)
.

For 0 ≤ a ≤ 1 this is a convex combination of two terms. The first term is of the form (9), which gives the time-step
restriction

∆t ≤ 6

4− 3a

(√(
5

4
a2 − 10

3
a+

7

3

)
− 1 +

a

2

)
∆tFE.

The second is of the form (8b), so we have ∆t ≤
√

3a
2

∆tFE. We plot these two in Figure 1, and we observe that the
first term is decreasing in a (blue line) while the second term is increasing in a (red line). As a result, we obtain the
optimal allowable time-step by setting these two equal, which yields a ≈ 0.3072182638002141 and the corresponding
SSP coefficient, C ≈ 0.6788426884782078. A direct computation of the TVD time-step for this case, which takes
advantage of the linearity of the problem and the spatial discretization, gives the bound ∆t ≤ (

√
3− 1) > 0.6788.

This shows that, as we expect, the SSP condition is not always sharp.
The convex combination approach becomes more complicated when dealing with multi-stage methods. It is the

most appropriate approach for developing an understanding of the strong stability property of a given method.
However, it is not computationally efficient for finding optimal SSP methods. In the following section, we show
how to generalize the convex combination decomposition approach and we use this generalization to formulate an
SSP optimization problem along the lines of [16, 19].

2.2 Formulating the SSP optimization problem
As above, we begin with the hyperbolic conservation law (1) and adopt a spatial discretization so that we have the
system of ODEs (2). The spatial discretization F is specially designed so that it satisfies the forward Euler (first
derivative) condition

Forward Euler condition ‖un + ∆tF (un)‖ ≤ ‖un‖ for ∆t ≤ ∆tFE , (11)

for the desired stability property indicated by the convex functional ‖ · ‖. For multiderivative methods, in addition
to the first derivative, we need to appropriately approximate the second derivative in time utt, to which we represent
the discretization as Ḟ . It is not immediately obvious what should be the form of a condition that would account
for the effect of the ∆t2Ḟ term. Motivated by the examples in the previous sections, we choose the

Second derivative condition ‖un + ∆t2Ḟ (un)‖ ≤ ‖un‖ for ∆t ≤ K∆tFE , (12)

whereK is a scaling factor that compares the stability condition of the second derivative term to that of the forward
Euler term. Given conditions (11) and (12), we wish to formulate sufficient conditions so that the multiderivative

7

method (6) satisfies the desired monotonicity condition under a given time-step. First, we write the method (6) in
an equivalent matrix-vector form

y = eun + ∆tSF (y) + ∆t2ŜḞ (y), (13)

where

S =

[
A 0
bT 0

]
and Ŝ =

[
Â 0
b̂T 0

]
and e is a vector of ones. We are now ready to state our result:

Theorem 2. Given spatial discretizations F and Ḟ that satisfy (11) and (12), a two-derivative multistage method
of the form (13) preserves the strong stability property ‖un+1‖ ≤ ‖un‖ under the time-step restriction ∆t ≤ r∆tFE

if satisfies the conditions (
I + rS +

r2

K2
Ŝ

)−1

e ≥ 0 (14a)

r

(
I + rS +

r2

K2
Ŝ

)−1

S ≥ 0 (14b)

r2

K2

(
I + rS +

r2

K2
Ŝ

)−1

Ŝ ≥ 0 (14c)

for some r > 0. In the above conditions, the inequalities are understood component-wise.

Proof. We begin with the method (13), and add the terms rSy and r̂Ŝy to both sides to obtain(
I + rS + r̂Ŝ

)
y = une + rS

(
y +

∆t

r
F (y)

)
+ r̂Ŝ

(
y +

∆t2

r̂
Ḟ (y)

)
,

y = R(eun) + P

(
y +

∆t

r
F (y)

)
+Q

(
y +

∆t2

r̂
Ḟ (y)

)
,

where
R =

(
I + rS + r̂Ŝ

)−1

, P = rRS, Q = r̂RŜ.

If the elements of P , Q, and Re are all non-negative, and if R + P + Q = I, then these three terms describe a
convex combination of terms which are SSP, and the resulting value is SSP as well

‖y‖ ≤ R‖eun‖+ P‖y +
∆t

r
F (y)‖+Q‖y +

∆t2

r̂
Ḟ (y)‖,

under the time-step restrictions ∆t ≤ r∆tFE and ∆t ≤ K
√
r̂∆tFE. As we observed above, the optimal time-step

is given when these two are set equal, so we require r = K
√
r̂. Conditions (14a)–(14c) now ensure that P ≥ 0,

Q ≥ 0, and Re ≥ 0 component-wise for r̂ = r2

K2 , and our method (13) preserves the strong stability condition
‖un+1‖ ≤ ‖un‖ under the time-step restriction ∆t ≤ r∆tFE .

This theorem gives us the conditions for the method (13) to be SSP for any the time-step ∆t ≤ r∆tFE. This
allows us to formulate the search for optimal SSP two-derivative methods as an optimization problem, similar
to [16, 18, 7], where the aim is to find C = max r such that the relevant order conditions (from Section 1.2)
and SSP conditions (14a)-(14b) are all satisfied. Based on this, we wrote a Matlab optimization code for finding
optimal two-derivative multistage methods [8], formulated along the lines of David Ketcheson’s code [19] for finding
optimal SSP multistage multistep methods in [17, 2]. We used this to find optimal SSP multistage two-derivative
methods of order up to p = 5. However, we also used our observations on the resulting methods to formulate closed
form representations of the optimal SSP multistage two-derivative methods. We present both the numerical and
closed-form optimal methods in the following section.

8

Remark 3. An alternative approach to defining a MSMD SSP method is to begin with spatial discretization that
satisfies the “Taylor series” condition, defined by

‖un + ∆tF (un) +
1

2
∆t2Ḟ (un)‖ ≤ ‖un‖ for ∆t ≤ ∆tTS = K2∆tFE . (15)

This condition replaces (12), and allows us to rewrite (6) as convex combinations of forward Euler and Taylor
series steps of the form (15). A similar optimization problem can be defined based on this condition. This approach
was adopted in [23].

This condition is more restrictive than what we consider in the present work. Indeed, if a spatial discretization
satisfies conditions (11) as well as (12), then it will also satisfy condition (15), with K2 = K

√
K2 + 2−K. However,

some methods of interest cannot be written using a Taylor series decomposition, including the two-stage fourth
order method in (10). For these reasons, we do not explore this approach further, but we point out that we have
experimented with this alternative formulation to generate some optimal SSP methods. Henceforth, we restrict
our attention to spatial discretizations that satisfy (11) and (12).

3 Optimal SSP multiderivative methods

3.1 Second order methods
Although we do not wish to use second order methods in our computations, it is interesting to consider the strong
stability properties of these methods both as building blocks of higher order methods and as simple example that
admit optimal formulations with simple formulas.
One stage methods. The second-order Taylor series method,

un+1 = un + ∆tF (un) +
1

2
∆t2Ḟ (un), (16)

is the unique one-stage second-order method. Theorem 1 for the building block (9) with coefficients α = 1 and
β = 1

2
gives the condition ∆t ≤ C∆tFE with C = K

√
K2 + 2−K2. Unlike the SSP single derivative Runge–Kutta

methods, the SSP coefficient is not just dependent on the time-stepping method, but also on the value K which
comes from the second derivative condition (12). As noted above, the Taylor series method can serve as the
basic building block for two-derivative methods, just as the first-order FE can be used to build higher-order RK
integrators.
Two stage methods. The optimal SSP two stage second order methods depends on the value of K in (12). A
straightforward SSP analysis via convex combinations, and solving the equations for the order conditions allows
us to formulate the optimal methods without using the optimization code [8]. However, we used the optimization
code to verify our results.

If K ≤
√

2
3
the optimal methods are of the form

u∗ = un +
1

r
∆tF (un),

un+1 = un +
1

2
∆t (F (un) + F (u∗)) +

r − 1

2r
∆t2Ḟ (un), (17)

where
r =

1

2

(
1−K2 +

√
1 + 6K2 +K4

)
.

These methods are SSP for C = r, where r > 1 whenever K > 0. Notice that if K = 0 we have r = 1 and our
method reduces to the standard two stage second order Runge–Kutta method.

9

As K increases, the time-step restriction imposed by the condition (12) is alleviated, and consequently the

optimal method includes more of the second derivative terms. If K ≥
√

2
3
we get an optimal method

u∗ = un +
1

2
∆tF (un) +

1

8
∆t2Ḟ (un),

un+1 = u∗ +
1

2
∆tF (u∗) +

1

8
∆t2Ḟ (u∗), (18)

which is simply two Taylor series steps with 1
2
∆t in each one, and so has C = 2K

√
K2 + 2−2K2. We see in Figure

2 the SSP coefficient C vs. K for the two methods above (in green and red respectively), and for many numerically
optimal methods in blue.

a
0 0.2 0.4 0.6 0.8 1

T
im

e
s
te

p
 r

e
s
tr

ic
ti
o
n

0

0.2

0.4

0.6

0.8

1

1.2

Figure 1: The time-step restriction
for the two-stage fourth order method
is the minimum of two terms, one of
which is decreasing while the other is
increasing in a.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

K

S
S

P
 C

o
e
ff
ic

ie
n
t

Figure 2: The SSP coefficient C as a
function of the coefficient K in (12) for
the optimal two-stage two-derivative
second order methods given in Section
3.1.

Note that (18) has four function evaluations compared to the three function evaluations above in (17). If we
assume all the function evaluations cost the same, it will never pay off to use the second method, as the first
method is always more efficient. However, if one has a special case where the cost of computing Ḟ is negligible the
second method may still be worthwhile.

For this method and all others, once we have the optimal Butcher arrays and the SSP coefficient C = r, we can
easily convert them to the Shu-Osher form as follows:

% Given A, Ahat, b, bhat, and r, the Shu-Osher matrices are given by
z=0.0*b; I=eye(3);e=ones(3,1);
S=[A,z; b’,0]; Shat=[Ahat,z; bhat’,0];
Ri=(I+r*S+(r^2/k^2)*Shat);
v=Ri\e;
P = r*(Ri\S);
Q= r^2/k^2*(Ri\Shat);

10

3.2 Third order methods
Many two-stage two-derivative third order methods exist. As above, the optimal C depends on the value of K
in (12). Through numerical search using our optimization code [8], we found optimal methods for the range
0.1 ≤ K ≤ 5. Figure 3 (blue line) shows the SSP coefficient C vs. K. We also solved the order conditions explicitly
and analyzed the SSP conditions (14a)-(14c) to find the values of the coefficients of these methods as functions of
r = C and K. These methods all have the form

u∗ = un + a∆tF (un) + â∆t2Ḟ (un),

un+1 = un + b1∆tF (un) + b2∆tF (u∗) + b̂1∆t2Ḟ (un) + b̂2∆t2Ḟ (u∗), (19)

where the coefficients satisfy

a = 1
r

(
K
√
K2 + 2−K2

)
â =

1

2
a2

b2 =
2K2(1− 1

r
)+r

K
√
K2+2+K2

− r2

3K2 b1 = 1− b2 (20)

b̂1 = 1
2
− 1

2
ab2 − 1

6a
b̂2 =

1

6a
− 1

2
ab2

Note that the first stage is always a Taylor series method with ∆t replaced by a∆t, which is underscored by
the fact that SSP coefficient is given by r = 1

a

(
K
√
K2 + 2−K2

)
. The SSP conditions (14a)-(14c) provide the

restrictions on the size of r, and thus on C = r. We observe that the condition that restricts us most here is the
non-negativity of Q3,1, and so we must select a value of r such that this value is zero. To do this, we select r to be
the smallest positive root of p0 + p1r + p2r

2 + p3r
3 where the coefficients pi are all functions of K

p0 = 2K(
√
K2 + 2− 3K) + 4K3(

√
K2 + 2−K)

p1 = −a0, p2 = (1− a0)/(2K2), p3 = −
a0
2K

+K

6K3
.

Some examples of the value of r as a function of K are given in Table 2. The Matlab script for this method is
found in Appendix B.

K 0.25 0.4 0.5 0.6 0.7 0.8 1.0 1.25 1.5 1.75 2.5 3 3.5 4
r 0.48 0.71 0.84 0.94 1.03 1.11 1.23 1.33 1.39 1.44 1.51 1.54 1.55 1.56

Table 2: The SSP coefficient C = r for each K in the two-stage third order method (19).

The Shu-Osher representations of the methods can be easily obtained by using r and K to solve for r̂, R,P ,
and Q. For example, for K = 1√

2
we have r = 1.04 and the method in Butcher form has

a = 0.594223212099088,

â = 0.176550612898679,
b =

[
0.693972512991841

0.306027487008159

]
, b̂ =

[
0.128597465450411

0.189553898228989

]
.

The optimal Shu Osher formulation for these values is given by Re = (1, 0, 0)T ,

P =

 0 0 0

0.618033988749895 0 0

0.271611333775367 0.318290138472780 0



Q =

 0 0 0

0.381966011250105 0 0

0 0.410098527751853 0

 .

11

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

K

S
S

P
 C

o
e
ff
ic

ie
n
t

Figure 3: The SSP coefficient vs. K for
two stage methods. Third order methods
are in blue, the fourth order methods are
red.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

K

S
S

P
 C

o
e
ff
ic

ie
n
t

Figure 4: The SSP coefficient vs. K for
three stage methods. Fourth order meth-
ods are in blue (top line), the fifth order
methods in red (bottom line).

3.3 Fourth order methods
3.3.1 Fourth order methods: The two-stage fourth-order method

The two-stage two-derivative fourth order method (10) is unique; there is only one set of coefficients that satisfy
the fourth order conditions for this number of stages and derivatives. The method is

u∗ = un +
∆t

2
F (un) +

∆t2

8
Ḟ (un)

un+1 = un + ∆tF (un) +
∆t2

6
(Ḟ (un) + 2Ḟ (u∗)).

The first stage of the method is a Taylor series method with ∆t
2
, while the second stage can be written as a linear

combination of a forward Euler and a second-derivative term (but not a Taylor series term). The SSP coefficient
of this method is larger as K increases, as can be seen in Figure 3.

To ensure that the SSP conditions (14a)-(14c) are satisfied, we need to select the largest r so that all the terms
are non-negative. We observed from numerical optimization that in the case of the two-stage fourth order method
the term (Re)3 gives the most restrictive condition: if we choose r to ensure that this term is non-negative, all the
other conditions are satisfied. Satisfying this condition, the SSP coefficient C = r is given by the smallest positive
root of the polynomial:

(Re)3 = r4 + 4K2r3 − 12K2r2 − 24K4r + 24K4.

The Shu-Osher decomposition for the optimal method corresponding to this value of K is

u∗ =

(
1− 4rK2 + r2

8K2

)
un +

r

2

(
un +

∆t

r
F (un)

)
+

r2

8K2

(
un +

K2

r2
∆t2Ḟ (un)

)
(21)

un+1 = r

(
1− r2

6K2

)(
un +

∆t

r
F (un)

)
+
r2(4K2 − r2)

24K4

(
un +

K2

r2
∆t2Ḟ (un)

)
+

r2

3K2

(
u∗ +

K2

r2
∆t2Ḟ (u∗)

)
.

3.3.2 Fourth order methods: Three stage methods

If we increase the number of stages to three, we can construct entire families of methods that obtain fourth-order
accuracy, and are SSP with a larger allowable time-step. For these methods, we were not able to find closed

12

form solutions, but our optimization code [8] produced methods for various values of K. The SSP coefficient as
a function of K for these methods is given in Figure 3, and we give the coefficients for selected methods in both
Butcher array and Shu-Osher form in Appendix A.

3.4 Fifth order methods
As mentioned above, it was shown that explicit SSP Runge–Kutta methods cannot have order p > 4 [20, 28]. This
order barrier is broken by multiderivative methods. If we allow three stages and two-derivative we can obtain a fifth
order SSP method. The explicit three-stage fifth order method has twelve coefficients and sixteen order conditions
that need to be satisfied. This is possible if some of the coefficients are set to zero, which allows several of the
order conditions to be repetitive and satisfied automatically. The methods resulting from our optimization routine
all had the simplified form

u∗ = un + a21∆tF (un) + â21∆t2Ḟ (un)

u∗∗ = un + a31∆tF (un) + â31∆t2Ḟ (un) + â32∆t2Ḟ (u∗) (22)

un+1 = un + ∆tF (un) + ∆t2
(
b̂1Ḟ (un) + b̂2Ḟ (u∗) + b̂3Ḟ (u∗∗)

)
.

The coefficients of the three-stage fifth order method are then given as a one-parameter system, depending only
on a21, that are related through

â21 =
1

2
a2

21, a31 =
3/5− a21

1− 2a21
,

â32 =
1

10

(
(3

5
− a21)2

a21(1− 2a21)3
−

3
5
− a21

(1− 2a21)2

)
, â31 =

1

2

(3
5
− a21)2

(1− 2a21)2
− â32,

b̂2 =
2a31 − 1

12a21(a31 − a21)
, b̂3 =

1− 2a21

12a31(a31 − a21)
, b̂1 =

1

2
− b̂2 − b̂3.

To satisfy the SSP conditions (14a)-(14c), we must ensure that (Re)3 is non-negative. Based on the optimization
code we observed that the extreme case of (Re)3 = 0 gives the optimal methods, and we can obtain a21 as a function
of K and r through

a21 =
K6

r6

(
− 2

K4
r5 +

10

K4
r4 +

40

K2
r3 − 120

K2
r2 − 240r + 240

)
.

Now, we wish to ensure that Q3,1 is nonnegative. The SSP coefficient C = r is then chosen as the largest positive
root of

Q3,1 = 10r2a4
21 − (100K2 + 10r2)a3

21 + (130K2 + 3r2)a2
21 − 50K2a21 + 6K2.

The Matlab script in Appendix C solves for the largest r that satisfies the SSP conditions (14a)-(14c), and then
computes the coefficients of the optimal methods both in Butcher array and Shu-Osher form. This approach yields
the same optimal methods as those obtained by our optimization code [8]. In Figure 5 we show values of a21 and
r for given values of K.

Once again, the Shu-Osher decomposition is needed for the method to be SSP, and is easily obtained. For
example, for K = 1√

2
we have r = 0.6747 and the method becomes

Re =


1.0

0.2369970626512336

0.7810723816004148

0.0

 , P =


0 0 0 0

0.5064804704259125 0 0 0

0.1862033791874200 0 0 0

0.5769733539128722 0 0 0


(23)

13

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

K

S
S

P
 C

o
e

ff
ic

ie
n

t

K a21 C K a21 C
0.1 0.7947 0.1452 1.1 0.7393 0.8114
0.2 0.7842 0.2722 1.2 0.7374 0.8335
0.3 0.7751 0.3814 1.3 0.7359 0.8523
0.4 0.7674 0.4741 1.4 0.7346 0.8683
0.5 0.7609 0.5520 1.5 0.7334 0.8819
0.6 0.7555 0.6171 1.6 0.7324 0.8937
0.7 0.7510 0.6712 1.7 0.7316 0.9039
0.8 0.7472 0.7162 1.8 0.7309 0.9127
0.9 0.7441 0.7537 1.9 0.7302 0.9205
1.0 0.7415 0.7851 2.0 0.7296 0.9273

Figure 5: SSP coefficients for three-stage fifth-order methods. Left: the SSP coefficient as a function of K for
three stage fifth order methods. Right: a table of a21 and the SSP coefficient C, for different values of K as defined
in (22). The code to generate the coefficients in Butcher and Shu-Osher form is given in the appendix.

Q =


0 0 0 0

0.2565224669228537 0 0 0

0 0.0327242392121651 0 0

0.0615083849004797 0.0803574544380432 0.2811608067486047 0

 .
These coefficients as well as the coefficients for the optimal method for any value of K can be easily obtained

to high precision by the Matlab code in Appendix C.

4 Numerical Experiments

4.1 Numerical verification of the SSP properties of these methods
4.1.1 Example 1: Linear advection with first order TVD spatial discretization

As a first test case, we consider linear advection, Ut − Ux = 0, with a first order finite difference for the first
derivative and a second order centered difference for the second derivative defined in (7)

F (un)j :=
unj+1 − unj

∆x
≈ Ux(xj), and Ḟ (un)j :=

unj+1 − 2unj + unj−1

∆x2
≈ Uxx(xj).

Recall from (8) that this first-order spatial discretization satisfies the

Forward Euler condition un+1
j = unj + ∆t

∆x

(
unj+1 − unj

)
is TVD for ∆t ≤ ∆tFE = ∆x, and the

Second Derivative condition un+1
j = unj +

(
∆t
∆x

)2 (
unj+1 − 2unj + unj−1

)
is TVD for ∆t ≤ 1√

2
∆tFE .

Fo initial conditions, we use a step function

u0(x) =

{
1 if 1

4
≤ x ≤ 1

2
,

0 otherwise,
(24)

with a domain x ∈ [0, 1] and periodic boundary conditions. This simple example is chosen as our experience has
shown [7] that this problem often demonstrates the sharpness of the SSP time-step.

14

Stages Order Predicted C Observed C Stages Order Predicted C Observed C
1 2 0.6180 0.6180 2 4 0.6788 0.7320
2 2 1.2807 1.2807 3 4 1.3927 1.3927
2 3 1.0400 1.0400 3 5 0.6746 0.7136

Table 3: Comparison of the theoretical and observed SSP coefficients that preserve the nonlinear stability
properties in Example 1.

For all of our simulations, we use a fixed grid of size ∆x = 1
1600

, and a time-step ∆t = λ∆x where we vary
0.05 ≤ λ ≤ 1. We step each method forward by N = 50 time-steps and compare the performance of the various
time-stepping methods constructed earlier in this work, for K =

√
2

2
. We test this problem using the two stage third

order method (19), the two stage fourth order method (10) and the three stage fourth order method in Appendix
A, the fifth order method (23). We also consider the non-SSP two stage third order method,

u∗ = un −∆tF (un) +
1

2
∆t2Ḟ (un),

un+1 = un − 1

3
∆tF (un) +

4

3
∆tF (u∗) +

4

3
∆t2Ḟ (un) +

1

2
∆t2Ḟ (u∗), (25)

To measure the effectiveness of these methods, we consider the maximum observed rise in total variation, defined
by

max
0≤n≤N−1

(
‖un+1‖TV − ‖un‖TV

)
. (26)

We are interested in the time-step in which this rise becomes evident (i.e. well above roundoff error). Another
measure that we use is the rise in total variation compared to the total variation of the initial solution:

max
0≤n≤N−1

(
‖un+1‖TV − ‖u0‖TV

)
. (27)

Figure 6 (top) shows the maximal rise in total variation for each CFL value ∆t
∆x

. On the left we have the maximal
per-step rise in TV (26) and on the right, the maximal rise in TV compared to the TV of the initial solution (27).
We clearly see that once the CFL value passes a certain limit, there is a sharp jump in the total variation of the
solution. We are interested in the value of ∆t

∆x
at which the time-stepping method no longer maintains the nonlinear

stability. The fifth order method (black) has the most restrictive value of ∆t before the total variation begins to
rise. The next most restrictive is the two-stage fourth order method, followed by the two stage third order method.
The two-stage second order methods have more freedom than these methods, and so have a much larger allowable
∆t, while the three stage fourth order, having the most freedom in the choice of coefficients, outperforms all the
other methods. Figure 6 (bottom) compares the performance of the non-SSP method to the SSP method. This
graph clearly shows the need for the SSP property of the time-stepping, as the absence of this property results in
the loss of the TVD property for any time-step.

We notice that controlling the maximal rise of the total variation compared to the initial condition (27) requires a
smaller allowable time-step, so we use this condition as our criterion for maximal allowable time-step. A comparison
of the predicted (i.e. theoretical) values of the SSP coefficient and the observed value for the Taylor series method,
the two stage methods of order p = 2, 3, 4, and the three-stage fourth and fifth order methods are shown in Table 3
We note that for the Taylor series method, the two-stage second order method, the two stage third order method,
and three stage fourth order method, the observed SSP coefficient matches exactly the theoretical value. On
the other hand, the two-stage fourth order and the three-stage fifth order, both of which have the smallest SSP
coefficients (both in theory and practice), have a larger observed SSP coefficient than predicted. For the two-stage
fourth order case this is expected, as we noted in Section 2.1 that the TVD time-step for this particular case is (as
we observe here) (

√
3− 1), larger than the more general SSP timestep C = 0.6788.

15

� ��� ��� ��� ��� � ��� ��� ���
���

���

���

���

��

��

��

��

�

�

��
��
��
�
�
�
�
��
	

��
��

�
� �
� �
�
�
��
�

��
�
�
��

� �

�

����

����

����

����

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−16

−14

−12

−10

−8

−6

−4

−2

0

2

 l
o
g
1
0
(m

a
x
(|

|U
n
||

T
V

−
||
U

0
||

T
V
))

∆ t

∆x

2s3p

2s4p

3s4p

3s5p

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−16

−14

−12

−10

−8

−6

−4

−2

0

2

 l
o
g
1
0
(m

a
x
(|

|U
n

+
1 |
| T

V
−

||
U

n
||

T
V))

∆ t

∆x

2s3p SSP

2s3p Non SSP

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−16

−14

−12

−10

−8

−6

−4

−2

0

2

 l
o
g
1
0
(m

a
x
(|

|U
n
||

T
V

−
||
U

0
||

T
V
))

∆ t

∆x

2s3p SSP

2s3p Non SSP

Figure 6: The rise in total variation as a function of the CFL number. On the left is the maximal per
time-step rise (26) and on the right the maximal TV rise above the initial TV (27). Top: Comparison of
a variety of SSP methods. Bottom: Comparison of two-stage third order SSP and non-SSP methods.

4.1.2 Example 2: MSMDmethods with weighted essentially non-oscillatory (WENO) meth-
ods

The major use of MSMD time-stepping would be in conjunction with high order methods for problems with shocks.
In this section we consider two scalar problems: the linear advection equation

Ut + Ux = 0 (28)

and the nonlinear Burgers’ equation

Ut +

(
1

2
U2

)
x

= 0 (29)

on x ∈ (−1, 1). In both cases we use the step function initial conditions (24), and periodic boundaries. We use
N = 201 points in the domain, so that ∆x = 1

100
.

16

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−12

−10

−8

−6

−4

−2

0

lo

g1
0(

m
a

x
(|

|U
n
||

T
V

−
||
U

0
||

T
V

))

∆ t

∆x

2s3p

2s4p

3s4p

3s5p

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−16

−14

−12

−10

−8

−6

−4

−2

0

2

 l
o
g
1
0
(m

a
x
(|

|U
n
||

T
V

−
||
U

0
||

T
V
))

∆ t

∆x

2s3p

2s4p

3s4p

3s5p

0 0.2 0.4 0.6 0.8 1 1.2
−14

−12

−10

−8

−6

−4

−2

0

2

 l
o
g
1
0
(m

a
x
(|

|U
n
||

T
V

−
||
U

0
||

T
V
))

∆ t

∆x

2s3p SSP

2s3p Non SSP

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−16

−14

−12

−10

−8

−6

−4

−2

0

2

 l
o
g
1
0
(m

a
x
(|

|U
n
||

T
V

−
||
U

0
||

T
V
))

∆ t

∆x

2s3p SSP

2s3p Non SSP

Figure 7: Comparison of the rise in total variation as a function of the CFL number for Example 2. Linear
advection on left and Burgers’ equation on right. The top graphs compare the performance of different
SSP methods, while the bottom graphs compare the two-stage third order SSP and non-SSP methods.

We follow our previous work [29] with a minor modification for the spatial discretization. The spatial discretiza-
tion is performed as follows: at each iteration we take the known value un and compute the flux f(un) = un in
the linear case and f(un) = 1

2
(un)2 for Burgers’ equation. Now to compute the spatial derivative f(un)x we use

the WENO method [13]. In our test cases, we can avoid flux splitting, as f ′(u) is strictly non-negative (below, we
refer to the WENO method on a flux with f ′(u) ≥ 0 as WENO+ and to to the corresponding method on a flux
with f ′(u) ≤ 0 as WENO−).

Now we have the approximation to Ut at time tn, and wish to compute the approximation to Utt. In previous
work we defined the higher order derivative using central differences, but we have found that additional limiting, in
the form of the WENO− differentiation operator, is needed to achieve a pseudo-TVD like property. For the linear
flux, this is very straightforward as Utt = Uxx. To compute this, we take ux as computed before, and differentiate
it using the WENO− method. Now we can compute the building block method.

For Burgers’ equation, we have Utt = − (UUt)x. We take the approximation to Ut that we obtained above

17

using WENO+, we multiply it by un and differentiate in space using WENO−. The choice of WENO+ followed
by WENO− is made by analogy to the first order finite difference for the linear advection case, where we use a
differentiation operator D+ followed by the downwind differentiation operator D− to produce a centered difference
for the second derivative. The second derivative condition (12) was satisfied by this approach. Now we compute
the building block method with the approximations to Ut and Utt. In pseudocode, the building block calculation
takes the form:

f(un) =
1

2
(un)2; unt = WENO+(f(un));

f ′(un) = un; f(un)t = f ′(un)unt untt = WENO−(f(un)t)

un+1 = un + α∆tunt + β∆t2untt.

We use the two stage third order SSP method (19), and the non-SSP method (25) the two stage fourth order method
(10) and the three stage fourth order method in Appendix A, the fifth order method (23). In these simulations,
we use ∆t = λ∆x where 0.05 ≤ λ ≤ 1.6, and step up to Tfinal = 1.0. At each time-step we compute (27), the
maximal rise in total variation compared to the total variation of the initial solution. In Figure 7 we observe similar
behavior to those of the linear advection with first order time-stepping, and once again see that the SSP method
is needed to preserve the nonlinear stability of WENO as well.

4.2 Convergence studies
As a final test case, we investigate the accuracy of the proposed schemes in conjunction with various high order
spatial discretization operators. We perform several tests that demonstrate that these methods converge with the
correct order for linear and nonlinear problems. In the first study (Example 3), we refine the grid only in time, and
show that if the spatial discretization is sufficiently accurate the multi-derivative methods exhibit the design-order
of convergence. We also compare the performance of the third order multi-derivative method to the three stage
third order explicit SSP Runge–Kutta method (SSPRK3,3) [32] and show that the convergence properties are the
same, indicating that the additional error in approximating Ft does not affect the accuracy of the method. In the
second study (Example 4) we co-refine the spatial and temporal grid by setting ∆t = λ∆x for a fixed λ, and shrink
∆x. We observed that since the order of the spatial method is higher than the order of the temporal discretization,
the time-stepping method achieves the design-order of accuracy both for linear and nonlinear problems.
Example 3a: temporal grid refinement with pseudospectral approximation of the spatial derivative.
We begin with a linear advection problem Ut + Ux = 0 with periodic boundary conditions and initial conditions
u0(x) = 0.5 + 0.5 sin(x) on the spatial domain x ∈ [0, 2π]. We discretize the spatial grid with N = 41 equidistant
points and use the Fourier pseudospectral differentiation matrix D [10] to compute F ≈ −Ux ≈ −Du. We use
a Lax-Wendroff approach to approximate Ft ≈ Uxx ≈ D2u. In this case, the solution is a sine wave, so that
the pseudospectral method is exact. For this reason, the spatial discretization of F is exact and contributes no
errors, and the second derivative Ft is also exact Ft = utt = −Dut = −DF = D2u = Ḟ . We use a range of time
steps, ∆t = λ∆x where we pick λ = 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, and 0.05 to compute the solution to final time
Tf = 2.0.

In Table 4 we list the errors for the SSPRK3,3, the two derivative two stage third order method in Section 3.2
with K = 1√

2
(listed as 2s3p in the table), the unique the two derivative two stage fourth order method (2s4p),

and the the two derivative three stage fifth order method (22) (3s5p). We observe that the design-order of each
method is verified. It is interesting to note that the SSPRK3,3 method has larger errors than the multiderivative
method 2s3p, demonstrating that the additional computation of Ḟ does improve the quality of the solution.
Example 3b: temporal grid refinement with WENO approximations of the spatial derivative. Using
the same problem as above we discretize the spatial grid with N = 101 equidistant points and use the ninth order
weighted essentially non-oscillatory method (WENO9) [1] to differentiate the spatial derivatives. It is interesting
to note that although the PDE we solve is linear, the use of the nonlinear method WENO9 results in a non-linear

18

SSPRK 3,3 2s3p 2s4p 3s5p
λ error Order error Order error Order error Order

0.8 7.99× 10−5 — 1.86× 10−5 — 1.96× 10−6 — 6.47× 10−8 —
0.7 5.24× 10−5 3.16 1.21× 10−5 3.17 1.12× 10−6 4.17 3.24× 10−8 5.17

0.6 3.27× 10−5 3.04 7.61× 10−6 3.05 6.02× 10−7 4.04 1.49× 10−8 5.04

0.5 1.93× 10−5 2.87 4.50× 10−6 2.88 2.97× 10−7 3.87 6.12× 10−9 4.87

0.4 9.70× 10−6 3.10 2.25× 10−6 3.10 1.18× 10−7 4.10 1.96× 10−9 5.09

0.3 4.09× 10−6 3.00 9.50× 10−7 3.00 3.76× 10−8 3.99 4.66× 10−10 5.00

0.2 1.21× 10−6 2.99 2.81× 10−7 3.00 7.43× 10−9 4.01 6.13× 10−11 5.00

0.1 1.50× 10−7 3.01 3.49× 10−8 3.01 4.61× 10−10 4.00 1.90× 10−12 5.01

0.05 1.88× 10−8 2.99 4.36× 10−9 3.00 2.88× 10−11 3.97 5.97× 10−14 4.99

Table 4: Convergence study for Example 3a, the linear advection problem with pseudospectral differentia-
tion of the spatial derivatives. Here we use N = 41 equidistant points between (0, 2π), and ∆t = λ∆x. The
solution is evolved forward to time Tf = 2.0 using the explicit SSP Runge–Kutta method (SSPRK3,3),
the two-stage third order two derivative method (2s3p), the two-stage fourth order two derivative method
(2s4p), and three-stage fifth order two derivative method (3s5p).

ODE. To evolve this ODE in time we use a range of time steps defined by ∆t = λ∆x for λ = 0.9, 0.8, 0.7, 0.6, 0.5, 0.4

to compute the solution to final time Tf = 2.0 In Table 5 we list the errors for the SSPRK3,3, the two derivative
two stage third order method in Section 3.2 with K = 1√

2
(listed as 2s3p in the table), the unique the two derivative

two stage fourth order method (2s4p), and the the two derivative three stage fifth order method (22) (3s5p). We
observe that the design-order of each method is verified and that once again the SSPRK3,3 method has larger errors
than the multiderivative method 2s3p. These results indicate that the approximation of the second derivative term
Ft via a Lax-Wendroff procedure and discretization in space does not affect the observed order of the time-stepping
method, as long as the spatial errors do not dominate.

To see what happens if the spatial discretization errors dominate over the time errors, we compare two different
WENO spatial discretizations: the fifth order method WENO5 and the ninth order method WENO9. Here, we
use N = 301 points in space, and we choose ∆t = λ∆x for λ = 0.8, 0.6, 0.4, 0.2, 0.1, 0.05. We evolve the solution in
time to Tf = 2.0 using the 2s3p and SSPRK3,3 methods. The log-log graph of the errors vs. ∆t is given in Figure
8 We observe that the errors from both time discretizations with the WENO5 spatial discretization (dotted lines)
have the correct orders when ∆t is larger and the time errors dominate, but as ∆t gets smaller the spatial errors
dominate convergence is lost. On the other hand, for the range of ∆t studied, the time-errors dominate over the
spatial errors when using the highly accurate WENO9 (solid line) and so convergence is not lost. We note that
to see this behavior, the spatial approximation must be sufficiently accurate. In this case this is attained by using
301 points in space and a high order spatial discretization. We also studied this problem with a co-refinement of
the spatial and temporal grids, where we use ∆t = 0.8∆x for ∆x = 2π

N−1
and N = 41, 81, 161, 321. Figure 9 shows

that while for larger ∆t the errors for WENO5 are larger than for WENO9, and this is more pronounced for the
multi-derivative methods than for the explicit Runge–Kutta, once the grid is sufficiently refined the temporal error
dominates and we see the third order convergence in time.

It is interesting to note that in all these studies the explicit SSP Runge–Kutta method SSPRK3,3 and the
two-derivative method 2s3p behave similarly, indicating that the approximation of the second derivative does not
play a role in the loss of accuracy.
Example 4: co-refinement of the spatial and temporal grids on linear advection with WENO7
Example 4a: In this example, we compare the errors and order of convergence of the multiderivative methods on

19

−3 −2.8 −2.6 −2.4 −2.2 −2 −1.8 −1.6
−11

−10.5

−10

−9.5

−9

−8.5

−8

−7.5

−7

−6.5

WENO5 2s3p

WENO9 2s3p

WENO5 SSP RK 33

WENO9 SSP RK 33

Figure 8: WENO5 vs WENO9 with grid re-
finement in time but not space Example 3b. On
the x-axis are log10(∆t) and on the y-axis are
log10(error). The errors from both time dis-
cretizations with the WENO5 spatial discretiza-
tion (dotted lines) have the correct orders when
∆t is larger and the time errors dominate, but
as ∆t gets smaller the spatial errors dominate
convergence is lost.

−1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.2 −1.1 −1 −0.9
−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

WENO5 2s3p

WENO9 2s3p

WENO5 SSP RK 33

WENO9 SSP RK 33

Figure 9: Example 3b: WENO5 vs WENO9
with refinement in both space and time, ∆t =

0.8∆x . On the x-axis are log10(∆t) and on the
y-axis are log10(error). Here we see that for
larger ∆t the errors for WENO5 are larger than
for WENO9 (especially for the multiderivative
method) but once the grid is sufficiently refined
the temporal order dominates and third order
convergence in time is observed.

a linear and nonlinear problem. For the linear problem, we use the linear advection problem

Ut + Ux = 0 on x ∈ [−1, 1]

with the initial condition
u0(x) = 0.5 + 0.5 sin(πx), x ∈ [−1, 1], (30)

We compute both F and Ḟ using a seventh order WENO (WENO7) [1] spatial derivative. We set ∆t = 0.8∆x

and evolve the solution to final time of Tfinal = 2.0, at which point the exact solution is identical to the initial
state. For time-stepping, we use the same three multiderivative schemes 2s3p, 2s4p, and 3s5p and the explicit SSP
Runge–Kutta method SSPRK3,3. In Table 6, where we compare the errors and orders of these three methods.
These numerical experiments show that once the mesh is sufficiently refined, the design-order of accuracy is reached.
The results verify that the proposed schemes are genuinely high-order accurate despite the fact that the second
derivative is not an exact second derivative of the method of lines formulation.
Example 4b: Next, we present results for the more difficult non-linear Burgers equation, with initial conditions
prescribed by

U0(x) = 1.0 + 0.2 sin(πx), x ∈ [−1, 1], (31)

and periodic boundary conditions. Once again, F and Ḟ are computed via the WENO7 spatial discretization. We
use a constant time-step ∆t = 0.8 ∆x

maxi |u0(xi)|
and run this problem with a final time of Tfinal = 1.4, before a shock

forms. Since the solution at this point the solution remains smooth, we can use the method of characteristics to
compute the the exact solution by

U(t, x) = U0 (x− t · U0(ξ)) , ξ = x− t · U0(ξ). (32)

20

SSPRK 3,3 2s3p 2s4p 3s5p
λ error Order error Order error Order error Order

0.9 7.37× 10−6 — 1.71× 10−6 — 8.25× 10−8 — 1.24× 10−9 —
0.8 5.24× 10−6 2.89 1.22× 10−6 2.89 5.21× 10−8 3.89 6.99× 10−10 4.89

0.7 3.44× 10−6 3.14 7.99× 10−7 3.14 3.00× 10−8 4.14 3.52× 10−10 5.14

0.6 2.18× 10−6 2.96 5.08× 10−7 2.96 1.63× 10−8 3.96 1.64× 10−10 4.96

0.5 1.27× 10−6 2.98 2.94× 10−7 2.98 7.89× 10−9 3.98 6.61× 10−11 4.97

0.4 6.47× 10−7 3.01 1.50× 10−7 3.01 3.22× 10−9 4.01 2.18× 10−11 4.97

Table 5: Convergence study for Example 3b, the linear advection problem with WENO9 differentiation of
the spatial derivatives. Here we use N = 101 equidistant points between (0, 2π), and ∆t = λ∆x.

SSPRK 3,3 2s3p 2s4p 3s5p
N error order error order error order error order
41 3.00× 10−04 — 5.94× 10−05 — 7.54× 10−06 −−− 2.59× 10−06 —
81 3.75× 10−05 3.00 7.39× 10−06 3.01 4.71× 10−07 4.00 8.03× 10−08 5.01

161 4.69× 10−06 3.00 9.23× 10−07 3.00 2.94× 10−08 4.00 2.51× 10−09 5.00

321 5.86× 10−07 3.00 1.15× 10−07 3.00 1.84× 10−09 4.00 7.82× 10−11 5.00

641 7.32× 10−08 3.00 1.44× 10−08 3.00 1.15× 10−10 4.00 2.45× 10−12 5.00

1281 9.15× 10−09 3.00 1.80× 10−09 3.00 7.19× 10−12 4.00 7.75× 10−14 4.98

Table 6: Convergence study for Example 4a: linear advection with WENO7 spatial differentiation and
refinement of both spatial and temporal grids. Here we use N points in space and ∆t = 0.8∆x. The
four methods used to evolve the solution to time Tf = 2.0 are the explicit SSP Runge–Kutta method
SSPRK3,3 and the three multiderivative methods 2s3p, 2s4p, and 3s5p. Despite the fact that the second
derivative Ḟ is not the exact second derivative Ft, we still observe high-order accuracy for all methods
once the grids are sufficiently refined.

SSPRK 3,3 2s3p 2s4p 3s5p
N error order error order error order error order

161 3.09× 10−04 — 1.91× 10−04 — 1.58× 10−04 — 1.67× 10−04 —
321 5.11× 10−05 2.60 2.00× 10−05 3.25 1.33× 10−05 3.57 1.76× 10−05 3.25

641 6.96× 10−06 2.88 1.70× 10−06 3.56 7.12× 10−07 4.22 9.34× 10−07 4.23

1281 8.80× 10−07 2.98 1.81× 10−07 3.23 3.38× 10−08 4.39 2.73× 10−08 5.09

2561 1.10× 10−07 3.00 2.22× 10−08 3.03 1.99× 10−09 4.09 7.49× 10−10 5.19

5121 1.38× 10−08 3.00 2.76× 10−09 3.01 1.24× 10−10 4.01 2.21× 10−11 5.08

10241 1.72× 10−09 3.00 3.44× 10−10 3.00 7.75× 10−12 4.00 7.04× 10−13 4.97

Table 7: Convergence study for Example 4b: Burgers’ equation with WENO7 spatial differentiation and
refinement of both spatial and temporal grids. Here we use N points in space and ∆t = 0.8∆x. The
four methods used to evolve the solution to time Tf = 2.0 are the explicit SSP Runge–Kutta method
SSPRK3,3 and the three multiderivative methods 2s3p, 2s4p, and 3s5p. A more refined grid is needed in
this example compared to the linear example, but for a sufficiently refined grid we still observe high-order
accuracy for all methods.

21

We solve for the implicit variable ξ using Netwon iteration with a tolerance of 10−14. The errors and order are
presented in Table 7. We see that it takes an even smaller mesh size than the linear problem before the errors
reach the asymptotic regime, but that once this happens we achieve the expected order. Again, these numerical
experiments further validate the fact that if the spatial error is not allowed to dominate, the high-order design-
accuracy of the time discretization attained despite the fact that we do not directly differentiate the method of
lines formulation to define the second derivative.

5 Conclusions
With the increasing popularity of multi-stage multiderivative methods for use as time-stepping methods for hyper-
bolic problems, the question of their strong stability properties needs to be addressed. In this work we presented
an SSP formulation for multistage two-derivative methods. We assumed that, in addition to the forward Euler
condition, the spatial discretization of interest satisfies a second derivative condition of the form (12). With these
assumptions in mind, we formulated an optimization problem which enabled us to find optimal explicit SSP multi-
stage two-derivative methods of up to order five, thus breaking the SSP order barrier for explicit SSP Runge–Kutta
methods. Numerical test cases verify the convergence of these methods at the design-order, show that sharpness
of the SSP condition in many cases, and demonstrate the need for SSP time-stepping methods in simulations
where the spatial discretization is specially designed to satisfy certain nonlinear stability properties. Future work
will involve building SSP multiderivative methods while assuming different base conditions (as in Remark 1) and
with higher derivatives. Additional work will involve developing new spatial discretizations suited for use with
SSP multiderivative time stepping methods. These methods will be based on WENO or discontinuous Galerkin
methods and will satisfy pseudo-TVD and similar properties for systems of equations.

Acknowledgements This work was supported by: AFOSR grants FA9550-12-1-0224, FA9550-12-1-0343,
FA9550-12-1-0455, FA9550-15-1-0282, and FA9550-15-1-0235; NSF grant DMS-1418804; New Mexico Consortium
grant NMC0155-01; and NASA grant NMX15AP39G.

A Coefficients of three stage fourth order methods
1. For K = 1

2
we obtain an SSP coefficient C = r = 1.1464. The Butcher array coefficients are given by

A =

 0 0 0

0.436148675945340 0 0

0.546571371212865 0.156647174804152 0

 , b =

 0.528992280543542

0.105732787708912

0.365274931747546



Â =

 0 0 0

0.095112833764436 0 0

0.071032477596813 0.107904226252921 0

 , b̂ =

 0.074866026156687

0.073410341982927

0.048740310097159

 .
The Shu-Osher arrays are Re = (1, 0, 0, 0)T ,

P =


0 0 0 0

0.5000 0 0 0

0.253176729307242 0.179580018745470 0 0

0.181986129712082 0.000000001889650 0.418750476492704 0



Q =


0 0 0 0

0.5 0 0 0

0 0.567243251947287 0 0

0.140002406985210 0.003037359947341 0.256223624973014 0



22

2. For K =
√

1
2
we obtain an SSP coefficient C = r = 1.3927 Butcher formulation

A =

 0 0 0

0.443752012194422 0 0

0.543193299768317 0.149202742858795 0

 , b =

 0.515040964378407

0.178821699719783

0.306137335901811



Â =

 0 0 0

0.098457924163299 0 0

0.062758211639901 0.110738910914425 0

 , b̂ =

 0.072864982225864

0.073840478463180

0.061973770357455

 .
The Shu-Osher arrays are Re = (1, 0, 0, 0)T ,

P =


0 0 0 0

0.618033988749895 0 0 0

0.362588515112176 0.207801573327953 0 0

0.144580879241747 0.110491604448675 0.426371652664792 0



Q =


0 0 0 0

0.381966011250105 0 0 0

0 0.429609911559871 0 0

0.078129569197367 0 0.240426294447419 0

 .
3. For K = 1 we obtain an SSP coefficient C = r = 1.6185. The Butcher array coefficients are given by

A =

 0 0 0

0.452297224196082 0 0

0.528050722182308 0.159236998008155 0

 , b =

 0.502519798444212

0.210741084344740

0.286739117211047



Â =

 0 0 0

0.102286389507741 0 0

0.055482128781494 0.108677624192402 0

 , b̂ =

 0.071256397204544

0.069475972085130

0.066877749079721

 .
The Shu-Osher arrays are Re = (1, 0, 0, 0)T ,

P =


0 0 0 0

0.732050807568877 0 0 0

0.457580533944888 0.257727809835459 0 0

0.137886171629970 0.176326540063367 0.464092174540814 0

 ,

Q =


0 0 0 0

0.267949192431123 0 0 0

0 0.284691656219654 0 0

0.046502314960818 0 0.175192798805030 0

 .

B Two stage third order method
This code gives the SSP coefficient and the Butcher and Shu Osher arrays for the optimal explicit SSP two stage
third order method given the value K.

23

clear all
k=sqrt(0.5); % Choose K
tab=[];
% Set up the polynomial for Q(3,1) to solve for SSP coefficient r
AA=sqrt(k^2+2) - k;
p0=2*k*(AA-2*k) + 4*k^3*AA;
p1=-p0;
p2=(1-p0)/(2*k^2);
p3= -(p0/(2*k) + k)/(6*k^3);
CC=[p3,p2,p1,p0]; % polynomial coefficients
RC=roots(CC);
r=RC(find(abs(imag(RC))<10^-15)); % SSP coefficient is the only real root.
%--
% Once we have the k and r we want we define the method following (21)
a= (k*sqrt(k^2+2)-k^2)/r;
b2 = ((k^2*(1-1/r)) + r*(.5-1/(6*a)))/(k^2+.5*r*a);
b1=1-b2;
ahat=.5*a^2;
bhat1=.5*(1-b2*a)-1/(6*a);
bhat2=1/(6*a)-.5*b2*a;
% The Butcher arrays are given by
A=zeros(2,2); Ahat=A;
A(2,1)=a;
b=[b1,b2];
Ahat(2,1)=ahat;
bhat=[bhat1,bhat2];
S=[0 0 0 ; a 0 0; b1 b2 0];
Shat=[0 0 0 ; ahat 0 0 ; bhat1 bhat2 0];
% The Shu-Osher matrices are given by
I=eye(3);e=ones(3,1);
Ri=I+r*S+(r^2/k^2)*Shat;
v=Ri\e;
P = r*(Ri\S);
Q= r^2/k^2*(Ri\Shat);
violation=min(min([v, S, Shat, P, Q])) % use this to check that all these are positive
tab=[tab;[k,r,violation]]; % build the table of values

C Three stage fifth order method
This code gives the SSP coefficient and the Butcher and Shu Osher arrays for the optimal explicit SSP three stage
fifth order method given the value K.

clear all
format long
syms r
tab=[];
k=sqrt(0.5) %The second derivative condition coefficient K

24

% Find the SSP coefficient C given K
a21= 240*k^6*(1 -r - r^2/(2*k^2) + r^3/(6*k^2) + r^4/(24*k^4) - r^5/(120*k^4))/r^6;
Q31=10*r^2*a21^4 - 100*k^2*a21^3 - 10*r^2*a21^3 + 130*k^2*a21^2 + 3*r^2*a21^2 - 50*k^2*a21 +6*k^2;
RC=vpasolve(simplify(r^22*Q31)==0);
rr=RC(find(abs(imag(RC))<10^-15));
C= max(rr) %The SSP coefficient
% ---
% The Butcher array coefficients given K and C
a21= 240*k^6*(1 -C - C^2/(2*k^2) + C^3/(6*k^2) + C^4/(24*k^4) - C^5/(120*k^4))/C^6;
ah32= ((3/5 -a21)^2/(a21*(1-2*a21)^3) - (3/5 -a21)/(1-2*a21)^2)/10;
ah31= ((3/5 -a21)^2/(1-2*a21)^2)/2 -ah32;
a31= (3/5 -a21)/(1-2*a21);
bh2=(2*a31-1)/(12*a21*(a31-a21));
bh3=(1-2*a21)/(12*a31*(a31-a21));
bh1=1/2-bh2-bh3;
ah21=(1/24 - bh3*(ah31+ah32))/bh2;
% Build the Butcher matrices
a= C*a21+ah21*C^2/k^2;
b= C*a31+ah31*C^2/k^2;
c= ah32*C^2/k^2;
d= C+ bh1*C^2/k^2;
e= bh2*C^2/k^2;
f = bh3*C^2/k^2;
Ri=([1 0 0 0; a 1 0 0 ; b c 1 0; d e f 1]);
S=[0 0 0 0; a21 0 0 0; a31 0 0 0 ;1 0 0 0];
Shat=[0 0 0 0; ah21 0 0 0; ah31 ah32 0 0 ;bh1 bh2 bh3 0];
% The Shu Osher matrices given C
eone=ones(4,1)
v=Ri\eone;
P = C*(Ri\S);
Q= C^2/k^2*(Ri\Shat);
% Double check that there are no violations of the SSP conditions:
violation=min(min([v, S, Shat, P, Q])) % use this to check that all these are positive
tab=[tab;[k,a21,C,violation]]; % build the table of values

References
[1] D. S. Balsara and C.-W. Shu, Monotonicity preserving weighted essentially non-oscillatory schemes with

increasingly high order of accuracy, Journal of Computational Physics, 160 (2000), pp. 405–452.

[2] C. Bresten, S. Gottlieb, Z. Grant, D. Higgs, D. I. Ketcheson, and A. Németh, Strong stability
preserving multistep Runge-Kutta methods. Accepted for publication in Mathematics of Computation.

[3] R. P. K. Chan and A. Y. J. Tsai, On explicit two-derivative Runge-Kutta methods, Numerical Algorithms,
53 (2010), pp. 171–194.

[4] L. Ferracina and M. N. Spijker, Stepsize restrictions for the total-variation-diminishing property in general
Runge–Kutta methods, SIAM Journal of Numerical Analysis, 42 (2004), pp. 1073–1093.

25

[5] , An extension and analysis of the Shu–Osher representation of Runge–Kutta methods, Mathematics of
Computation, 249 (2005), pp. 201–219.

[6] E. Gekeler and R. Widmann, On the order conditions of Runge-Kutta methods with higher derivatives,
Numer. Math., 50 (1986), pp. 183–203.

[7] S. Gottlieb, D. I. Ketcheson, and C.-W. Shu, Strong Stability Preserving Runge–Kutta and Multistep
Time Discretizations, World Scientific Press, 2011.

[8] Z. J. Grant, Explicit SSP multistage two-derivative SSP optimization code. https://github.com/
SSPmethods/SSPMultiStageTwoDerivativeMethods, February 2015.

[9] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Uniformly high-order accurate essentially
nonoscillatory schemes. III, J. Comput. Phys., 71 (1987), pp. 231–303.

[10] J. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral methods for time dependent problems, Cambridge
Monographs of Applied and Computational Mathematics, Cambridge University Press, 2007.

[11] I. Higueras, On strong stability preserving time discretization methods, Journal of Scientific Computing, 21
(2004), pp. 193–223.

[12] , Representations of Runge–Kutta methods and strong stability preserving methods, SIAM Journal On
Numerical Analysis, 43 (2005), pp. 924–948.

[13] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126
(1996), pp. 202–228.

[14] K. Kastlunger and G. Wanner, On Turan type implicit Runge-Kutta methods, Computing (Arch. Elek-
tron. Rechnen), 9 (1972), pp. 317–325. 10.1007/BF02241605.

[15] K. H. Kastlunger and G. Wanner, Runge Kutta processes with multiple nodes, Computing (Arch. Elek-
tron. Rechnen), 9 (1972), pp. 9–24.

[16] D. I. Ketcheson, Highly efficient strong stability preserving Runge–Kutta methods with low-storage imple-
mentations, SIAM Journal on Scientific Computing, 30 (2008), pp. 2113–2136.

[17] D. I. Ketcheson, S. Gottlieb, and C. B. Macdonald, Strong stability preserving two-step Runge-Kutta
methods, SIAM Journal on Numerical Analysis, (2012), pp. 2618–2639.

[18] D. I. Ketcheson, C. B. Macdonald, and S. Gottlieb, Optimal implicit strong stability preserving
Runge–Kutta methods, Applied Numerical Mathematics, 52 (2009), p. 373.

[19] D. I. Ketcheson, M. Parsani, and A. J. Ahmadia, Rk-opt: Software for the design of Runge–Kutta
meththods, version 0.2. https://github.com/ketch/RK-opt.

[20] J. F. B. M. Kraaijevanger, Contractivity of Runge–Kutta methods, BIT, 31 (1991), pp. 482–528.

[21] P. Lax and B. Wendroff, Systems of conservation laws, Communications in Pure and Applied Mathemat-
ics, 13 (1960), pp. 217–237.

[22] T. Mitsui, Runge-Kutta type integration formulas including the evaluation of the second derivative. i., Publ.
Res. Inst. Math. Sci., 18 (1982), pp. 325–364.

[23] T. Nguyen-Ba, H. Nguyen-Thu, T. Giordano, and R. Vaillancourt, One-step strong-stability-
preserving Hermite-Birkhoff-Taylor methods, Scientific Journal of Riga Technical University, 45 (2010), pp. 95–
104.

[24] N. Obreschkoff, Neue Quadraturformeln, Abh. Preuss. Akad. Wiss. Math.-Nat. Kl., 4 (1940).

[25] H. Ono and T. Yoshida, Two-stage explicit Runge-Kutta type methods using derivatives., Japan J. Indust.
Appl. Math., 21 (2004), pp. 361–374.

26

https://github.com/SSPmethods/SSPMultiStageTwoDerivativeMethods
https://github.com/SSPmethods/SSPMultiStageTwoDerivativeMethods
https://github.com/ketch/RK-opt

[26] J. Qiu, M. Dumbser, and C.-W. Shu, The discontinuous Galerkin method with Lax–Wendroff type time
discretizations, Computer Methods in Applied Mechanics and Engineering, 194 (2005), pp. 4528–4543.

[27] J. Qiu and C.-W. Shu, Finite Difference WENO schemes with Lax–Wendroff-type time discretizations,
SIAM Journal on Scientific Computing, 24 (2003), pp. 2185–2198.

[28] S. J. Ruuth and R. J. Spiteri, Two barriers on strong-stability-preserving time discretization methods,
Journal of Scientific Computation, 17 (2002), pp. 211–220.

[29] D. C. Seal, Y. Guclu, and A. J. Christlieb, High-order multiderivative time integrators for hyperbolic
conservation laws, Journal of Scientific Computing, 60 (2014), pp. 101–140.

[30] H. Shintani, On one-step methods utilizing the second derivative, Hiroshima Mathematical Journal, 1 (1971),
pp. 349–372.

[31] , On explicit one-step methods utilizing the second derivative, Hiroshima Mathematical Journali, 2 (1972),
pp. 353–368.

[32] C.-W. Shu, Total-variation diminishing time discretizations, SIAM J. Sci. Stat. Comp., 9 (1988), pp. 1073–
1084.

[33] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes,
Journal of Computational Physics, 77 (1988), pp. 439–471.

[34] R. J. Spiteri and S. J. Ruuth, A new class of optimal high-order strong-stability-preserving time discretiza-
tion methods, SIAM J. Numer. Anal., 40 (2002), pp. 469–491.

[35] D. D. Stancu and A. H. Stroud, Quadrature formulas with simple Gaussian nodes and multiple fixed
nodes, Math. Comp., 17 (1963), pp. 384–394.

[36] E. Toro and V. Titarev, Solution of the generalized Riemann problem for advection–reaction equations,
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 458 (2002),
pp. 271–281.

[37] A. Y. J. Tsai, R. P. K. Chan, and S. Wang, Two-derivative Runge–Kutta methods for PDEs using a
novel discretization approach, Numerical Algorithms, 65 (2014), pp. 687–703.

[38] P. Turán, On the theory of the mechanical quadrature, Acta Sci. Math. Szeged, 12 (1950), pp. 30–37.

27

	1 Introduction
	1.1 SSP methods
	1.2 Multistage multiderivative methods

	2 The SSP condition for multiderivative methods
	2.1 Motivating Examples
	2.2 Formulating the SSP optimization problem

	3 Optimal SSP multiderivative methods
	3.1 Second order methods
	3.2 Third order methods
	3.3 Fourth order methods
	3.3.1 Fourth order methods: The two-stage fourth-order method
	3.3.2 Fourth order methods: Three stage methods

	3.4 Fifth order methods

	4 Numerical Experiments
	4.1 Numerical verification of the SSP properties of these methods
	4.1.1 Example 1: Linear advection with first order TVD spatial discretization
	4.1.2 Example 2: MSMD methods with weighted essentially non-oscillatory (WENO) methods

	4.2 Convergence studies

	5 Conclusions
	A Coefficients of three stage fourth order methods
	B Two stage third order method
	C Three stage fifth order method

